SlideShare a Scribd company logo
MAGNETIC PARTICLE TESTING
Introduction
• This module is intended to present
information on the widely used method of
magnetic particle inspection.
• Magnetic particle inspection can detect
both production discontinuities (seams,
laps, grinding cracks and quenching
cracks) and in-service damage (fatigue
and overload cracks).
Outline
• Magnetism and Ferromagnetic Materials
• Introduction of Magnetic Particle Inspection
• Basic Procedure and Important
Considerations
1. Component pre-cleaning
2. Introduction of magnetic field
3. Application of magnetic media
4. Interpretation of magnetic particle
indications
• Examples of MPI Indications
Magnetic lines of force
around a bar magnet
Opposite poles attracting Similar poles repelling
Introduction to Magnetism
Magnetism is the ability of matter to
attract other matter to itself. Objects
that possess the property of
magnetism are said to be magnetic or
magnetized and magnetic lines of
force can be found in and around the
objects. A magnetic pole is a point
where the a magnetic line of force
exits or enters a material.
Magnetic field lines:
• Form complete loops.
• Do not cross.
• Follow the path of least
resistance.
• All have the same strength.
• Have a direction such that
they cause poles to attract
or repel.
How Does Magnetic Particle
Inspection Work?
A ferromagnetic test specimen is magnetized with
a strong magnetic field created by a magnet or
special equipment. If the specimen has a
discontinuity, the discontinuity will interrupt the
magnetic field flowing through the specimen and a
leakage field will occur.
How Does Magnetic Particle
Inspection Work? (Cont.)
Finely milled iron particles coated with a dye
pigment are applied to the test specimen. These
particles are attracted to leakage fields and will
cluster to form an indication directly over the
discontinuity. This indication can be visually
detected under proper lighting conditions.
Basic Procedure
Basic steps involved:
1. Component pre-cleaning
2. Introduction of magnetic field
3. Application of magnetic media
4. Interpretation of magnetic particle indications
Pre-cleaning
When inspecting a test part with the magnetic
particle method it is essential for the particles to
have an unimpeded path for migration to both
strong and weak leakage fields alike. The part’s
surface should be clean and dry before
inspection.
Contaminants such as oil,
grease, or scale may not
only prevent particles from
being attracted to leakage
fields, they may also
interfere with interpretation
of indications.
Introduction of the Magnetic Field
The required magnetic field can be introduced into a
component in a number of different ways.
1. Using a permanent magnet or an electromagnet that
contacts the test piece
2. Flowing an electrical current through the specimen
3. Flowing an electrical current through a coil of wire
around the part or through a central conductor running
near the part.
Direction of the Magnetic Field
Two general types of magnetic fields (longitudinal
and circular) may be established within the
specimen. The type of magnetic field established is
determined by the method used to magnetize the
specimen.
• A longitudinal magnetic field has
magnetic lines of force that run
parallel to the long axis of the
part.
• A circular magnetic field has
magnetic lines of force that run
circumferentially around the
perimeter of a part.
Importance of Magnetic Field Direction
Being able to magnetize the part in two
directions is important because the best
detection of defects occurs when the lines of
magnetic force are established at right angles to
the longest dimension of the defect. This
orientation creates the largest disruption of the
magnetic field within the part and the greatest
flux leakage at the surface of the part. An
orientation of 45 to 90 degrees between the
magnetic field and the defect is necessary to
form an indication.
Since defects may
occur in various and
unknown directions,
each part is normally
magnetized in two
directions at right
angles to each other.
Flux Leakage
No Flux Leakage
Question
?
? From the previous slide regarding the optimum
test sensitivity, which kinds of defect are easily
found in the images below?
Longitudinal (along the axis) Transverse (perpendicular the axis)
Producing a Longitudinal Magnetic
Field Using a Coil
A longitudinal magnetic
field is usually established
by placing the part near the
inside or a coil’s annulus.
This produces magnetic
lines of force that are
parallel to the long axis of
the test part.
