SlideShare a Scribd company logo
Deep$Learning$
on
3D$Point$Clouds
SK#Reddy#
Chief#Product#Officer#AI
skreddy99
skreddy99
Confidential2
ImageNet(Large(Scale(Visual(Recognition(Challenge((ILSVRC)(winners
Confidential3 https://arxiv.org/pdf/1808.01462.pdf
Confidential4 https://arxiv.org/pdf/1808.01462.pdf
Confidential5
O"CNN%&2017
https://arxiv.org/pdf/1712.01537.pdf
Left:<the<original<3D<shape.<Middle:<the<voxelized 3D<
shape.<Right:<the<octree<representation<with<normals
sampled<at<the<finest<leaf<octants
2D<quadtree<illustration<of<octree<structure
Confidential6
OctNet&'2017
https://arxiv.org/pdf/1611.05009.pdf
Network=Architecture=Semantic=3D=Point=Cloud=
Labeling
Hybrid=GridKOctree=Data=Structure.=This=example=illustrates=a=
hybrid=gridKoctree=consisting=of=8=shallow=octrees=indicated=by=
different=colors.=Using=2=shallow=octrees=in=each=dimension=
with=a=maximum=depth=of=3=leads=to=a=total=resolution=of========
voxels
Bit=Representation.=Shallow=octrees=can=be=efficiently=encoded=
using=bitKstrings.=Here,=the=bitKstring=1=01010000=00000000=
01010000=00000000=01010000=0...=defines=the=octree=in=(a).=The=
corresponding=tree=is=shown=in=(b).=The=color=of=the=voxels=
corresponds=to=the=split=level
Confidential7
PointNet()2017
https://arxiv.org/pdf/1612.00593.pdf
Confidential8
Deep$Kd'Network.$2017
https://arxiv.org/pdf/1704.01222.pdf
A<kd>tree<built<on<the<point<cloud<of<eight<points<(left),<
and<the<associated<Kd>network<built<for<classification<
(right)
The<architecture<for<parts<segmentation<(individual<point<classification)<
for<the<point<cloud
Confidential9
PointNet++)*2017
https://arxiv.org/pdf/1706.02413.pdf
(a) MultiAscaleCgroupingC(MSG)FC
(b) MultiresolutionCgroupingC(MRG)
MNISTCdigitCclassification
Confidential10
SPLATNet)*2018*
https://arxiv.org/pdf/1802.08275.pdf
Bilateral*Convolution*Layer Left:<splatting<the<input<points<(orange)<onto<
the<lattice<corners<(black)C<Middle:<The<extent<of<a<filter<on<the<lattice<with<a<s<=<2<
neighborhood<(white<circles),<for<reference<we<show<a<Gaussian<filter,<with<its<
values<color<coded.<The<general<case<has<a<free<scalar/vector<parameter<per<
circle.<Right:<The<result<of<the<convolution<at<the<lattice<corners<(black)<is<projected<
back<to<the<output<points<(blue).<
Confidential11
MRTNet'(2018
https://arxiv.org/pdf/1807.03520.pdf
Confidential12
SqueezeSeg:.CNNs.with.Recurrent.CRF.for.Real8Time.Road8
Object.Segmentation.from.3D.LiDAR.Point.CloudE.2017
https://arxiv.org/pdf/1710.07368.pdf
Conditional.Random.Field.(CRF).as.an.RNN.layer
Confidential13
PointSeg-.Sep.2018
https://arxiv.org/pdf/1807.06288.pdf
The.pipeline.of.PointSeg..Raw.LiDAR.point.cloud.is.projected.to.a.multichannel.range.
image..After.the.network.processing,.the.predicted.pointLwise.label.will.be.projected.back.
to.the.original.space.
Source.code:.https://github.com/ywangeq/PointSeg
Confidential14
LMNet:.Real0time.Multiclass.Object.Detection.on.CPU.using.3D.LiDAR@.2018
