SlideShare a Scribd company logo
A




2008




       A
“   "


            Georg Cantor:
             1845-1918



        A
Cantor




             2




         A
Cantor                  ( )



     (1777-1855)



     I protest above all against the use of an infinite quantity as
     a completed one which in mathematics is never allowed.
     The infinite is only a manner of speaking in which one
     properly speaks of limits.




                                        A
Cantor




             (1873)
             (1873)




         A
1873
              1874
       1891




          A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem




      A
CBS Theorem



        ( )




(   )
        A B   A ≈ B,        A   B




                    A
CBS Theorem



            ( )




    (                )
A          (     )       |A|,   A                 |A| = |B|
        A ≈ B.




                                          A
CBS Theorem




(       )
    A         |A| = |N|. A
A




                  A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem



Cantor-Bernstein-Shröder Theorem




     (C ANTOR -B ERNSTEIN -S CHRÖDER T HEOREM)
   A, B           f :A→B     g:B→A
   f g                 h : A → B.




                                    A
CBS Theorem



CBS




 Proof.
   C = g[B], h = g ◦ f .         Ai , Ci , Di
      A0 = A, C0 = C, D0 = A0  C0 ;
      An+1 = h[An ], Cn+1 = h[Cn ], Dn+1 = An+1  Cn+1 .




                                          A
CBS Theorem



CBS



 Proof.
                   ∞
   D∗ = A         i=0 Di .    f,g
                i ≥ 0, Ai+1 ⊂ Ci ⊂ Ai ;
      D0 , D1 , · · · , ...                h(Di ) = Di+1 .
               ∞          ∗
      A=       i=0 Di ∪ D ;
                ∞         ∗
      C=        i=1 Di ∪ D .




                                                A
CBS Theorem



CBS



 Proof.
          k :A→C

                        h(a), a ∈ ∞ Di
                                   i=0
              f (a) =
                        a,    otherwise.

   k          A C           C      B          A   B




                                       A
CBS Theorem



Outline



  1


      CBS Theorem



  2




                          A
CBS Theorem




(1891)


         A   A
 A




                   A
CBS Theorem




           A = {♣, ♦, ♥, ♠}
                                          A


  ♣        ♦         ♥                ♠

{♦, ♥}   {♦, ♠}   {♣, ♦, ♥}        {♣, ♥, ♠}




                           A
CBS Theorem




                                                     +
−.

     ♣   ♦   ♥   ♠
 ♣       −   +   +     ♣         ♦          ♥            ♠
 ♦   +   ⊕   +   −
 ♥   +   −   ⊕   +   {♦, ♥}   {♦, ♠}     {♣, ♦, ♥}   {♣, ♥, ♠}

 ♠   −   +   −   ⊕




                                 A
CBS Theorem




4

            T:
    T

                  T = {♣}.
        A




                  A
CBS Theorem




f                N

                 1        2   3        4        ···
                                                ···
                 M1    M2     M3       M4       ···

             f            f                                i   Mj
    (i, j)                         −                  +.


                      M = {i : i ∈ Mi }.

       M = Mn         n                     f


                                            A
P       P        n
 P(n)                      P


(i) (     ) P(0)
(ii) (    )        n   P(n)            P(n + 1)   1




  1
         P(n)
                                   A
(ii)
(ii )           n   P(0), P(1), · · · , P(n)          P(n + 1)

(1)+(ii )


            P                           P
(ii )           n   P(m)          m<n          P(n)




                                         A
“             n, n2 + 5n + 1         "
  P       “n2 + 5n + 1       "       P(n)
  P(n + 1)
Proof.
    P(n)          n2 + 5n + 1
(n + 1)2 + 5(n + 1) + 1 = (n2 + 5n + 1) + 2(n + 3)

  (n + 1)2 + 5(n + 1) + 1              P(n + 1)




                                     A
P,




A

More Related Content

PPTX
Precalculus 4 4 graphs pf sine and cosine v2
PPTX
power point presentation
PPT
1.7 intro to_p__c____a
PPTX
6.7 similarity transformations and coordinate geometry
KEY
0801 ch 8 day 1
PPTX
POTW Solution!
PPT
áRea
PPTX
Unidad 2 pensamiento variacional y trigonométrico
Precalculus 4 4 graphs pf sine and cosine v2
power point presentation
1.7 intro to_p__c____a
6.7 similarity transformations and coordinate geometry
0801 ch 8 day 1
POTW Solution!
áRea
Unidad 2 pensamiento variacional y trigonométrico

