SlideShare a Scribd company logo
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
MATATABI : Cyber Threat
Analysis and Defense Platform
using Huge Amount of Datasets
Yuji Sekiya*
*The University of Tokyo, Japan
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Multi-layer Threat Analysis
Victim side action
Filtering
Load balancing
Isolation
Countermeasure for Attackers
Report to ISP
Announce to users
Filtering at ISP level
Configuration to servers
Data collection at
Multiple layers/locations
Network device
Servers
Users Device
Analysis Platform
Analysis 1
Analysis 2
Analysis 3
Threat analysis (detection) across
multiple datasources
Threat Information Share
Among organizations
Announce to public
2
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Security Information Pipeline
 Making pipeline through divert activities
 Data collection (Traffic, User behavior, etc)
 Threat Analysis
 Human decision
 Protection (Enforcement)
ProtectionData Analysis
Human
Inputs
3
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Datasets
4
MATATABI
Switch
Router
DNS
Firewall
SPAM
Phishing Site
External
Information
sFlow
NetFlow
URL
SPAM Sender
URL
syslog
querylog
pcap
text
URL
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Data Volume
N*10GByte/day
20TB/10months
Traffic sampling
Packet dump
E-mail
DNS
Web traffic
5
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
1. Forensics : preserving log data
 To keep evidences as traceable.
 To analyze multi-source data exhaustively
2. Scalability : should be tolerable to huge data
 To store a huge amount of datasets
 To process datasets in a reasonable time
3. Real-time analysis : processing performance
 Possibly real-time analysis of any datasets
4. Uniform programmability :
 Various data format should be easily accessible
 Various analysis program can be used
Goals of MATATABI
6
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
NECOMA ECO System
Infrastructure
Data
End Point
Data
API API
Analysis Module /
Early Warning System
API
Threat
Information
Sharing
External
Knowledge DB
API
Crawler
API
External
Resource (web)
Infrastructure
Devices
End Point
Devices
API API
Resilience Mechanism
API
Get external
threat information
Get data
Put analysis results
Get threat
information
and other
results Get threat information
Control infrastructure and
end point devices
Crawling external resource
and extracting knowledge
Collection Probe Collection Probe
Get data
Petsas et al., A Trusted Knowledge Management System for
Multi-layer Threat Analysis. TRUST 14’ (poster session), June 2014
7
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
HDFS
DGA
Analyzer
DDoS
detection
Hive/
Presto
Thrift Mahout Rhadoop
DNS querylog
dns-pcap
sflow
netflow
spam
open resolver
phishing
darknet
topology
endpoint
user behavior
client honeypot
Hadoop Cluster
API (JSON)
hadoop-
pcap
anomaly
detection
(2) Data
import
Measurement
Data
(3) Analysis
Module
(1) Data
Storage
(4) MATATAPI
 4 components
1) Storage
2) Data import/process module
3) Analysis module
4) Application Programming Interface (API)
MATATABI Overview
8
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Built by Open-Source Software
 Actively using open-sourced software
 Apace Hadoop (HDFS, MapReduce, etc)
 Apache Hive (SQL-like language => distributed jobs)
 Facebook Presto (Distributed SQL engine)
 Apache Mahout (Machine learning library)
 Apache Thrift (Language bindings)
 Hadoop-pcap (pcap file parser)
 Fixed issues and packaged by NECOMA
 https://github.com/necoma
9
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
1) Storage
 Storing measured data
to Hadoop Distributed
FileSystem (HDFS)
 Easily scaled-out
• Data access by tools
– Hive/Presto-db
– Hadoop-pcap
HDFS
DGA
Analyzer
DDoS
detection
Hive/
Presto
Thrift Mahout Rhadoop
DNS querylog
dns-pcap
sflow
netflow
spam
open resolver
phishing
darknet
topology
endpoint
user behavior
client honeypot
Hadoop Cluster
API (JSON)
hadoop-
pcap