https://arxiv.org/pdf/1805.04902.pdf
IMPLEMENTED.DILATED.LAYERS
Confidential15
DeLS%3D:.Deep.Localization.and.
Segmentation.with.a.3D.Semantic.Map;.2018
https://arxiv.org/pdf/1805.04949.pdf
Confidential16
Spherical CNN for/3D/Point/Clouds5/2018
https://arxiv.org/pdf/1805.07872.pdf
Classification/performance/on/ModelNetszz
Confidential17
https://arxiv.org/pdf/1808.06840.pdf
Example(result(of(our(FCPN(on(semantic(voxel(labeling(and(captioning(on(an(Tango(3D(
reconstruction(/(point(cloud:((a)(3D(reconstruction((not(used),((b)(Input(point(cloud((c)(Output(
semantic(voxel(prediction.(
Visualization(of(the(semantic(segmentation(on((a)(a(depth(image,((b)(a(2.4m×2.4m×2.4m(partial(
reconstruction((c)(an(entire(reconstruction(of(a(hotel(suite.(Please(note(that(each(of(these(outputs(
are(predicted(in(a(single(shot(from(the(same(network(trained(with(2.4m(× 2.4m(× 2.4m(volumes(
Fully%Convolutional-Point-Network-Architecture Aug=2018=
(Source=code:=Not=yetD=https://github.com/drethage/fullyGconvolutionalGpointGnetwork)
Confidential18
Data$sets
• ScanNet:2Indoor2Scenes
• ShapeNet:23D2shapes
• Princeton2ModelNet
• KITTI2(Code2available2for2some)
• Pascal3D+2(….in2the2wild)
• Pascal2VOC
• SUNCG2(room2models)
• SceneNet (RGBMD2room2models)
• CV2Lab2datasets2with2Code2
(http://cvgl.stanford.edu/resources.html)
• Collective2Activity2Dataset2(old)
• Monocular2Multiview2Object2Tracking2with2
3D2Aspect2Parts2(???)
• Stanford22DM3DMSemantics2Dataset2(2DM
3DMS)2(**)
• Stanford2Drone2Dataset
• ObjectNet3D
List$of$datasets:
1.2http://clickdamage.com/sourcecode/cv_datasets.php
Other$Data$sets
• TOSCA2(nonMrigid2dataset)
• FAUST2(highMres2human2scans)
• SUN3D
• NYC3DCars
• LabelMe3D2(old2dataset)
• CVLab (MultiMview2car2dataset)
• MIT2Street2Scenes
• Daimler2Pedestrian2Datasets
• Caltech2Pedestrian2Detection2Benchmark
• Robust2MultiMPerson2Tracking2from2Mobile2Platforms
• FlyingThings3D2(Synthetic)
• BU4DFE23D2
Confidential19
PVNet:"A"Joint"Network"of"Point"Cloud"and"Multi6View"for"
3D"Shape"Recognition"(Aug"2018)
Confidential20 https://arxiv.org/pdf/1806.01411.pdf
FlowNet3D:;Scene;Flow;in;3D;PCs(June;2018);
Confidential21
YOLO3D Aug02018
Sample0of0the0output0shown0in03D0and0projected0on0the0top0view0map0
Confidential22
PointFlowNet 3D.Scene.Flow.Estimation.from.PCs.(Sep.2018)
https://arxiv.org/pdf/1806.02170.pdf
Confidential23
Point&Cloud&Library Modules
Confidential24
https://github.com/kzampog/cilantro;
Cilantro
library;for;point;cloud;data;processing;
Bundled;with:;
• nanoflann (for;fast;kdAtree;queries);
• Spectra;(ARPACKAinspired;library;for;large;
scale;eigen;decompositions;
• Qhull (for;convex;hull;and;halfA space;
intersection;computations);
• tinyply (for;PLY;format;geometry;I/O);
• External;dependencies:;
• Eigen;(linear;algebra;library);
• Pangolin;(lightweight;OpenGL;viewport;
manager;and;video;I/O;abstraction;library)
Confidential25
Thank&you
SK&Reddy
Chief&Product&Officer&AI
skreddy99
skreddy99

