SlideShare a Scribd company logo
Image Interpolation
Image ]nterpolatiorn
• Introduction
- What is image interpolation?
- Why do we need it?
• Interpolation Techniques
- 1D zero-order, first-order, third-order
- 2D zero-order, first-order, third-order
- Directional interpolation*
• Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations
Introductiorn
• What is image interpolation?
-An image f(x,y) tells us the intensity
values at the integral lattice locations,
i.e., when x and y are both integers
-Image interpolation refers to the "guess"
of intensity values at missing locations,
i.e., x and y can be arbitrary
-Note that it is just a guess (Note that all
sensors have finite sampling distance)
Introduction (Corn't)
• Why do we need image interpolation?
-We want BIG images
• When we see a video clip on a PC, we like to
see it in the full screen mode
-We want GOOD images
• If some block of an image gets damaged
during the transmission, we want to repair it
-We want COOL images
• Manipulate images digitally can render fancy
artistic effects as we often see in movies
Scenario I: Rescolutiorn
Enhancement
-
0
-
0
-
0
0 - 0 -
0 0 0 ()
0 - 0 -
0 0 0 ()
0 - 0
0 0 0 ()
0
0
0 -
0 0
0
0
Low-Res.
High-Res.
Scenario ]I: Image
Inpainting
- 0 - - -
0 - -
- - 0 - - -
l - - - 0 - -
- - 0 -
- - - - 0 -
- Non-damaged 0 Damaged
Scenario II]: Image
Warping
• • • •
• • • •
• • • •
• • • •
• •'• .
• • • •
• • • •
• • • •
Image ]nterpolatiorn
• Introduction
- What is image interpolation?
- Why do we need it?
• Interpolation Techniques
- 1 D zero-order, first-order, third-order
- 2D zero-order, first-order, third-order
- Directional interpolation*
• Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations
1D Zero-order (Replication)
r [ f(n)
f(x)
X
1D First-order Interpolation (Linear)
r r [ f(n)
f(x)
X
lirn1ear Interpolation Forrmula
Basic idea: the closer to a pixel, the higher weight is assigned
f(n)
-- __________f_(�-��) f(n+ 1)
---
a 1-a
If(n+a)=(l-a)xf(n)+axf(n+l), O<a<l I
Note: when a=0.5, we simply have the average of two
Numerical Examples
f(n)=[O,120,180,120,0]
1 Interpolate at 1/2-pixel
f(x)=[0,60,120,150,180,150,120,60,0], x=n/2
1 Interpolate at 1/3-pixel
f(x)= [0,20,40,60,80,100,120,130,140,150,160,170,180,...], x= n/6
1D Third-order Interpolation (Cubic)
j(n)
r
j Cubic spline fitting I
f(x)
From 1D to 2D
•Just like separable 2D transform (filtering) that can be
implemented by two sequential 1D transforms (filters)
along row and column direction respectively, 2D
interpolation can be decomposed into two sequential
1D interpolations.
•The ordering does not matter (row-column= column-row)
•Such separable implementation is not optimal but enjoys low
computational complexity
Graphical Interpretation
of In1terpolatior1 at Half-pel
• • • •
• • • •
• • • •
• • • •
f(m,n)
•o •o •o • •••••••
0 000 00 0
• 0 • 0 e 0 • •••••••
row column0 000 00 0
• 0. 0 e O e
• 0. 0 e O e
•••••••
0 000 00 0
•••••••
g(m,n)
Numerical Examples
a
a
C
C
zero-ord
1
/
a b b
a b b
C d d
C d d
a b
C d
a
(a+c)/2
C
first-order
(a+b)/2
(a+b+c+d)/4
(c+d)/2
b
(b+d)/2
d
Numer·ical Examples (Con't)
row m
Coln
'
'
'
'
Col n+l
--------X(-hir�}-··
r
····-·····-------------X(-mr�+ 1)
' '
' '
' .
:
b
:
' '
! a Y 1-a l
'
'
1-b
row m+1------X(f11+±;-A-)· ------·-·······-·------X(-f-11+1,n+1)
' '
' '
' .
' .
' '
' '
Q: what is the interpolated value· at Y?
Ans.: ( 1-a)(l-b)X(m,n)+( 1-a)bX(m+ 1,n)
+a(l-b)X(m,n+1)+abX(m+ 1,n+ 1)
Bicubic Interpolation*
Final fmege
2 2
Foint to estimate (i',j')
F(i',j') • I: L F(i + m,j + n) R(m - dx) R(dy - n)
m•-1 n•-1
1
[
3 3 3 3]
R(x) =
6 P(x + 2) - 4 P(x + 1) + 6 P(x) - 4 P(x - 1)
I
I
.
.
.
.
.
.
. :/' .....
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. .
.
.
.
.
.
. '
.
' . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
Originel lmege
x>O
xiO
Limitation with
bilinear/bicubic
• Edge blurring
• Jagged artifacts
Edge blurring
'''''
< z
'
__ ___/
X
Jagged artifacts
DirectionaI Interpolat·ion�
Step 1: interpolate the missing pixels along the diagonal
■■■■ a b
■ ■ Since la-cl=lb-dl
X
□ □ x has equal probability
□□□□ of being black or white
C d
black or white?
Step 2: interpolate the other half missing pixels
a
■
d
□ □
C
Since la-cl>lb-dl
x=(b+d)/2=black
Image ]nterpolatiorn
