SlideShare a Scribd company logo
Linear Combination,
Span and
Linearly Independent and
Linearly Dependent
-by Dhaval Shukla(141080119050)
Abhishek Singh(141080119051)
Abhishek Singh(141080119052)
Aman Singh(141080119053)
Azhar Tai(141080119054)
-Group No. 9
-Prof. Ketan Chavda
-Mechanical Branch
-2nd Semester
Linear Combination
1 2 3 r
1 1 2 2 3 3 r
i
A vector V is called a Linear Combination of
vectors v , v , v ,......., v
if V can be expressed as
v k k k ..... k
where k are scalar such that 1 i r
rv v v v    
 
Linear Combination
 

  
.v,....,v,v,vofnCombinatio
LinearaisVthenconsistentis1inequationofsystemtheIf2
1k.....kkkv
v,.....,v,v,vofnCombinatioLinearaasVExpress1
:followasisv.....,,v,v,v
orsgiven vectofnCombinatioLinearacalledisVvectoraIf
r321
r332211
r321
r321
 rvvvv
Linear Combination
2
3
2
2
2
1
2
267p
4510p
592pofnCombinatioLinear
aas1588ppolynomialtheExpress1:
xx
xx
xx
xxEx




1 1 2 2 3 3
2 2 2
1 2
2
3
:1 Let p k k k
8 8 15 k (2 9 5 ) k (10 5 4 )
k (7 6 2 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
8 8 15 (2k 10k 7k ) (9k 5k 6k )
(5k 4k 2k )
by comparison we get,
2k 10k 7k 8
9k 5k 6k 8
5k 4k 2k 15
now, turning the above equatio
x x x
x
         
 

   
   
   
 ns into an Augmented Matrix:
82 10 7
89 5 6
155 4 2
 
 
 
  
Linear Combination
1
2 1 3 1
performing R / 2
7
1 5
42
9 5 6 8
5 4 2 15
performing R 9R , R 5R
7
1 5
2 4
51
0 50 28
2
5
31
0 21
2

 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
  
Linear Combination
2
7
2
51 14
100 25
31
2
3 2
7
2
51 14
100 25
479 169
100 25
1
performing R ( )
50
1 5 4
0 1
0 21 5
now performing R 21R
1 5 4
0 1
0 0

 
 
 
 
 
  
 
 
 
 
 
 
Linear Combination
100
3 479
7
2
51 14
100 25
676
479
7
1 2 32
51 14
2 3100 25
676
3 479
performing R ( )
1 5 4
0 1
0 0 1
Hence, here sysem is consistent
k 5k k 4
k k
k
 
 
 
 
 
 

    
   
 
Linear Combination
613
2 479
7347
1 479
by solving above equations
k and
k
which is proven

  
  

Linear Combination
1
2 3
1 1 2 2 3 3
1 2 3
: 2 Express v (6,11,6) as Linear Combination of v (2,1,4),
v (1, 1,3), v (3,2,5).
: 2
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5)
(6,11,6
n
Ex
Sol
 
  
  
   
1 2 3 1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
) (2k k 3k ) (k k 2k ) (4k 3k 5k )
2k k 3k 6
k 2k 7k 11
5k 7k 7k 7
        
   
   
   
Linear Combination
1
72 4
3 3 3
2 1 3 1
Therefore,
3 2 4 7
2 2 7 12
5 7 7 7
Performing R / 3
1
2 2 7 12
5 7 7 7
Now, performing R 2R and R 5R

 
 
 
  

 
 
 
 
 
  
Linear Combination
72 4
3 3 3
10 13 22
3 3 3
11 1 14
3 3 3
2
72 4
3 3 3
13 11
10 5
11 1 14
3 3 3
11
3 23
1
0
0
Now, R ( 3/10)
1
0 1
0
Now doing R R


 

 
 
 
 
 
 
 
 
 
 
 
 
Linear Combination
1
3
2
3
3
3 2
1
3
306
3 23
1 1 2 11
0 1 6
0 0 4
Now, performing R ( )
1 1 2 11
0 1 6
0 0 1 1
So, we get
k
 
 
  
  
 
  
 
  
  

 
Linear Combination
13 11
2 310 5
1978 23171
2 35 115
306 1978 23171
23 5 115
k k
k and k
Now,
(7,12,7)= (3,2,5) (2, 2,7) (4,6,7)
(7,12,7)=(7,12,7)
Which is proven.
   
