Laws of Exponents revised powerpoint pre
Exponents
Exponents
 3
5
Power
base
exponent
3 3
means that is the exponential
form of t
Example:
he number
125 5 5
.
125

53
means 3 factors of 5 or 5 x 5 x 5
The Laws of Exponents:
The Laws of Exponents:
Exponential form: The exponent of a power indicates
how many times the base multiplies itself.
n
n times
x x x x x x x x

   


   
      
3
Example: 5 5 5 5
  
n factors of x
#1: Multiplying Powers (Product of Powers): If
you are multiplying Powers with the same base, KEEP the BASE
& ADD the EXPONENTS!
m n m n
x x x 
 
So, I get it!
When you
multiply
Powers, you
add the
exponents!
512
2
2
2
2 9
3
6
3
6



 
#2: Dividing Powers (Quotient of Powers):
When dividing Powers with the same base, KEEP the BASE &
SUBTRACT the EXPONENTS!
m
m n m n
n
x
x x x
x

  
So, I get it!
When you
divide
Powers, you
subtract the
exponents!
16
2
2
2
2 4
2
6
2
6


 
Try these:

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

 7
2
4
2
.
4 s
s



 3
2
)
3
(
)
3
(
.
5

 3
7
4
2
.
6 t
s
t
s
81
3
3 4
2
2



7
2
5
a
a 

9
7
2
8
4
2 s
s 

 
SOLUTIONS
6
4
2
5
5 

243
)
3
(
)
3
( 5
3
2




 
7
9
3
4
7
2
t
s
t
s 



4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

5
4
8
5
4
36
.
10
b
a
b
a
SOLUTIONS
8
4
12
s
s 

81
3
3 4
5
9



4
8
4
8
4
12
t
s
t
s 


3
5
8
4
5
9
4
36 ab
b
a 

 

#3: Power of a Power: If you are raising a Power to an
exponent, you multiply the exponents!
 
n
m mn
x x

So, when I
take a Power
to a power, I
multiply the
exponents
6
2
3
2
3
5
5
)
5
( 
 
#5: Product Law of Exponents: If the product of the
bases is powered by the same exponent, then the result is a
multiplication of individual factors of the product, each powered
by the given exponent.
 
n n n
xy x y
 
So, when I take
a Power of a
Product, I apply
the exponent to
all factors of
the product.
2
2
2
)
( b
a
ab 
#6: Quotient Law of Exponents: If the quotient of the
bases is powered by the same exponent, then the result is both
numerator and denominator , each powered by the given exponent.
n n
n
x x
y y
 

 
 
So, when I take a
Power of a
Quotient, I apply
the exponent to
all parts of the
quotient.
81
16
3
2
3
2
4
4
4








Try these:
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
2
3
5
2
2
.
4 b
a

 2
2
)
3
(
.
5 a
  
3
4
2
.
6 t
s
SOLUTIONS
10
3
12
a
6
3
2
3
8
2 a
a 

6
10
6
10
4
2
3
2
5
2
2
16
2
2 b
a
b
a
b
a 




  4
2
2
2
9
3 a
a 

 
12
6
3
4
3
2
t
s
t
s 









5
.
7
t
s









2
5
9
3
3
.
8









2
4
8
.
9
rt
st









2
5
4
8
5
4
36
10
b
a
b
a
SOLUTIONS
  6
2
2
3
2
2
2
3
81
9
9 b
a
b
a
ab 
 
2
8
2
2
4
r
t
s
r
st









  8
2
4
3
3 
5
5
t
s
#4: Negative Law of Exponents: If the base is powered
by the negative exponent, then the base becomes reciprocal with the
positive exponent.
1
m
m
x
x


So, when I have a
Negative Exponent, I
switch the base to its
reciprocal with a
Positive Exponent.
Ha Ha!
If the base with the
negative exponent is in
the denominator, it
moves to the
numerator to lose its
negative sign!
9
3
3
1
125
1
5
1
5
2
2
3
3






and
#5: Zero Law of Exponents: Any base powered by zero
exponent equals one.
0
1
x 
1
)
5
(
1
1
5
0
0
0



a
and
a
and
So zero
factors of a
base equals 1.
That makes
sense! Every
power has a
coefficient
of 1.
Try these:
  
