Neural regulation of cardiac activity
and cardiac reflexes
Dr Akanksha
Department of Physiology, AIIMS, New Delhi
email: drakanksha111@gmail.com
Organization of neural control
Medullary Centre
(integration of information)
Afferents
Sensory information about
status of cardiovascular system
(pressure, volume etc)
Signals about
physiological state
of the body
Efferents
Effector signals to the heart
and blood vessels
Higher centres
Feedforward
signals
CVS regulatory regions in the medulla
1. Nucleus Tractus Solitarius (afferent integration)
2. Rostral Ventro-Lateral Medulla (pressor area)
3. Caudal Ventro-Lateral Meduall (depressor area)
4. Nucleus Ambiguus (vagal output)
Medulla
Cerebellum
NTS
(Nucleus Tractus Solitarius)
RVLM
(Rostral Ventro-Lateral Medulla)
CVLM
(Caudal Ventro-Lateral Medulla)
NA (Nucleus Ambiguus)
Anatomical locations of the medullary centres
Sympathetic
innervation
of heart
The sympathetic fibers to the
heart arise from T1 – T5
segments of the spinal cord
The post-ganglionic fibers form
cardiac plexus around the heart.
Parasympathetic
innervation of heart
The cardiac fibers of the vagus arise in:
• Nucleus Ambiguus
• Dorsal Nucleus Of Vagus.
The fibers course along the vagus nerve to reach
the mediastinum where the cardiac fibers leave the
vagus trunk and join the plexus around the heart.
These pregangionic fibers synapse in the heart
musculature and give rise to short post-ganglionic
fibres that innervate the heart.
Sensory afferents
Neural
connections
1
2
3
4
CO2, Hypoxia
Chemoreceptors
Somatic afferents
Mechanoreceptors
Pain afferents
Baroreceptors
Cortical influences via hypothalamus
Neural
connections
Sensory afferents
NA
Effect of sympathetic and parasympathetic stimulation on heart
Sympathetic Parasympathetic
Excitability
(bathmotropic)
Conductivity
(dromotropic)
Contractility
(ionotropic)
Heart rate
(chronotropic)
Relaxation
(lusitropic)
Improves No effect
Distribution of fibers on the heart
SA node rich supply of sympathetic and parasympathetic fibers
Atria rich supply of sympathetic and parasympathetic fibers
AV node mainly sympathetic fibers
Ventricles mainly sympathetic fibers
Coronaries sympathetic as well as parasympathetic
Receptors on heart
1, 2
M2
Autonomic tone
Resting sympathetic and parasympathetic drive
Intrinsic heart rate
Heart rate ~ 100 beats/min
At rest, the parasympathetic drive keeps the heart rate lower: vagal tone
How much to increase the heart rate?
Heart rate modulation
Decrease parasympathetic or increase sympathetic drive and vice versa
Heart rate variability
Analysis of beat to beat fluctuations in the heart rate to get an insight about
the resting autonomic tone of the heart
Clinical application : Prognostic, monitoring disease progression, ? diagnostic
Error Signal
Receptors
Integration
centre
Afferent Efferent
Target organs
Baroreflex
The baroreceptors are stretch receptors in the walls of the heart and blood vessels.
Baroreceptors:
• Carotid sinus and aortic arch receptors.
• Cardiopulmonary receptors (low pressure receptors)
• Walls of right and left atria
• Pulmonary circulation
Baroreflex
Afferents:
• Glossophayngeal nerve
• Aortic depressor nerve
Baroreflex
Afferents:
• Glossophayngeal nerve
• Aortic depressor nerve
NA
Baroreflex
Dynamic and stationary pressure show different response
Baroreflex
Decrease in blood pressure:
• Arterial constriction
(increase in peripheral resistance leading to increase in diastolic pressure)
• Venous constriction
(decrease in venous capacitance leading increase in systemic filling pressure)
• Increase in heart rate and cardiac contractility
(increase in cardiac output and systolic pressure)
Effects
Physiological importance??