  

  

Linear Combination
1 2 3
1 1 2 2 3 3
1 2
5 1
:3 Express the matrix A= as a Linear Combination
1 9
1 1 1 1 2 2
of A , A and A .
0 3 0 2 1 1
:3 Let A=k A k A k A
5 1 1 1 1 1
k k
1 9 0 3 0 2
n
Ex
Sol
 
  
     
            
 
    
         
3
1 2 3 1 2 3
3 1 2 3
2 2
k
1 1
k k 2k k k 2k5 1
k 3k 2k k1 9
  
     
      
          
Linear Combination
1 2 3
1 2 3
3
1 2 3
k k 2k 5
-k k 2k 1
-k 1
3k 2k k 9
The Augmented Matrix will be
1 1 2 5
1 1 2 1
0 0 1 1
3 2 1 9
   
   
  
   

 
 
 
  
 
  
Linear Combination
2 1 4 1
2
Now, performing R R and R 3R
1 1 2 5
0 2 4 6
0 0 1 1
0 1 5 6
Now, doing R / 2
1 1 2 5
0 1 2 3
0 0 1 1
0 1 5 6
  
 
 
 
  
 
    

 
 
 
  
 
    
Linear Combination
1 4
1 2 3
Now, R R
1 1 2 5
0 1 2 3
0 0 1 1
0 0 3 3
The system is Inconsistent. Therefore the given
matrix A is not the linear combination of all three
matrices A , A , A .
 
 
 
 
  
 
   

Linear Combination
2
2
1
2
2
2
3
: 4 Express the polynomial p 9 7 15 as a
Linear Combination of p 2 4
p 1 3
p 3 2 5
Ex x x
x x
x x
x x
   
  
  
  
1 1 2 2 3 3
2 2 2
1 2
2
3
: 4 Let p k k k
9 7 15 k (2 4 ) k (1 3 )
k (3 2 5 )
n
Sol p p p
x x x x x x
x x
  
          
 
Linear Combination
2
1 2 3 1 2 3
2
1 2 3
1 2 3
1 2 3
1 2 3
9 7 15 (2k k 3k ) (k k 2k )
(4k 3k 5k )
by comparison we get,
2k k 3k 9
k k 2k 7
4k 3k 5k 15
now, turning the above equations into
x x x
x
         
 

   
   
   
 an Augmented Matrix:
92 1 3
71 1 2
154 3 5
 
 
 
  
Linear Combination
1 2
2 1 3 1
performing R R
1 1 2 7
2 1 3 9
4 3 5 15
performing R 2R , R 4R
1 1 2 7
0 3 1 5
0 7 3 13
 
   
 
 
  
  
   
 
 
  
Linear Combination
2
51
3 3
3 2
51
3 3
2 4
3 3
performing R / 3
1 1 2 7
0 1
0 7 3 13
now performing R 7R
1 1 2 7
0 1
0 0
Hence, the system is consistent.

   
 
 
  
 
  
 
 
  

Linear Combination
3
3
1 2 3
k 5
2 3 3
2k 4
3 3
3
5 2
2 3 3
2
1
1
k k 2 k 7
k
k 2
k
k 1
k 1 2( 2) 7
k 2
    
  
 
  
 
 
    
  
Linear Combination
2 2 2
2
2 2
Now,
9 7 15 =( 2)(2 4 ) (1)(1 3 )
( 2)(3 2 5 )
9 7 15 = 9 7 15
Which is proven.
x x x x x x
x x
x x x x

        
  
     

Linear Combination
1 2 3
1 1 2 2 3 3
1 2 3
:5 Check whether the following v (6,11,6) as Linear
Combination of v (2,1,4), v (1, 1,3), v (3,2,5).
:5
- Let v k v k v k v
(6,11,6) k (2,1,4) k (1, 1,3) k (3,
n
Ex
Sol

   
  
   
1 2 3 1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
2,5)
(6,11,6) (2k k 3k ) (k k 2k )
(4k 3k 5k )
2k k 3k 6
k k 2k 11
4k 3k 5k 6
      
 
   
   
   
Linear Combination
1 2
2 1 3 1
2 1 3 6
1 1 2 11
4 3 5 6
Now, R R
1 1 2 11
2 1 3 6
4 3 5 6
Now doing R 2R and R 4R
 
 
 
  
 
  
 
 
  
  
Linear Combination
2
161
3 3
3 2
1 1 2 11
0 3 1 16
0 7 3 38
Now, R / ( 3)
1 1 2 11
0 1
0 7 3 38
Now doing R 7R
  
 
  
   
 
  
 
  
   
 
Linear Combination
161
3 3
2 2
3 3
3
3 2
161
3 3
3
1 1 2 11
0 1
0 0
Now, performing R ( )
1 1 2 11
0 1
0 0 1 1
So, we get
k 1
 
 
  
   
 
  
 
  
  

 
Linear Combination
2 1k 5 and k 4
Now,
(6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7)
(6,11,6)=(6,11,6)
Which is proven.
   