anomaly
detection
(2) Data
import
Measurement
Data
(3) Analysis
Module
(1) Data
Storage
(4) MATATAPI
10
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
2) Data import module
 Pre-processing
measurement data
• By each dataset
– Raw data (e.g., pcap)
– Converting to Hive tables
HDFS
DGA
Analyzer
DDoS
detection
Hive/
Presto
Thrift Mahout Rhadoop
DNS querylog
dns-pcap
sflow
netflow
spam
open resolver
phishing
darknet
topology
endpoint
user behavior
client honeypot
Hadoop Cluster
API (JSON)
hadoop-
pcap
anomaly
detection
(2) Data
import
Measurement
Data
(3) Analysis
Module
(1) Data
Storage
(4) MATATAPI
11
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
3) (Threat) Analysis module
 Easily implement-able
 Bunch of analysis
 Distributed computations
(MapReduce)
HDFS
DGA
Analyzer
DDoS
detection
Hive/
Presto
Thrift Mahout Rhadoop
DNS querylog
dns-pcap
sflow
netflow
spam
open resolver
phishing
darknet
topology
endpoint
user behavior
client honeypot
Hadoop Cluster
API (JSON)
hadoop-
pcap
anomaly
detection
(2) Data
import
Measurement
Data
(3) Analysis
Module
(1) Data
Storage
(4) MATATAPI
12
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
4) Application Programming Interface (API)
 Export analysis results
 Export dataset itself (if
needed)
 Implemented with n6
REST API
 JSON/CSV/IODEF format
HDFS
DGA
Analyzer
DDoS
detection
Hive/
Presto
Thrift Mahout Rhadoop
DNS querylog
dns-pcap
sflow
netflow
spam
open resolver
phishing
darknet
topology
endpoint
user behavior
client honeypot
Hadoop Cluster
API (JSON)
hadoop-
pcap
anomaly
detection
(2) Data
import
Measurement
Data
(3) Analysis
Module
(1) Data
Storage
(4) MATATAPI
13
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Analysis Modules (Use cases)
14
Name Datasets Frequency LoC
(#lines)
Remark
ZeuS DGA detector DNS pcap, netflow daily 25 hadoop-pcap
UDP fragmentation detector sflow daily 48
Phishing likelihood calculator Phishing URLs,
Phishing content
1-shot –
Mahout
(RandomForest)
NTP amplifier detector
netflow, sflow daily 143
pyhive, Maxmind
GeoIP
sflow daily 24
DNS amplifier detector sflow, open resolver
[19]
daily 37
Anomalous heavy-hitter
detector
netflow, sflow daily 106
pyhive
DNS anomaly detection DNS pcap, whois,
malicious/legitimate
domain list
daily 57
hadoop-pcap, Mahout
(RandomForest)
SSL scan detector sflow 1-shot 36
DNS failure graph analysis DNS pcap daily 159 pyhive
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
• Make a SQL request by Presto
• Get IP addresses that sends UDP traffic on
port 123 with a packet size = 468
• Packet size of Monlist reply = 468 bytes
15
Analysis Example (1)
Finding NTP Amplifiers
SELECT sa FROM netflow WHERE sp=123 AND pr='UDP' AND
ibyt/ipkt=468 GROUP BY sa
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
presto:default> SELECT sa FROM netflow_wide_rcfile WHERE sp=123 AND pr='UDP' AND ibyt/ipkt=468 AND
dt>'20150401' GROUP BY sa;
Query 20150810_090728_00174_u378i, RUNNING, 10 nodes, 845 splits
0:11 [ 457M rows, 9.8GB] [41.3M rows/s, 908MB/s] [======>>>>>> ] 14%
STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE
0.........R 0 0 0B 0B 0 1 0
1.......R 1.88K 135 33.2K 2.39K 0 8 0
2.....R 457M 32.9M 9.8G 723M 622 94 120
Query 20150810_090728_00174_u378i, RUNNING, 10 nodes, 845 splits
1:05 [1.63B rows, 37.7GB] [25.2M rows/s, 596MB/s] [===========================>>>>>>>> ] 64%
STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE
0.........R 0 0 0B 0B 0 1 0
1.......R 16.9K 260 299K 4.61K 0 8 0
2.....R 1.63B 25.1M 37.7G 595M 147 147 542
16
Analysis Example (1)
Finding NTP Amplifiers
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
sa
-----------------
17
Analysis Example (1)
Finding NTP Amplifiers
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 18
Analysis Example (2)
Detecting DNS Amplifier Attacks
Open Resolver
DNS Server
Attackers
Spoofed Packets
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
 Found Response with RD(Recursive Desired)
flag.