More Related Content

PDF
3D Point Cloud analysis using Deep Learning
PDF
lecture_16_jiajun.pdf
PDF
Deep 3D Analysis - Javier Ruiz-Hidalgo - UPC Barcelona 2018
PDF
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
PPTX
Summary of survey papers on deep learning method to 3D data
PDF
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
PDF
Point cloud labeling using machine learning
PDF
Deep 3D Visual Analysis - Javier Ruiz-Hidalgo - UPC Barcelona 2017
3D Point Cloud analysis using Deep Learning
lecture_16_jiajun.pdf
Deep 3D Analysis - Javier Ruiz-Hidalgo - UPC Barcelona 2018
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
Summary of survey papers on deep learning method to 3D data
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
Point cloud labeling using machine learning
Deep 3D Visual Analysis - Javier Ruiz-Hidalgo - UPC Barcelona 2017

Similar to Making sense from 3D Point Clouds (6)

PPTX
Ivan Sahumbaiev "Deep Learning approaches meet 3D data"
PDF
Deep single view 3 d object reconstruction with visual hull
PDF
Deep learning for 3 d point clouds presentation
PDF
PDF
Learning to Perceive the 3D World
PDF
Data Challenges with 3D Computer Vision
Ivan Sahumbaiev "Deep Learning approaches meet 3D data"
Deep single view 3 d object reconstruction with visual hull
Deep learning for 3 d point clouds presentation
Learning to Perceive the 3D World
Data Challenges with 3D Computer Vision
Ad

More from SK Reddy (20)

PDF
Finding the right Machine Learning method for predictive modeling
PDF
AI to open more doors in Personal Finance Management (PFM)
PDF
The wonders of big data processing using Deep Learning in Brazil Live 15 sep ...
PDF
How organizations can get ready for ai
PDF
Practical implementation of AI solutions for Smart Cities
PDF
Recommender systems
PDF
How recommender systems work
PDF
In search of better deep Recommender Systems
PPTX
Deep Learning (DL) Solutions for Smart City use cases
PDF
AI driven innovation
PDF
How AI is revolutionizing the world
PDF
How NLP is revolutionizing marketing and communications
PDF
AI in Smart Cities
PDF
SF ACM Bay chapter meetup on NLP will revolutionize the world
PPTX
The Magic of Image processing using Neural Networks
PDF
The Magic of Text Summarization using Deep Networks
PDF
Natural Language Processing Tech workshop
PPTX
The magic of machine translation 20 july 2017
PDF
Summarization and Abstraction using deep learning
PPTX
Question Answering in NLP on Mahabharata 24 may 2017
Finding the right Machine Learning method for predictive modeling
AI to open more doors in Personal Finance Management (PFM)
The wonders of big data processing using Deep Learning in Brazil Live 15 sep ...
How organizations can get ready for ai
Practical implementation of AI solutions for Smart Cities
Recommender systems
How recommender systems work
In search of better deep Recommender Systems
Deep Learning (DL) Solutions for Smart City use cases
AI driven innovation
How AI is revolutionizing the world
How NLP is revolutionizing marketing and communications
AI in Smart Cities
SF ACM Bay chapter meetup on NLP will revolutionize the world
The Magic of Image processing using Neural Networks
The Magic of Text Summarization using Deep Networks
Natural Language Processing Tech workshop
The magic of machine translation 20 july 2017
Summarization and Abstraction using deep learning
Question Answering in NLP on Mahabharata 24 may 2017
Ad

Recently uploaded (20)

PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
A Presentation on Artificial Intelligence
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
cuic standard and advanced reporting.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
Network Security Unit 5.pdf for BCA BBA.
Per capita expenditure prediction using model stacking based on satellite ima...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
A Presentation on Artificial Intelligence
20250228 LYD VKU AI Blended-Learning.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
MIND Revenue Release Quarter 2 2025 Press Release
Building Integrated photovoltaic BIPV_UPV.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
cuic standard and advanced reporting.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Spectroscopy.pptx food analysis technology
Unlocking AI with Model Context Protocol (MCP)
Advanced methodologies resolving dimensionality complications for autism neur...
NewMind AI Weekly Chronicles - August'25-Week II

Making sense from 3D Point Clouds