Baroreflex
Baroreceptor resetting
Baroreceptor resetting
Cardiopulmonary reflex
The receptors are located in regions that will be stretched when blood volume is
increased.
2 types of receptors
Type A: discharge primarily during atrial systole.
Type B: discharge primarily in late diastole, at the time of peak atrial filling.
Cardiopulmonary receptors (low pressure receptors)
• Walls of right and left atria
• Pulmonary circulation
• Ventricles
Effects:
• Decrease in renal sympathetic nerve activity
• Decrease in secretion of vasopressin (antidiuretic hormone)
increase in blood volume is compensated for by a rapid loss of fluid into the urine.
*Baroreflex like response
Cardiopulmonary reflex
Atrial Stretch Receptors
via vagus to NTS
Increased Heart Rate
Increased Contractility
Increased Sympathetic
& decreased parasympathetic
Increased Intravascular Volume
Direct Stretching
of SA Node
Bainbridge reflex/Reverse bainbridge
This reflex helps prevent damming of blood in the veins, atria, and pulmonary circulation.
Hypothalamus
Bezold Jarisch reflex
Receptor
Chemosensitive vagal C fibers in the cardiopulmonary region
(eg, juxtacapillary region of alveoli, ventricles, atria, great veins, and pulmonary
artery)
Effect
Bradycardia, hypotension, and a brief period of apnea followed by rapid shallow
breathing.
Bezold Jarisch reflex
Chemicals/Metabolites/Strong contraction of an underfilled ventricle
Afferent : vagus
NTS
 Sympathetic
outflow
 Vagal outflow
?Vasovagal syncope
Arterial chemoreflex
Arterial chemoreceptors
Carotid and Aortic bodies
Afferent
Glossopharyngeal and Vagus nerve
Stimulus
Discharge in afferent chemoreceptor nerves is increased when arterial PO2 or pH drops or when arterial PCO2
rises above normal.
Arterial chemoreceptors are activated by blood pressures below the normal arterial pressure range (~ 80 mm
Hg)
Effect
Increased chemoreceptor afferent nerve discharge stimulates central nervous system vasoconstrictor sites
• Increased catecholamine secretion from adrenals
• Increased vagal discharge
Increased blood pressure and variable heart response
Cushing’s reflex
 Intracranial pressure
 Blood supply to RVLM
Local hypoxia and hypercapnia
 RVLM Neural discharge
 Blood pressure
-
Baroreflex
 HR
Relief of ischemia
Cold Water on Face
Activates Thermoreceptors
Information Relayed to Brainstem
Via Facial Nerve Afferents
Vagus Nerve Sympathetic Nervous System
Decreased Heart Rate Peripheral Vasoconstriction
Reduced Oxygen Consumption
By the Body and Myocardium
Diving reflex
Sinus Arrhythmia
Complex interaction between the respiratory and cardiac centers in the
medulla
• Increased sympathetic activity with inspiration
• Increased parasympathetic activity with expiration
Heart rate increases with inspiration and slows with expiration
Sinus Arrhythmia
• Stretch receptors in the lungs are stimulated during inspiration, and this action leads
to a reflex increase in heart rate.
( The afferent and efferent limbs of this reflex are located in the vagus nerves).
• Intrathoracic pressure also decreases during inspiration and thereby increases
venous return to the right side of the heart. The consequent stretch of the right
atrium elicits the Bainbridge reflex.
• After the time delay required for the increased venous return to reach the left side
of the heart, left ventricular output increases and raises arterial blood pressure. This
rise in blood pressure in turn reduces the heart rate through the baroreceptor reflex.
• Central factors: The respiratory center in the medulla directly influences the cardiac
autonomic centers
Vestibulosympathetic reflex
• A role for vestibular system cue for feedforward maintenance of blood pressure.
• Major role is of baroreflex for postural changes in blood pressure
• Change in posture is detected by the otolith receptors in the vestibular apparatus.