• Introduction
- What is image interpolation?
- Why do we need it?
• Interpolation Techniques
- 1D zero-order, first-order, third-order
- 2D zero-order, first-order, third-order
- DirectionaI interpolation*
• Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations
Pixel Replication
low-resolution
image (100 X 100)
high-resolution
image (400 X400)
Bilinear Interpolation
low-resolution
image (100 X 100)
.--------..,....,
high-resolution
image (400 X 400)
Bicubic Interpolation
low-resolution
image (100 X 100)
l1igh-resolutio11
image (400 X 400)
Edge-Directed Interpo�atioin
(Li&Orclhard'2000)
low-resolution
image (100 X 100)
high-resolution
image (400 X 400)
Image Demosaicing
(Color-FiIter-Array InterpoIatiom)
----
---- ----
---- ----
----
q ----
----
Bayer Pattern
---- ----
---- ----
---- ----
---- ----
Image Example
Ad-hoc CFA Interpolation Advanced CFA Interpolation
Error Corncealrnent
damaged interpolated
Image Irnpainting
Geometric Transformation
Widely used in co mputer graphics to generate special effects
MATLAB functions: griddata, interp2, maketform, imtransform
Basic Principle
• (x,y) ➔ (x',y') is a geometric
transformation
•We are given pixel values at (x,y)
and want to interpolate the unknown
values at (x',y')
• Usually (x',y') are not integers and
therefore we can use linear
inter olation to uess their values
MATLAB implementation: z'=interp2(x,y,z,x',y',method);
Rotation
x'
y'
cos0 sin0 x
-sin0 cos0 y
x'
X
-
Rotation Example
Scale
a=l/2
Affine Trarnsform
square parallelogram
Affine Transform Example
square
Shear
parallelogram
Shear Example
Projective Transrorr-m
A B
D C
square
B'
A'
C'
D'
quadrilateral
, alX + a2 y + G3
x =------
a7 x +a8 y+l
Projective Transform Example
o-��-�--
o 1
02
0 .
3
U.4
0.5
0.6
0.7
0.8
0 9
0.2 0 4 0.6 0.8
-$ � -4 -2 0 2 4 6
[ 0 O; 1 O; 1 1; O 1] - [-4 2; -8 -3; -3 -5; 6 3]
Polar Transform
r
0
120•
135"
-Jx
2
+ y2
165'
180'
tan-1 �
195'·
X 210• •
225'
240'
105'
265'
so· 75•
60'
45•
__1s·
e=o·
345'
no·
315'
300'
270'
285'
Iris Image Unwrapping
r
0
Use Your Imagination
r-> sqrt(r)
/
i--- --.......
"
/ /
V -----, "'
I I ,V 
I I I /
/ '
 .. _/ )
   ",.__ / / I J
 I'--- _/ ,j I
' �
"........
I'--- -----/
/
"-...i---... ·----/
http://astronomy.swin.edu.au/~pbourke/projection/imagewarp/
Free Form Deformaticorn
Seung-Yong Lee et al., "Image Metamorphosis Using Snakes and
Free-Form Deformations,"S/GGRAPH'1985, Pages 439-448
Application irnto Image
Metamorohosis�
JJ
Different Image interpolation algorithms used
are:
• Nearest Neighbour Interpolation
• Bilinear Interpolation
• Bicubic Interpolation
Nearest Neighbour Interpolation
• Sample method of multivariative interpolation in 1 or more dimensions.
• Simply selects the value of nearest point and neglects other neighbouring
points. Thus, it yields a piecewise-constant interpolant.
• It is one of the easiest method to implement but the quality is worst.
Algorithm
• do scaleheight= height of new image /
height of original image
• do scalewidth= width of new image /
width of original image
• for i=0 to height of the new image
for j=0 to width of the new image
for k=0 to original image colour channels
• do copy channel by channel data of
nearest pixel of original image
Bilinear Interpolation
• Extension of linear interpolation for interpolating functions of two variables
on a regular grid.
• Key idea is to perform linear interpolation first in one direction, and then
again in other direction.
• It gives better result than nearest neighbour but is slower than latter.
• As the name suggests, it is linear interpolation in two directions, first in
horizontal direction then by a vertical direction or vice-versa. Bilinear
interpolation uses weighted average of the 4 neighborhood pixels to calculate
its final interpolated pixel.
Image Interpolator
Bicubic Interpolation
• It is an extension of cubic interpolation for interpolating data points on a
two dimensional grid.
• It can be accomplished using either Lagrange Polynomials or Cubic
Convolution algorithm.
• It is chosen over Nearest Neighbour and Bilinear interpolation as its
interpolated surface is smoother than both of them and has fewer
interpolation artifacts.
Numerical
Lecture-11.pdf
Lecture-11.pdf
Lecture-11.pdf
THANK YOU !!!

