SlideShare a Scribd company logo
Deep Residual Learning
for Image Recognition
Feb 21, 2021
HeeDae Kwon
Contents
• 1. INTRODUCTION
• 2. Related Work
• 3. Residual Learning
• 4. Experiments
Introduction
The deeper the depth ,
the better the result.
Q : really?
Problem : degradation
(vanishing/exploding gradient)
Solution : Residual learning
Related Works
• Residual Representations
=> VLAD image recognition
• Shortcut Connection
=> Multi-layer perceptrons
Residual Learning
기존의 networks H(x)
Mapping F(x) = H(x) - x
H(x)에근사 Residual mapping
F(x) 를 optimize 으로 쉬워진 난이도
Residual Learning
Achitecture
Plain network
1. 동일한 output feature map size에 대해, layer는 동일한 수의
filter를 갖는다.
2. feature map size가 절반 인 경우, layer 당의 time
complexity를 보전하기 위해 filter의 수를 2배로 한다
Residual network
1.zero entry를 추가로 padding하여 dimension matching 후
identity mapping을 수행한다. (별도의 parameter가 추가되지
않음)
2. y = F(x, {Wi}) + Wsx의 projection shortcut을 dimension
matching에 사용한다.
Implementaion
• 각각의 conv layer와 activation 사이에는 batch
normalization을 사용하며, He initialization 기법으
로 weight를 초기화하여 모든 plain/residual nets을
학습한다.
• batch normalization에 근거해 dropout을 사용하지
않는다
• learning rate는 0.1에서 시작하여, error plateau 상
태마다 rate를 10으로 나누어 적용하며, decay는
0.0001, momentum은 0.9로 한 SGD를 사용했다.
• mini-batch size는 256로 했으며, iteration은 총
600K회 수행된다.
Experiments
Plain 18 > Plain 34
ResNet 18 < ResNet 34
Plain 18 < ResNet 18,34
Experiments
ResNet - 152 ResNet -152 ResNet
Experiments
감사합니다

More Related Content

PPTX
Recurrent Neural Net의 이론과 설명
PPTX
Survey on Monocular Depth Estimation
PPTX
03.12 cnn backpropagation
PDF
Deep Learning & Convolutional Neural Network
PPTX
Deep learning seminar_snu_161031
PPTX
Visualizing data using t-SNE
PDF
FCN to DeepLab.v3+
PDF
[Paper] eXplainable ai(xai) in computer vision
Recurrent Neural Net의 이론과 설명
Survey on Monocular Depth Estimation
03.12 cnn backpropagation
Deep Learning & Convolutional Neural Network
Deep learning seminar_snu_161031
Visualizing data using t-SNE
FCN to DeepLab.v3+
[Paper] eXplainable ai(xai) in computer vision

What's hot (20)

PDF
[기초개념] Graph Convolutional Network (GCN)
PPTX
Dsh data sensitive hashing for high dimensional k-nn search
PDF
Deep learning super resolution
PDF
Attention is all you need 설명
PPTX
Convolutional Neural Networks
PPTX
Data Visualization and t-SNE
PDF
Lecture 3: Unsupervised Learning
PDF
Lecture 4: Neural Networks I
PPTX
MNIST for ML beginners
PDF
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...
PPTX
Convolutional neural networks
PPTX
Learning to remember rare events
PPTX
Murpy's Machine Learing: 10. Directed Graphical Model
PPTX
Graph Neural Network (한국어)
PDF
CNN Introduction
PPTX
Convolution 종류 설명
PDF
Detecting fake jpeg images
PDF
[PR12] image super resolution using deep convolutional networks
PPTX
AlexNet, VGG, GoogleNet, Resnet
PDF
여러 컨볼루션 레이어 테크닉과 경량화 기법들
[기초개념] Graph Convolutional Network (GCN)
Dsh data sensitive hashing for high dimensional k-nn search
Deep learning super resolution
Attention is all you need 설명
Convolutional Neural Networks
Data Visualization and t-SNE
Lecture 3: Unsupervised Learning
Lecture 4: Neural Networks I
MNIST for ML beginners
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...
Convolutional neural networks
Learning to remember rare events
Murpy's Machine Learing: 10. Directed Graphical Model
Graph Neural Network (한국어)
CNN Introduction
Convolution 종류 설명
Detecting fake jpeg images
[PR12] image super resolution using deep convolutional networks
AlexNet, VGG, GoogleNet, Resnet
여러 컨볼루션 레이어 테크닉과 경량화 기법들
Ad

Similar to Les net (20)