• Relay in vestibular nucleus to RVLM directly as well as indirectly .
Exercise pressor reflex (sympathosympathetic reflex)
• The increase in blood pressure and heart during exercise is driven by feedforward
mechanism from the higher centres and feedback signal from the exercising
muscles.
• The Group III and IV afferents from muscle start firing immediately upon the start of
muscle activity.
Intravenous Infusion
Atrial Stretch
Increased
Urine Output
Decreased Sympathetic
Activity to Kidney
Increased
Urine Output
Decreased
Water Reabsorption
BP
Decreased
Vasopressin
(ADH)
Increased
Atrial Natriuretic
Peptide
Increased
Natriuresis
Urine Output
Decreased
BP
Questions?
Lecture 8_Neural regulation of cardiac activity and cardiac reflexes.ppsx

More Related Content

DOC
วรรณคดีและวรรณกรรม ความหมาย
PDF
 ชุดกิจกรรมการเรียนรู้ทางวิทยาศาสตร์ เรื่อง แสงและทัศนอุปกรณ์ สำหรับนักเรีย...
PDF
แบบฝึก แฟกทอเรียล N
PDF
คู่มือการใช้โปรแกรม ActivInspire บน Active Board
PDF
ใบงานที่ 2 ประเภทขององค์ประกอบของระบบสารสนเทศ.pdf
PDF
กำหนดการสอนศิลปะ
PDF
ชุดที่4 เล่ม4 เทคนิค วิธีการและสื่อ สำหรับนักเรียนที่มีความบกพร่องทางการเรียน...
วรรณคดีและวรรณกรรม ความหมาย
 ชุดกิจกรรมการเรียนรู้ทางวิทยาศาสตร์ เรื่อง แสงและทัศนอุปกรณ์ สำหรับนักเรีย...
แบบฝึก แฟกทอเรียล N
คู่มือการใช้โปรแกรม ActivInspire บน Active Board
ใบงานที่ 2 ประเภทขององค์ประกอบของระบบสารสนเทศ.pdf
กำหนดการสอนศิลปะ
ชุดที่4 เล่ม4 เทคนิค วิธีการและสื่อ สำหรับนักเรียนที่มีความบกพร่องทางการเรียน...

What's hot (20)

PDF
ความแตกต่างระหว่าง Drotaverine และ hyoscine
PDF
เครื่องมือที่ใช้วาดภาพในโปรแกรม Paint
PDF
แนวทางการรักษาโรคติดต่อทางเพศสัมพันธ์
PDF
การออกแบบระบบและการออกแบบยูสเซอร์อินเตอร์เฟซ
PPTX
งานนำเสนอประเทศเวียดนาม
PDF
งานนำเสนอเสียง
PDF
Tsqp 11oct
PDF
ใบงาน พื้นที่ผิว ปริมาตร
PPT
Cvp central venous pressure monitoring
PPTX
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
PDF
เอกสารเสนอ Best practice ครูเต้
PPT
กฎของคูลอมป์
PDF
ตัวอย่างบทความ ความรู้-อำนาจ-และภาษา-มายาคติของผู้บริหาร
PDF
แผนการจัดการเรียนรู้อินเตอร์เน็ต
PDF
ของไหล ม.5
PPT
Operating System Chapter 5
ความแตกต่างระหว่าง Drotaverine และ hyoscine
เครื่องมือที่ใช้วาดภาพในโปรแกรม Paint
แนวทางการรักษาโรคติดต่อทางเพศสัมพันธ์
การออกแบบระบบและการออกแบบยูสเซอร์อินเตอร์เฟซ
งานนำเสนอประเทศเวียดนาม
งานนำเสนอเสียง
Tsqp 11oct
ใบงาน พื้นที่ผิว ปริมาตร
Cvp central venous pressure monitoring
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
เอกสารเสนอ Best practice ครูเต้
กฎของคูลอมป์
ตัวอย่างบทความ ความรู้-อำนาจ-และภาษา-มายาคติของผู้บริหาร
แผนการจัดการเรียนรู้อินเตอร์เน็ต
ของไหล ม.5
Operating System Chapter 5
Ad

Similar to Lecture 8_Neural regulation of cardiac activity and cardiac reflexes.ppsx (20)

PPTX
Regulation of heart rate
PPT
Cardio Vascular Reflex
PPTX
Cardiac reflex
PPTX
Heart rate by pandian m
PDF
Lecture nerual regulation of circulation
PPTX
Heart rate by Pandian M, Tutor, Dept of Physiology, DYPMCKOP,MH. This ppt for...
