SlideShare a Scribd company logo
2
Most read
3
Most read
Masayuki Tanaka
Jun. 22, 2016
Least Square with
L0, L1, and L2 Constraint
Cost Functions
𝐸2 𝑥 = 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2
𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
Least Square with L0 constraint
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
𝑥0 =
0 (𝑦2 < 𝜆0)
𝑦 (𝑦2
≥ 𝜆0)
Hard threshold
Solution:
Least Square with L1 constraint
𝑥1 = sign 𝑦 𝑦 − 𝜆1/2 +
sign 𝜉 =
−1 (𝜉 < 0)
0 (𝜉 = 0)
1 (𝜉 > 0)
𝜉 + = max 𝜉, 0 =
𝜉 (𝜉 > 0)
0 (𝜉 ≤ 0)
Soft threshold
𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
Solution:
Least Square with L2 constraint
𝜕𝐸2
𝜕𝑥
= 𝑥 − 𝑦 + 𝜆2 𝑥 = 0
𝑥2 =
𝑦
1 + 𝜆2
𝐸2 𝑥 = 𝑦 − 𝑥 2
+ 𝜆2 𝑥 2 𝑥 2 = 𝑥2
Solution:
Derivation of
Least Square with L0 constraint
𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
𝑥 = 0 𝑥 ≠ 0
𝐸0 0 = y2 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 min
𝑥≠0
𝐸0 𝑥 = 𝜆0
𝑦
𝜆0− 𝜆0
𝑥0 = 0
𝐸0 𝑥0 = 𝑦2
𝑥0 = 𝑦
𝐸0 𝑥0 = 𝜆0
𝑥0 = 𝑦
𝐸0 𝑥0 = 𝜆0
𝑥0 =
0 (𝑦2 < 𝜆0)
𝑦 (𝑦2
≥ 𝜆0)
Hard threshold
Formulation as a Proximal Operator
prox 𝐿0,𝜌 𝑦 = arg min
𝑥
𝑥 0 +
𝜌
2
𝑦 − 𝑥 2 𝑥 0 =
0 (𝑥 = 0)
1 (𝑥 ≠ 0)
=
0, 𝑦2
<
2
𝜌
1, 𝑦2 ≥
2
𝜌
Formulation as a Proximal Operator
prox 𝐿1,𝜌 𝑦 = arg min
𝑥
𝑥 1 +
𝜌
2
𝑦 − 𝑥 2 𝑥 1 =
𝑥 (𝑥 ≥ 0)
−𝑥 (𝑥 < 0)
= sign 𝑦 𝑦 − 1/𝜌 +
sign 𝜉 =
−1 (𝜉 < 0)
0 (𝜉 = 0)
1 (𝜉 > 0)
𝜉 + = max 𝜉, 0 =
𝜉 (𝜉 > 0)
0 (𝜉 ≤ 0)

More Related Content

PPTX
Lasso regression
PDF
SOLVED DIFFERENTIAL EQUATIONS
PPT
Ch05 5
DOCX
Analisis Rill Tugas 3.5
DOCX
Fismat chapter 4
PPT
6.1 & 6.4 an overview of the area problem area
PPTX
Normal ditribution
DOCX
Ejercicos laplace ruben gonzalez
Lasso regression
SOLVED DIFFERENTIAL EQUATIONS
Ch05 5
Analisis Rill Tugas 3.5
Fismat chapter 4
6.1 & 6.4 an overview of the area problem area
Normal ditribution
Ejercicos laplace ruben gonzalez

What's hot (10)

PPTX
Higher order differential equation
DOCX
Lecture 2 math 2
PDF
makov chain_basic
 
PDF
Higher Order Differential Equation
PPTX
Differential equation and Laplace transform
PDF
Solution 4
PDF
ゲーム理論BASIC 演習6 -仁を求める-
PPTX
Algebra Presentation on Topic Modulus Function and Polynomials
PDF
Solution of Differential Equations in Power Series by Employing Frobenius Method
PPT
Aviation safety
Higher order differential equation
Lecture 2 math 2
makov chain_basic
 
