SlideShare a Scribd company logo
The Kuhn-Munkres
Algorithm
step by step
The Kuhn-Munkres algorithm
 The

Kuhn-Munkres Algorithm:

It’s algorithm to find the maximum weight perfect
matching in a weighted complete bipartite graph

 Kuhn-Munkres

algorithm consider assignment

problem in terms of bipartite graph
The Kuhn-Munkres algorithm


Key idea
 find a good feasible labeling that remains enough edges
in equality graph.
 to ensure perfect matching can be done



Algorithm describe
 Start with any feasible labeling L
and some matching M in GL
 While M is not perfect matching, repeat:
Find an augmenting path in GL to increase the size of M
or
if no path exists, improve L to L’ such that GL ⊂ GL’
Before the algorithm

Y1

1

Y2

6

Y3

8

1

6
X1

Y1 0

1

6

4

X2

Original Graph

Y2 0

8

1
6

X3

X1 6

Y3 0

Y1 0

Y2 0

6

X3 4

8
4

4

X2 8
Initial feasible
labeling

Y3 0

X1 6
X2 8
X3 4
Equality Graph +
Matching

l ( x) l ( y )

w( xy)

1
Before the algorithm
 Updating

feasible labeling:

Or how we compute:
l



min l ( x) l ( y) w( xy)
x S
y T

^

l (v )

l (v )

l

, if v S

l (v )

l

, if v T

l (v) , otherwise

If we have the following labeling L. Assume S={X1,X2} T={y2}
Y1 0

1

Y2 0

6

8

1
6

X1 6

Y3 0

X2 8

4

X3 4

Compute l only for x1,x2
With all Y except y2

x S &y T

Find minimum of:
x1, y1 = l(x1)+l(y1)-w(x1,y2)
= 6+0–1= 5
x2, y3 = l(x2)+l(y3)-w(x1,y2)
= 8+0–6= 2

Y1 0

1

0
Y2 2

6

8

1
6

6
X1 4

Y3 0

8
X2 6

4
X3 4

Subtract 2 from x1,x2
Add 2 to y2
Algorithm
Generate initial labeling L and matching M in GL
 Step 1. If X is M-saturateda (perfect matching), stop
Otherwise, let u be an M-unsaturated vertex.
Set S = {u} and T = .
 Step 2. If N G ( S ) T , go to step 3.
Otherwise, Compute
l

l

^

l (v )

min l ( x) l ( y) w( xy)
x S
y T

l (v )

l

, if v S

l (v )

l

, if v T

l (v) , otherwise

Replace L by L’ and

G by Gl’
Algorithm
y

N Gl ( S ) T

yz M

M

M

E (P)
Example :


Apply Kuhn- Munkers algorithm to find an optimal matching:
Y1

1

Y2

6

Y3

8

1
6

X1

4

X2
X3
Original Graph
Example :
Y1

1

X1

min l ( x) l ( y) w( xy)

l

l (v )

6

Y3

8

1

6

N Gl ( S ) T

^

Y2

x S
y T

l (v )

l

, if v S

l (v )

l

, if v T

l (v) , otherwise

y

N Gl ( S ) T

yz M
M

M

E (P)

4

X2
Original Graph

X3
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

l (v )

l

, if v S

l (v )

l

, if v T

l (v) , otherwise

y

N Gl ( S ) T

yz M
M

M

E (P)

Y3 0

8

1

6

N Gl ( S ) T

^

Y2 0

4

X1 6
X2 8
Original Graph

X3 4
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

yz M
M

M

E (P)
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

yz M
M

M

E (P)
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

yz M
M

M

E (P)
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

yz M
M

M

E (P)
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

Y2 0

6

8

1

6

N Gl ( S ) T
min l ( x) l ( y) w( xy)

l

^

l (v )

x S
y T

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1}

yz M

T = {}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

yz M

Go to 2

S = {X1, X2}
T = {y2}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy) =2
x S

l

y T

l (v )

6

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 6
X2 8
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 0

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

X3 4

Y2

Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2,y3}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2,y3}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2,y3}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2,y3}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P)

N Gl (S )

{y2,y3}
Example :
Y1 0

1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P) Go to 1

N Gl (S )

{y2,y3}
Example :
Y1 0

stop
1

min l ( x) l ( y) w( xy)

l

l (v )

6

x S
y T

1

l
l

Y2

X3 4
Y3

, if v S

l (v )

4

X1 4
X2 6
Original Graph
Y1

l (v )

Y3 0

8

6

N Gl ( S ) T

^

Y2 2

, if v T

l (v) , otherwise

y

N Gl ( S ) T

X1
X2
X3
Equality Graph + Matching

S = {X1, X2}

yz M

T = {y2}

M

M

E (P) Go to 1

N Gl (S )

{y2,y3}
Thanks

More Related Content

PPTX
Mathematical Induction
PPT
mathematical induction
PPT
Solving systems of equations by substitution
PPTX
Solving radical equations
PPTX
Knapsack problem
PDF
1 complex numbers
DOC
Solution of System of Linear Equations
PPTX
Chapter 22 Finite Field
Mathematical Induction
mathematical induction
Solving systems of equations by substitution
Solving radical equations
Knapsack problem
1 complex numbers
Solution of System of Linear Equations
Chapter 22 Finite Field