 Queries from Open Resolver Servers
 Attempts of the Water Torture Attack
select src,count(*) from dns_pcaps where dt='20150401' and dns_qr=true and
dns_flags like '%rd%' and server=‘dns1-pcap’ group by src;
Analysis Example (2)
Detecting DNS Amplifier Attacks
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 20
Authoritative
DNS Servers
Resolver
DNS Server
Attackers
Spoofed
Answers
Analysis Example (3)
Detecting DNS Cache Poisoning Attacks
Query
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Analysis Example (3)
Detecting DNS Cache Poisoning Attacks
 Normally
# of query from resolver server > # of query to resolver server
 Counting number of queries from resolver server
 Counting number of answers to resolver server
 If not, it is possibly ddos or cache poisoning attack
against our DNS resolver server
select floor(ts/60),count(*) from dns_pcaps where dt = '20150401’ and dns_qr=false and
dns_flags not like ‘%rd%’ and server=’ns1-pcap‘ group by floor(ts/60);
select floor(ts/60),count(*) from dns_pcaps where dt = '20150401’ and dns_qr=true and
dns_flags like ‘%aa%’ and server=‘ns1-pcap’ group by floor(ts/60);
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Detecting Botnet infected hosts
by DGA Queries
22
• Domain Generation
Algorithm (DGA)
– Auto generated domain
names used by botnets
– Usually the names are
changed in a short span
– Difficult to detect botnets
hosts by domain name.
• ZeuS-DGA
– [a-z0-
9]{32,48}.(ru|com|biz|info|o
rg|net)
– Example:
f528764d624db129b32c21fbc
a0cb8d6.com
001: gh3t852dwps7v47v4139eid62g190bjrs
002: g22tdk3q8097o97fcs0j46fe0l7wc56us
003: gj9d611364m0ysceiq0x250fm5u69zq5s
:
botmaster
bot
domain list: periodically generate
001: gh3t852dwps7v47v4139eid62g190bjrs
002: g22tdk3q8097o97fcs0j46fe0l7wc56us
003: gj9d611364m0ysceiq0x250fm5u69zq5s
:
domain list: periodically generate
g22tdk3q8097o97fcs0j46fe0l7wc56us.ru
001.ru 001.com 002.ru
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
 Found specific regular expression type in
queries
 Some botnet clients generate dynamic,
randomized DNS name to contact botnet
C&C servers (so called DGA)
select src,dns_question from dns_pcaps where regexp_like (dns_question,
'[a-z0-9]{32,48}.(ru|com|biz|info|org|net)') AND NOT regexp_like(dns_question,
'xn--') AND dt='20150401';
Analysis Example (4)
Detecting DGA Queries
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
presto:default> select src,dns_question from dns_pcaps where regexp_like (dns_question, '[a-z0-
9]{32,48}.(ru|com|biz|info|org|net)') AND NOT regexp_like(dns_question, 'xn--') AND dt>'20150401';
Query 20150810_114848_00226_u378i, RUNNING, 11 nodes, 1,435 splits
1:17 [ 123M rows, 4.15GB] [1.61M rows/s, 55.5MB/s] [ <=> ]
STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE
0.........R 0 0 0B 0B 0 1 0
1.......S 123M 1.61M 4.15G 55.5M 1100 217 117
Query 20150810_115500_00228_u378i, RUNNING, 11 nodes, 143 splits
2:22 [87.4M rows, 4.73GB] [ 615K rows/s, 34.1MB/s] [========================================>>] 93%
STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE
0.........R 0 0 0B 0B 0 1 0
1.......R 87.4M 615K 4.73G 34.1M 0 9 133
24
Analysis Example (4)
Detecting DGA Queries
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
2001:XXXX:1d8:0:0:0:0:106 | cg79wo20kl92doowfn01oqpo9mdieowv5tyj. 0 IN A
2001:XXXX:0:1:0:0:0:f | cg79wo20kl92doowfn01oqpo9mdieowv5tyj.com. 0 IN A
