SlideShare a Scribd company logo
Dealing With Uncertainty
P(X|E)
Probability theory
The foundation of Statistics
Chapter 13
History
• Games of chance: 300 BC
• 1565: first formalizations
• 1654: Fermat & Pascal, conditional probability
• Reverend Bayes: 1750’s
• 1950: Kolmogorov: axiomatic approach
• Objectivists vs subjectivists
– (frequentists vs Bayesians)
• Frequentist build one model
• Bayesians use all possible models, with priors
Concerns
• Future: what is the likelihood that a student
will get a CS job given his grades?
• Current: what is the likelihood that a person
has cancer given his symptoms?
• Past: what is the likelihood that Marilyn
Monroe committed suicide?
• Combining evidence.
• Always: Representation & Inference
Basic Idea
• Attach degrees of belief to proposition.
• Theorem: Probability theory is the best way
to do this.
– if someone does it differently you can play a
game with him and win his money.
• Unlike logic, probability theory is non-
monotonic.
• Additional evidence can lower or raise
belief in a proposition.
Probability Models:
Basic Questions
• What are they?
– Analogous to constraint models, with probabilities on
each table entry
• How can we use them to make inferences?
– Probability theory
• How does new evidence change inferences
– Non-monotonic problem solved
• How can we acquire them?
– Experts for model structure, hill-climbing for
parameters
Discrete Probability Model
• Set of RandomVariables V1,V2,…Vn
• Each RV has a discrete set of values
• Joint probability known or computable
• For all vi in domain(Vi),
Prob(V1=v1,V2=v2,..Vn=vn) is known,
non-negative, and sums to 1.
Random Variable
• Intuition: A variable whose values belongs to a
known set of values, the domain.
• Math: non-negative function on a domain (called
the sample space) whose sum is 1.
• Boolean RV: John has a cavity.
– cavity domain ={true,false}
• Discrete RV: Weather Condition
– wc domain= {snowy, rainy, cloudy, sunny}.
• Continuous RV: John’s height
– john’s height domain = { positive real number}
Cross-Product RV
• If X is RV with values x1,..xn and
– Y is RV with values y1,..ym, then
– Z = X x Y is a RV with n*m values
<x1,y1>…<xn,ym>
• This will be very useful!
• This does not mean P(X,Y) = P(X)*P(Y).
Discrete Probability Distribution
• If a discrete RV X has values v1,…vn, then a
prob distribution for X is non-negative real
valued function p such that: sum p(vi) = 1.
• This is just a (normalized) histogram.
• Example: a coin is flipped 10 times and heads
occur 6 times.
• What is best probability model to predict this
result?
• Biased coin model: prob head = .6, trials = 10
From Model to Prediction
Use Math or Simulation
• Math: X = number of heads in 10 flips
• P(X = 0) = .4^10
• P(X = 1) = 10* .6*.4^9
• P(X = 2) = Comb(10,2)*.6^2*.4^8 etc
• Where Comb(n,m) = n!/ (n-m)!* m!.
• Simulation: Do many times: flip coin (p = .6) 10
times, record heads.
• Math is exact, but sometimes too hard.
• Computation is inexact and expensive, but doable
p=.6 Exact 10 100 1000
0 .0001 .0 .0 .0
1 .001 .0 .0 .002
2 .010 .0 .01 .011
3 .042 .0 .04 .042
4 .111 .2 .05 .117
5 .200 .1 .24 .200
6 .250 .6 .22 .246
7 .214 .1 .16 .231
8 .120 .0 .18 .108
9 .43 .0 .09 .035
10 .005 .0 .01 .008
P=.5 Exact 10 100 1000
0 .0009 .0 .0 .002
1 .009 .0 .01 .011
2 .043 .0 .07 .044
3 .117 .1 .13 .101
4 .205 .2 .24 .231
5 .246 .0 .28 .218
6 .205 .3 .15 .224
7 .117 .3 .08 .118
8 .043 .1 .04 .046
9 .009 .0 .0 .009
10 .0009 .0 .0 .001
Learning Model: Hill Climbing
• Theoretically it can be shown that p = .6 is
best model.
• Without theory, pick a random p value and
simulate. Now try a larger and a smaller p
value.
• Maximize P(Data|Model). Get model
which gives highest probability to the data.
• This approach extends to more complicated
models (variables, parameters).
Another Data Set
What’s going on?
