SlideShare a Scribd company logo
Machine Learning Model for the
Detection of Electric Energy Fraud
Using and Edge-Fog Computing
Architecture
Juan C. Olivares Rojas, Enrique Reyes Archundia, Noel
E. Rodríguez Maya, José A. Gutiérrez Gnecchi, Ismael
Molina Moreno, Jaime Cerda Jacobo
The importance of electricity
Industry 4.0
¿Mejora o
empeora la
seguridad?DX: Digital
Transformation
Robotics
Digital Twins
Integration
Systems
IoT
CibersecurityCloud
Computing
3D Printing
AR/VR
Big Data
Technologies 4.0
Smart City / Smart Grid
Smart Metering System
PRODEREI 2018-2032
Reduce Non-Thecnical losses at 13.38%
1,407 Millions MXN of Thief and Energy Fraud
Non-Technical Losses
Tampering
Solution
Literature Review
• It’s a well-know problem
• The are different works using
different AI/ML/ Analytics
Techniques
• Most of the works are
focused in Big Data and
Cloud Computing
Edge-Fog-Cloud Computing Architecture
Smart Metering Systems Architecture
Edge Fog Cloud
Implementing a SMS Architecture
SM1
DC1
DC2
SM2
SM3
SM4
SM5
SM6
SM7
Edge Computing
Fog Computing
Implementing a SMS Architecture
SM
measurements Consumption/
Production
Patterns
DC
A, SAs,
DER Fraud
Events
Report
Machine Learning
Machine Learning
Consumption/
Production
Data
Consumption/
Production
Patterns
Consumption/
Production
Data11
2
3
3
Check model
accurancy
4
5
6
SMS Edge-Fog Architecture
Structure of SM Database
Timestamp Consumption (kWh) Production (kWh)
01/01/2018 00:15 0.02652 0
01/01/2018 00:30 0 0. 00048
01/01/2018 00:45 0.04563 0.000458
… … …
01/31/2019 23:45 0.23181 0.000475
Comparative of ML Models
Decision Tree Regression (DTR),
Linear Regression (LR),
Sequential Neural Network (SNN) and
MultiLayer Perceptron Regression (MLPR).
Scikit-learn and Keras libraries of Python were used.
Method MAPE
SM
MAPE
DC
MAPE
DC-SM
DTR 16.47% 16.84% 16.51%
LR 18.27% 17.97% 17.66%
SNN 20.76% 21.12% 20.93%
MLPR 13.72% 12.36% 12.29%
Test with the complete database
Method MAPE
SM
MAPE
DC
MAPE
DC-SM
DTR 17.39% 16.23% 16.21%
LR 22.17% 21.49% 21.17%
SNN 25.33% 26.12% 26.43%
MLPR 23.47% 22.13% 20.57%
Test with database per year
Method MAPE
SM
MAPE
DC
MAPE
DC-SM
DTR 16.27% 16.64% 16.19%
LR 17.88% 17.71% 17.53%
SNN 19.23% 19.12% 19.23%
MLPR 12.66% 12.16% 11.99%
Test with database per month
Method MAPE SM MAPE DC MAPE
DC-SM
DTR 16.99% 17.14% 17.07%
LR 18.15% 17.97% 17.93%
SNN 20.53% 20.97% 20.99%
MLPR 13.28% 12.98% 12.74%
Test with database per week
Method MAPE SM MAPE DC MAPE DC-
SM
DTR 16.69% 16.73% 16.45%
LR 18.05% 17.83% 17.80%
SNN 19.53% 20.74% 20.63%
MLPR 13.57% 12.99% 12.91%
Test with database per day
This work shows that it is possible to detect energy fraud using
data and smart meter processing. The results indicate that the
detection of anomalies of consumption/production of electrical
energy is adequate. Still, like any forecast model, human
intervention plays an essential role in decision making. It is
important to emphasize that the proposed model adjusts its
parameters and amount of training/fit values so that they are
executed properly in embedded devices with limited computing
capabilities. Finally, the use of Fog Computing though DC in
general terms, improves the results of forecasting.
Conclusions
This work is partially supported by the TecnológicoNacional de
México under the grant 8000.20-P and 9002.20-P.
Questions?
Thanks you so much!
juan.or@morelia.tecnm.mx, enrique.ra@morelia.tecnm.mx,
noel.rm@zitacuaro.tecnm.mx, jose.gg3@morelia.tecnm.mx,
ismael.mm@Morelia.tecnm.mx, jaime.cerda@umich.mx