What's hot (20)

PPTX
Modeling with Recurrence Relations
PPTX
Indeterminate Forms and L' Hospital Rule
PPTX
Graph Traversal Algorithms - Depth First Search Traversal
PPSX
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
PPT
Trees
PPTX
Proof By Contradictions
PPTX
ALGEBRAIC EXPRESSIONS AND IDENTITIES.pptx
PDF
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
PPT
Absolute value functions
PPT
Chapter11
PPTX
Jerarquizacion de operaciones
PDF
Isomorphism
PPTX
TOPOLOGY
PPTX
Tangent and normal
PPT
Section 1.2 Quadratic Equations
PDF
Lecture 2 predicates quantifiers and rules of inference
PPTX
Mathematical Modeling With Maple
PPTX
Topology M.Sc. 2 semester Mathematics compactness, unit - 4
PDF
Gaussian quadratures
PDF
Partial diferential good
Modeling with Recurrence Relations
Indeterminate Forms and L' Hospital Rule
Graph Traversal Algorithms - Depth First Search Traversal
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
Trees
Proof By Contradictions
ALGEBRAIC EXPRESSIONS AND IDENTITIES.pptx
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
Absolute value functions
Chapter11
Jerarquizacion de operaciones
Isomorphism
TOPOLOGY
Tangent and normal
Section 1.2 Quadratic Equations
Lecture 2 predicates quantifiers and rules of inference
Mathematical Modeling With Maple
Topology M.Sc. 2 semester Mathematics compactness, unit - 4
Gaussian quadratures
Partial diferential good
Ad

Viewers also liked (15)

PPTX
Multiple Hypothesis Tracking Algorithm
PPTX
Hungarian algorithm
PDF
Assgnment=hungarian method
PDF
Assignment problems
PPTX
Application of greedy method
PDF
ILSVRC2015 手法のメモ
PPTX
Greedy algorithm
PPTX
Greedy Algorithms
PPT
Lesson 33: The Assignment Problem
PDF
Assignment problem
DOC
Status 3GPP LTE-V2X work item on vehicular communication - Sept 2016
PPTX
Assignment problem
PPTX
論文紹介: Fast R-CNN&Faster R-CNN
PPTX
Transportation Problem
PPTX
RESOURCE ALLOCATION AND STORAGE IN MOBILE USING CLOUD COMPUTING
Multiple Hypothesis Tracking Algorithm
Hungarian algorithm
Assgnment=hungarian method
Assignment problems
Application of greedy method
ILSVRC2015 手法のメモ
Greedy algorithm
Greedy Algorithms
Lesson 33: The Assignment Problem
Assignment problem
Status 3GPP LTE-V2X work item on vehicular communication - Sept 2016
Assignment problem
論文紹介: Fast R-CNN&Faster R-CNN
Transportation Problem
RESOURCE ALLOCATION AND STORAGE IN MOBILE USING CLOUD COMPUTING
Ad

Similar to Kuhn munkres algorithm (20)

PDF
501 lecture8
PDF
Principal Component Analysis
PPTX
State Space Realizations_new.pptx
DOCX
121593320 teorema-stokes
PPTX
33 parametric equations x
PDF
A0212010109
PDF
On problem-of-parameters-identification-of-dynamic-object
PDF
E041046051
PDF
Lecture 10
PDF
Lecture 10
PDF
Nokton theory-en
PPTX
legendre.pptx
PDF
160511 hasegawa lab_seminar
PDF
Stochastic Schrödinger equations
PDF
Multivriada ppt ms
PDF
A Note on “   Geraghty contraction type mappings”
PPTX
The chain rule
 
PPTX
stochastic processes assignment help
PDF
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
PPT
1526 exploiting symmetries
501 lecture8
Principal Component Analysis
State Space Realizations_new.pptx
121593320 teorema-stokes
33 parametric equations x
A0212010109
On problem-of-parameters-identification-of-dynamic-object
E041046051
Lecture 10
Lecture 10
Nokton theory-en
legendre.pptx
160511 hasegawa lab_seminar
Stochastic Schrödinger equations
Multivriada ppt ms
A Note on “   Geraghty contraction type mappings”
The chain rule
 
stochastic processes assignment help
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
1526 exploiting symmetries

Recently uploaded (20)

PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
KodekX | Application Modernization Development
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Empathic Computing: Creating Shared Understanding
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
Cloud computing and distributed systems.
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Electronic commerce courselecture one. Pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Understanding_Digital_Forensics_Presentation.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Unlocking AI with Model Context Protocol (MCP)
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
KodekX | Application Modernization Development
Review of recent advances in non-invasive hemoglobin estimation
Empathic Computing: Creating Shared Understanding
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
The AUB Centre for AI in Media Proposal.docx
MIND Revenue Release Quarter 2 2025 Press Release
Cloud computing and distributed systems.
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
The Rise and Fall of 3GPP – Time for a Sabbatical?
Electronic commerce courselecture one. Pdf
20250228 LYD VKU AI Blended-Learning.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Network Security Unit 5.pdf for BCA BBA.
Understanding_Digital_Forensics_Presentation.pptx