0 .34
1 .38
2 .19
3 .05
4 .01
5 .02
6 .08
7 .20
8 .30
9 .26
10 .1
Mixture Model
• Data generated from two simple models
• coin1 prob = .8 of heads
• coin2 prob = .1 of heads
• With prob .5 pick coin 1 or coin 2 and flip.
• Model has more parameters
• Experts are supposed to supply the model.
• Use data to estimate the parameters.
Continuous Probability
• RV X has values in R, then a prob
distribution for X is a non-negative real-
valued function p such that the integral of p
over R is 1. (called prob density function)
• Standard distributions are uniform, normal
or gaussian, poisson, etc.
• May resort to empirical if can’t compute
analytically. I.E. Use histogram.
Joint Probability: full knowledge
• If X and Y are discrete RVs, then the prob
distribution for X x Y is called the joint
prob distribution.
• Let x be in domain of X, y in domain of Y.
• If P(X=x,Y=y) = P(X=x)*P(Y=y) for every
x and y, then X and Y are independent.
• Standard Shorthand: P(X,Y)=P(X)*P(Y),
which means exactly the statement above.
Marginalization
• Given the joint probability for X and Y, you
can compute everything.
• Joint probability to individual probabilities.
• P(X =x) is sum P(X=x and Y=y) over all y
• Conditioning is similar:
– P(X=x) = sum P(X=x|Y=y)*P(Y=y)
Marginalization Example
• Compute Prob(X is healthy) from
• P(X healthy & X tests positive) = .1
• P(X healthy & X tests neg) = .8
• P(X healthy) = .1 + .8 = .9
• P(flush) = P(heart flush)+P(spade flush)+
P(diamond flush)+ P(club flush)
Conditional Probability
• P(X=x | Y=y) = P(X=x, Y=y)/P(Y=y).
• Intuition: use simple examples
• 1 card hand X = value card, Y = suit card
P( X= ace | Y= heart) = 1/13
also P( X=ace , Y=heart) = 1/52
P(Y=heart) = 1 / 4
P( X=ace, Y= heart)/P(Y =heart) = 1/13.
Formula
• Shorthand: P(X|Y) = P(X,Y)/P(Y).
• Product Rule: P(X,Y) = P(X |Y) * P(Y)
• Bayes Rule:
– P(X|Y) = P(Y|X) *P(X)/P(Y).
• Remember the abbreviations.
Conditional Example
• P(A = 0) = .7
• P(A = 1) = .3
P(A,B) = P(B,A)
P(B,A)= P(B|A)*P(A)
P(A,B) = P(A|B)*P(B)
P(A|B) =
P(B|A)*P(A)/P(B)
B A P(B|A)
0 0 .2
0 1 .9
1 0 .8
1 1 .1
Exact and simulated
A B P(A,B) 10 100 1000
0 0 .14 .1 .18 .14
0 1 .56 .6 .55 .56
1 0 .27 .2 .24 .24
1 1 .03 .1 .03 .06
Note Joint yields everything
• Via marginalization
• P(A = 0) = P(A=0,B=0)+P(A=0,B=1)=
– .14+.56 = .7
• P(B=0) = P(B=0,A=0)+P(B=0,A=1) =
– .14+.27 = .41
Simulation
• Given prob for A and prob for B given A
• First, choose value for A, according to prob
• Now use conditional table to choose value
for B with correct probability.
• That constructs one world.
• Repeats lots of times and count number of
times A= 0 & B = 0, A=0 & B= 1, etc.
• Turn counts into probabilities.
Consequences of Bayes Rules
• P(X|Y,Z) = P(Y,Z |X)*P(X)/P(Y,Z).
proof: Treat Y&Z as new product RV U
P(X|U) =P(U|X)*P(X)/P(U) by bayes
• P(X1,X2,X3) =P(X3|X1,X2)*P(X1,X2)
= P(X3|X1,X2)*P(X2|X1)*P(X1) or
• P(X1,X2,X3) =P(X1)*P(X2|X1)*P(X3|X1,X2).
• Note: These equations make no assumptions!
• Last equation is called the Chain or Product Rule
• Can pick the any ordering of variables.
Extensions of P(A) +P(~A) = 1
• P(X|Y) + P(~X|Y) = 1
• Semantic Argument
– conditional just restricts worlds
• Syntactic Argument: lhs equals
– P(X,Y)/P(Y) + P(~X,Y)/P(Y) =
– (P(X,Y) + P(~X,Y))/P(Y) = (marginalization)
– P(Y)/P(Y) = 1.