   

Span
 
 
1 2 3
1 2 3
The set of all the vectors that are linear combination
of the vectors in the set S= v , v , v ,....., v is
called span of S and denoted by Span S or span
v , v , v ,....., v .
r
r

Span
2
1
2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
2
1 2 3 1
:6 Determine whether the polynomial p 2 ,
p 1 , p 2 span P .
:6
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +b ) k (2
n
Ex x
x x x
Sol
x x
x x
 
    
 
 
  2 2
2 3
2
1 2 3 1 1 3 1 2 3
1 1
1 3 2
1 2 3 3
) k (1 ) k (2 )
b +b b ) (2k ) (2k k ) (2k 3k k )
2k b
2k k b
2k 3k k b
x x x x
x x
    
     
 
  
   
Span
3
1 2 3
Now, matrix will be
2 0 0
2 0 1
2 3 1
det(A)=6 0
Here det(A) 0 therefore matrix is non-Singular
therefore the system is consistent. And so, the
vectors v , v , v span R .

 
 
 
  
 
 
Span 2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:7 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:7
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1
2
3
1 3
3
2
1
2 1 3 1
Therefore,
2 1 2 4 b
1 0 1 1 b
1 1 0 1 b
Performing R R
1 1 0 1 b
1 0 1 1 b
2 1 2 4 b
Now, performing R R and R 2R

 
 
 
  
 
 
 
 
  
  
Span
3
2 3
1 3
3 2
3
2 3
1 2 3
1 2 3 4 2
1 1 0 1 b
0 1 1 2 b b
0 1 0 2 b 2b
Now, R R
1 1 0 1 b
0 1 1 2 b b
0 0 1 4 b b b
The system is consistent for all choices of b.
Therefore vectors p ,p ,p ,p span P .
 
 
 
   
 
 
 
 
   

Span
2
1
2 2
2 3 2
2
1 2 3 2
1 1 2 2 3 3
1 2
:8 Determine whether the polynomial p 1 2 ,
p 5 4 , p 2 2 2 span P .
:8
- Choose an arbitary vector b b +b +b P
b=k p k p k p
b +b +
n
Ex x x
x x x x
Sol
x x
x
  
       
 
 
2 2 2
3 1 2
2
3
2
1 2 3 1 2 3 1 2 3
2
1 2 3
1 2
b k (1 2 ) k (5 4 )
k ( 2 2 2 )
b +b +b (k 5k 2k ) ( k k 2k )
(2k 4 k 2k )
k 5k 2k
x x x x x
x x
x x x
x
      
  
      
  
   3 1
1 2 3 2
1 2 3 3
b
k k 2k b
2k 4k 2k b

    
   
Span
1 2
Now, matrix will be
1 5 2
1 1 2
2 4 2
det(A)=0
Here det(A)=0. Therefore matrix is Singular
therefore the system is consistent for some choices
of b. And so, the polynomials p , p

 
   
  


3 2, p span P .
Linear Dependence and Linear
Independence
 1 2 3
1 1 2 2 3 3
1
Let S= v , v , v ,...., v be the non-empty set
such that k v k v k v ...... k v 0 (1)
S is called Linearly Independent set if the system
of equation (1) has trivial solutions (means k 0
r
r r

     


2
,
k 0,....., k 0).
S is called Linearly dependent then the system of
equation (1) has non-trivial solution (means at least
one scalar which is non-zero).
r 

Linear Dependence and Linear
Independence
1 2 3
:9 Check whether the following vectors are
Linearly Independent or Linearly Dependent. (4,1, 2),
( 4,10,2), (4,0,1).
:9
- v (4,1, 2), v ( 4,10,2), v (4,0,1)
n
Ex
Sol


    
1 1 2 2 3 3
1 2 3
1 2 3 1 2 1 2 3
1 2 3
1 2
1 2 3
- Let k v k v k v 0
0 k (4,1, 2) k ( 4,10,2) k (4,0,1)
0 (4k 4k 4k ) (k 10k ) ( 2k 2k k )
4k 4k 4k 0
k 10k 0
-2k 2k k 0
  
    
         
   
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
4 4 4 0
1 10 2 0
2 2 1 0
Performing R R
1 10 2 0
4 4 4 0
2 2 1 0
Now, performing R 4R and R 2R

  
 
 
  
 
  
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performing R 22R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
3
11
3
3
11
1 10 2 0
0 1 0
0 0 3 0
Performing R / 3
1 10 2 0
0 1 0
0 0 1 0
Now,
  
 
 
  

  
 
 
  

Linear Dependence and Linear
Independence
1 2 3
3
2 311
3
2
1
1 2 3
k 10k 2k 0
k k 0
k 0
k 0
k 0
Here k , k , k all are of zero values. Therefore
the system of equation has trivial solution.
Therefore it is Linearly Independent.
   