Kuhn munkres algorithm

  • 2. The Kuhn-Munkres algorithm  The Kuhn-Munkres Algorithm: It’s algorithm to find the maximum weight perfect matching in a weighted complete bipartite graph  Kuhn-Munkres algorithm consider assignment problem in terms of bipartite graph
  • 3. The Kuhn-Munkres algorithm  Key idea  find a good feasible labeling that remains enough edges in equality graph.  to ensure perfect matching can be done  Algorithm describe  Start with any feasible labeling L and some matching M in GL  While M is not perfect matching, repeat: Find an augmenting path in GL to increase the size of M or if no path exists, improve L to L’ such that GL ⊂ GL’
  • 4. Before the algorithm Y1 1 Y2 6 Y3 8 1 6 X1 Y1 0 1 6 4 X2 Original Graph Y2 0 8 1 6 X3 X1 6 Y3 0 Y1 0 Y2 0 6 X3 4 8 4 4 X2 8 Initial feasible labeling Y3 0 X1 6 X2 8 X3 4 Equality Graph + Matching l ( x) l ( y ) w( xy) 1
  • 5. Before the algorithm  Updating feasible labeling: Or how we compute: l  min l ( x) l ( y) w( xy) x S y T ^ l (v ) l (v ) l , if v S l (v ) l , if v T l (v) , otherwise If we have the following labeling L. Assume S={X1,X2} T={y2} Y1 0 1 Y2 0 6 8 1 6 X1 6 Y3 0 X2 8 4 X3 4 Compute l only for x1,x2 With all Y except y2 x S &y T Find minimum of: x1, y1 = l(x1)+l(y1)-w(x1,y2) = 6+0–1= 5 x2, y3 = l(x2)+l(y3)-w(x1,y2) = 8+0–6= 2 Y1 0 1 0 Y2 2 6 8 1 6 6 X1 4 Y3 0 8 X2 6 4 X3 4 Subtract 2 from x1,x2 Add 2 to y2
  • 6. Algorithm Generate initial labeling L and matching M in GL  Step 1. If X is M-saturateda (perfect matching), stop Otherwise, let u be an M-unsaturated vertex. Set S = {u} and T = .  Step 2. If N G ( S ) T , go to step 3. Otherwise, Compute l l ^ l (v ) min l ( x) l ( y) w( xy) x S y T l (v ) l , if v S l (v ) l , if v T l (v) , otherwise Replace L by L’ and G by Gl’
  • 7. Algorithm y N Gl ( S ) T yz M M M E (P)
  • 8. Example :  Apply Kuhn- Munkers algorithm to find an optimal matching: Y1 1 Y2 6 Y3 8 1 6 X1 4 X2 X3 Original Graph
  • 9. Example : Y1 1 X1 min l ( x) l ( y) w( xy) l l (v ) 6 Y3 8 1 6 N Gl ( S ) T ^ Y2 x S y T l (v ) l , if v S l (v ) l , if v T l (v) , otherwise y N Gl ( S ) T yz M M M E (P) 4 X2 Original Graph X3
  • 10. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T l (v ) l , if v S l (v ) l , if v T l (v) , otherwise y N Gl ( S ) T yz M M M E (P) Y3 0 8 1 6 N Gl ( S ) T ^ Y2 0 4 X1 6 X2 8 Original Graph X3 4
  • 11. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching yz M M M E (P)
  • 12. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching yz M M M E (P)
  • 13. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching yz M M M E (P)
  • 14. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching yz M M M E (P)
  • 15. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 16. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 17. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 18. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 19. Example : Y1 0 1 Y2 0 6 8 1 6 N Gl ( S ) T min l ( x) l ( y) w( xy) l ^ l (v ) x S y T l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 20. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1} yz M T = {} M M E (P) N Gl (S ) {y2}
  • 21. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching yz M Go to 2 S = {X1, X2} T = {y2} M M E (P) N Gl (S ) {y2}
  • 22. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2}
  • 23. Example : Y1 0 1 min l ( x) l ( y) w( xy) =2 x S l y T l (v ) 6 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 6 X2 8 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 0 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2}
  • 24. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2}
  • 25. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l X3 4 Y2 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2}
  • 26. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2,y3}
  • 27. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2,y3}
  • 28. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2,y3}
  • 29. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2,y3}
  • 30. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) N Gl (S ) {y2,y3}
  • 31. Example : Y1 0 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) Go to 1 N Gl (S ) {y2,y3}
  • 32. Example : Y1 0 stop 1 min l ( x) l ( y) w( xy) l l (v ) 6 x S y T 1 l l Y2 X3 4 Y3 , if v S l (v ) 4 X1 4 X2 6 Original Graph Y1 l (v ) Y3 0 8 6 N Gl ( S ) T ^ Y2 2 , if v T l (v) , otherwise y N Gl ( S ) T X1 X2 X3 Equality Graph + Matching S = {X1, X2} yz M T = {y2} M M E (P) Go to 1 N Gl (S ) {y2,y3}