Bayes Rule Example
• Meningitis causes stiff neck (.5).
– P(s|m) = 0.5
• Prior prob of meningitis = 1/50,000.
– p(m)= 1/50,000 = .00002
• Prior prob of stick neck ( 1/20).
– p(s) = 1/20.
• Does patient have meningitis?
– p(m|s) = p(s|m)*p(m)/p(s) = 0.0002.
• Is this reasonable? p(s|m)/p(s) = change=10
Bayes Rule: multiple symptoms
• Given symptoms s1,s2,..sn, what estimate
probability of Disease D.
• P(D|s1,s2…sn) = P(D,s1,..sn)/P(s1,s2..sn).
• If each symptom is boolean, need tables of
size 2^n. ex. breast cancer data has 73
features per patient. 2^73 is too big.
• Approximate!
Notation: max arg
• Conceptual definition, not operational
• Max arg f(x) is a value of x that maximizes
f(x).
• MaxArg Prob(X = 6 heads | prob heads)
yields prob(heads) = .6
Idiot or Naïve Bayes:
First learning Algorithm
Goal: max arg P(D| s1..sn) over all Diseases
= max arg P(s1,..sn|D)*P(D)/ P(s1,..sn)
= max arg P(s1,..sn|D)*P(D) (why?)
~ max arg P(s1|D)*P(s2|D)…P(sn|D)*P(D).
• Assumes conditional independence.
• enough data to estimate
• Not necessary to get prob right: only order.
• Pretty good but Bayes Nets do it better.
Chain Rule and Markov Models
• Recall P(X1, X2, …Xn) =
P(X1)*P(X2|X1)*…P(Xn| X1,X2,..Xn-1).
• If X1, X2, etc are values at time points 1, 2..
and if Xn only depends on k previous times,
then this is a markov model of order k.
• MMO: Independent of time
– P(X1,…Xn) = P(X1)*P(X2)..*P(Xn)
Markov Models
• MM1: depends only on previous time
– P(X1,…Xn)= P(X1)*P(X2|X1)*…P(Xn|Xn-1).
• May also be used for approximating
probabilities. Much simpler to estimate.
• MM2: depends on previous 2 times
– P(X1,X2,..Xn)= P(X1,X2)*P(X3|X1,X2) etc
Common DNA application
• Looking for needles: surprising frequency?
• Goal:Compute P(gataag) given lots of data
• MM0 = P(g)*P(a)*P(t)*P(a)*P(a)*P(g).
• MM1 = P(g)*P(a|g)*P(t|a)*P(a|a)*P(g|a).
• MM2 = P(ga)*P(t|ga)*P(a|ta)*P(g|aa).
• Note: each approximation requires less data
and less computation time.

More Related Content

PPTX
Lec13_Bayes.pptx
PDF
sample space formation.pdf
PPTX
pertemuan 2 - Probabilitas & Distribusi Sampling.pptx
PDF
Machine learning mathematicals.pdf
PPTX
Basic statistics for algorithmic trading
PDF
Quantitative Methods for Lawyers - Class #10 - Binomial Distributions, Normal...
PPTX
artificial intelligence and uncertain reasoning
PPTX
Unit 2 Machine Learning it's most important topic of basic
Lec13_Bayes.pptx
sample space formation.pdf
pertemuan 2 - Probabilitas & Distribusi Sampling.pptx
Machine learning mathematicals.pdf
Basic statistics for algorithmic trading
Quantitative Methods for Lawyers - Class #10 - Binomial Distributions, Normal...