Coil on Wet Horizontal Inspection Unit
Portable Coil
Producing a Longitudinal Field Using
Permanent or Electromagnetic Magnets
Permanent magnets and
electromagnetic yokes
are also often used to
produce a longitudinal
magnetic field. The
magnetic lines of force
run from one pole to the
other, and the poles are
positioned such that any
flaws present run normal
to these lines of force.
Circular Magnetic Fields
Circular magnetic fields are produced by
passing current through the part or by
placing the part in a strong circular
magnet field.
A headshot on a wet horizontal test unit
and the use of prods are several common
methods of injecting current in a part to
produce a circular magnetic field.
Placing parts on a central conductors
carrying high current is another way to
produce the field.
Magnetic Field
Electric
Current
Application of Magnetic
Media (Wet Versus Dry)
MPI can be performed using either
dry particles, or particles
suspended in a liquid. With the
dry method, the particles are
lightly dusted on to the surface.
With the wet method, the part is
flooded with a solution carrying
the particles.
The dry method is more portable.
The wet method is generally more
sensitive since the liquid carrier
gives the magnetic particles
additional mobility.
Dry Magnetic Particles
Magnetic particles come in a variety of colors. A
color that produces a high level of contrast
against the background should be used.
Wet Magnetic Particles
Wet particles are typically supplied
as visible or fluorescent. Visible
particles are viewed under normal
white light and fluorescent particles
are viewed under black light.
Interpretation of Indications
After applying the magnetic field, indications that
form must interpreted. This process requires that
the inspector distinguish between relevant and
non-relevant indications.
The following series of images depict
relevant indications produced from a
variety of components inspected
with the magnetic particle method.
Crane Hook with
Service Induced Crack
Fluorescent, Wet Particle Method
Gear with
Service Induced Crack
Fluorescent, Wet Particle Method
Drive Shaft with
Heat Treatment Induced Cracks
Fluorescent, Wet Particle Method
Splined Shaft with
Service Induced Cracks
Fluorescent, Wet Particle Method
Threaded Shaft with
Service Induced Crack
Fluorescent, Wet Particle Method
Large Bolt with
Service Induced Crack
Fluorescent, Wet Particle Method
Crank Shaft with
Service Induced Crack Near Lube Hole
Fluorescent, Wet Particle Method
Lack of Fusion in SMAW Weld
Visible, Dry Powder Method
Indication
Toe Crack in SMAW Weld
Visible, Dry Powder Method
Throat and Toe Cracks in
Partially Ground Weld
Visible, Dry Powder Method
Demagnetization
• Parts inspected by the magnetic particle method may
sometimes have an objectionable residual magnetic
field that may interfere with subsequent manufacturing
operations or service of the component.
• Possible reasons for demagnetization include:
– May interfere with welding and/or machining
operations
– Can effect gauges that are sensitive to magnetic
fields if placed in close proximity.
– Abrasive particles may adhere to components
surface and cause and increase in wear to engines
components, gears, bearings etc.
Demagnetization (Cont.)
• Demagnetization requires that the residual
magnetic field is reversed and reduced by the
inspector.
• This process will scramble the magnetic domains
and reduce the strength of the residual field to an
acceptable level.
Demagnetized
Magnetized
Advantages of
Magnetic Particle Inspection
• Can detect both surface and near sub-surface defects.
• Can inspect parts with irregular shapes easily.
• Precleaning of components is not as critical as it is for
some other inspection methods. Most contaminants
within a flaw will not hinder flaw detectability.
• Fast method of inspection and indications are visible
directly on the specimen surface.
• Considered low cost compared to many other NDT
methods.
• Is a very portable inspection method especially when
used with battery powered equipment.
Limitations of
Magnetic Particle Inspection
•Cannot inspect non-ferrous materials such as
aluminum, magnesium or most stainless steels.
•Inspection of large parts may require use of equipment
with special power requirements.
•Some parts may require removal of coating or plating
to achieve desired inspection sensitivity.