More Related Content

PDF
Lec15: Medical Image Registration (Introduction)
PDF
digital image processing, image processing
PPT
Random and raster scan
PPTX
Canny Edge Detection
PDF
Image restoration
PPT
Chapter 5 Image Processing: Fourier Transformation
PDF
Operations in Digital Image Processing + Convolution by Example
PPT
Spatial filtering using image processing
Lec15: Medical Image Registration (Introduction)
digital image processing, image processing
Random and raster scan
Canny Edge Detection
Image restoration
Chapter 5 Image Processing: Fourier Transformation
Operations in Digital Image Processing + Convolution by Example
Spatial filtering using image processing

What's hot (20)

PPTX
Digital Image Fundamentals - II
PPT
Image trnsformations
PPTX
Watershed
PPSX
Edge Detection and Segmentation
PPTX
Image filtering in Digital image processing
PPTX
Ray tracing
PDF
Lecture 16 KL Transform in Image Processing
PPTX
Computer vision - photometric
PPSX
Image Processing: Spatial filters
PPTX
INTRODUCTION TO CMY COLOR MODELS IN COMPUTER GRAPHICS
PPTX
3 d image processsing operations
PPTX
Image Filtering in the Frequency Domain
PDF
Gradient descent method
PDF
Computer Graphics - Output Primitive
PPT
PPTX
Unit 2. Image Enhancement in Spatial Domain.pptx
PPTX
Digital Image Processing
PPTX
Concept of basic illumination model
PPT
computer graphics
PPT
Multimedia image compression standards
Digital Image Fundamentals - II
Image trnsformations
Watershed
Edge Detection and Segmentation
Image filtering in Digital image processing
Ray tracing
Lecture 16 KL Transform in Image Processing
Computer vision - photometric
Image Processing: Spatial filters
INTRODUCTION TO CMY COLOR MODELS IN COMPUTER GRAPHICS
3 d image processsing operations
Image Filtering in the Frequency Domain
Gradient descent method
Computer Graphics - Output Primitive
Unit 2. Image Enhancement in Spatial Domain.pptx
Digital Image Processing
Concept of basic illumination model
computer graphics
Multimedia image compression standards
Ad