  
 
 
 

Linear Dependence and Linear
Independence
 2 2 2
2
2 2 2
1 2 3
1 1 2 2 3 3
:10 S= 2 , 2 ,2 2 3 Check whether S is
Linearly Independent or Linearly Dependent in P .
:10
- p 2 , p 2 , p 2 3
- Let k p k p k p 0
n
Ex x x x x x x
Sol
x x x x x x
    
      
  
2 2 2
1 2 3
2
1 3 1 2 3 1 2 3
1 3
1 2
1 2 3
0 k (2 ) k ( 2 ) k (2 2 3 )
0 (2k 2k ) (k k 2k ) (k 2k 3k )
2k 2k 0
k 10k 0
k 2k 3k 0
x x x x x x
x x
       
       
  
  
   
Linear Dependence and Linear
Independence
1 2
2 1 3 1
Therefore,
2 0 2 0
1 1 2 0
1 2 3 0
Performing R R
1 1 2 0
2 0 2 0
1 2 3 0
Now, performing R 2R and R R

 
 
 
  
 
 
 
 
  
  
Linear Dependence and Linear
Independence
2
3 2
1 1 2 0
0 2 2 0
0 1 1 0
Performing R / ( 2)
1 1 2 0
0 1 1 0
0 1 1 0
Now, performingR 2R
 
 
  
  
 
 
 
 
  
 
Linear Dependence and Linear
Independence
2 3
1 2 3
3
2
1
1
1
2
3
k k 0
k +k +2k 0
- taking k t 0
k t
k ( t)+2t=0
k t
k 1
k t 1
k 1
Here the system has trivial solution.
Therefore it is Linearly Dependent
  
 
 
  
  
  
   
        
      


More Related Content

PPTX
Inverse Matrix & Determinants
PPTX
system linear equations and matrices
PPTX
vector space and subspace
PPTX
Vector Space.pptx
PPTX
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
PPT
Eigen values and eigenvectors
PPTX
Vector spaces
PDF
Matrix introduction and matrix operations.
Inverse Matrix & Determinants
system linear equations and matrices
vector space and subspace
Vector Space.pptx
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
Eigen values and eigenvectors
Vector spaces
Matrix introduction and matrix operations.

What's hot (20)

PPTX
Vector Spaces,subspaces,Span,Basis
PPTX
Vector space
PDF
Liner algebra-vector space-1 introduction to vector space and subspace
PDF
Linear algebra-Basis & Dimension
PPTX
Vector space
PDF
Linear transformations and matrices
PPTX
System of linear equations
PDF
Group Theory and Its Application: Beamer Presentation (PPT)
PDF
Chapter 2: Relations
PPT
Linear transformation.ppt
PPTX
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
PPT
Null space, Rank and nullity theorem
PPTX
Laurent's Series & Types of Singularities
PPTX
Ordinary differential equation
PDF
Function of several variables
PPT
Linear Algebra and Matrix
PDF
Gram schmidt orthogonalization | Orthonormal Process
PDF
Power series
PPTX
Complex analysis
Vector Spaces,subspaces,Span,Basis
Vector space
Liner algebra-vector space-1 introduction to vector space and subspace
Linear algebra-Basis & Dimension
Vector space
Linear transformations and matrices
System of linear equations
Group Theory and Its Application: Beamer Presentation (PPT)
Chapter 2: Relations
Linear transformation.ppt
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
Null space, Rank and nullity theorem
Laurent's Series & Types of Singularities
Ordinary differential equation
Function of several variables
Linear Algebra and Matrix
Gram schmidt orthogonalization | Orthonormal Process
Power series
Complex analysis
Ad

Viewers also liked (20)