Higher Order Differential Equation
Differential equation and Laplace transform
Solution 4
ゲーム理論BASIC 演習6 -仁を求める-
Algebra Presentation on Topic Modulus Function and Polynomials
Solution of Differential Equations in Power Series by Employing Frobenius Method
Aviation safety
Ad

Similar to Least Square with L0, L1, and L2 Constraint (20)

PDF
Neet class 11 12 basic mathematics notes
PDF
DE-PS.pdf
PDF
Residue integration 01
PPTX
Sistempertidaksamaanduavariabel2122
PDF
Heat problems
PPT
Ch05 8
PDF
Intro to Quant Trading Strategies (Lecture 5 of 10)
PDF
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007
PPTX
Functions of severable variables
PPTX
Ordinary Differential Equations: Variable separation method
DOCX
PROBLEM SETS (DE).docx
PPTX
abstract presentation that is about group homomorphism
PPTX
Computation in Real Closed Infinitesimal and Transcendental Extensions of the...
PPTX
Double Integration examples of double integration with substitution.pptx
PDF
Intro to Quantitative Investment (Lecture 4 of 6)
PPTX
Simplex Method.pptx
PPTX
Runge - Kutta Method of fourth order.pptx
PPTX
Vector calculus
PPTX
Chapter four
PPT
Ch05 2
Neet class 11 12 basic mathematics notes
DE-PS.pdf
Residue integration 01
Sistempertidaksamaanduavariabel2122
Heat problems
Ch05 8
Intro to Quant Trading Strategies (Lecture 5 of 10)
Semana 18 inecuaciones polinomicas ii álgebra uni ccesa007
Functions of severable variables
Ordinary Differential Equations: Variable separation method
PROBLEM SETS (DE).docx
abstract presentation that is about group homomorphism
Computation in Real Closed Infinitesimal and Transcendental Extensions of the...
Double Integration examples of double integration with substitution.pptx
Intro to Quantitative Investment (Lecture 4 of 6)
Simplex Method.pptx
Runge - Kutta Method of fourth order.pptx
Vector calculus
Chapter four
Ch05 2
Ad

More from Masayuki Tanaka (20)

PDF
Slideshare breaking inter layer co-adaptation
PDF
PRMU201902 Presentation document
PDF
Gradient-Based Low-Light Image Enhancement
PDF
Year-End Seminar 2018
PPTX
遠赤外線カメラと可視カメラを利用した悪条件下における画像取得
PPTX
Learnable Image Encryption
PDF
クリエイティブ・コモンズ
PDF
デザイン4原則
PDF
メラビアンの法則
PDF
類似性の法則
PDF
権威に訴える論証
PDF
Chain rule of deep neural network layer for back propagation
PDF
Give Me Four
PDF
Tech art 20170315
PDF
My Slide Theme
PDF
Font Memo
PPT
One-point for presentation
PPTX
ADMM algorithm in ProxImaL
PPTX
Intensity Constraint Gradient-Based Image Reconstruction
PPTX
Welcome to our lab 2016
Slideshare breaking inter layer co-adaptation
PRMU201902 Presentation document
Gradient-Based Low-Light Image Enhancement
Year-End Seminar 2018
遠赤外線カメラと可視カメラを利用した悪条件下における画像取得
Learnable Image Encryption
クリエイティブ・コモンズ
デザイン4原則
メラビアンの法則
類似性の法則
権威に訴える論証
Chain rule of deep neural network layer for back propagation
Give Me Four
Tech art 20170315
My Slide Theme
Font Memo
One-point for presentation
ADMM algorithm in ProxImaL
Intensity Constraint Gradient-Based Image Reconstruction
Welcome to our lab 2016