Similar to Lecture-11.pdf (20)

PDF
Image Interpolation Techniques in Digital Image Processing: An Overview
PDF
Interpolation
PPTX
Data hiding using image interpolation
PDF
Performance analysis of high resolution images using interpolation techniques...
PPT
Final image processing
PDF
An analysisofperformanceforcommonlyusedinterpolationmethod
PPTX
Image Interpolation Techniques with Optical and Digital Zoom Concepts
PDF
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
PPTX
Application of interpolation in CSE
PPT
present
PDF
E046012533
PPTX
Interpolation and extrapolation
PDF
Morphing Image
PPT
CO3303-2 Lecture.ppt
PDF
Lecture 9 (Digital Image Processing)
PDF
Interpolation
PDF
Interpolation wikipedia
PDF
$$$ Cheap breville bta630 xl
PDF
$$$ Cheap breville bta630 xl
Image Interpolation Techniques in Digital Image Processing: An Overview
Interpolation
Data hiding using image interpolation
Performance analysis of high resolution images using interpolation techniques...
Final image processing
An analysisofperformanceforcommonlyusedinterpolationmethod
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Application of interpolation in CSE
present
E046012533
Interpolation and extrapolation
Morphing Image
CO3303-2 Lecture.ppt
Lecture 9 (Digital Image Processing)
Interpolation
Interpolation wikipedia
$$$ Cheap breville bta630 xl
$$$ Cheap breville bta630 xl
Ad

More from NiharikaThakur32 (12)

PPTX
Introduction to Heart Anomaly 2.pptx
PPTX
Introduction to Heart Anomaly 1.pptx
PDF
CNN Basics.pdf
PDF
PDF
PDF
UNIT-4.pdf
PDF
UNIT-4.pdf
PPTX
CNN_INTRO.pptx
PPTX
PPTX
PPTX
Lecture-1.pptx
PPTX
UNIT-4.pptx
Introduction to Heart Anomaly 2.pptx
Introduction to Heart Anomaly 1.pptx
CNN Basics.pdf
UNIT-4.pdf
UNIT-4.pdf
CNN_INTRO.pptx
Lecture-1.pptx
UNIT-4.pptx

Recently uploaded (20)

PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Digital Logic Computer Design lecture notes
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Welding lecture in detail for understanding
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT
Project quality management in manufacturing
PPTX
Geodesy 1.pptx...............................................
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
web development for engineering and engineering
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Sustainable Sites - Green Building Construction
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Digital Logic Computer Design lecture notes
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Welding lecture in detail for understanding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Project quality management in manufacturing
Geodesy 1.pptx...............................................
UNIT 4 Total Quality Management .pptx
web development for engineering and engineering
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
bas. eng. economics group 4 presentation 1.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
additive manufacturing of ss316l using mig welding
Sustainable Sites - Green Building Construction