PDF
Alg1 8.3 Linear Combination
PDF
Lesson 12: Linear Independence
PDF
Linear Combination, Matrix Equations
PDF
Linear (in)dependence
PPTX
Scale factor gis
PDF
Pre-Alg 7.6 Triangles
PDF
HSA Prep- Scale Factor M-3
PPT
Ch07 3
PPT
Lecture 3 section 1-7, 1-8 and 1-9
PPTX
Scale factor gis
PDF
linear transformation
PPTX
Digital bangladesh
PPTX
Digital Bangladesh
PPTX
Spanning trees & applications
PPTX
Alternating Current
PPTX
Alternating current
PPT
Alternating current circuits
PDF
Linear Transformations
PDF
Gate mathematics questions all branch by s k mondal
PPTX
Pie charts (interpreting and drawing)
Alg1 8.3 Linear Combination
Lesson 12: Linear Independence
Linear Combination, Matrix Equations
Linear (in)dependence
Scale factor gis
Pre-Alg 7.6 Triangles
HSA Prep- Scale Factor M-3
Ch07 3
Lecture 3 section 1-7, 1-8 and 1-9
Scale factor gis
linear transformation
Digital bangladesh
Digital Bangladesh
Spanning trees & applications
Alternating Current
Alternating current
Alternating current circuits
Linear Transformations
Gate mathematics questions all branch by s k mondal
Pie charts (interpreting and drawing)
Ad

Similar to Linear Combination, Span And Linearly Independent, Dependent Set (20)

PPTX
Calculas
PDF
linear algebra sides 5th edition chapter 1
DOCX
Assignments for class XII
PDF
LA question Pool
PDF
UNIT I System of Linear Equations.pdfUNIT I System of Linear Equations.pdf
DOCX
algebra
PDF
Linear Combinations.pdfhkuhcvurcyyr6thtu
DOCX
Chapter 03 matrices
PPTX
Lecture 02
PPT
TABREZ KHAN.ppt
PDF
Matrices 2_System of Equations.pdf
DOCX
Math 2318 - Test 3In this test we will try something differe.docx
PPTX
PPTX
Matrix Unit 1.pptx
PDF
Tutorial 7 mth 3201
PPT
Solution of linear system of equations
PDF
Numerical Methods
PPT
Matrices and determinants for graduation Engineering.ppt
PPTX
Linear algebra
PPT
6640173.ppt
Calculas
linear algebra sides 5th edition chapter 1
Assignments for class XII
LA question Pool
UNIT I System of Linear Equations.pdfUNIT I System of Linear Equations.pdf
algebra
Linear Combinations.pdfhkuhcvurcyyr6thtu
Chapter 03 matrices
Lecture 02
TABREZ KHAN.ppt
Matrices 2_System of Equations.pdf
Math 2318 - Test 3In this test we will try something differe.docx
Matrix Unit 1.pptx
Tutorial 7 mth 3201
Solution of linear system of equations
Numerical Methods
Matrices and determinants for graduation Engineering.ppt
Linear algebra
6640173.ppt

More from Dhaval Shukla (10)

DOCX
Time Travelling.... Is It Possible?
PPTX
Metallic Glasses (Type of Metallic Materials)
PPTX
Crank Sliding Link Cylinder Mechanism
PPTX
Lamps, Reflectors And Lumen Requirements
PPTX
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
PPTX
Laplace Transform of Periodic Function
PPTX
Electromagnetic Transducers (EMT)
PPTX
Corporate Social Responsibility (CSR)
PPTX
Gaussian Quadrature Formula
DOCX
Are We Really Independent?
Time Travelling.... Is It Possible?
Metallic Glasses (Type of Metallic Materials)
Crank Sliding Link Cylinder Mechanism
Lamps, Reflectors And Lumen Requirements
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Laplace Transform of Periodic Function
Electromagnetic Transducers (EMT)
Corporate Social Responsibility (CSR)
Gaussian Quadrature Formula
Are We Really Independent?

Recently uploaded (20)

PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
web development for engineering and engineering
PDF
Digital Logic Computer Design lecture notes
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Well-logging-methods_new................
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Welding lecture in detail for understanding
PDF
composite construction of structures.pdf
PPTX
Construction Project Organization Group 2.pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPT
Project quality management in manufacturing
DOCX
573137875-Attendance-Management-System-original
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Embodied AI: Ushering in the Next Era of Intelligent Systems
web development for engineering and engineering
Digital Logic Computer Design lecture notes
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Well-logging-methods_new................
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Welding lecture in detail for understanding
composite construction of structures.pdf
Construction Project Organization Group 2.pptx
CH1 Production IntroductoryConcepts.pptx
Project quality management in manufacturing
573137875-Attendance-Management-System-original
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS

