SlideShare a Scribd company logo
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Light Field Networks:
Neural Scene Representations with Single-Evaluation Rendering
Vincent Sitzmann*
Frédo Durand
Semon Rezchikov*
Joshua B. Tenenbaum
William T. Freeman
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Graphics Physics Simulation
Autonomous Navigation &
Planning
Photogrammetry Robotic Vision
Robotic Grasping
2
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Self-Supervised Scene Representation Learning
Graphics Physics Simulation
Autonomous Navigation &
Planning
Photogrammetry Robotic Vision
Robotic Grasping
Learned feature representation of 3D scenes.
Neural
3
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
DVR [Niemeyer et al. 2020], IDR [Yariv et al. 2020], …
3D-structured Neural Scene Representations
Neural Radiance Fields
Mildenhall et al. 2020
Scene Representation Networks
Sitzmann et al. 2019
pixelNeRF
Yu et al. 2020
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3
→ ℝn
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
3D-structured Neural Scene Representations
: ℝ3 → ℝn
Hundreds of samples per ray.
256x256 image takes >30 seconds (volumetric).
Time- and memory-intensive training.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
: ℝ3 → ℝn
Light Field
[Adelson et al. 1991, Levoy et al. 1996, Gortler et al. 1996]
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
: ℝ3 → ℝn
Light FieldNetworks
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
: ℝ3 → ℝn
Light FieldNetworks
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Light FieldNetworks
Conditioning
Plücker Coords.
An Alternative Scene Representation
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Light Field Networks Volumetric Rendering (pixelNeRF)
500 FPS
1 evaluation per ray
0.033 FPS
196 evaluations per ray
Real-time. No post-processing, no discrete data structures (octrees, voxelgrids, …).
>100x reduction in memory: Can be trained on small GPUs!
15,000x speed
1,000x speed
100x speed
10x speed
1x speed
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Light Field Networks
500 FPS
1 evaluation per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Also Encode Depth in their 4D derivatives:
can be extracted via single evaluation of neural network and its gradient!
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Ray Parameterizations for LFNs
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Conventional Light Field Parameterizations
Two-Plane Lumigraph Two-Sphere
Cylindrical
Not 360° Not 360° Not Continuous Bounded Scenes
Difficult to use as a complete scene representation
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
“Point-direction” coordinates
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
“Point-direction” coordinates
Not unique: Same ray, two different coordinates.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Unique: invariant to choice of x.
Parameterize all rays without special cases.
Impractical for discrete representations, since ∈ ℝ⁶.
Plücker coordinates
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Plücker coordinates
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Plücker coordinates
Parameterize 360 degree light fields of unbounded scenes.
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Extracting Scene Geometry from LFNs
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
c(s,t)
The geometry of LFNs
p
p
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
c(s,t)
τ
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
c(s,t)
τ
τ p
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
p
c(s,t)
τ
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
τ p
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field.
∇c(s,t)
p
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field.
∇c(s,t)
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
The geometry of LFNs
p
c(s,t)
p
p
Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI.
Slope of line decreases as point moves closer.
∇c(s,t)
Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field.
Epipolar Plane Image
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-view consistency
c(s,t)
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-view consistency
c(s,t)
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-view consistency
c(s,t)
τ
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Meta-Learning Multi-View Consistency
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Learning a space of multi-view consistent light fields
+ }
,…
embedding
𝑧0
{
embedding
𝑧1
embedding
𝑧𝑛
𝑧𝑗=0,…,𝑛~𝒩(0, 𝜎2
)
}
,…
{ +
+ }
,…
{
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Decode embedding into scene representation
embedding
𝑧0
1[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016]
LFN
Hypernetwork1
Ψ𝝍 Φ𝜙=Ψ𝜓(𝑧0)
Rendering
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Decode embedding into scene representation
Φ𝜙=Ψ𝜓(𝑧0)
embedding
𝑧0
LFN
Ψ𝝍
arg min
𝑧𝑗 𝑗=1
𝑀
,𝝍 𝑗 𝑖
REN D ER (Φ𝜙=Ψ𝜓(𝑧𝑗), 𝜉𝑖) − ℐ𝑖
𝑗
Rendering
Hypernetwork
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Test time: Initialize new embedding
Φ𝜙=Ψ𝜓(𝑧new)
LFN
Ψ𝝍
Rendering
embedding
𝑧new
Hypernetwork
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Freeze weights & optimize latent code only.
Φ𝜙=Ψ𝜓(𝑧new)
LFN
Ψ𝝍
Rendering
𝑧 = arg min
𝑧
REN D ER (Φ𝜙=Ψ𝜓(𝑧0), 𝜉) − ℐ
embedding
𝑧new
Hypernetwork
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Results
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
LFNs learn multi-view consistent 360-degree light fields
500 FPS, single evaluation per ray.
Shapenet
Cars
Shapenet
Chairs
GQN Rooms
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Pointclouds extracted from 4 views of cars & chairs
Single evaluation of network & its gradient per ray, constant complexity
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot Reconstruction
DVR SRN Ours GT DVR SRN Ours GT
Input Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot
Ours GT
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
View-dependent effects.
Ours GT
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot
Screens and Phones
DVR SRN Ours GT
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot: Random samples
DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot: Random samples
DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot: Random samples
DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Multi-Class Single-Shot: Random samples
DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input DVR SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Single-Class Single-Shot (SRNs, cars)
Randomly selected.
SRN Ours G
T
Input SRN Ours G
T
Input SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Single-Class Single-Shot (SRNs, chairs)
Randomly selected.
SRN Ours G
T
Input SRN Ours G
T
Input SRN Ours G
T
Input
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Global vs. Local Conditioning – Single-Shot Rec.
pixelNeRF [Yu et al. 2020] comparison, randomly selected
Input PN Ours GT Input PN Ours GT Inpu
t
P
N
Our
s
G
T
Inpu
t
P
N
Our
s
G
T
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Results Limitations
LFN Geometry
Parameterization Meta-Learning
Ψ𝝍 ΦΨ
Limitations
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
Context Views
Overfitting single scene (with positional encoding)
Intermediate Views
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Limitations
Multi-view Consistency
Local conditioning
One color per ray
pixelNeRF Yu et al. 2020
Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021
Light Field Networks:
Neural Scene Representations with Single-Evaluation Rendering
Vincent
Sitzmann*
Semon
Rezchikov*
Joshua B.
Tenenbaum
William T.
Freeman
Frédo
Durand
vsitzmann.github.io/lfns