PDF
Blood pressure mechanism
PPTX
nursing lecture.pptx
PPTX
Cardiac innervation seminar by Dr Manish Ruhela, SMS Medical College,jaipur
PPTX
Cardiac reflexes & Anaesthetic Implications
PPTX
HEART RATE_030325.pptx
PPTX
Cardiac Cycle and Anaesthetic Implications
PPT
Just checking CVS-2nd-year-Medicine9,10.ppt
PPTX
cardiac physiology
PPT
PPTX
Cardiac reflexes
PPTX
Arterial blood pressure regulation & C.O.P.(2).pptx
PPTX
CARDIAC AUTONOMIC SYSTEM CLINICAL SIGNIFICANCE.pptx
PPTX
Cardio protective reflexes.pptx
PPTX
blood pressure _Ehiakhamen_ Douglas.pptx
Regulation of heart rate
Cardio Vascular Reflex
Cardiac reflex
Heart rate by pandian m
Lecture nerual regulation of circulation
Heart rate by Pandian M, Tutor, Dept of Physiology, DYPMCKOP,MH. This ppt for...
Blood pressure mechanism
nursing lecture.pptx
Cardiac innervation seminar by Dr Manish Ruhela, SMS Medical College,jaipur
Cardiac reflexes & Anaesthetic Implications
HEART RATE_030325.pptx
Cardiac Cycle and Anaesthetic Implications
Just checking CVS-2nd-year-Medicine9,10.ppt
cardiac physiology
Cardiac reflexes
Arterial blood pressure regulation & C.O.P.(2).pptx
CARDIAC AUTONOMIC SYSTEM CLINICAL SIGNIFICANCE.pptx
Cardio protective reflexes.pptx
blood pressure _Ehiakhamen_ Douglas.pptx
Ad

Recently uploaded (20)

PDF
The_EHRA_Book_of_Interventional Electrophysiology.pdf
PDF
OSCE SERIES ( Questions & Answers ) - Set 3.pdf
PPT
Rheumatology Member of Royal College of Physicians.ppt
PPTX
CARDIOVASCULAR AND RENAL DRUGS.pptx for health study
DOCX
PEADIATRICS NOTES.docx lecture notes for medical students
PPTX
Antepartum_Haemorrhage_Guidelines_2024.pptx
PDF
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
PDF
04 dr. Rahajeng - dr.rahajeng-KOGI XIX 2025-ed1.pdf
PDF
Forensic Psychology and Its Impact on the Legal System.pdf
PPTX
ROJoson PEP Talk: What / Who is a General Surgeon in the Philippines?
PDF
Nursing manual for conscious sedation.pdf
PDF
Lecture 8- Cornea and Sclera .pdf 5tg year
PPT
Blood and blood products and their uses .ppt
PPTX
Reading between the Rings: Imaging in Brain Infections
PPTX
preoerative assessment in anesthesia and critical care medicine
PDF
SEMEN PREPARATION TECHNIGUES FOR INTRAUTERINE INSEMINATION.pdf
PPTX
Hearthhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
PPTX
4. Abdominal Trauma 2020.jiuiwhewh2udwepptx
PPTX
Physiology of Thyroid Hormones.pptx
PDF
AGE(Acute Gastroenteritis)pdf. Specific.