157.XXX.234.35 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A
133.XXX.127.131 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A
23.XXX.104.44 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A
133.XXX.124.164 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A
157.XXX.234.35 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA
133.XXX.127.131 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA
23.XXX.111.231 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA
133.XXX.124.164 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA
157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
173.XXX.59.40 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
192.XXX.79.30 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
185.XXX.155.12 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
173.XXX.58.45 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A
25
Analysis Example (4)
Detecting DGA Queries
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Movie : Zeus-DGA Analysis
26
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Visualization of Zeus DGA and Botnet
 2015/07/01 – 2015/07/05
 The number of the most active DGA query is 23
 Related traffic flows from netflow datasets.
27
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Visualization : Zeus-DGA Distribution
28
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
One of Protection Methods
 SDN IX (PIX-IE)
 Programmable IX in Edo : PIX-IE
 Mitigating and filtering suspicious flows at IX
 IX is a public space in the Internet
 Before link saturation, an ISP operator can stop DDoS
flows
29
Programmable IX
(PIX-IE)
ISP
ISP ISP
ISP
ISP
ISP
Vic m
ISP Vic m Service
Spoofed SRC UDP
Link
Satura on
The operator has to contact to
each ISP, and ask to filter the
DDoS packets …
Human
Interac on
Programmable IX
(PIX-IE)
ISP
ISP ISP
ISP
ISP
ISP
Vic m
ISP Vic m Service
Mi ga on
Mi ga on
Mi ga on
Mi ga on
REST API
Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu
Summary and Ongoing Work
 MATATABI: a platform for threat analysis
 Exploiting (existing) big data software
 Data collection to threat knowledge base
 Toward security information pipeline
 Enrichment of analytical results
 To policy enforcement
 Real-time analysis
30
ProtectionData Analysis
Human
Inputs

More Related Content

PPTX
Achieving Real-time Ingestion and Analysis of Security Events through Kafka a...
PPTX
Analysis of Major Trends in Big Data Analytics
PPTX
A Graph Service for Global Web Entities Traversal and Reputation Evaluation B...
PPTX
Using Apache Pulsar to Provide Real-Time IoT Analytics on the Edge
PPTX
Testistanbul 2016 - Keynote: "Performance Testing of Big Data" by Roland Leusden
PDF
MaaS (Model as a Service): Modern Streaming Data Science with Apache Metron (...
PPTX
Approaching real-time-hadoop
PDF
Bringing it All Together: Apache Metron (Incubating) as a Case Study of a Mod...
Achieving Real-time Ingestion and Analysis of Security Events through Kafka a...
Analysis of Major Trends in Big Data Analytics
A Graph Service for Global Web Entities Traversal and Reputation Evaluation B...
Using Apache Pulsar to Provide Real-Time IoT Analytics on the Edge
Testistanbul 2016 - Keynote: "Performance Testing of Big Data" by Roland Leusden
MaaS (Model as a Service): Modern Streaming Data Science with Apache Metron (...
Approaching real-time-hadoop
Bringing it All Together: Apache Metron (Incubating) as a Case Study of a Mod...