Linear Combination, Span And Linearly Independent, Dependent Set

  • 1. Linear Combination, Span and Linearly Independent and Linearly Dependent -by Dhaval Shukla(141080119050) Abhishek Singh(141080119051) Abhishek Singh(141080119052) Aman Singh(141080119053) Azhar Tai(141080119054) -Group No. 9 -Prof. Ketan Chavda -Mechanical Branch -2nd Semester
  • 2. Linear Combination 1 2 3 r 1 1 2 2 3 3 r i A vector V is called a Linear Combination of vectors v , v , v ,......., v if V can be expressed as v k k k ..... k where k are scalar such that 1 i r rv v v v      
  • 3. Linear Combination       .v,....,v,v,vofnCombinatio LinearaisVthenconsistentis1inequationofsystemtheIf2 1k.....kkkv v,.....,v,v,vofnCombinatioLinearaasVExpress1 :followasisv.....,,v,v,v orsgiven vectofnCombinatioLinearacalledisVvectoraIf r321 r332211 r321 r321  rvvvv
  • 4. Linear Combination 2 3 2 2 2 1 2 267p 4510p 592pofnCombinatioLinear aas1588ppolynomialtheExpress1: xx xx xx xxEx     1 1 2 2 3 3 2 2 2 1 2 2 3 :1 Let p k k k 8 8 15 k (2 9 5 ) k (10 5 4 ) k (7 6 2 ) n Sol p p p x x x x x x x x                
  • 5. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 8 8 15 (2k 10k 7k ) (9k 5k 6k ) (5k 4k 2k ) by comparison we get, 2k 10k 7k 8 9k 5k 6k 8 5k 4k 2k 15 now, turning the above equatio x x x x                           ns into an Augmented Matrix: 82 10 7 89 5 6 155 4 2         
  • 6. Linear Combination 1 2 1 3 1 performing R / 2 7 1 5 42 9 5 6 8 5 4 2 15 performing R 9R , R 5R 7 1 5 2 4 51 0 50 28 2 5 31 0 21 2                                    
  • 7. Linear Combination 2 7 2 51 14 100 25 31 2 3 2 7 2 51 14 100 25 479 169 100 25 1 performing R ( ) 50 1 5 4 0 1 0 21 5 now performing R 21R 1 5 4 0 1 0 0                          
  • 8. Linear Combination 100 3 479 7 2 51 14 100 25 676 479 7 1 2 32 51 14 2 3100 25 676 3 479 performing R ( ) 1 5 4 0 1 0 0 1 Hence, here sysem is consistent k 5k k 4 k k k                        
  • 9. Linear Combination 613 2 479 7347 1 479 by solving above equations k and k which is proven        
  • 10. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 : 2 Express v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). : 2 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3,2,5) (6,11,6 n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k 2k 7k 11 5k 7k 7k 7                     
  • 11. Linear Combination 1 72 4 3 3 3 2 1 3 1 Therefore, 3 2 4 7 2 2 7 12 5 7 7 7 Performing R / 3 1 2 2 7 12 5 7 7 7 Now, performing R 2R and R 5R                        
  • 12. Linear Combination 72 4 3 3 3 10 13 22 3 3 3 11 1 14 3 3 3 2 72 4 3 3 3 13 11 10 5 11 1 14 3 3 3 11 3 23 1 0 0 Now, R ( 3/10) 1 0 1 0 Now doing R R                             
  • 13. Linear Combination 1 3 2 3 3 3 2 1 3 306 3 23 1 1 2 11 0 1 6 0 0 4 Now, performing R ( ) 1 1 2 11 0 1 6 0 0 1 1 So, we get k                          
  • 14. Linear Combination 13 11 2 310 5 1978 23171 2 35 115 306 1978 23171 23 5 115 k k k and k Now, (7,12,7)= (3,2,5) (2, 2,7) (4,6,7) (7,12,7)=(7,12,7) Which is proven.            
  • 15. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 5 1 :3 Express the matrix A= as a Linear Combination 1 9 1 1 1 1 2 2 of A , A and A . 0 3 0 2 1 1 :3 Let A=k A k A k A 5 1 1 1 1 1 k k 1 9 0 3 0 2 n Ex Sol                                          3 1 2 3 1 2 3 3 1 2 3 2 2 k 1 1 k k 2k k k 2k5 1 k 3k 2k k1 9                           
  • 16. Linear Combination 1 2 3 1 2 3 3 1 2 3 k k 2k 5 -k k 2k 1 -k 1 3k 2k k 9 The Augmented Matrix will be 1 1 2 5 1 1 2 1 0 0 1 1 3 2 1 9                              