The_EHRA_Book_of_Interventional Electrophysiology.pdf
OSCE SERIES ( Questions & Answers ) - Set 3.pdf
Rheumatology Member of Royal College of Physicians.ppt
CARDIOVASCULAR AND RENAL DRUGS.pptx for health study
PEADIATRICS NOTES.docx lecture notes for medical students
Antepartum_Haemorrhage_Guidelines_2024.pptx
OSCE SERIES - Set 7 ( Questions & Answers ).pdf
04 dr. Rahajeng - dr.rahajeng-KOGI XIX 2025-ed1.pdf
Forensic Psychology and Its Impact on the Legal System.pdf
ROJoson PEP Talk: What / Who is a General Surgeon in the Philippines?
Nursing manual for conscious sedation.pdf
Lecture 8- Cornea and Sclera .pdf 5tg year
Blood and blood products and their uses .ppt
Reading between the Rings: Imaging in Brain Infections
preoerative assessment in anesthesia and critical care medicine
SEMEN PREPARATION TECHNIGUES FOR INTRAUTERINE INSEMINATION.pdf
Hearthhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4. Abdominal Trauma 2020.jiuiwhewh2udwepptx
Physiology of Thyroid Hormones.pptx
AGE(Acute Gastroenteritis)pdf. Specific.

Lecture 8_Neural regulation of cardiac activity and cardiac reflexes.ppsx

  • 1. Neural regulation of cardiac activity and cardiac reflexes Dr Akanksha Department of Physiology, AIIMS, New Delhi email: drakanksha111@gmail.com
  • 2. Organization of neural control Medullary Centre (integration of information) Afferents Sensory information about status of cardiovascular system (pressure, volume etc) Signals about physiological state of the body Efferents Effector signals to the heart and blood vessels Higher centres Feedforward signals
  • 3. CVS regulatory regions in the medulla 1. Nucleus Tractus Solitarius (afferent integration) 2. Rostral Ventro-Lateral Medulla (pressor area) 3. Caudal Ventro-Lateral Meduall (depressor area) 4. Nucleus Ambiguus (vagal output)
  • 4. Medulla Cerebellum NTS (Nucleus Tractus Solitarius) RVLM (Rostral Ventro-Lateral Medulla) CVLM (Caudal Ventro-Lateral Medulla) NA (Nucleus Ambiguus) Anatomical locations of the medullary centres
  • 5. Sympathetic innervation of heart The sympathetic fibers to the heart arise from T1 – T5 segments of the spinal cord The post-ganglionic fibers form cardiac plexus around the heart.
  • 6. Parasympathetic innervation of heart The cardiac fibers of the vagus arise in: • Nucleus Ambiguus • Dorsal Nucleus Of Vagus. The fibers course along the vagus nerve to reach the mediastinum where the cardiac fibers leave the vagus trunk and join the plexus around the heart. These pregangionic fibers synapse in the heart musculature and give rise to short post-ganglionic fibres that innervate the heart.
