This document discusses using rough clustering algorithms for mammogram image segmentation. It proposes using Rough K-Means clustering on Haralick texture features extracted from mammogram images. The Rough K-Means algorithm is compared to traditional K-Means and Fuzzy C-Means using metrics like mean square error and root mean square error. Preliminary results found that Rough K-Means produced better segmentation results than the other methods. The document provides background on rough set theory, image segmentation, feature extraction, and different clustering algorithms that can be used.