PPTX
Review EDSR
PDF
History of Vision AI
PDF
[컴퓨터비전과 인공지능] 8. 합성곱 신경망 아키텍처 4 - ResNet
PDF
밑바닥부터 시작하는딥러닝 8장
PPTX
Review Wide Resnet
PPTX
Image net classification with deep convolutional neural networks
PDF
Understanding deep learning requires rethinking generalization (2017) 2 2(2)
PDF
Alexnet paper review
PPTX
Review Dense net
PPTX
Image Deep Learning 실무적용
PDF
Invertible residual networks Review
PPTX
Unsupervised learning for real-world super-resolution review presentation
PDF
Dl from scratch(8)
PPTX
Dense sparse-dense training for dnn and Other Models
PDF
AnoGAN을 이용한 철강 소재 결함 검출 AI
PDF
Deep neural networks cnn rnn_ae_some practical techniques
PDF
Summary in recent advances in deep learning for object detection
PDF
Summary in recent advances in deep learning for object detection
PDF
델켐매거진5호
Review EDSR
History of Vision AI
[컴퓨터비전과 인공지능] 8. 합성곱 신경망 아키텍처 4 - ResNet
밑바닥부터 시작하는딥러닝 8장
Review Wide Resnet
Image net classification with deep convolutional neural networks
Understanding deep learning requires rethinking generalization (2017) 2 2(2)
Alexnet paper review
Review Dense net
Image Deep Learning 실무적용
Invertible residual networks Review
Unsupervised learning for real-world super-resolution review presentation
Dl from scratch(8)
Dense sparse-dense training for dnn and Other Models
AnoGAN을 이용한 철강 소재 결함 검출 AI
Deep neural networks cnn rnn_ae_some practical techniques
Summary in recent advances in deep learning for object detection
Summary in recent advances in deep learning for object detection
델켐매거진5호
Ad

More from heedaeKwon (18)

PPTX
Generative adversarial nets
PPTX
Generating sequences with recurrent neural networks
PPTX
Fully convolutional networks for semantic segmentation
PPTX
Feature pyramid networks for object detection
PPTX
Attention is all you need
PPTX
Se net
PPTX
Perceptual losses for real time style transfer and super-resolution
PPTX
Localisation network
PPTX
Learning to learn by gradient descent by gradient descent
PPTX
Grad cam visual explanations from deep networks via gradient-based localizati...
PPTX
Goog lenet
PPTX
Learning deep features for discriminative localization
PPTX
Image net classification with deep convolutional neural networks
PPTX
Show, attend and tell
PPTX
PPTX
A neural image caption generator
PPTX
PPTX
Ai basic
Generative adversarial nets
Generating sequences with recurrent neural networks
Fully convolutional networks for semantic segmentation
Feature pyramid networks for object detection
Attention is all you need
Se net
Perceptual losses for real time style transfer and super-resolution
Localisation network
Learning to learn by gradient descent by gradient descent
Grad cam visual explanations from deep networks via gradient-based localizati...
Goog lenet
Learning deep features for discriminative localization
Image net classification with deep convolutional neural networks
Show, attend and tell
A neural image caption generator
Ai basic

Les net

  • 1. Deep Residual Learning for Image Recognition Feb 21, 2021 HeeDae Kwon
  • 2. Contents • 1. INTRODUCTION • 2. Related Work • 3. Residual Learning • 4. Experiments
  • 3. Introduction The deeper the depth , the better the result. Q : really? Problem : degradation (vanishing/exploding gradient) Solution : Residual learning
  • 4. Related Works • Residual Representations => VLAD image recognition • Shortcut Connection => Multi-layer perceptrons
  • 5. Residual Learning 기존의 networks H(x) Mapping F(x) = H(x) - x H(x)에근사 Residual mapping F(x) 를 optimize 으로 쉬워진 난이도
  • 7. Achitecture Plain network 1. 동일한 output feature map size에 대해, layer는 동일한 수의 filter를 갖는다. 2. feature map size가 절반 인 경우, layer 당의 time complexity를 보전하기 위해 filter의 수를 2배로 한다 Residual network 1.zero entry를 추가로 padding하여 dimension matching 후 identity mapping을 수행한다. (별도의 parameter가 추가되지 않음) 2. y = F(x, {Wi}) + Wsx의 projection shortcut을 dimension matching에 사용한다.
  • 8. Implementaion • 각각의 conv layer와 activation 사이에는 batch normalization을 사용하며, He initialization 기법으 로 weight를 초기화하여 모든 plain/residual nets을 학습한다. • batch normalization에 근거해 dropout을 사용하지 않는다 • learning rate는 0.1에서 시작하여, error plateau 상 태마다 rate를 10으로 나누어 적용하며, decay는 0.0001, momentum은 0.9로 한 SGD를 사용했다. • mini-batch size는 256로 했으며, iteration은 총 600K회 수행된다.
  • 9. Experiments Plain 18 > Plain 34 ResNet 18 < ResNet 34 Plain 18 < ResNet 18,34
  • 10. Experiments ResNet - 152 ResNet -152 ResNet