0
2
2
.
1 b
a
  
0
4
2
.
6 t
s
SOLUTIONS
  
0
2
2
.
1 b
a
  
 1
5
.
3 a


 7
2
4
.
4 s
s
  

 4
3
2
3
.
5 y
x
  
0
4
2
.
6 t
s
1
5
1
a
5
4s
  12
8
12
8
4
81
3
y
x
y
x 


1









 1
2
2
.
7
x









 2
5
9
3
3
.
8









 2
4
4
2
2
.
9
t
s
t
s









 2
5
4
5
4
36
.
10
b
a
a
SOLUTIONS
4
4
1
x
x








  8
8
2
4
3
1
3
3 
 

  4
4
2
2
2
t
s
t
s 



2
10
10
2
2
81
9
a
b
b
a 



More Related Content

PPT
422758916-Laws-of-Exponents-0-powerpoint-ppt.ppt
PPT
Laws-of-Exponentjdjdjdjdjjdhdndjdjdjdjdd
PPT
LAWS OF EXPONENT REFRESH IN MATHEMATICS
PPT
laws_of_exponents_student_use.ppt
PPT
laws_of_exponents_student_use.ppt
PPT
laws_of_exponents_student_use.ppt
PPT
laws_of_exponents_student_use.ppt
PPT
laws_of_exponents_student_use.ppt
422758916-Laws-of-Exponents-0-powerpoint-ppt.ppt
Laws-of-Exponentjdjdjdjdjjdhdndjdjdjdjdd
LAWS OF EXPONENT REFRESH IN MATHEMATICS
laws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt

Similar to Laws of Exponents revised powerpoint pre (20)

PPT
IT IS THE LAWS OF EXPONENTS WITH EXAMPLES AND DRILLS
PPTX
Laws of Exponents intro examples and pedmas.pptx
PPT
Laws of exponents
PPT
Exponent1
PPTX
3 Laws of Exponents.pptx powerpoint prst
PPT
Donna G. Bautista
PPT
Donna g. bautista
PPT
The Laws of Exponents
PPT
Exponents and powers by arjun rastogi
PPT
Rules of Exponents
PPT
Exponents Intro with Practice.ppt
PPT
Laws of exponents complete
PPTX
Laws of Exponents
PPT
Properties-of-Exponents.pptslc[z;xcw;xvr
PPTX
laws_of_exponents.pptx
PPTX
Exponents and Powers
PPT
Law_of_Exponents_Grade7 Final Presentation
PPT
basicsaboutexponents-140308-phpapp01.ppt
PPTX
Exponents and its laws.pptx
IT IS THE LAWS OF EXPONENTS WITH EXAMPLES AND DRILLS
Laws of Exponents intro examples and pedmas.pptx
Laws of exponents
Exponent1
3 Laws of Exponents.pptx powerpoint prst
Donna G. Bautista
Donna g. bautista
The Laws of Exponents
Exponents and powers by arjun rastogi
Rules of Exponents
Exponents Intro with Practice.ppt
Laws of exponents complete
Laws of Exponents
Properties-of-Exponents.pptslc[z;xcw;xvr
laws_of_exponents.pptx
Exponents and Powers
Law_of_Exponents_Grade7 Final Presentation
basicsaboutexponents-140308-phpapp01.ppt
Exponents and its laws.pptx
Ad

Recently uploaded (20)

PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
advance database management system book.pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
HVAC Specification 2024 according to central public works department
PDF
Complications of Minimal Access-Surgery.pdf
PDF
semiconductor packaging in vlsi design fab
PDF
English Textual Question & Ans (12th Class).pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Journal of Dental Science - UDMY (2021).pdf
PPTX
What’s under the hood: Parsing standardized learning content for AI
Unit 4 Computer Architecture Multicore Processor.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
Race Reva University – Shaping Future Leaders in Artificial Intelligence
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
advance database management system book.pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Core Concepts of Personalized Learning and Virtual Learning Environments
HVAC Specification 2024 according to central public works department
Complications of Minimal Access-Surgery.pdf
semiconductor packaging in vlsi design fab
English Textual Question & Ans (12th Class).pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
My India Quiz Book_20210205121199924.pdf
Computer Architecture Input Output Memory.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
Journal of Dental Science - UDMY (2021).pdf
What’s under the hood: Parsing standardized learning content for AI
Ad