What's hot (18)

PDF
Formulario%20trigonometria%5 b1%5d
PPT
Surface areas of prisms and cylinders
PPT
Lecture14n
PPTX
2D Geometry.13/ Theory of Ellipse
PDF
Formulario+cuerpos+geométricos
PPTX
Trigono
PDF
Geometria1unidad5
PPTX
JMM Mini4- Sydney Opera House Part 2
DOCX
03 carricular statement
PPTX
Areas totales y volumenes de los solidos geometricos
PPTX
Carbocation rearrangement exercises v3.2
DOC
Tema 8 areas y volúmenes
PPT
B field homogenous sphere
DOC
Appendix 2 baru
PPT
Area of triangles and trapezoids
PPTX
Raytracing Part II
KEY
0605 ch 6 day 5
PDF
March 19 Trig Review
Formulario%20trigonometria%5 b1%5d
Surface areas of prisms and cylinders
Lecture14n
2D Geometry.13/ Theory of Ellipse
Formulario+cuerpos+geométricos
Trigono
Geometria1unidad5
JMM Mini4- Sydney Opera House Part 2
03 carricular statement
Areas totales y volumenes de los solidos geometricos
Carbocation rearrangement exercises v3.2
Tema 8 areas y volúmenes
B field homogenous sphere
Appendix 2 baru
Area of triangles and trapezoids
Raytracing Part II
0605 ch 6 day 5
March 19 Trig Review
Ad

Similar to Lect2 230708501 (20)

DOCX
2.4 edited1
PDF
Lect1 No 873503264
PDF
5.8 Permutations (dynamic slides)
KEY
Calculus II - 20
KEY
Calculus II - 29
PDF
Formulario de matematicas
PDF
Cheat Sheet
PDF
Solutions Manual for An Introduction To Abstract Algebra With Notes To The Fu...
PDF
V. Dragovic: Geometrization and Generalization of the Kowalevski top
PDF
Master method
PDF
12 x1 t08 03 binomial theorem (2013)
KEY
Calculus II - 28
PDF
A common fixed point theorem for two weakly compatible mappings satisfying a ...
PDF
11.a common fixed point theorem for two weakly compatible mappings satisfying...
PPT
Métodos de simplificación
PPT
18. simpl met-algebraicos
PPT
simplificacion metodos-algebraicos
PPT
18. simpl met-algebraicos
PPT
Simplificación funciones Booleanas
PPT
18. simpl met-algebraicos
2.4 edited1
Lect1 No 873503264
5.8 Permutations (dynamic slides)
Calculus II - 20
Calculus II - 29
Formulario de matematicas
Cheat Sheet
Solutions Manual for An Introduction To Abstract Algebra With Notes To The Fu...
V. Dragovic: Geometrization and Generalization of the Kowalevski top
Master method
12 x1 t08 03 binomial theorem (2013)
Calculus II - 28
A common fixed point theorem for two weakly compatible mappings satisfying a ...
11.a common fixed point theorem for two weakly compatible mappings satisfying...
Métodos de simplificación
18. simpl met-algebraicos
simplificacion metodos-algebraicos
18. simpl met-algebraicos
Simplificación funciones Booleanas
18. simpl met-algebraicos
Ad

Recently uploaded (20)

PDF
Satish NS: Fostering Innovation and Sustainability: Haier India’s Customer-Ce...
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PDF
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
PDF
Charisse Litchman: A Maverick Making Neurological Care More Accessible
PPTX
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
PPTX
Astra-Investor- business Presentation (1).pptx
PPT
Lecture notes on Business Research Methods
PPTX
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
PDF
How to Get Business Funding for Small Business Fast
DOCX
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
PDF
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
PDF
Booking.com The Global AI Sentiment Report 2025
PPTX
Negotiation and Persuasion Skills: A Shrewd Person's Perspective
PDF
Module 2 - Modern Supervison Challenges - Student Resource.pdf
PDF
Technical Architecture - Chainsys dataZap
PPTX
operations management : demand supply ch
PDF
Family Law: The Role of Communication in Mediation (www.kiu.ac.ug)
PDF
Cours de Système d'information about ERP.pdf
PDF
Solaris Resources Presentation - Corporate August 2025.pdf
PDF
Daniels 2024 Inclusive, Sustainable Development
Satish NS: Fostering Innovation and Sustainability: Haier India’s Customer-Ce...
NEW - FEES STRUCTURES (01-july-2024).pdf
Susan Semmelmann: Enriching the Lives of others through her Talents and Bless...
Charisse Litchman: A Maverick Making Neurological Care More Accessible
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
Astra-Investor- business Presentation (1).pptx
Lecture notes on Business Research Methods
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
How to Get Business Funding for Small Business Fast
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
Booking.com The Global AI Sentiment Report 2025
Negotiation and Persuasion Skills: A Shrewd Person's Perspective
Module 2 - Modern Supervison Challenges - Student Resource.pdf
Technical Architecture - Chainsys dataZap
operations management : demand supply ch
Family Law: The Role of Communication in Mediation (www.kiu.ac.ug)
Cours de Système d'information about ERP.pdf
Solaris Resources Presentation - Corporate August 2025.pdf
Daniels 2024 Inclusive, Sustainable Development

