SlideShare a Scribd company logo
Lesson 6
Basic Laws of Electric Circuits
Nodal Analysis
Basic Circuits
Nodal Analysis: The Concept.
• Every circuit has n nodes with one of the nodes being
designated as a reference node.
• We designate the remaining n – 1 nodes as voltage nodes
and give each node a unique name, vi.
• At each node we write Kirchhoff’s current law in terms
of the node voltages.
1
Basic Circuits
Nodal Analysis: The Concept.
• We form n-1 linear equations at the n-1 nodes
in terms of the node voltages.
• We solve the n-1 equations for the n-1 node voltages.
• From the node voltages we can calculate any branch
current or any voltage across any element.
2
Basic Circuits
Nodal Analysis: Concept Illustration:
reference node
v 1
v 2 v 3
R 2
R 1
R 3
R 4
I


Figure 6.1: Partial circuit used to illustrate nodal analysis.
I
R
V
V
R
V
R
V
R
V
V






4
3
1
3
1
1
1
2
2
1 Eq 6.1
3
Basic Circuits
Nodal Analysis: Concept Illustration:
Clearing the previous equation gives,
I
V
R
V
R
V
R
R
R
R





























 3
4
2
2
1
4
3
2
1
1
1
1
1
1
1
Eq 6.2
We would need two additional equations, from the
remaining circuit, in order to solve for V1, V2, and V3
4
Basic Circuits
Nodal Analysis: Example 6.1
Given the following circuit. Set-up the equations
to solve for V1 and V2. Also solve for the voltage V6.
R 2 R 3
R 1 R 4
R 5
R 6
I1
v1 v2
+
_
v6


Figure 6.2: Circuit for Example 6.1.
5
Basic Circuits
Nodal Analysis: Example 6.1, the nodal equations.
R 2 R 3
R 1 R 4
R 5
R 6
I1
v1 v2
+
_
v6


0
6
5
2
4
2
3
1
2
1
3
2
1
2
1
1









R
R
V
R
V
R
V
V
I
R
V
V
R
R
V
Eq 6.3
Eq 6.4
6
Basic Circuits
Nodal Analysis: Example 6.1: Set up for solution.
0
6
5
2
4
2
3
1
2
1
3
2
1
2
1
1









R
R
V
R
V
R
V
V
I
R
V
V
R
R
V
0
1
1
1
1
1
1
1
2
6
5
4
3
1
3
1
2
3
1
3
2
1










































V
R
R
R
R
V
R
I
V
R
V
R
R
R
Eq 6.3
Eq 6.4
Eq 6.5
Eq 6.6
7
Nodal Analysis: Example 6.2, using circuit values.
v1
v2
10 
5 
20  4 A
2 A

 Figure 6.3: Circuit for
Example 6.2.
Find V1 and V2.
At v1:
2
5
10
2
1
1 


V
V
V
At v2:
6
20
5
2
1
2 


 V
V
V
Eq 6.7
Eq 6.8
Basic Circuits
8
Nodal Analysis: Example 6.2: Clearing Equations;
From Eq 6.7:
V1 + 2V1 – 2V2 = 20
or
3V1 – 2V2 = 20
From Eq 6.8:
4V2 – 4V1 + V2 = -120
or
-4V1 + 5V2 = -120
Eq 6.9
Eq 6.10
Solution: V1 = -20 V, V2 = -40 V
Basic Circuits
9
Basic Circuits
Nodal Analysis: Example 6.3: With voltage source.
R 1
R 3
I
v2
v1
+
_ R 2 R 4
E
Figure 6.4: Circuit for
Example 6.3.
At V1:
I
R
V
V
R
V
R
E
V





3
2
1
2
1
1
1
At V2:
I
R
V
V
R
V




3
1
2
4
2
Eq 6.11
Eq 6.12
10
Basic Circuits
Nodal Analysis: Example 6.3: Continued.
Collecting terms in Equations (6.11) and (6.12) gives
1
2
3
1
1
3
1
2
1
1
1
R
E
I
V
R
V
R
R
R





















I
V
R
R
V
R




















 2
4
1
3
1
1
2
1
Eq 6.13
Eq 6.14
11
Basic Circuits
Nodal Analysis: Example 6.4: Numerical example with voltage
source.
v2
v1
6 
4 
10  5 A
+
_
10 V
 
Figure 6.5: Circuit for Example 6.4.
What do we do first?
12
Basic Circuits
Nodal Analysis: Example 6.4: Continued
v2
v1
6 
4 
10  5 A
+
_
10 V
 