artificial intelligence and uncertain reasoning
Unit 2 Machine Learning it's most important topic of basic

Similar to Lec12-Probability.ppt (20)

PPT
Lecture07_ Naive Bayes Classifier Machine Learning
PPT
NaiveBayesfcctcvtyvyuyuvuygygygiughuobiubivvyjnh
PPT
Ppt1
PPT
hypotesting lecturenotes by Amity university
PPT
Gerstman_PP09.ppt
PPT
Gerstman_PP09.ppt
PPT
NaiveBayes classifier in artificial inteeligence.ppt
PPTX
2.statistical DEcision makig.pptx
PPTX
Statistics-2 : Elements of Inference
PPT
Uncertainity
PPT
NaiveBayes.ppt
PPT
NaiveBayes.ppt Naive Bayes algorithm machine learning
PPT
NaiveBayes.ppt
PPT
NaiveBayes.ppt
PPT
hypothesis testing- Statistics and Probability.ppt
PPTX
5. RV and Distributions.pptx
PPTX
Chapter 5.pptx
PPT
Gerstman_PP09.pptvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
PPT
Probability_Review MATHEMATICS PART 1.ppt
PPT
Introduction Lesson in Probability and Review
Lecture07_ Naive Bayes Classifier Machine Learning
NaiveBayesfcctcvtyvyuyuvuygygygiughuobiubivvyjnh
Ppt1
hypotesting lecturenotes by Amity university
Gerstman_PP09.ppt
Gerstman_PP09.ppt
NaiveBayes classifier in artificial inteeligence.ppt
2.statistical DEcision makig.pptx
Statistics-2 : Elements of Inference
Uncertainity
NaiveBayes.ppt
NaiveBayes.ppt Naive Bayes algorithm machine learning
NaiveBayes.ppt
NaiveBayes.ppt
hypothesis testing- Statistics and Probability.ppt
5. RV and Distributions.pptx
Chapter 5.pptx
Gerstman_PP09.pptvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Probability_Review MATHEMATICS PART 1.ppt
Introduction Lesson in Probability and Review
Ad

Recently uploaded (20)

PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Sports Quiz easy sports quiz sports quiz
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Classroom Observation Tools for Teachers
PDF
Complications of Minimal Access Surgery at WLH
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Sports Quiz easy sports quiz sports quiz
102 student loan defaulters named and shamed – Is someone you know on the list?
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Cell Structure & Organelles in detailed.
2.FourierTransform-ShortQuestionswithAnswers.pdf
Insiders guide to clinical Medicine.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
O7-L3 Supply Chain Operations - ICLT Program
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Microbial diseases, their pathogenesis and prophylaxis
Classroom Observation Tools for Teachers
Complications of Minimal Access Surgery at WLH
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
O5-L3 Freight Transport Ops (International) V1.pdf
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
TR - Agricultural Crops Production NC III.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Ad

Lec12-Probability.ppt

  • 1. Dealing With Uncertainty P(X|E) Probability theory The foundation of Statistics Chapter 13
  • 2. History • Games of chance: 300 BC • 1565: first formalizations • 1654: Fermat & Pascal, conditional probability • Reverend Bayes: 1750’s • 1950: Kolmogorov: axiomatic approach • Objectivists vs subjectivists – (frequentists vs Bayesians) • Frequentist build one model • Bayesians use all possible models, with priors
  • 3. Concerns • Future: what is the likelihood that a student will get a CS job given his grades? • Current: what is the likelihood that a person has cancer given his symptoms? • Past: what is the likelihood that Marilyn Monroe committed suicide? • Combining evidence. • Always: Representation & Inference
  • 4. Basic Idea • Attach degrees of belief to proposition. • Theorem: Probability theory is the best way to do this. – if someone does it differently you can play a game with him and win his money. • Unlike logic, probability theory is non- monotonic. • Additional evidence can lower or raise belief in a proposition.
  • 5. Probability Models: Basic Questions • What are they? – Analogous to constraint models, with probabilities on each table entry • How can we use them to make inferences? – Probability theory • How does new evidence change inferences – Non-monotonic problem solved • How can we acquire them? – Experts for model structure, hill-climbing for parameters
  • 6. Discrete Probability Model • Set of RandomVariables V1,V2,…Vn • Each RV has a discrete set of values • Joint probability known or computable • For all vi in domain(Vi), Prob(V1=v1,V2=v2,..Vn=vn) is known, non-negative, and sums to 1.
  • 7. Random Variable • Intuition: A variable whose values belongs to a known set of values, the domain. • Math: non-negative function on a domain (called the sample space) whose sum is 1. • Boolean RV: John has a cavity. – cavity domain ={true,false} • Discrete RV: Weather Condition – wc domain= {snowy, rainy, cloudy, sunny}. • Continuous RV: John’s height – john’s height domain = { positive real number}
  • 8. Cross-Product RV • If X is RV with values x1,..xn and – Y is RV with values y1,..ym, then – Z = X x Y is a RV with n*m values <x1,y1>…<xn,ym> • This will be very useful! • This does not mean P(X,Y) = P(X)*P(Y).