•Limited subsurface discontinuity detection capabilities.
Maximum depth sensitivity is approximately 0.6” (under ideal
conditions).
•Post cleaning, and post demagnetization is often
necessary.
•Alignment between magnetic flux and defect is
important
Glossary of Terms
• Black Light: ultraviolet light which is filtered to
produce a wavelength of approximately 365
nanometers. Black light will cause certain materials to
fluoresce.
• Central conductor: an electrically conductive bar
usually made of copper used to introduce a circular
magnetic field in to a test specimen.
• Coil: an electrical conductor such a copper wire or
cable that is wrapped in several or many loops that
are brought close to one another to form a strong
longitudinal magnetic field.
Glossary of Terms
• Discontinuity: an interruption in the structure of the
material such as a crack.
• Ferromagnetic: a material such as iron, nickel and
cobalt or one of it’s alloys that is strongly attracted to a
magnetic field.
• Heads: electrical contact pads on a wet horizontal
magnetic particle inspection machine. The part to be
inspected is clamped and held in place between the
heads and shot of current is sent through the part from
the heads to create a circular magnetic field in the part.
• Leakage field: a disruption in the magnetic field. This
disruption must extend to the surface of the part for
particles to be attracted.
Glossary of Terms
• Non-relevant indications: indications produced due
to some intended design feature of a specimen such
a keyways, splines or press fits.
• Prods: two electrodes usually made of copper or
aluminum that are used to introduce current in to a
test part. This current in turn creates a circular
magnetic field where each prod touches the part.
(Similar in principal to a welding electrode and ground
clamp).
• Relevant indications: indications produced from
something other than a design feature of a test
specimen. Cracks, stringers, or laps are examples of
relevant indications.
Glossary of Terms
• Suspension: a bath created by mixing particles with
either oil or water.
• Yoke: a horseshoe magnet used to create a
longitudinal magnetic field. Yokes may be made from
permanent magnets or electromagnets.
For More Information
The Collaboration for
NDT Education
www.ndt-ed.org
The American Society
for Nondestructive
Testing
www.asnt.org

More Related Content

PPT
Jason corminal 2
PPTX
Mpt 2015
PPT
Seminar.MAJor presentation for final project viva
PDF
NDT 2.pdf 555555555555555555555555555555555555555555
PPT
Magnetic Particle Inspection
PPT
Magnetic particle inspection
PDF
Magnetic Particle Inspection (MPI)- NDT
PPTX
Magnetic particle inspection modified
Jason corminal 2
Mpt 2015
Seminar.MAJor presentation for final project viva
NDT 2.pdf 555555555555555555555555555555555555555555
Magnetic Particle Inspection
Magnetic particle inspection
Magnetic Particle Inspection (MPI)- NDT
Magnetic particle inspection modified

Similar to Magnetic Particle Testing presentation.ppt (20)

PPTX
Magnetic particle-inspection-modified-1
PPTX
Non destructive testing 03
PPTX
Ndtm 2-mpt
PPTX
Self Study Magnetic Particle Inspection
PPTX
Non Destructive Testing methods
PDF
Magnetization and De-Magnetization Techniques
PPTX
Unit-II MPI Non Destructive Testing of Materials
PPTX
IARE_NDT_PPT.pptx
PPTX
L22 magnetic particle test
PPTX
Unit 4 magnetic particle testing
PDF
UNIT I NDT NON- DESTRUCTIVE TESTING ALL UNITS.pdf
PDF
NDT PPT.pdf
PPTX
EDDY CURRENT TESTING
PPTX
nondestructivetesting-180514185439.pptx
PPTX
529Lecture-1-Non-destructive-Testing.pptx
PPTX
Other terms used in NDT.pptx
PDF
Non Destructive Testing (NDT)
PPTX
Magnetic particle inspection test (NDT).