At v1:
5
4
2
10
1
10
1 




V
V
V
At v2:
0
4
1
10
2
6
2 



V
V
V
Eq 6.15
Eq 6.16
13
Basic Circuits
Nodal Analysis: Example 6.4: Continued
Clearing Eq 6.15
4V1 + 10V1 + 100 – 10V2 = -200
or
14V1 – 10V2 = -300
Clearing Eq 6.16
4V2 + 6V2 – 60 – 6V1 = 0
or
-6V1 + 10V2 = 60
Eq 6.17
Eq 6.18
V1 = -30 V, V2 = -12 V, I1 = -2 A
14
Basic Circuits
Nodal Analysis: Example 6.5: Voltage super node.
Given the following circuit. Solve for the indicated nodal voltages.
+
_
6 A
5 
4 
2 
10 
v 1
v 2 v 3
1 0 V
x
x
x
x
Figure 6.6: Circuit for Example 6.5.
When a voltage source appears between two nodes, an easy way to
handle this is to form a super node. The super node encircles the
voltage source and the tips of the branches connected to the nodes.
super node
15
Basic Circuits
Nodal Analysis: Example 6.5: Continued.
+
_
6 A
5 
4 
2 
10 
v1
v2 v3
1 0 V
At V1 6
2
3
1
5
2
1 


 V
V
V
V
At super
node
0
2
1
3
10
3
4
2
5
1
2 




 V
V
V
V
V
V
Constraint Equation
V2 – V3 = -10 Eq 6.19
Eq 6.20
Eq 6.21
16
Basic Circuits
Nodal Analysis: Example 6.5: Continued.
Clearing Eq 6.19, 6.20, and 6.21:
7V1 – 2V2 – 5V3 = 60
-14V1 + 9V2 + 12V3 = 0
V2 – V3 = -10
Eq 6.22
Eq 6.23
Eq 6.24
Solving gives:
V1 = 30 V, V2 = 14.29 V, V3 = 24.29 V
17
Basic Circuits
Nodal Analysis: Example 6.6: With Dependent Sources.
Consider the circuit below. We desire to solve for the node voltages
V1 and V2.
1 0 
2 
4 
5 
2 A
+
_
10 V
5 Vx


v1 v2
Vx
+
_
Figure 6.7: Circuit for
Example 6.6.
In this case we have a dependent source, 5Vx, that must be reckoned
with. Actually, there is a constraint equation of
0
1
2 

 V
V
V x Eq 6.25
18
Basic Circuits
Nodal Analysis: Example 6.6: With Dependent Sources.
1 0 
2 
4 
5 
2 A
+
_
1 0 V
5 Vx


v1 v2
Vx
+
_
At node V1 2
2
5
10
10 2
1
1
1




 V
V
V
V
At node V2
2
4
5
2
2
1
2




 x
V
V
V
V
The constraint equation: 2
1 V
V
Vx 

19
Basic Circuits
Nodal Analysis: Example 6.6: With Dependent Sources.
Clearing the previous equations and substituting
the constraint VX = V1 - V2 gives,
8
8
7
30
5
8
2
1
2
1






V
V
V
V Eq 6.26
Eq 6.27
which yields,
V
V
V
V 03
.
5
,
9
.
6 2
1 

20
circuits
End of Lesson 6
Nodal Analysis

More Related Content

PPT
BEF 12403 - Week 12 - Nodal Analysis Method.ppt
PDF
Circuit Analysis EE211 Lecture 10-12
PPTX
Chapter 3.pptx hhoasdhuio sadhuiosad usadhuasdio
PPT
D2.3 Nodal Analysis electrical circuit.ppt
PPTX
Lecture 07 8 LCA gyhjvjfjfv jfuf(2).pptx
PDF
Circuit theory 1-c3-analysis methods
PDF
L 05(gdr)(et) ((ee)nptel)
PPT
beee final.ppt
BEF 12403 - Week 12 - Nodal Analysis Method.ppt
Circuit Analysis EE211 Lecture 10-12
Chapter 3.pptx hhoasdhuio sadhuiosad usadhuasdio
D2.3 Nodal Analysis electrical circuit.ppt
Lecture 07 8 LCA gyhjvjfjfv jfuf(2).pptx
Circuit theory 1-c3-analysis methods
L 05(gdr)(et) ((ee)nptel)
beee final.ppt

Similar to Lesson 6 Nodal Analysis with examples.ppt (20)