Lecture-11.pdf

  • 2. Image ]nterpolatiorn • Introduction - What is image interpolation? - Why do we need it? • Interpolation Techniques - 1D zero-order, first-order, third-order - 2D zero-order, first-order, third-order - Directional interpolation* • Interpolation Applications - Digital zooming (resolution enhancement) - Image inpainting (error concealment) - Geometric transformations
  • 3. Introductiorn • What is image interpolation? -An image f(x,y) tells us the intensity values at the integral lattice locations, i.e., when x and y are both integers -Image interpolation refers to the "guess" of intensity values at missing locations, i.e., x and y can be arbitrary -Note that it is just a guess (Note that all sensors have finite sampling distance)
  • 4. Introduction (Corn't) • Why do we need image interpolation? -We want BIG images • When we see a video clip on a PC, we like to see it in the full screen mode -We want GOOD images • If some block of an image gets damaged during the transmission, we want to repair it -We want COOL images • Manipulate images digitally can render fancy artistic effects as we often see in movies
  • 5. Scenario I: Rescolutiorn Enhancement - 0 - 0 - 0 0 - 0 - 0 0 0 () 0 - 0 - 0 0 0 () 0 - 0 0 0 0 () 0 0 0 - 0 0 0 0 Low-Res. High-Res.
  • 6. Scenario ]I: Image Inpainting - 0 - - - 0 - - - - 0 - - - l - - - 0 - - - - 0 - - - - - 0 - - Non-damaged 0 Damaged
  • 7. Scenario II]: Image Warping • • • • • • • • • • • • • • • • • •'• . • • • • • • • • • • • •
  • 8. Image ]nterpolatiorn • Introduction - What is image interpolation? - Why do we need it? • Interpolation Techniques - 1 D zero-order, first-order, third-order - 2D zero-order, first-order, third-order - Directional interpolation* • Interpolation Applications - Digital zooming (resolution enhancement) - Image inpainting (error concealment) - Geometric transformations
  • 10. 1D First-order Interpolation (Linear) r r [ f(n) f(x) X
  • 11. lirn1ear Interpolation Forrmula Basic idea: the closer to a pixel, the higher weight is assigned f(n) -- __________f_(�-��) f(n+ 1) --- a 1-a If(n+a)=(l-a)xf(n)+axf(n+l), O<a<l I Note: when a=0.5, we simply have the average of two
  • 12. Numerical Examples f(n)=[O,120,180,120,0] 1 Interpolate at 1/2-pixel f(x)=[0,60,120,150,180,150,120,60,0], x=n/2 1 Interpolate at 1/3-pixel f(x)= [0,20,40,60,80,100,120,130,140,150,160,170,180,...], x= n/6
  • 13. 1D Third-order Interpolation (Cubic) j(n) r j Cubic spline fitting I f(x)
  • 14. From 1D to 2D •Just like separable 2D transform (filtering) that can be implemented by two sequential 1D transforms (filters) along row and column direction respectively, 2D interpolation can be decomposed into two sequential 1D interpolations. •The ordering does not matter (row-column= column-row) •Such separable implementation is not optimal but enjoys low computational complexity
  • 15. Graphical Interpretation of In1terpolatior1 at Half-pel • • • • • • • • • • • • • • • • f(m,n) •o •o •o • ••••••• 0 000 00 0 • 0 • 0 e 0 • ••••••• row column0 000 00 0 • 0. 0 e O e • 0. 0 e O e ••••••• 0 000 00 0 ••••••• g(m,n)
  • 16. Numerical Examples a a C C zero-ord 1 / a b b a b b C d d C d d a b C d a (a+c)/2 C first-order (a+b)/2 (a+b+c+d)/4 (c+d)/2 b (b+d)/2 d
  • 17. Numer·ical Examples (Con't) row m Coln ' ' ' ' Col n+l --------X(-hir�}-·· r ····-·····-------------X(-mr�+ 1) ' ' ' ' ' . : b : ' ' ! a Y 1-a l ' ' 1-b row m+1------X(f11+±;-A-)· ------·-·······-·------X(-f-11+1,n+1) ' ' ' ' ' . ' . ' ' ' ' Q: what is the interpolated value· at Y? Ans.: ( 1-a)(l-b)X(m,n)+( 1-a)bX(m+ 1,n) +a(l-b)X(m,n+1)+abX(m+ 1,n+ 1)
  • 18. Bicubic Interpolation* Final fmege 2 2 Foint to estimate (i',j') F(i',j') • I: L F(i + m,j + n) R(m - dx) R(dy - n) m•-1 n•-1 1 [ 3 3 3 3] R(x) = 6 P(x + 2) - 4 P(x + 1) + 6 P(x) - 4 P(x - 1) I I . . . . . . . :/' ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Originel lmege x>O xiO
  • 19. Limitation with bilinear/bicubic • Edge blurring • Jagged artifacts Edge blurring ''''' < z ' __ ___/ X Jagged artifacts