What's hot (20)

PPTX
Real time big data applications with hadoop ecosystem
PPTX
Design Patterns For Real Time Streaming Data Analytics
PPTX
Understanding apache-druid
PPTX
Data Science Crash Course
PPTX
Matching Data Intensive Applications and Hardware/Software Architectures
PDF
Scaling big-data-mining-infra2
PPTX
Druid Scaling Realtime Analytics
PDF
Energy analytics with Apache Spark workshop
PPTX
Comparing Big Data and Simulation Applications and Implications for Software ...
PPTX
Deep Learning vs. Cheap Learning
PPTX
What is the "Big Data" version of the Linpack Benchmark? ; What is “Big Data...
PDF
Testistanbul 2016 - Keynote: "Enterprise Challenges of Test Data" by Rex Black
PPTX
Improving Organizational Knowledge with Natural Language Processing Enriched ...
PPTX
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
PDF
Apache Eagle: eBay构建开源分布式实时预警引擎实践
PPTX
Apache Eagle Dublin Hadoop Summit 2016
PPTX
Apache Eagle Strata Hadoop World London 2016
PPTX
Cloud Services for Big Data Analytics
PPTX
Cloudbreak - Technical Deep Dive
PDF
Strata EU 2014: Spark Streaming Case Studies
Real time big data applications with hadoop ecosystem
Design Patterns For Real Time Streaming Data Analytics
Understanding apache-druid
Data Science Crash Course
Matching Data Intensive Applications and Hardware/Software Architectures
Scaling big-data-mining-infra2
Druid Scaling Realtime Analytics
Energy analytics with Apache Spark workshop
Comparing Big Data and Simulation Applications and Implications for Software ...
Deep Learning vs. Cheap Learning
What is the "Big Data" version of the Linpack Benchmark? ; What is “Big Data...
Testistanbul 2016 - Keynote: "Enterprise Challenges of Test Data" by Rex Black
Improving Organizational Knowledge with Natural Language Processing Enriched ...
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
Apache Eagle: eBay构建开源分布式实时预警引擎实践
Apache Eagle Dublin Hadoop Summit 2016
Apache Eagle Strata Hadoop World London 2016
Cloud Services for Big Data Analytics
Cloudbreak - Technical Deep Dive
Strata EU 2014: Spark Streaming Case Studies
Ad

Viewers also liked (19)

PPTX
Hadoop security
PPTX
Hdp security overview
PPTX
"Big Data" in the Energy Industry
PDF
Big Data: Opportunities, Strategy and Challenges
PPTX
Hadoop and Data Access Security
PDF
Hadoop Ecosystem Architecture Overview
PDF
Big Data Security Intelligence and Analytics for Advanced Threat Protection
PDF
Real time big data analytical architecture for remote sensing application
PPTX
Hadoop Security Today & Tomorrow with Apache Knox
PPTX
Big Data, Big Content, and Aligning Your Storage Strategy
DOCX
REAL-TIME BIG DATA ANALYTICAL ARCHITECTURE FOR REMOTE SENSING APPLICATION
PDF
Big Data Security and Governance
PPTX
Balancing Mobile UX & Security: An API Management Perspective Presentation fr...
PDF
Demystify big data data science
PDF
Open-BDA - Big Data Hadoop Developer Training 10th & 11th June
PPT
Mr. satish kumar, schnieder electric
PDF
Smart Analytics For The Utility Sector
PPTX
Generating Insight from Big Data in Energy and the Environment
Hadoop security
Hdp security overview
"Big Data" in the Energy Industry
Big Data: Opportunities, Strategy and Challenges
Hadoop and Data Access Security
Hadoop Ecosystem Architecture Overview
Big Data Security Intelligence and Analytics for Advanced Threat Protection
Real time big data analytical architecture for remote sensing application
Hadoop Security Today & Tomorrow with Apache Knox
Big Data, Big Content, and Aligning Your Storage Strategy
REAL-TIME BIG DATA ANALYTICAL ARCHITECTURE FOR REMOTE SENSING APPLICATION
Big Data Security and Governance
Balancing Mobile UX & Security: An API Management Perspective Presentation fr...