More Related Content

PPTX
Power Electronics Matlab simulink Projects Research Help
PDF
Real world versus vitrual world data, Joseph Borza Founder of Energy Elephant...
PDF
GRAPHS FOR THE FUTURE ENERGY SYSTEMS
PPTX
Forecasting Electricity Consumption Using Weather Data in Edge-Fog-Cloud Data...
PDF
Case Studies IN Machine Learning
PDF
Nov 2018 Table of contents; current issue -International Journal on Soft Comp...
PDF
Presentatie 4. Jochen Cremer - TU Delft 28 mei 2024
PDF
journal about operation management
Power Electronics Matlab simulink Projects Research Help
Real world versus vitrual world data, Joseph Borza Founder of Energy Elephant...
GRAPHS FOR THE FUTURE ENERGY SYSTEMS
Forecasting Electricity Consumption Using Weather Data in Edge-Fog-Cloud Data...
Case Studies IN Machine Learning
Nov 2018 Table of contents; current issue -International Journal on Soft Comp...
Presentatie 4. Jochen Cremer - TU Delft 28 mei 2024
journal about operation management

Similar to Machine Learnign Model for the Detection of Electricity Energy Fraud Using and Edge-Fog Computing Architecture (20)

PDF
Intelligent Electrical Multi Outlets Controlled and Activated by a Data Minin...
PDF
INTELLIGENT ELECTRICAL MULTI OUTLETS CONTROLLED AND ACTIVATED BY A DATA MININ...
PDF
Electricity-theft detection in smart grids based on deep learning
PPTX
22CS339- Electricity Theft Final Updated PPT (2).pptx
PDF
A Comparative Analysis of Class Imbalance Handling Techniques for Deep Models...
PDF
A Comparative Analysis of Class Imbalance Handling Techniques for Deep Models...
PDF
A new smart approach of an efficient energy consumption management by using a...
PDF
A new smart approach of an efficient energy consumption management by using a...
PDF
Optimization scheme for intelligent master controller with collaboratives ene...
PDF
An efficient load-balancing in machine learning-based DC-DC conversion using ...
PDF
MLSEV. Use Case: Smart Energy Management
PPTX
presentationggjjfdfbbjhggvnnjjgvvbbnn.pptx
PPTX
Electricity theft detection using image processing
PDF
A transition from manual to Intelligent Automated power system operation -A I...
PDF
Presentation - Msc Thesis - Machine Learning Techniques for Short-Term Electr...
PDF
IRJET- Feature Ranking for Energy Disaggregation
PPTX
PPT_IOT LAB.pptx of minum bif aggaa hands on appoajcj
PPTX
A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...
PDF
CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING
PDF
donti-kolter-2021-machine-learning-for-sustainable-energy-systems.pdf
Intelligent Electrical Multi Outlets Controlled and Activated by a Data Minin...
INTELLIGENT ELECTRICAL MULTI OUTLETS CONTROLLED AND ACTIVATED BY A DATA MININ...
Electricity-theft detection in smart grids based on deep learning
22CS339- Electricity Theft Final Updated PPT (2).pptx
A Comparative Analysis of Class Imbalance Handling Techniques for Deep Models...
A Comparative Analysis of Class Imbalance Handling Techniques for Deep Models...
A new smart approach of an efficient energy consumption management by using a...
A new smart approach of an efficient energy consumption management by using a...
Optimization scheme for intelligent master controller with collaboratives ene...
An efficient load-balancing in machine learning-based DC-DC conversion using ...
MLSEV. Use Case: Smart Energy Management
presentationggjjfdfbbjhggvnnjjgvvbbnn.pptx
Electricity theft detection using image processing
A transition from manual to Intelligent Automated power system operation -A I...
Presentation - Msc Thesis - Machine Learning Techniques for Short-Term Electr...
IRJET- Feature Ranking for Energy Disaggregation
PPT_IOT LAB.pptx of minum bif aggaa hands on appoajcj
A PROFICIENT SENSOR NETWORK BASED SMART METER MULTI-DEMAND RESPONSE SYSTEM US...
CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING
donti-kolter-2021-machine-learning-for-sustainable-energy-systems.pdf
Ad