PPTX
BEE301 - circuit theory - NT.pptx
PPTX
Nodal Analysis.pptx
PPTX
Electric Circuit - Lecture 04
PDF
2. Nodal Analysis Complete.pdf
PPTX
network theory current voltage resistance
PPTX
Circuit laws & network theorems
PDF
Chapter 1 techniques of dc circuit analysis
PPTX
ELECTRICAL CIRCUIT ANALYSIS PROBLEM SOLUTION IN MATLAB
PPTX
Basics of Circuits Analysis
PPTX
A very comprehensive introduction to circuit analysis which is very education...
PPTX
Essential_&_Practical_Circuit_Analysis_Part 1_ DC_Circuits.pptx
PPT
Slides for explaining about the ca and other things
PPTX
Nodal & Mesh Analysis
DOC
Circuits 1,2
PPTX
circuit theory.pptx
PPTX
Network theorems for electrical engineering
PPT
Ch03_PPT_Fundmenal_Electric_Circuit_6e.ppt
PPTX
Nodal analysis
BEE301 - circuit theory - NT.pptx
Nodal Analysis.pptx
Electric Circuit - Lecture 04
2. Nodal Analysis Complete.pdf
network theory current voltage resistance
Circuit laws & network theorems
Chapter 1 techniques of dc circuit analysis
ELECTRICAL CIRCUIT ANALYSIS PROBLEM SOLUTION IN MATLAB
Basics of Circuits Analysis
A very comprehensive introduction to circuit analysis which is very education...
Essential_&_Practical_Circuit_Analysis_Part 1_ DC_Circuits.pptx
Slides for explaining about the ca and other things
Nodal & Mesh Analysis
Circuits 1,2
circuit theory.pptx
Network theorems for electrical engineering
Ch03_PPT_Fundmenal_Electric_Circuit_6e.ppt
Nodal analysis
Ad

Recently uploaded (20)

PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Safety Seminar civil to be ensured for safe working.
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Well-logging-methods_new................
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Geodesy 1.pptx...............................................
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
additive manufacturing of ss316l using mig welding
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
web development for engineering and engineering
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
bas. eng. economics group 4 presentation 1.pptx
Safety Seminar civil to be ensured for safe working.
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Well-logging-methods_new................
CH1 Production IntroductoryConcepts.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Current and future trends in Computer Vision.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Lecture Notes Electrical Wiring System Components
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Geodesy 1.pptx...............................................
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Internet of Things (IOT) - A guide to understanding
CYBER-CRIMES AND SECURITY A guide to understanding
additive manufacturing of ss316l using mig welding
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
web development for engineering and engineering
Ad