PPTX
Non destructive testing ppt
PPTX
Magnetic particle-inspection-modified-1
Non destructive testing 03
Ndtm 2-mpt
Self Study Magnetic Particle Inspection
Non Destructive Testing methods
Magnetization and De-Magnetization Techniques
Unit-II MPI Non Destructive Testing of Materials
IARE_NDT_PPT.pptx
L22 magnetic particle test
Unit 4 magnetic particle testing
UNIT I NDT NON- DESTRUCTIVE TESTING ALL UNITS.pdf
NDT PPT.pdf
EDDY CURRENT TESTING
nondestructivetesting-180514185439.pptx
529Lecture-1-Non-destructive-Testing.pptx
Other terms used in NDT.pptx
Non Destructive Testing (NDT)
Magnetic particle inspection test (NDT).
Non destructive testing ppt
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
composite construction of structures.pdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Sustainable Sites - Green Building Construction
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
Well-logging-methods_new................
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Artificial Intelligence
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
composite construction of structures.pdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Model Code of Practice - Construction Work - 21102022 .pdf
Safety Seminar civil to be ensured for safe working.
Sustainable Sites - Green Building Construction
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Fundamentals of safety and accident prevention -final (1).pptx
CH1 Production IntroductoryConcepts.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Well-logging-methods_new................
Operating System & Kernel Study Guide-1 - converted.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Artificial Intelligence
Ad

Magnetic Particle Testing presentation.ppt

  • 2. Introduction • This module is intended to present information on the widely used method of magnetic particle inspection. • Magnetic particle inspection can detect both production discontinuities (seams, laps, grinding cracks and quenching cracks) and in-service damage (fatigue and overload cracks).
  • 3. Outline • Magnetism and Ferromagnetic Materials • Introduction of Magnetic Particle Inspection • Basic Procedure and Important Considerations 1. Component pre-cleaning 2. Introduction of magnetic field 3. Application of magnetic media 4. Interpretation of magnetic particle indications • Examples of MPI Indications
  • 4. Magnetic lines of force around a bar magnet Opposite poles attracting Similar poles repelling Introduction to Magnetism Magnetism is the ability of matter to attract other matter to itself. Objects that possess the property of magnetism are said to be magnetic or magnetized and magnetic lines of force can be found in and around the objects. A magnetic pole is a point where the a magnetic line of force exits or enters a material. Magnetic field lines: • Form complete loops. • Do not cross. • Follow the path of least resistance. • All have the same strength. • Have a direction such that they cause poles to attract or repel.
  • 5. How Does Magnetic Particle Inspection Work? A ferromagnetic test specimen is magnetized with a strong magnetic field created by a magnet or special equipment. If the specimen has a discontinuity, the discontinuity will interrupt the magnetic field flowing through the specimen and a leakage field will occur.
  • 6. How Does Magnetic Particle Inspection Work? (Cont.) Finely milled iron particles coated with a dye pigment are applied to the test specimen. These particles are attracted to leakage fields and will cluster to form an indication directly over the discontinuity. This indication can be visually detected under proper lighting conditions.
  • 7. Basic Procedure Basic steps involved: 1. Component pre-cleaning 2. Introduction of magnetic field 3. Application of magnetic media 4. Interpretation of magnetic particle indications
  • 8. Pre-cleaning When inspecting a test part with the magnetic particle method it is essential for the particles to have an unimpeded path for migration to both strong and weak leakage fields alike. The part’s surface should be clean and dry before inspection. Contaminants such as oil, grease, or scale may not only prevent particles from being attracted to leakage fields, they may also interfere with interpretation of indications.
  • 9. Introduction of the Magnetic Field The required magnetic field can be introduced into a component in a number of different ways. 1. Using a permanent magnet or an electromagnet that contacts the test piece 2. Flowing an electrical current through the specimen 3. Flowing an electrical current through a coil of wire around the part or through a central conductor running near the part.
  • 10. Direction of the Magnetic Field Two general types of magnetic fields (longitudinal and circular) may be established within the specimen. The type of magnetic field established is determined by the method used to magnetize the specimen. • A longitudinal magnetic field has magnetic lines of force that run parallel to the long axis of the part. • A circular magnetic field has magnetic lines of force that run circumferentially around the perimeter of a part.