More from Juan Carlos Olivares Rojas (20)

PPTX
PPTX
Ropec20neural stick
PPTX
Analítica de Datos usando Single Board Computers
PPTX
Analitica de Datos en Dispositivos de Internet de las Cosas
PPTX
A Comparative Assessment of Cryptography Algorithms for Data Analytic Applica...
PPTX
Propuesta de Flexibilidad Curricular en el Tecnológico Nacional de México
PPTX
Analítica de Datos en Simulador de Redes para Sistemas de Medición Inteligente
PPTX
Propuesta de Mercado Eléctrico Minorista Transactivo en México
PPTX
Cyber Security on Transactions in Smart Metering Systems usign Blockchain
PPTX
A Survey on Smart Metering Systems using Blockchain for E-mobility
PPTX
Detección de Movimiento usando Medidores Inteligentes
PPTX
A Survey on Smart Metering Systems using Human-Computer Interaction
PPTX
Aplicacion de Tecnicas de UX en el Desarrollo de un Portal de un Sistema de M...
PPTX
Internet de las Cosas en Redes Eléctricas Inteligentes
PPTX
Estrategias didacticas
PDF
Optimización de la Eficiencia Energética en los Hogares utilizando una Arquit...
PPTX
Ciber Seguridad en Redes Eléctricas Inteligentes
PPTX
Estudio de Vulnerabilidad de Protocolos y Redes de Comunicación para Medidore...
PPTX
The teaching-learning of Graph Theory with the support of Learn Graph-Ware so...
Ropec20neural stick
Analítica de Datos usando Single Board Computers
Analitica de Datos en Dispositivos de Internet de las Cosas
A Comparative Assessment of Cryptography Algorithms for Data Analytic Applica...
Propuesta de Flexibilidad Curricular en el Tecnológico Nacional de México
Analítica de Datos en Simulador de Redes para Sistemas de Medición Inteligente
Propuesta de Mercado Eléctrico Minorista Transactivo en México
Cyber Security on Transactions in Smart Metering Systems usign Blockchain
A Survey on Smart Metering Systems using Blockchain for E-mobility
Detección de Movimiento usando Medidores Inteligentes
A Survey on Smart Metering Systems using Human-Computer Interaction
Aplicacion de Tecnicas de UX en el Desarrollo de un Portal de un Sistema de M...
Internet de las Cosas en Redes Eléctricas Inteligentes
Estrategias didacticas
Optimización de la Eficiencia Energética en los Hogares utilizando una Arquit...
Ciber Seguridad en Redes Eléctricas Inteligentes
Estudio de Vulnerabilidad de Protocolos y Redes de Comunicación para Medidore...
The teaching-learning of Graph Theory with the support of Learn Graph-Ware so...
Ad

Recently uploaded (20)

DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPT
Project quality management in manufacturing
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
web development for engineering and engineering
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
CH1 Production IntroductoryConcepts.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
OOP with Java - Java Introduction (Basics)
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Model Code of Practice - Construction Work - 21102022 .pdf
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Project quality management in manufacturing
Operating System & Kernel Study Guide-1 - converted.pdf
web development for engineering and engineering
R24 SURVEYING LAB MANUAL for civil enggi
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Mechanical Engineering MATERIALS Selection
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CYBER-CRIMES AND SECURITY A guide to understanding

Machine Learnign Model for the Detection of Electricity Energy Fraud Using and Edge-Fog Computing Architecture