Lesson 6 Nodal Analysis with examples.ppt

  • 1. Lesson 6 Basic Laws of Electric Circuits Nodal Analysis
  • 2. Basic Circuits Nodal Analysis: The Concept. • Every circuit has n nodes with one of the nodes being designated as a reference node. • We designate the remaining n – 1 nodes as voltage nodes and give each node a unique name, vi. • At each node we write Kirchhoff’s current law in terms of the node voltages. 1
  • 3. Basic Circuits Nodal Analysis: The Concept. • We form n-1 linear equations at the n-1 nodes in terms of the node voltages. • We solve the n-1 equations for the n-1 node voltages. • From the node voltages we can calculate any branch current or any voltage across any element. 2
  • 4. Basic Circuits Nodal Analysis: Concept Illustration: reference node v 1 v 2 v 3 R 2 R 1 R 3 R 4 I   Figure 6.1: Partial circuit used to illustrate nodal analysis. I R V V R V R V R V V       4 3 1 3 1 1 1 2 2 1 Eq 6.1 3
  • 5. Basic Circuits Nodal Analysis: Concept Illustration: Clearing the previous equation gives, I V R V R V R R R R                               3 4 2 2 1 4 3 2 1 1 1 1 1 1 1 Eq 6.2 We would need two additional equations, from the remaining circuit, in order to solve for V1, V2, and V3 4
  • 6. Basic Circuits Nodal Analysis: Example 6.1 Given the following circuit. Set-up the equations to solve for V1 and V2. Also solve for the voltage V6. R 2 R 3 R 1 R 4 R 5 R 6 I1 v1 v2 + _ v6   Figure 6.2: Circuit for Example 6.1. 5
  • 7. Basic Circuits Nodal Analysis: Example 6.1, the nodal equations. R 2 R 3 R 1 R 4 R 5 R 6 I1 v1 v2 + _ v6   0 6 5 2 4 2 3 1 2 1 3 2 1 2 1 1          R R V R V R V V I R V V R R V Eq 6.3 Eq 6.4 6
  • 8. Basic Circuits Nodal Analysis: Example 6.1: Set up for solution. 0 6 5 2 4 2 3 1 2 1 3 2 1 2 1 1          R R V R V R V V I R V V R R V 0 1 1 1 1 1 1 1 2 6 5 4 3 1 3 1 2 3 1 3 2 1                                           V R R R R V R I V R V R R R Eq 6.3 Eq 6.4 Eq 6.5 Eq 6.6 7
  • 9. Nodal Analysis: Example 6.2, using circuit values. v1 v2 10  5  20  4 A 2 A   Figure 6.3: Circuit for Example 6.2. Find V1 and V2. At v1: 2 5 10 2 1 1    V V V At v2: 6 20 5 2 1 2     V V V Eq 6.7 Eq 6.8 Basic Circuits 8
  • 10. Nodal Analysis: Example 6.2: Clearing Equations; From Eq 6.7: V1 + 2V1 – 2V2 = 20 or 3V1 – 2V2 = 20 From Eq 6.8: 4V2 – 4V1 + V2 = -120 or -4V1 + 5V2 = -120 Eq 6.9 Eq 6.10 Solution: V1 = -20 V, V2 = -40 V Basic Circuits 9
  • 11. Basic Circuits Nodal Analysis: Example 6.3: With voltage source. R 1 R 3 I v2 v1 + _ R 2 R 4 E Figure 6.4: Circuit for Example 6.3. At V1: I R V V R V R E V      3 2 1 2 1 1 1 At V2: I R V V R V     3 1 2 4 2 Eq 6.11 Eq 6.12 10
  • 12. Basic Circuits Nodal Analysis: Example 6.3: Continued. Collecting terms in Equations (6.11) and (6.12) gives 1 2 3 1 1 3 1 2 1 1 1 R E I V R V R R R                      I V R R V R                      2 4 1 3 1 1 2 1 Eq 6.13 Eq 6.14 11
  • 13. Basic Circuits Nodal Analysis: Example 6.4: Numerical example with voltage source. v2 v1 6  4  10  5 A + _ 10 V   Figure 6.5: Circuit for Example 6.4. What do we do first? 12
  • 14. Basic Circuits Nodal Analysis: Example 6.4: Continued v2 v1 6  4  10  5 A + _ 10 V   At v1: 5 4 2 10 1 10 1      V V V At v2: 0 4 1 10 2 6 2     V V V Eq 6.15 Eq 6.16 13
  • 15. Basic Circuits Nodal Analysis: Example 6.4: Continued Clearing Eq 6.15 4V1 + 10V1 + 100 – 10V2 = -200 or 14V1 – 10V2 = -300 Clearing Eq 6.16 4V2 + 6V2 – 60 – 6V1 = 0 or -6V1 + 10V2 = 60 Eq 6.17 Eq 6.18 V1 = -30 V, V2 = -12 V, I1 = -2 A 14
  • 16. Basic Circuits Nodal Analysis: Example 6.5: Voltage super node. Given the following circuit. Solve for the indicated nodal voltages. + _ 6 A 5  4  2  10  v 1 v 2 v 3 1 0 V x x x x Figure 6.6: Circuit for Example 6.5. When a voltage source appears between two nodes, an easy way to handle this is to form a super node. The super node encircles the voltage source and the tips of the branches connected to the nodes. super node 15
  • 17. Basic Circuits Nodal Analysis: Example 6.5: Continued. + _ 6 A 5  4  2  10  v1 v2 v3 1 0 V At V1 6 2 3 1 5 2 1     V V V V At super node 0 2 1 3 10 3 4 2 5 1 2       V V V V V V Constraint Equation V2 – V3 = -10 Eq 6.19 Eq 6.20 Eq 6.21 16
  • 18. Basic Circuits Nodal Analysis: Example 6.5: Continued. Clearing Eq 6.19, 6.20, and 6.21: 7V1 – 2V2 – 5V3 = 60 -14V1 + 9V2 + 12V3 = 0 V2 – V3 = -10 Eq 6.22 Eq 6.23 Eq 6.24 Solving gives: V1 = 30 V, V2 = 14.29 V, V3 = 24.29 V 17
  • 19. Basic Circuits Nodal Analysis: Example 6.6: With Dependent Sources. Consider the circuit below. We desire to solve for the node voltages V1 and V2. 1 0  2  4  5  2 A + _ 10 V 5 Vx   v1 v2 Vx + _ Figure 6.7: Circuit for Example 6.6. In this case we have a dependent source, 5Vx, that must be reckoned with. Actually, there is a constraint equation of 0 1 2    V V V x Eq 6.25 18
  • 20. Basic Circuits Nodal Analysis: Example 6.6: With Dependent Sources. 1 0  2  4  5  2 A + _ 1 0 V 5 Vx   v1 v2 Vx + _ At node V1 2 2 5 10 10 2 1 1 1      V V V V At node V2 2 4 5 2 2 1 2      x V V V V The constraint equation: 2 1 V V Vx   19
  • 21. Basic Circuits Nodal Analysis: Example 6.6: With Dependent Sources. Clearing the previous equations and substituting the constraint VX = V1 - V2 gives, 8 8 7 30 5 8 2 1 2 1       V V V V Eq 6.26 Eq 6.27 which yields, V V V V 03 . 5 , 9 . 6 2 1   20
  • 22. circuits End of Lesson 6 Nodal Analysis