  • 9. Discrete Probability Distribution • If a discrete RV X has values v1,…vn, then a prob distribution for X is non-negative real valued function p such that: sum p(vi) = 1. • This is just a (normalized) histogram. • Example: a coin is flipped 10 times and heads occur 6 times. • What is best probability model to predict this result? • Biased coin model: prob head = .6, trials = 10
  • 10. From Model to Prediction Use Math or Simulation • Math: X = number of heads in 10 flips • P(X = 0) = .4^10 • P(X = 1) = 10* .6*.4^9 • P(X = 2) = Comb(10,2)*.6^2*.4^8 etc • Where Comb(n,m) = n!/ (n-m)!* m!. • Simulation: Do many times: flip coin (p = .6) 10 times, record heads. • Math is exact, but sometimes too hard. • Computation is inexact and expensive, but doable
  • 11. p=.6 Exact 10 100 1000 0 .0001 .0 .0 .0 1 .001 .0 .0 .002 2 .010 .0 .01 .011 3 .042 .0 .04 .042 4 .111 .2 .05 .117 5 .200 .1 .24 .200 6 .250 .6 .22 .246 7 .214 .1 .16 .231 8 .120 .0 .18 .108 9 .43 .0 .09 .035 10 .005 .0 .01 .008
  • 12. P=.5 Exact 10 100 1000 0 .0009 .0 .0 .002 1 .009 .0 .01 .011 2 .043 .0 .07 .044 3 .117 .1 .13 .101 4 .205 .2 .24 .231 5 .246 .0 .28 .218 6 .205 .3 .15 .224 7 .117 .3 .08 .118 8 .043 .1 .04 .046 9 .009 .0 .0 .009 10 .0009 .0 .0 .001
  • 13. Learning Model: Hill Climbing • Theoretically it can be shown that p = .6 is best model. • Without theory, pick a random p value and simulate. Now try a larger and a smaller p value. • Maximize P(Data|Model). Get model which gives highest probability to the data. • This approach extends to more complicated models (variables, parameters).
  • 14. Another Data Set What’s going on? 0 .34 1 .38 2 .19 3 .05 4 .01 5 .02 6 .08 7 .20 8 .30 9 .26 10 .1
  • 15. Mixture Model • Data generated from two simple models • coin1 prob = .8 of heads • coin2 prob = .1 of heads • With prob .5 pick coin 1 or coin 2 and flip. • Model has more parameters • Experts are supposed to supply the model. • Use data to estimate the parameters.
  • 16. Continuous Probability • RV X has values in R, then a prob distribution for X is a non-negative real- valued function p such that the integral of p over R is 1. (called prob density function) • Standard distributions are uniform, normal or gaussian, poisson, etc. • May resort to empirical if can’t compute analytically. I.E. Use histogram.
  • 17. Joint Probability: full knowledge • If X and Y are discrete RVs, then the prob distribution for X x Y is called the joint prob distribution. • Let x be in domain of X, y in domain of Y. • If P(X=x,Y=y) = P(X=x)*P(Y=y) for every x and y, then X and Y are independent. • Standard Shorthand: P(X,Y)=P(X)*P(Y), which means exactly the statement above.
  • 18. Marginalization • Given the joint probability for X and Y, you can compute everything. • Joint probability to individual probabilities. • P(X =x) is sum P(X=x and Y=y) over all y • Conditioning is similar: – P(X=x) = sum P(X=x|Y=y)*P(Y=y)
  • 19. Marginalization Example • Compute Prob(X is healthy) from • P(X healthy & X tests positive) = .1 • P(X healthy & X tests neg) = .8 • P(X healthy) = .1 + .8 = .9 • P(flush) = P(heart flush)+P(spade flush)+ P(diamond flush)+ P(club flush)
  • 20. Conditional Probability • P(X=x | Y=y) = P(X=x, Y=y)/P(Y=y). • Intuition: use simple examples • 1 card hand X = value card, Y = suit card P( X= ace | Y= heart) = 1/13 also P( X=ace , Y=heart) = 1/52 P(Y=heart) = 1 / 4 P( X=ace, Y= heart)/P(Y =heart) = 1/13.
  • 21. Formula • Shorthand: P(X|Y) = P(X,Y)/P(Y). • Product Rule: P(X,Y) = P(X |Y) * P(Y) • Bayes Rule: – P(X|Y) = P(Y|X) *P(X)/P(Y). • Remember the abbreviations.