  • 1. Machine Learning Model for the Detection of Electric Energy Fraud Using and Edge-Fog Computing Architecture Juan C. Olivares Rojas, Enrique Reyes Archundia, Noel E. Rodríguez Maya, José A. Gutiérrez Gnecchi, Ismael Molina Moreno, Jaime Cerda Jacobo
  • 2. The importance of electricity
  • 4. ¿Mejora o empeora la seguridad?DX: Digital Transformation Robotics Digital Twins Integration Systems IoT CibersecurityCloud Computing 3D Printing AR/VR Big Data Technologies 4.0
  • 5. Smart City / Smart Grid
  • 7. PRODEREI 2018-2032 Reduce Non-Thecnical losses at 13.38% 1,407 Millions MXN of Thief and Energy Fraud Non-Technical Losses
  • 10. Literature Review • It’s a well-know problem • The are different works using different AI/ML/ Analytics Techniques • Most of the works are focused in Big Data and Cloud Computing
  • 12. Smart Metering Systems Architecture Edge Fog Cloud
  • 13. Implementing a SMS Architecture
  • 15. SM measurements Consumption/ Production Patterns DC A, SAs, DER Fraud Events Report Machine Learning Machine Learning Consumption/ Production Data Consumption/ Production Patterns Consumption/ Production Data11 2 3 3 Check model accurancy 4 5 6 SMS Edge-Fog Architecture
  • 16. Structure of SM Database Timestamp Consumption (kWh) Production (kWh) 01/01/2018 00:15 0.02652 0 01/01/2018 00:30 0 0. 00048 01/01/2018 00:45 0.04563 0.000458 … … … 01/31/2019 23:45 0.23181 0.000475
  • 17. Comparative of ML Models Decision Tree Regression (DTR), Linear Regression (LR), Sequential Neural Network (SNN) and MultiLayer Perceptron Regression (MLPR). Scikit-learn and Keras libraries of Python were used.
  • 18. Method MAPE SM MAPE DC MAPE DC-SM DTR 16.47% 16.84% 16.51% LR 18.27% 17.97% 17.66% SNN 20.76% 21.12% 20.93% MLPR 13.72% 12.36% 12.29% Test with the complete database
  • 19. Method MAPE SM MAPE DC MAPE DC-SM DTR 17.39% 16.23% 16.21% LR 22.17% 21.49% 21.17% SNN 25.33% 26.12% 26.43% MLPR 23.47% 22.13% 20.57% Test with database per year
  • 20. Method MAPE SM MAPE DC MAPE DC-SM DTR 16.27% 16.64% 16.19% LR 17.88% 17.71% 17.53% SNN 19.23% 19.12% 19.23% MLPR 12.66% 12.16% 11.99% Test with database per month
  • 21. Method MAPE SM MAPE DC MAPE DC-SM DTR 16.99% 17.14% 17.07% LR 18.15% 17.97% 17.93% SNN 20.53% 20.97% 20.99% MLPR 13.28% 12.98% 12.74% Test with database per week
  • 22. Method MAPE SM MAPE DC MAPE DC- SM DTR 16.69% 16.73% 16.45% LR 18.05% 17.83% 17.80% SNN 19.53% 20.74% 20.63% MLPR 13.57% 12.99% 12.91% Test with database per day
  • 23. This work shows that it is possible to detect energy fraud using data and smart meter processing. The results indicate that the detection of anomalies of consumption/production of electrical energy is adequate. Still, like any forecast model, human intervention plays an essential role in decision making. It is important to emphasize that the proposed model adjusts its parameters and amount of training/fit values so that they are executed properly in embedded devices with limited computing capabilities. Finally, the use of Fog Computing though DC in general terms, improves the results of forecasting. Conclusions
  • 24. This work is partially supported by the TecnológicoNacional de México under the grant 8000.20-P and 9002.20-P. Questions? Thanks you so much! juan.or@morelia.tecnm.mx, enrique.ra@morelia.tecnm.mx, noel.rm@zitacuaro.tecnm.mx, jose.gg3@morelia.tecnm.mx, ismael.mm@Morelia.tecnm.mx, jaime.cerda@umich.mx