More Related Content

PDF
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PPTX
Neural Scene Representation & Rendering: Introduction to Novel View Synthesis
PPTX
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
PPTX
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
PDF
Neural Radiance Fields & Neural Rendering.pdf
PDF
lecture_16_jiajun.pdf
PDF
PR-386: Light Field Networks: Neural Scene Representations with Single-Evalua...
PDF
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Neural Scene Representation & Rendering: Introduction to Novel View Synthesis
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
Neural Radiance Fields & Neural Rendering.pdf
lecture_16_jiajun.pdf
PR-386: Light Field Networks: Neural Scene Representations with Single-Evalua...
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...

Similar to Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering, NeurIPS 2021 (20)

PDF
Introduction to 3D Computer Vision and Differentiable Rendering
PDF
TransNeRF
PDF
LSNIF: Locally-Subdivided Neural Intersection Function
PDF
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
PDF
Learning Graph Representation for Data-Efficiency RL
PPTX
Omni intro
PPTX
Image segmentation hj_cho
PPTX
Scene Representation Networks(NIPS 2019)_OJung
PDF
Laplacian-regularized Graph Bandits
PDF
Computer vision for transportation
PDF
Object detection stanford
PDF
lecture_5_ruohan image classification with CNN
PDF
Fcv bio cv_simoncelli
PDF
ct_meeting_final_jcy (1).pdf
PPTX
conv_nets.pptx
PDF
Cs231n 2017 lecture11 Detection and Segmentation
PDF
Learning to Perceive the 3D World
PDF
Cs231n 2017 lecture12 Visualizing and Understanding
PPTX
SIGGRAPH 2014 Preview -"Shape Collection" Session
PPTX
Ivan Sahumbaiev "Deep Learning approaches meet 3D data"
Introduction to 3D Computer Vision and Differentiable Rendering
TransNeRF
LSNIF: Locally-Subdivided Neural Intersection Function
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Learning Graph Representation for Data-Efficiency RL
Omni intro
Image segmentation hj_cho
Scene Representation Networks(NIPS 2019)_OJung
Laplacian-regularized Graph Bandits
Computer vision for transportation
Object detection stanford
lecture_5_ruohan image classification with CNN
Fcv bio cv_simoncelli
ct_meeting_final_jcy (1).pdf
conv_nets.pptx
Cs231n 2017 lecture11 Detection and Segmentation
Learning to Perceive the 3D World
Cs231n 2017 lecture12 Visualizing and Understanding
SIGGRAPH 2014 Preview -"Shape Collection" Session
Ivan Sahumbaiev "Deep Learning approaches meet 3D data"
Ad