  • 17. Linear Combination 2 1 4 1 2 Now, performing R R and R 3R 1 1 2 5 0 2 4 6 0 0 1 1 0 1 5 6 Now, doing R / 2 1 1 2 5 0 1 2 3 0 0 1 1 0 1 5 6                                    
  • 18. Linear Combination 1 4 1 2 3 Now, R R 1 1 2 5 0 1 2 3 0 0 1 1 0 0 3 3 The system is Inconsistent. Therefore the given matrix A is not the linear combination of all three matrices A , A , A .                  
  • 19. Linear Combination 2 2 1 2 2 2 3 : 4 Express the polynomial p 9 7 15 as a Linear Combination of p 2 4 p 1 3 p 3 2 5 Ex x x x x x x x x              1 1 2 2 3 3 2 2 2 1 2 2 3 : 4 Let p k k k 9 7 15 k (2 4 ) k (1 3 ) k (3 2 5 ) n Sol p p p x x x x x x x x                
  • 20. Linear Combination 2 1 2 3 1 2 3 2 1 2 3 1 2 3 1 2 3 1 2 3 9 7 15 (2k k 3k ) (k k 2k ) (4k 3k 5k ) by comparison we get, 2k k 3k 9 k k 2k 7 4k 3k 5k 15 now, turning the above equations into x x x x                           an Augmented Matrix: 92 1 3 71 1 2 154 3 5         
  • 21. Linear Combination 1 2 2 1 3 1 performing R R 1 1 2 7 2 1 3 9 4 3 5 15 performing R 2R , R 4R 1 1 2 7 0 3 1 5 0 7 3 13                           
  • 22. Linear Combination 2 51 3 3 3 2 51 3 3 2 4 3 3 performing R / 3 1 1 2 7 0 1 0 7 3 13 now performing R 7R 1 1 2 7 0 1 0 0 Hence, the system is consistent.                         
  • 23. Linear Combination 3 3 1 2 3 k 5 2 3 3 2k 4 3 3 3 5 2 2 3 3 2 1 1 k k 2 k 7 k k 2 k k 1 k 1 2( 2) 7 k 2                         
  • 24. Linear Combination 2 2 2 2 2 2 Now, 9 7 15 =( 2)(2 4 ) (1)(1 3 ) ( 2)(3 2 5 ) 9 7 15 = 9 7 15 Which is proven. x x x x x x x x x x x x                    
  • 25. Linear Combination 1 2 3 1 1 2 2 3 3 1 2 3 :5 Check whether the following v (6,11,6) as Linear Combination of v (2,1,4), v (1, 1,3), v (3,2,5). :5 - Let v k v k v k v (6,11,6) k (2,1,4) k (1, 1,3) k (3, n Ex Sol             1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2,5) (6,11,6) (2k k 3k ) (k k 2k ) (4k 3k 5k ) 2k k 3k 6 k k 2k 11 4k 3k 5k 6                     
  • 26. Linear Combination 1 2 2 1 3 1 2 1 3 6 1 1 2 11 4 3 5 6 Now, R R 1 1 2 11 2 1 3 6 4 3 5 6 Now doing R 2R and R 4R                        
  • 27. Linear Combination 2 161 3 3 3 2 1 1 2 11 0 3 1 16 0 7 3 38 Now, R / ( 3) 1 1 2 11 0 1 0 7 3 38 Now doing R 7R                            
  • 28. Linear Combination 161 3 3 2 2 3 3 3 3 2 161 3 3 3 1 1 2 11 0 1 0 0 Now, performing R ( ) 1 1 2 11 0 1 0 0 1 1 So, we get k 1                           
  • 29. Linear Combination 2 1k 5 and k 4 Now, (6,11,6)=4(3,2,5) ( 5)(2, 2,7) 1(4,6,7) (6,11,6)=(6,11,6) Which is proven.          
  • 30. Span     1 2 3 1 2 3 The set of all the vectors that are linear combination of the vectors in the set S= v , v , v ,....., v is called span of S and denoted by Span S or span v , v , v ,....., v . r r 
  • 31. Span 2 1 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 2 1 2 3 1 :6 Determine whether the polynomial p 2 , p 1 , p 2 span P . :6 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b +b ) k (2 n Ex x x x x Sol x x x x              2 2 2 3 2 1 2 3 1 1 3 1 2 3 1 1 1 3 2 1 2 3 3 ) k (1 ) k (2 ) b +b b ) (2k ) (2k k ) (2k 3k k ) 2k b 2k k b 2k 3k k b x x x x x x                    
  • 32. Span 3 1 2 3 Now, matrix will be 2 0 0 2 0 1 2 3 1 det(A)=6 0 Here det(A) 0 therefore matrix is non-Singular therefore the system is consistent. And so, the vectors v , v , v span R .              
  • 33. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :7 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :7 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 34. Span 1 2 3 1 3 3 2 1 2 1 3 1 Therefore, 2 1 2 4 b 1 0 1 1 b 1 1 0 1 b Performing R R 1 1 0 1 b 1 0 1 1 b 2 1 2 4 b Now, performing R R and R 2R                        