  • 20. DirectionaI Interpolat·ion� Step 1: interpolate the missing pixels along the diagonal ■■■■ a b ■ ■ Since la-cl=lb-dl X □ □ x has equal probability □□□□ of being black or white C d black or white? Step 2: interpolate the other half missing pixels a ■ d □ □ C Since la-cl>lb-dl x=(b+d)/2=black
  • 21. Image ]nterpolatiorn • Introduction - What is image interpolation? - Why do we need it? • Interpolation Techniques - 1D zero-order, first-order, third-order - 2D zero-order, first-order, third-order - DirectionaI interpolation* • Interpolation Applications - Digital zooming (resolution enhancement) - Image inpainting (error concealment) - Geometric transformations
  • 22. Pixel Replication low-resolution image (100 X 100) high-resolution image (400 X400)
  • 23. Bilinear Interpolation low-resolution image (100 X 100) .--------..,...., high-resolution image (400 X 400)
  • 24. Bicubic Interpolation low-resolution image (100 X 100) l1igh-resolutio11 image (400 X 400)
  • 26. Image Demosaicing (Color-FiIter-Array InterpoIatiom) ---- ---- ---- ---- ---- ---- q ---- ---- Bayer Pattern ---- ---- ---- ---- ---- ---- ---- ----
  • 27. Image Example Ad-hoc CFA Interpolation Advanced CFA Interpolation
  • 30. Geometric Transformation Widely used in co mputer graphics to generate special effects MATLAB functions: griddata, interp2, maketform, imtransform
  • 31. Basic Principle • (x,y) ➔ (x',y') is a geometric transformation •We are given pixel values at (x,y) and want to interpolate the unknown values at (x',y') • Usually (x',y') are not integers and therefore we can use linear inter olation to uess their values MATLAB implementation: z'=interp2(x,y,z,x',y',method);
  • 39. Projective Transrorr-m A B D C square B' A' C' D' quadrilateral , alX + a2 y + G3 x =------ a7 x +a8 y+l
  • 40. Projective Transform Example o-��-�-- o 1 02 0 . 3 U.4 0.5 0.6 0.7 0.8 0 9 0.2 0 4 0.6 0.8 -$ � -4 -2 0 2 4 6 [ 0 O; 1 O; 1 1; O 1] - [-4 2; -8 -3; -3 -5; 6 3]
  • 41. Polar Transform r 0 120• 135" -Jx 2 + y2 165' 180' tan-1 � 195'· X 210• • 225' 240' 105' 265' so· 75• 60' 45• __1s· e=o· 345' no· 315' 300' 270' 285'
  • 43. Use Your Imagination r-> sqrt(r) / i--- --....... " / / V -----, "' I I ,V I I I / / ' .. _/ ) ",.__ / / I J I'--- _/ ,j I ' � "........ I'--- -----/ / "-...i---... ·----/ http://astronomy.swin.edu.au/~pbourke/projection/imagewarp/
  • 44. Free Form Deformaticorn Seung-Yong Lee et al., "Image Metamorphosis Using Snakes and Free-Form Deformations,"S/GGRAPH'1985, Pages 439-448
  • 46. Different Image interpolation algorithms used are: • Nearest Neighbour Interpolation • Bilinear Interpolation • Bicubic Interpolation
  • 47. Nearest Neighbour Interpolation • Sample method of multivariative interpolation in 1 or more dimensions. • Simply selects the value of nearest point and neglects other neighbouring points. Thus, it yields a piecewise-constant interpolant. • It is one of the easiest method to implement but the quality is worst. Algorithm • do scaleheight= height of new image / height of original image • do scalewidth= width of new image / width of original image • for i=0 to height of the new image for j=0 to width of the new image for k=0 to original image colour channels • do copy channel by channel data of nearest pixel of original image
  • 48. Bilinear Interpolation • Extension of linear interpolation for interpolating functions of two variables on a regular grid. • Key idea is to perform linear interpolation first in one direction, and then again in other direction. • It gives better result than nearest neighbour but is slower than latter. • As the name suggests, it is linear interpolation in two directions, first in horizontal direction then by a vertical direction or vice-versa. Bilinear interpolation uses weighted average of the 4 neighborhood pixels to calculate its final interpolated pixel.
  • 49. Image Interpolator Bicubic Interpolation • It is an extension of cubic interpolation for interpolating data points on a two dimensional grid. • It can be accomplished using either Lagrange Polynomials or Cubic Convolution algorithm. • It is chosen over Nearest Neighbour and Bilinear interpolation as its interpolated surface is smoother than both of them and has fewer interpolation artifacts.