Lect2 230708501

  • 1. A 2008 A
  • 2. " Georg Cantor: 1845-1918 A
  • 3. Cantor 2 A
  • 4. Cantor ( ) (1777-1855) I protest above all against the use of an infinite quantity as a completed one which in mathematics is never allowed. The infinite is only a manner of speaking in which one properly speaks of limits. A
  • 5. Cantor (1873) (1873) A
  • 6. 1873 1874 1891 A
  • 7. CBS Theorem Outline 1 CBS Theorem 2 A
  • 9. CBS Theorem ( ) ( ) A B A ≈ B, A B A
  • 10. CBS Theorem ( ) ( ) A ( ) |A|, A |A| = |B| A ≈ B. A
  • 11. CBS Theorem ( ) A |A| = |N|. A A A
  • 12. CBS Theorem Outline 1 CBS Theorem 2 A
  • 13. CBS Theorem Cantor-Bernstein-Shröder Theorem (C ANTOR -B ERNSTEIN -S CHRÖDER T HEOREM) A, B f :A→B g:B→A f g h : A → B. A
  • 14. CBS Theorem CBS Proof. C = g[B], h = g ◦ f . Ai , Ci , Di A0 = A, C0 = C, D0 = A0 C0 ; An+1 = h[An ], Cn+1 = h[Cn ], Dn+1 = An+1 Cn+1 . A
  • 15. CBS Theorem CBS Proof. ∞ D∗ = A i=0 Di . f,g i ≥ 0, Ai+1 ⊂ Ci ⊂ Ai ; D0 , D1 , · · · , ... h(Di ) = Di+1 . ∞ ∗ A= i=0 Di ∪ D ; ∞ ∗ C= i=1 Di ∪ D . A
  • 16. CBS Theorem CBS Proof. k :A→C h(a), a ∈ ∞ Di i=0 f (a) = a, otherwise. k A C C B A B A
  • 17. CBS Theorem Outline 1 CBS Theorem 2 A
  • 19. CBS Theorem A = {♣, ♦, ♥, ♠} A ♣ ♦ ♥ ♠ {♦, ♥} {♦, ♠} {♣, ♦, ♥} {♣, ♥, ♠} A
  • 20. CBS Theorem + −. ♣ ♦ ♥ ♠ ♣ − + + ♣ ♦ ♥ ♠ ♦ + ⊕ + − ♥ + − ⊕ + {♦, ♥} {♦, ♠} {♣, ♦, ♥} {♣, ♥, ♠} ♠ − + − ⊕ A
  • 21. CBS Theorem 4 T: T T = {♣}. A A
  • 22. CBS Theorem f N 1 2 3 4 ··· ··· M1 M2 M3 M4 ··· f f i Mj (i, j) − +. M = {i : i ∈ Mi }. M = Mn n f A
  • 23. P P n P(n) P (i) ( ) P(0) (ii) ( ) n P(n) P(n + 1) 1 1 P(n) A
  • 24. (ii) (ii ) n P(0), P(1), · · · , P(n) P(n + 1) (1)+(ii ) P P (ii ) n P(m) m<n P(n) A
  • 25. n, n2 + 5n + 1 " P “n2 + 5n + 1 " P(n) P(n + 1) Proof. P(n) n2 + 5n + 1 (n + 1)2 + 5(n + 1) + 1 = (n2 + 5n + 1) + 2(n + 3) (n + 1)2 + 5(n + 1) + 1 P(n + 1) A
  • 26. P, A