  • 11. Importance of Magnetic Field Direction Being able to magnetize the part in two directions is important because the best detection of defects occurs when the lines of magnetic force are established at right angles to the longest dimension of the defect. This orientation creates the largest disruption of the magnetic field within the part and the greatest flux leakage at the surface of the part. An orientation of 45 to 90 degrees between the magnetic field and the defect is necessary to form an indication. Since defects may occur in various and unknown directions, each part is normally magnetized in two directions at right angles to each other. Flux Leakage No Flux Leakage
  • 12. Question ? ? From the previous slide regarding the optimum test sensitivity, which kinds of defect are easily found in the images below? Longitudinal (along the axis) Transverse (perpendicular the axis)
  • 13. Producing a Longitudinal Magnetic Field Using a Coil A longitudinal magnetic field is usually established by placing the part near the inside or a coil’s annulus. This produces magnetic lines of force that are parallel to the long axis of the test part. Coil on Wet Horizontal Inspection Unit Portable Coil
  • 14. Producing a Longitudinal Field Using Permanent or Electromagnetic Magnets Permanent magnets and electromagnetic yokes are also often used to produce a longitudinal magnetic field. The magnetic lines of force run from one pole to the other, and the poles are positioned such that any flaws present run normal to these lines of force.
  • 15. Circular Magnetic Fields Circular magnetic fields are produced by passing current through the part or by placing the part in a strong circular magnet field. A headshot on a wet horizontal test unit and the use of prods are several common methods of injecting current in a part to produce a circular magnetic field. Placing parts on a central conductors carrying high current is another way to produce the field. Magnetic Field Electric Current
  • 16. Application of Magnetic Media (Wet Versus Dry) MPI can be performed using either dry particles, or particles suspended in a liquid. With the dry method, the particles are lightly dusted on to the surface. With the wet method, the part is flooded with a solution carrying the particles. The dry method is more portable. The wet method is generally more sensitive since the liquid carrier gives the magnetic particles additional mobility.
  • 17. Dry Magnetic Particles Magnetic particles come in a variety of colors. A color that produces a high level of contrast against the background should be used.
  • 18. Wet Magnetic Particles Wet particles are typically supplied as visible or fluorescent. Visible particles are viewed under normal white light and fluorescent particles are viewed under black light.
  • 19. Interpretation of Indications After applying the magnetic field, indications that form must interpreted. This process requires that the inspector distinguish between relevant and non-relevant indications. The following series of images depict relevant indications produced from a variety of components inspected with the magnetic particle method.
  • 20. Crane Hook with Service Induced Crack Fluorescent, Wet Particle Method
  • 21. Gear with Service Induced Crack Fluorescent, Wet Particle Method
  • 22. Drive Shaft with Heat Treatment Induced Cracks Fluorescent, Wet Particle Method
  • 23. Splined Shaft with Service Induced Cracks Fluorescent, Wet Particle Method
  • 24. Threaded Shaft with Service Induced Crack Fluorescent, Wet Particle Method
  • 25. Large Bolt with Service Induced Crack Fluorescent, Wet Particle Method
  • 26. Crank Shaft with Service Induced Crack Near Lube Hole Fluorescent, Wet Particle Method
  • 27. Lack of Fusion in SMAW Weld Visible, Dry Powder Method Indication
  • 28. Toe Crack in SMAW Weld Visible, Dry Powder Method
  • 29. Throat and Toe Cracks in Partially Ground Weld Visible, Dry Powder Method
  • 30. Demagnetization • Parts inspected by the magnetic particle method may sometimes have an objectionable residual magnetic field that may interfere with subsequent manufacturing operations or service of the component. • Possible reasons for demagnetization include: – May interfere with welding and/or machining operations – Can effect gauges that are sensitive to magnetic fields if placed in close proximity. – Abrasive particles may adhere to components surface and cause and increase in wear to engines components, gears, bearings etc.