Recently uploaded (20)

PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Sciences of Europe No 170 (2025)
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPT
6.1 High Risk New Born. Padetric health ppt
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PPTX
2. Earth - The Living Planet earth and life
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
2Systematics of Living Organisms t-.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
INTRODUCTION TO EVS | Concept of sustainability
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Placing the Near-Earth Object Impact Probability in Context
Biophysics 2.pdffffffffffffffffffffffffff
Sciences of Europe No 170 (2025)
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Taita Taveta Laboratory Technician Workshop Presentation.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
6.1 High Risk New Born. Padetric health ppt
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
2. Earth - The Living Planet earth and life
Ad

Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering, NeurIPS 2021

  • 1. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering Vincent Sitzmann* Frédo Durand Semon Rezchikov* Joshua B. Tenenbaum William T. Freeman
  • 2. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Graphics Physics Simulation Autonomous Navigation & Planning Photogrammetry Robotic Vision Robotic Grasping 2
  • 3. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Self-Supervised Scene Representation Learning Graphics Physics Simulation Autonomous Navigation & Planning Photogrammetry Robotic Vision Robotic Grasping Learned feature representation of 3D scenes. Neural 3
  • 4. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 DVR [Niemeyer et al. 2020], IDR [Yariv et al. 2020], … 3D-structured Neural Scene Representations Neural Radiance Fields Mildenhall et al. 2020 Scene Representation Networks Sitzmann et al. 2019 pixelNeRF Yu et al. 2020
  • 5. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 6. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 7. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 8. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 9. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 10. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 11. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn
  • 12. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 3D-structured Neural Scene Representations : ℝ3 → ℝn Hundreds of samples per ray. 256x256 image takes >30 seconds (volumetric). Time- and memory-intensive training.
  • 13. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 : ℝ3 → ℝn Light Field [Adelson et al. 1991, Levoy et al. 1996, Gortler et al. 1996]
  • 14. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 : ℝ3 → ℝn Light FieldNetworks
  • 15. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 : ℝ3 → ℝn Light FieldNetworks
  • 16. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Light FieldNetworks Conditioning Plücker Coords. An Alternative Scene Representation
  • 17. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Light Field Networks Volumetric Rendering (pixelNeRF) 500 FPS 1 evaluation per ray 0.033 FPS 196 evaluations per ray Real-time. No post-processing, no discrete data structures (octrees, voxelgrids, …). >100x reduction in memory: Can be trained on small GPUs! 15,000x speed 1,000x speed 100x speed 10x speed 1x speed
  • 18. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Light Field Networks 500 FPS 1 evaluation per ray
  • 19. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Also Encode Depth in their 4D derivatives: can be extracted via single evaluation of neural network and its gradient!
  • 20. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ
  • 21. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ Ray Parameterizations for LFNs
  • 22. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Conventional Light Field Parameterizations Two-Plane Lumigraph Two-Sphere Cylindrical Not 360° Not 360° Not Continuous Bounded Scenes Difficult to use as a complete scene representation
  • 23. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 “Point-direction” coordinates
  • 24. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 “Point-direction” coordinates Not unique: Same ray, two different coordinates.
  • 25. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Unique: invariant to choice of x. Parameterize all rays without special cases. Impractical for discrete representations, since ∈ ℝ⁶. Plücker coordinates
  • 26. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Plücker coordinates
  • 27. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Plücker coordinates Parameterize 360 degree light fields of unbounded scenes.
  • 28. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ Extracting Scene Geometry from LFNs
  • 29. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs
  • 30. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p
  • 31. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p
  • 32. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p
  • 33. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p
  • 34. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p
  • 35. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 c(s,t) The geometry of LFNs p p Epipolar Plane Image
  • 36. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p c(s,t) τ Epipolar Plane Image