  • 7. Sensory afferents Neural connections 1 2 3 4 CO2, Hypoxia Chemoreceptors Somatic afferents Mechanoreceptors Pain afferents Baroreceptors Cortical influences via hypothalamus
  • 9. Effect of sympathetic and parasympathetic stimulation on heart Sympathetic Parasympathetic Excitability (bathmotropic) Conductivity (dromotropic) Contractility (ionotropic) Heart rate (chronotropic) Relaxation (lusitropic) Improves No effect
  • 10. Distribution of fibers on the heart SA node rich supply of sympathetic and parasympathetic fibers Atria rich supply of sympathetic and parasympathetic fibers AV node mainly sympathetic fibers Ventricles mainly sympathetic fibers Coronaries sympathetic as well as parasympathetic Receptors on heart 1, 2 M2
  • 11. Autonomic tone Resting sympathetic and parasympathetic drive Intrinsic heart rate Heart rate ~ 100 beats/min At rest, the parasympathetic drive keeps the heart rate lower: vagal tone How much to increase the heart rate? Heart rate modulation Decrease parasympathetic or increase sympathetic drive and vice versa
  • 12. Heart rate variability Analysis of beat to beat fluctuations in the heart rate to get an insight about the resting autonomic tone of the heart Clinical application : Prognostic, monitoring disease progression, ? diagnostic
  • 14. Baroreflex The baroreceptors are stretch receptors in the walls of the heart and blood vessels. Baroreceptors: • Carotid sinus and aortic arch receptors. • Cardiopulmonary receptors (low pressure receptors) • Walls of right and left atria • Pulmonary circulation
  • 17. Baroreflex Dynamic and stationary pressure show different response
  • 18. Baroreflex Decrease in blood pressure: • Arterial constriction (increase in peripheral resistance leading to increase in diastolic pressure) • Venous constriction (decrease in venous capacitance leading increase in systemic filling pressure) • Increase in heart rate and cardiac contractility (increase in cardiac output and systolic pressure) Effects Physiological importance??
  • 22. Cardiopulmonary reflex The receptors are located in regions that will be stretched when blood volume is increased. 2 types of receptors Type A: discharge primarily during atrial systole. Type B: discharge primarily in late diastole, at the time of peak atrial filling. Cardiopulmonary receptors (low pressure receptors) • Walls of right and left atria • Pulmonary circulation • Ventricles
  • 23. Effects: • Decrease in renal sympathetic nerve activity • Decrease in secretion of vasopressin (antidiuretic hormone) increase in blood volume is compensated for by a rapid loss of fluid into the urine. *Baroreflex like response Cardiopulmonary reflex
  • 24. Atrial Stretch Receptors via vagus to NTS Increased Heart Rate Increased Contractility Increased Sympathetic & decreased parasympathetic Increased Intravascular Volume Direct Stretching of SA Node Bainbridge reflex/Reverse bainbridge This reflex helps prevent damming of blood in the veins, atria, and pulmonary circulation. Hypothalamus
  • 25. Bezold Jarisch reflex Receptor Chemosensitive vagal C fibers in the cardiopulmonary region (eg, juxtacapillary region of alveoli, ventricles, atria, great veins, and pulmonary artery) Effect Bradycardia, hypotension, and a brief period of apnea followed by rapid shallow breathing.
  • 26. Bezold Jarisch reflex Chemicals/Metabolites/Strong contraction of an underfilled ventricle Afferent : vagus NTS  Sympathetic outflow  Vagal outflow ?Vasovagal syncope
  • 27. Arterial chemoreflex Arterial chemoreceptors Carotid and Aortic bodies Afferent Glossopharyngeal and Vagus nerve Stimulus Discharge in afferent chemoreceptor nerves is increased when arterial PO2 or pH drops or when arterial PCO2 rises above normal. Arterial chemoreceptors are activated by blood pressures below the normal arterial pressure range (~ 80 mm Hg) Effect Increased chemoreceptor afferent nerve discharge stimulates central nervous system vasoconstrictor sites • Increased catecholamine secretion from adrenals • Increased vagal discharge Increased blood pressure and variable heart response
  • 28. Cushing’s reflex  Intracranial pressure  Blood supply to RVLM Local hypoxia and hypercapnia  RVLM Neural discharge  Blood pressure - Baroreflex  HR Relief of ischemia
  • 29. Cold Water on Face Activates Thermoreceptors Information Relayed to Brainstem Via Facial Nerve Afferents Vagus Nerve Sympathetic Nervous System Decreased Heart Rate Peripheral Vasoconstriction Reduced Oxygen Consumption By the Body and Myocardium Diving reflex