Recently uploaded (20)

PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
2. Earth - The Living Planet earth and life
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
INTRODUCTION TO EVS | Concept of sustainability
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
An interstellar mission to test astrophysical black holes
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Sciences of Europe No 170 (2025)
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
2. Earth - The Living Planet Module 2ELS
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Introduction to Fisheries Biotechnology_Lesson 1.pptx
neck nodes and dissection types and lymph nodes levels
2. Earth - The Living Planet earth and life
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Placing the Near-Earth Object Impact Probability in Context
INTRODUCTION TO EVS | Concept of sustainability
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
An interstellar mission to test astrophysical black holes
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Sciences of Europe No 170 (2025)
Derivatives of integument scales, beaks, horns,.pptx
The scientific heritage No 166 (166) (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx

Least Square with L0, L1, and L2 Constraint

  • 1. Masayuki Tanaka Jun. 22, 2016 Least Square with L0, L1, and L2 Constraint
  • 2. Cost Functions 𝐸2 𝑥 = 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2 𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0)
  • 3. Least Square with L0 constraint 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) 𝑥0 = 0 (𝑦2 < 𝜆0) 𝑦 (𝑦2 ≥ 𝜆0) Hard threshold Solution:
  • 4. Least Square with L1 constraint 𝑥1 = sign 𝑦 𝑦 − 𝜆1/2 + sign 𝜉 = −1 (𝜉 < 0) 0 (𝜉 = 0) 1 (𝜉 > 0) 𝜉 + = max 𝜉, 0 = 𝜉 (𝜉 > 0) 0 (𝜉 ≤ 0) Soft threshold 𝐸1 𝑥 = 𝑦 − 𝑥 2 + 𝜆1 𝑥 1 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) Solution:
  • 5. Least Square with L2 constraint 𝜕𝐸2 𝜕𝑥 = 𝑥 − 𝑦 + 𝜆2 𝑥 = 0 𝑥2 = 𝑦 1 + 𝜆2 𝐸2 𝑥 = 𝑦 − 𝑥 2 + 𝜆2 𝑥 2 𝑥 2 = 𝑥2 Solution:
  • 6. Derivation of Least Square with L0 constraint 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 𝑥 0 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) 𝑥 = 0 𝑥 ≠ 0 𝐸0 0 = y2 𝐸0 𝑥 = 𝑦 − 𝑥 2 + 𝜆0 min 𝑥≠0 𝐸0 𝑥 = 𝜆0 𝑦 𝜆0− 𝜆0 𝑥0 = 0 𝐸0 𝑥0 = 𝑦2 𝑥0 = 𝑦 𝐸0 𝑥0 = 𝜆0 𝑥0 = 𝑦 𝐸0 𝑥0 = 𝜆0 𝑥0 = 0 (𝑦2 < 𝜆0) 𝑦 (𝑦2 ≥ 𝜆0) Hard threshold
  • 7. Formulation as a Proximal Operator prox 𝐿0,𝜌 𝑦 = arg min 𝑥 𝑥 0 + 𝜌 2 𝑦 − 𝑥 2 𝑥 0 = 0 (𝑥 = 0) 1 (𝑥 ≠ 0) = 0, 𝑦2 < 2 𝜌 1, 𝑦2 ≥ 2 𝜌
  • 8. Formulation as a Proximal Operator prox 𝐿1,𝜌 𝑦 = arg min 𝑥 𝑥 1 + 𝜌 2 𝑦 − 𝑥 2 𝑥 1 = 𝑥 (𝑥 ≥ 0) −𝑥 (𝑥 < 0) = sign 𝑦 𝑦 − 1/𝜌 + sign 𝜉 = −1 (𝜉 < 0) 0 (𝜉 = 0) 1 (𝜉 > 0) 𝜉 + = max 𝜉, 0 = 𝜉 (𝜉 > 0) 0 (𝜉 ≤ 0)