  • 37. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p c(s,t) τ τ p Epipolar Plane Image
  • 38. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p p c(s,t) τ Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. τ p Epipolar Plane Image
  • 39. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. Epipolar Plane Image
  • 40. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. Epipolar Plane Image
  • 41. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. Epipolar Plane Image
  • 42. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field. ∇c(s,t) p Epipolar Plane Image
  • 43. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field. ∇c(s,t) Epipolar Plane Image
  • 44. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 The geometry of LFNs p c(s,t) p p Points give lines of constant color in EPI c(s,t) – line is a levelset of the EPI. Slope of line decreases as point moves closer. ∇c(s,t) Gradient of c(s,t) is orthogonal to levelset - can extract depth from gradients of light field. Epipolar Plane Image
  • 45. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-view consistency c(s,t)
  • 46. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-view consistency c(s,t)
  • 47. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-view consistency c(s,t) τ
  • 48. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ Meta-Learning Multi-View Consistency
  • 49. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Learning a space of multi-view consistent light fields + } ,… embedding 𝑧0 { embedding 𝑧1 embedding 𝑧𝑛 𝑧𝑗=0,…,𝑛~𝒩(0, 𝜎2 ) } ,… { + + } ,… {
  • 50. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Decode embedding into scene representation embedding 𝑧0 1[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016] LFN Hypernetwork1 Ψ𝝍 Φ𝜙=Ψ𝜓(𝑧0) Rendering
  • 51. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Decode embedding into scene representation Φ𝜙=Ψ𝜓(𝑧0) embedding 𝑧0 LFN Ψ𝝍 arg min 𝑧𝑗 𝑗=1 𝑀 ,𝝍 𝑗 𝑖 REN D ER (Φ𝜙=Ψ𝜓(𝑧𝑗), 𝜉𝑖) − ℐ𝑖 𝑗 Rendering Hypernetwork
  • 52. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Test time: Initialize new embedding Φ𝜙=Ψ𝜓(𝑧new) LFN Ψ𝝍 Rendering embedding 𝑧new Hypernetwork
  • 53. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Freeze weights & optimize latent code only. Φ𝜙=Ψ𝜓(𝑧new) LFN Ψ𝝍 Rendering 𝑧 = arg min 𝑧 REN D ER (Φ𝜙=Ψ𝜓(𝑧0), 𝜉) − ℐ embedding 𝑧new Hypernetwork
  • 54. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ Results
  • 55. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 LFNs learn multi-view consistent 360-degree light fields 500 FPS, single evaluation per ray. Shapenet Cars Shapenet Chairs GQN Rooms
  • 56. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Pointclouds extracted from 4 views of cars & chairs Single evaluation of network & its gradient per ray, constant complexity
  • 57. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot Reconstruction DVR SRN Ours GT DVR SRN Ours GT Input Input
  • 58. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot Ours GT
  • 59. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 View-dependent effects. Ours GT
  • 60. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot Screens and Phones DVR SRN Ours GT Input
  • 61. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot: Random samples DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input
  • 62. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot: Random samples DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input
  • 63. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot: Random samples DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input
  • 64. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Multi-Class Single-Shot: Random samples DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input DVR SRN Ours G T Input
  • 65. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Single-Class Single-Shot (SRNs, cars) Randomly selected. SRN Ours G T Input SRN Ours G T Input SRN Ours G T Input
  • 66. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Single-Class Single-Shot (SRNs, chairs) Randomly selected. SRN Ours G T Input SRN Ours G T Input SRN Ours G T Input
  • 67. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Global vs. Local Conditioning – Single-Shot Rec. pixelNeRF [Yu et al. 2020] comparison, randomly selected Input PN Ours GT Input PN Ours GT Inpu t P N Our s G T Inpu t P N Our s G T
  • 68. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Results Limitations LFN Geometry Parameterization Meta-Learning Ψ𝝍 ΦΨ Limitations
  • 69. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray
  • 70. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray
  • 71. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray
  • 72. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray
  • 73. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray
  • 74. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray Context Views Overfitting single scene (with positional encoding) Intermediate Views
  • 75. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Limitations Multi-view Consistency Local conditioning One color per ray pixelNeRF Yu et al. 2020
  • 76. Vincent Sitzmann & Semon Rezchikov, NeurIPS 2021 Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering Vincent Sitzmann* Semon Rezchikov* Joshua B. Tenenbaum William T. Freeman Frédo Durand vsitzmann.github.io/lfns