  • 35. Span 3 2 3 1 3 3 2 3 2 3 1 2 3 1 2 3 4 2 1 1 0 1 b 0 1 1 2 b b 0 1 0 2 b 2b Now, R R 1 1 0 1 b 0 1 1 2 b b 0 0 1 4 b b b The system is consistent for all choices of b. Therefore vectors p ,p ,p ,p span P .                       
  • 36. Span 2 1 2 2 2 3 2 2 1 2 3 2 1 1 2 2 3 3 1 2 :8 Determine whether the polynomial p 1 2 , p 5 4 , p 2 2 2 span P . :8 - Choose an arbitary vector b b +b +b P b=k p k p k p b +b + n Ex x x x x x x Sol x x x                2 2 2 3 1 2 2 3 2 1 2 3 1 2 3 1 2 3 2 1 2 3 1 2 b k (1 2 ) k (5 4 ) k ( 2 2 2 ) b +b +b (k 5k 2k ) ( k k 2k ) (2k 4 k 2k ) k 5k 2k x x x x x x x x x x x                        3 1 1 2 3 2 1 2 3 3 b k k 2k b 2k 4k 2k b          
  • 37. Span 1 2 Now, matrix will be 1 5 2 1 1 2 2 4 2 det(A)=0 Here det(A)=0. Therefore matrix is Singular therefore the system is consistent for some choices of b. And so, the polynomials p , p             3 2, p span P .
  • 38. Linear Dependence and Linear Independence  1 2 3 1 1 2 2 3 3 1 Let S= v , v , v ,...., v be the non-empty set such that k v k v k v ...... k v 0 (1) S is called Linearly Independent set if the system of equation (1) has trivial solutions (means k 0 r r r          2 , k 0,....., k 0). S is called Linearly dependent then the system of equation (1) has non-trivial solution (means at least one scalar which is non-zero). r  
  • 39. Linear Dependence and Linear Independence 1 2 3 :9 Check whether the following vectors are Linearly Independent or Linearly Dependent. (4,1, 2), ( 4,10,2), (4,0,1). :9 - v (4,1, 2), v ( 4,10,2), v (4,0,1) n Ex Sol        1 1 2 2 3 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 1 2 3 - Let k v k v k v 0 0 k (4,1, 2) k ( 4,10,2) k (4,0,1) 0 (4k 4k 4k ) (k 10k ) ( 2k 2k k ) 4k 4k 4k 0 k 10k 0 -2k 2k k 0                             
  • 40. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 4 4 4 0 1 10 2 0 2 2 1 0 Performing R R 1 10 2 0 4 4 4 0 2 2 1 0 Now, performing R 4R and R 2R                          
  • 41. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performing R 22R                       
  • 42. Linear Dependence and Linear Independence 3 11 3 3 11 1 10 2 0 0 1 0 0 0 3 0 Performing R / 3 1 10 2 0 0 1 0 0 0 1 0 Now,                      
  • 43. Linear Dependence and Linear Independence 1 2 3 3 2 311 3 2 1 1 2 3 k 10k 2k 0 k k 0 k 0 k 0 k 0 Here k , k , k all are of zero values. Therefore the system of equation has trivial solution. Therefore it is Linearly Independent.              
  • 44. Linear Dependence and Linear Independence  2 2 2 2 2 2 2 1 2 3 1 1 2 2 3 3 :10 S= 2 , 2 ,2 2 3 Check whether S is Linearly Independent or Linearly Dependent in P . :10 - p 2 , p 2 , p 2 3 - Let k p k p k p 0 n Ex x x x x x x Sol x x x x x x                2 2 2 1 2 3 2 1 3 1 2 3 1 2 3 1 3 1 2 1 2 3 0 k (2 ) k ( 2 ) k (2 2 3 ) 0 (2k 2k ) (k k 2k ) (k 2k 3k ) 2k 2k 0 k 10k 0 k 2k 3k 0 x x x x x x x x                          
  • 45. Linear Dependence and Linear Independence 1 2 2 1 3 1 Therefore, 2 0 2 0 1 1 2 0 1 2 3 0 Performing R R 1 1 2 0 2 0 2 0 1 2 3 0 Now, performing R 2R and R R                        
  • 46. Linear Dependence and Linear Independence 2 3 2 1 1 2 0 0 2 2 0 0 1 1 0 Performing R / ( 2) 1 1 2 0 0 1 1 0 0 1 1 0 Now, performingR 2R                       
  • 47. Linear Dependence and Linear Independence 2 3 1 2 3 3 2 1 1 1 2 3 k k 0 k +k +2k 0 - taking k t 0 k t k ( t)+2t=0 k t k 1 k t 1 k 1 Here the system has trivial solution. Therefore it is Linearly Dependent                                     