  • 30. Sinus Arrhythmia Complex interaction between the respiratory and cardiac centers in the medulla • Increased sympathetic activity with inspiration • Increased parasympathetic activity with expiration Heart rate increases with inspiration and slows with expiration
  • 31. Sinus Arrhythmia • Stretch receptors in the lungs are stimulated during inspiration, and this action leads to a reflex increase in heart rate. ( The afferent and efferent limbs of this reflex are located in the vagus nerves). • Intrathoracic pressure also decreases during inspiration and thereby increases venous return to the right side of the heart. The consequent stretch of the right atrium elicits the Bainbridge reflex. • After the time delay required for the increased venous return to reach the left side of the heart, left ventricular output increases and raises arterial blood pressure. This rise in blood pressure in turn reduces the heart rate through the baroreceptor reflex. • Central factors: The respiratory center in the medulla directly influences the cardiac autonomic centers
  • 32. Vestibulosympathetic reflex • A role for vestibular system cue for feedforward maintenance of blood pressure. • Major role is of baroreflex for postural changes in blood pressure • Change in posture is detected by the otolith receptors in the vestibular apparatus. • Relay in vestibular nucleus to RVLM directly as well as indirectly . Exercise pressor reflex (sympathosympathetic reflex) • The increase in blood pressure and heart during exercise is driven by feedforward mechanism from the higher centres and feedback signal from the exercising muscles. • The Group III and IV afferents from muscle start firing immediately upon the start of muscle activity.
  • 33. Intravenous Infusion Atrial Stretch Increased Urine Output Decreased Sympathetic Activity to Kidney Increased Urine Output Decreased Water Reabsorption BP Decreased Vasopressin (ADH) Increased Atrial Natriuretic Peptide Increased Natriuresis Urine Output Decreased BP

Editor's Notes

  • #2: reticular substance of the pons, mesencephalon, and diencephalon . In general, the neurons in the more lateral and superior portions of the reticular substance cause excitation, whereas the more medial and inferior portions cause inhibition The posterolateral portions of the hypothalamus cause mainly excitation, whereas the anterior portion can cause either mild excitation or inhibition, depending on the precise part of the anterior hypothalamus Many parts of the cerebral cortex can also excite or inhibit the vasomotor center. Stimulation of the motor cortex, for instance, excites the vasomotor center because of impulses transmitted downward into the hypothalamus and then to the vasomotor center. Also, stimulation of the anterior temporal lobe, the orbital areas of the frontal cortex, the anterior part of the cingulate gyrus, the amygdala, the septum, and the hippocampus can all either excite or inhibit the vasomotor center, depending on the precise portions of these areas that are stimulated and the intensity of the stimulus anterior temporal lobe, the orbital areas of the frontal cortex, the anterior part of the cingulate gyrus, the amygdala, the septum, and the hippocampus
  • #5: BSRF brain stem reticular formation Dorsal root ganglion Nts nucleus tractus solitarius
  • #7: Mechanorecetors inhibited by vagal afferents
  • #9: The sino-atrial node is under the control of right vagus while the atrio-ventricular node is under the control of both vagi with the left being more effective. On stimulation of the sympathetic nerves, the increase in heart rate (decrease in RR interval) begins to manifest in 2.5 to 8 seconds and reaches maximum in 7 – 12 seconds. On stoppage of stimulation the heart rate returns to baseline value in about 15-63 seconds. The increase in vagal activity or stimulation decreases the heart rate (increase in the RR interval) within the next beat i.e. next beat is delayed. On stoppage of vagal stimulation, the heart rate returns to baseline value in 1-3 second
  • #10: Sympathetic innervation can be imaged by: MIBG (iodine-123-metaiodobenzylguanidine), SPECT HED (C 11 Hydroxyephedrine) PET
  • #12: Total Circulation time is ~ 1min
  • #14: Gain= Correction/ Error
  • #18: Carotid sinus nerve activity The threshold ~50 mm Hg Maximal activity ~ 200 Hg aortic baroreceptors are similar to those of the carotid receptors except that they operate, in general, at arterial pressure levels about 30 mm Hg higher.