Laws of Exponents revised powerpoint pre

  • 2. Exponents Exponents  3 5 Power base exponent 3 3 means that is the exponential form of t Example: he number 125 5 5 . 125  53 means 3 factors of 5 or 5 x 5 x 5
  • 3. The Laws of Exponents: The Laws of Exponents: Exponential form: The exponent of a power indicates how many times the base multiplies itself. n n times x x x x x x x x                   3 Example: 5 5 5 5    n factors of x
  • 4. #1: Multiplying Powers (Product of Powers): If you are multiplying Powers with the same base, KEEP the BASE & ADD the EXPONENTS! m n m n x x x    So, I get it! When you multiply Powers, you add the exponents! 512 2 2 2 2 9 3 6 3 6     
  • 5. #2: Dividing Powers (Quotient of Powers): When dividing Powers with the same base, KEEP the BASE & SUBTRACT the EXPONENTS! m m n m n n x x x x x     So, I get it! When you divide Powers, you subtract the exponents! 16 2 2 2 2 4 2 6 2 6    
  • 6. Try these:   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a  4 12 . 7 s s  5 9 3 3 . 8  4 4 8 12 . 9 t s t s
  • 7.   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a   7 2 4 2 . 4 s s     3 2 ) 3 ( ) 3 ( . 5   3 7 4 2 . 6 t s t s 81 3 3 4 2 2    7 2 5 a a   9 7 2 8 4 2 s s     SOLUTIONS 6 4 2 5 5   243 ) 3 ( ) 3 ( 5 3 2       7 9 3 4 7 2 t s t s   
  • 9. #3: Power of a Power: If you are raising a Power to an exponent, you multiply the exponents!   n m mn x x  So, when I take a Power to a power, I multiply the exponents 6 2 3 2 3 5 5 ) 5 (   
  • 10. #5: Product Law of Exponents: If the product of the bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.   n n n xy x y   So, when I take a Power of a Product, I apply the exponent to all factors of the product. 2 2 2 ) ( b a ab 
  • 11. #6: Quotient Law of Exponents: If the quotient of the bases is powered by the same exponent, then the result is both numerator and denominator , each powered by the given exponent. n n n x x y y        So, when I take a Power of a Quotient, I apply the exponent to all parts of the quotient. 81 16 3 2 3 2 4 4 4        
  • 12. Try these:    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a
  • 13.    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a    2 3 5 2 2 . 4 b a   2 2 ) 3 ( . 5 a    3 4 2 . 6 t s SOLUTIONS 10 3 12 a 6 3 2 3 8 2 a a   6 10 6 10 4 2 3 2 5 2 2 16 2 2 b a b a b a        4 2 2 2 9 3 a a     12 6 3 4 3 2 t s t s   
  • 15. #4: Negative Law of Exponents: If the base is powered by the negative exponent, then the base becomes reciprocal with the positive exponent. 1 m m x x   So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent. Ha Ha! If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign! 9 3 3 1 125 1 5 1 5 2 2 3 3       and
  • 16. #5: Zero Law of Exponents: Any base powered by zero exponent equals one. 0 1 x  1 ) 5 ( 1 1 5 0 0 0    a and a and So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1.
  • 17. Try these:    0 2 2 . 1 b a    0 4 2 . 6 t s
  • 18. SOLUTIONS    0 2 2 . 1 b a     1 5 . 3 a    7 2 4 . 4 s s      4 3 2 3 . 5 y x    0 4 2 . 6 t s 1 5 1 a 5 4s   12 8 12 8 4 81 3 y x y x    1
  • 19.           1 2 2 . 7 x           2 5 9 3 3 . 8           2 4 4 2 2 . 9 t s t s           2 5 4 5 4 36 . 10 b a a SOLUTIONS 4 4 1 x x           8 8 2 4 3 1 3 3       4 4 2 2 2 t s t s     2 10 10 2 2 81 9 a b b a   