  • 31. Demagnetization (Cont.) • Demagnetization requires that the residual magnetic field is reversed and reduced by the inspector. • This process will scramble the magnetic domains and reduce the strength of the residual field to an acceptable level. Demagnetized Magnetized
  • 32. Advantages of Magnetic Particle Inspection • Can detect both surface and near sub-surface defects. • Can inspect parts with irregular shapes easily. • Precleaning of components is not as critical as it is for some other inspection methods. Most contaminants within a flaw will not hinder flaw detectability. • Fast method of inspection and indications are visible directly on the specimen surface. • Considered low cost compared to many other NDT methods. • Is a very portable inspection method especially when used with battery powered equipment.
  • 33. Limitations of Magnetic Particle Inspection •Cannot inspect non-ferrous materials such as aluminum, magnesium or most stainless steels. •Inspection of large parts may require use of equipment with special power requirements. •Some parts may require removal of coating or plating to achieve desired inspection sensitivity. •Limited subsurface discontinuity detection capabilities. Maximum depth sensitivity is approximately 0.6” (under ideal conditions). •Post cleaning, and post demagnetization is often necessary. •Alignment between magnetic flux and defect is important
  • 34. Glossary of Terms • Black Light: ultraviolet light which is filtered to produce a wavelength of approximately 365 nanometers. Black light will cause certain materials to fluoresce. • Central conductor: an electrically conductive bar usually made of copper used to introduce a circular magnetic field in to a test specimen. • Coil: an electrical conductor such a copper wire or cable that is wrapped in several or many loops that are brought close to one another to form a strong longitudinal magnetic field.
  • 35. Glossary of Terms • Discontinuity: an interruption in the structure of the material such as a crack. • Ferromagnetic: a material such as iron, nickel and cobalt or one of it’s alloys that is strongly attracted to a magnetic field. • Heads: electrical contact pads on a wet horizontal magnetic particle inspection machine. The part to be inspected is clamped and held in place between the heads and shot of current is sent through the part from the heads to create a circular magnetic field in the part. • Leakage field: a disruption in the magnetic field. This disruption must extend to the surface of the part for particles to be attracted.
  • 36. Glossary of Terms • Non-relevant indications: indications produced due to some intended design feature of a specimen such a keyways, splines or press fits. • Prods: two electrodes usually made of copper or aluminum that are used to introduce current in to a test part. This current in turn creates a circular magnetic field where each prod touches the part. (Similar in principal to a welding electrode and ground clamp). • Relevant indications: indications produced from something other than a design feature of a test specimen. Cracks, stringers, or laps are examples of relevant indications.
  • 37. Glossary of Terms • Suspension: a bath created by mixing particles with either oil or water. • Yoke: a horseshoe magnet used to create a longitudinal magnetic field. Yokes may be made from permanent magnets or electromagnets.
  • 38. For More Information The Collaboration for NDT Education www.ndt-ed.org The American Society for Nondestructive Testing www.asnt.org

Editor's Notes

  • #1: This presentation was developed to provide students in industrial technology programs, such as welding, an introduction to magnetic particle testing. The material by itself is not intended to train individuals to perform NDT functions but rather to acquaint individuals with the NDT equipment and methods that they are likely to encounter in industry. More information has been included than might necessarily be required for a general introduction to the subject as some instructors have requested at least 60 minutes of material. Instructors can modify the presentation to meet their needs by simply hiding slides in the “slide sorter” view of PowerPoint.” This presentation is one of eight developed by the Collaboration for NDT Education. The topics covered by the other presentations are: Introduction to Nondestructive Testing Visual Inspection Penetrant Testing Radiographic Testing Ultrasonic Testing Eddy Current Testing Welder Certification All rights are reserved by the authors and the presentation cannot be copied or distributed except by the Collaboration for NDT Education. A free copy of the presentations can be requested by contacting the Collaboration at NDT-ed@cnde.iastate.edu.