  • #19: In addition, mechanisms to maintain and restore the blood volume are also activated as part of baroreflex. These mechanisms occur in concurrence with other mechanism initiated by low blood volume and changes in the osmolality and include: Increase in the renal sympathetic nerve activity (retention of salt and water leading to maintenance of blood volume) (64) Release of vasopressin from Supra-optic nucleus and paraventricular nucleus of hypothalamus (65) Stimulation of the adrenal to release epinephrine and aldosterone Release of adrenocorticotropic hormone via release of corticotropin releasing hormone from paraventricular nucleus of the hypothalamus. Activation of thirst and salt appetite.
  • #22: A physiological situation in which arterial blood pressure is decreased for a prolonged period of time is pregnancy. In pregnant animals, the baroreflex function curve shifts to operate at a lower arterial pressure range. Baroreflex responses to immediate increases in pressure are maintained or even potentiated, whereas
  • #25: “reverse” Bainbridge reflex has been proposed to explain decreases in heart rate observed under conditions in which venous return is reduced, High-pressure sensitive receptors in the LV and low-pressure responsive elements in the atria and RV consist of stretch-induced mechanoreceptors that respond to pressure or volume changes. These receptors activate myelinated vagal afferent fibers that project to the nucleus solitarius and increase sympathetic nerve activity to the SA node but not to the ventricles, thereby increasing heart rate but not contractility.  Distention of these mechanoreceptors also increases renal excretion of free water by inhibition of antidiuretic hormone secretion from the posterior lobe of the pituitary gland.  It appears highly likely that the Bainbridge reflex may be mediated by distention of these mechanoreceptors. Second, a diffuse receptor network is distributed throughout the cardiac chambers that projects via unmyelinated vagal afferent neurons to the nucleus tractus solitarius.  These receptors behave like the carotid and aortic mechanoreceptors and produce a vasodepressor response consisting of vagus activation concomitant with a simultaneous increase in venous capacitance
  • #26: Activation of cardiopulmonary reflexes may help reduce the amount of inspired pollutants that gets absorbed into the blood, protecting vital organs from potential toxicity of these pollutants, and facilitating their elimination.
  • #29: A rise in arterial PCO2 stimulates the RVLM, but the direct peripheral effect of hypercapnia is vasodilation. Therefore, the peripheral and central actions tend to cancel each other out. Moderate hyperventilation, which significantly lowers the CO2 tension of the blood, causes cutaneous and cerebral vasoconstriction in humans, but there is little change in blood pressure. Exposure to high concentrations of CO2 is associated with marked cutaneous and cerebral vasodilation, but vasoconstriction occurs elsewhere and usually there is a slow rise in blood pressure.
  • #32: neurons from the Pre-Botzinger projects facilitates GABAergic inhibition of the NA, thereby leading to vagal withdrawal during inspiration. The baroreceptive neurons of the NTS send a stimulatory projection to the NA The inspiration results in increase in venous return due to decrease in intra-thoracic pressure. The stretching of the heart by balloon or increase blood volume results increase in heart rate.
  • #36: Sympathetic stimulation of the heart results in an increase in cytosolic cyclic adenosine monophosphate (cAMP) hence phosphorylation of several proteins by protein kinase A (PKA). An A kinase anchor protein (AKAP) adjacent to the L-type calcium channel facilitates phosphorylation of this channel and possibly nearby sarcoplasmic reticulum calcium channels. Other proteins phosphorylated by PKA include phospholamban (PLN) and troponin I. Muscarinic agonists (e.g., acetylcholine [ACh]), on the other hand, inhibit this sympathetic cascade by inhibiting the production of cAMP by adenylate cyclase (AC). β-AR, β-adrenergic receptor; ATP, adenosine triphosphate; Gi, inhibitory G protein; M2Rec, muscarinic acetylcholine M2 receptor; Reg, regenerating gene receptor. (Redrawn from Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415:198.)