  • 22. Conditional Example • P(A = 0) = .7 • P(A = 1) = .3 P(A,B) = P(B,A) P(B,A)= P(B|A)*P(A) P(A,B) = P(A|B)*P(B) P(A|B) = P(B|A)*P(A)/P(B) B A P(B|A) 0 0 .2 0 1 .9 1 0 .8 1 1 .1
  • 23. Exact and simulated A B P(A,B) 10 100 1000 0 0 .14 .1 .18 .14 0 1 .56 .6 .55 .56 1 0 .27 .2 .24 .24 1 1 .03 .1 .03 .06
  • 24. Note Joint yields everything • Via marginalization • P(A = 0) = P(A=0,B=0)+P(A=0,B=1)= – .14+.56 = .7 • P(B=0) = P(B=0,A=0)+P(B=0,A=1) = – .14+.27 = .41
  • 25. Simulation • Given prob for A and prob for B given A • First, choose value for A, according to prob • Now use conditional table to choose value for B with correct probability. • That constructs one world. • Repeats lots of times and count number of times A= 0 & B = 0, A=0 & B= 1, etc. • Turn counts into probabilities.
  • 26. Consequences of Bayes Rules • P(X|Y,Z) = P(Y,Z |X)*P(X)/P(Y,Z). proof: Treat Y&Z as new product RV U P(X|U) =P(U|X)*P(X)/P(U) by bayes • P(X1,X2,X3) =P(X3|X1,X2)*P(X1,X2) = P(X3|X1,X2)*P(X2|X1)*P(X1) or • P(X1,X2,X3) =P(X1)*P(X2|X1)*P(X3|X1,X2). • Note: These equations make no assumptions! • Last equation is called the Chain or Product Rule • Can pick the any ordering of variables.
  • 27. Extensions of P(A) +P(~A) = 1 • P(X|Y) + P(~X|Y) = 1 • Semantic Argument – conditional just restricts worlds • Syntactic Argument: lhs equals – P(X,Y)/P(Y) + P(~X,Y)/P(Y) = – (P(X,Y) + P(~X,Y))/P(Y) = (marginalization) – P(Y)/P(Y) = 1.
  • 28. Bayes Rule Example • Meningitis causes stiff neck (.5). – P(s|m) = 0.5 • Prior prob of meningitis = 1/50,000. – p(m)= 1/50,000 = .00002 • Prior prob of stick neck ( 1/20). – p(s) = 1/20. • Does patient have meningitis? – p(m|s) = p(s|m)*p(m)/p(s) = 0.0002. • Is this reasonable? p(s|m)/p(s) = change=10
  • 29. Bayes Rule: multiple symptoms • Given symptoms s1,s2,..sn, what estimate probability of Disease D. • P(D|s1,s2…sn) = P(D,s1,..sn)/P(s1,s2..sn). • If each symptom is boolean, need tables of size 2^n. ex. breast cancer data has 73 features per patient. 2^73 is too big. • Approximate!
  • 30. Notation: max arg • Conceptual definition, not operational • Max arg f(x) is a value of x that maximizes f(x). • MaxArg Prob(X = 6 heads | prob heads) yields prob(heads) = .6
  • 31. Idiot or Naïve Bayes: First learning Algorithm Goal: max arg P(D| s1..sn) over all Diseases = max arg P(s1,..sn|D)*P(D)/ P(s1,..sn) = max arg P(s1,..sn|D)*P(D) (why?) ~ max arg P(s1|D)*P(s2|D)…P(sn|D)*P(D). • Assumes conditional independence. • enough data to estimate • Not necessary to get prob right: only order. • Pretty good but Bayes Nets do it better.
  • 32. Chain Rule and Markov Models • Recall P(X1, X2, …Xn) = P(X1)*P(X2|X1)*…P(Xn| X1,X2,..Xn-1). • If X1, X2, etc are values at time points 1, 2.. and if Xn only depends on k previous times, then this is a markov model of order k. • MMO: Independent of time – P(X1,…Xn) = P(X1)*P(X2)..*P(Xn)
  • 33. Markov Models • MM1: depends only on previous time – P(X1,…Xn)= P(X1)*P(X2|X1)*…P(Xn|Xn-1). • May also be used for approximating probabilities. Much simpler to estimate. • MM2: depends on previous 2 times – P(X1,X2,..Xn)= P(X1,X2)*P(X3|X1,X2) etc
  • 34. Common DNA application • Looking for needles: surprising frequency? • Goal:Compute P(gataag) given lots of data • MM0 = P(g)*P(a)*P(t)*P(a)*P(a)*P(g). • MM1 = P(g)*P(a|g)*P(t|a)*P(a|a)*P(g|a). • MM2 = P(ga)*P(t|ga)*P(a|ta)*P(g|aa). • Note: each approximation requires less data and less computation time.