Demystify big data data science
Open-BDA - Big Data Hadoop Developer Training 10th & 11th June
Mr. satish kumar, schnieder electric
Smart Analytics For The Utility Sector
Generating Insight from Big Data in Energy and the Environment
Ad

Similar to MATATABI: Cyber Threat Analysis and Defense Platform using Huge Amount of Datasets (20)

PPTX
Big Data for Security - DNS Analytics
PDF
MMIX Peering Forum and MMNOG 2020: Packet Analysis for Network Security
PPTX
Open source network forensics and advanced pcap analysis
PPTX
Novetta Cyber Analytics
PPTX
Applied Detection and Analysis Using Flow Data - MIRCon 2014
PPTX
Hunting for APT in network logs workshop presentation
PPTX
Splunk Enterpise for Information Security Hands-On
PPT
Cloudslam09:Building a Cloud Computing Analysis System for Intrusion Detection
PPTX
Best practices and lessons learnt from Running Apache NiFi at Renault
PPTX
Infrastructure Tracking with Passive Monitoring and Active Probing: ShmooCon ...
PDF
technical-information-gathering-slides.pdf
PDF
IBCAST 2021: Observations and lessons learned from the APNIC Community Honeyn...
PDF
Understanding and Deploying DNSSEC, by Champika Wijayatunga [APRICOT 2015]
PDF
Next-Gen DDoS Detection
PDF
SPO2-T11_Automated-Prevention-of-Ransomware-with-Machine-Learning-and-GPOs
PDF
Automated prevention of ransomware with machine learning and gpos
PDF
SOHOpelessly Broken
PDF
Making Threat Intelligence Actionable Final
Big Data for Security - DNS Analytics
MMIX Peering Forum and MMNOG 2020: Packet Analysis for Network Security
Open source network forensics and advanced pcap analysis
Novetta Cyber Analytics
Applied Detection and Analysis Using Flow Data - MIRCon 2014
Hunting for APT in network logs workshop presentation
Splunk Enterpise for Information Security Hands-On
Cloudslam09:Building a Cloud Computing Analysis System for Intrusion Detection
Best practices and lessons learnt from Running Apache NiFi at Renault
Infrastructure Tracking with Passive Monitoring and Active Probing: ShmooCon ...
technical-information-gathering-slides.pdf
IBCAST 2021: Observations and lessons learned from the APNIC Community Honeyn...
Understanding and Deploying DNSSEC, by Champika Wijayatunga [APRICOT 2015]
Next-Gen DDoS Detection
SPO2-T11_Automated-Prevention-of-Ransomware-with-Machine-Learning-and-GPOs
Automated prevention of ransomware with machine learning and gpos
SOHOpelessly Broken
Making Threat Intelligence Actionable Final

More from APNIC (20)

PPTX
APNIC Report, presented at APAN 60 by Thy Boskovic
PDF
APNIC Update, presented at PHNOG 2025 by Shane Hermoso
PDF
RPKI Status Update, presented by Makito Lay at IDNOG 10
PDF
The Internet -By the Numbers, Sri Lanka Edition
PDF
Triggering QUIC, presented by Geoff Huston at IETF 123
PDF
DNSSEC Made Easy, presented at PHNOG 2025
PDF
BGP Security Best Practices that Matter, presented at PHNOG 2025
PDF
APNIC's Role in the Pacific Islands, presented at Pacific IGF 2205
PDF
IPv6 Deployment and Best Practices, presented by Makito Lay
PDF
Cleaning up your RPKI invalids, presented at PacNOG 35
PDF
The Internet - By the numbers, presented at npNOG 11
PDF
Transmission Control Protocol (TCP) and Starlink
PDF
DDoS in India, presented at INNOG 8 by Dave Phelan
PDF
Global Networking Trends, presented at the India ISP Conclave 2025
PDF
Make DDoS expensive for the threat actors
PDF
Fast Reroute in SR-MPLS, presented at bdNOG 19
PDF
DDos Mitigation Strategie, presented at bdNOG 19
PDF
ICP -2 Review – What It Is, and How to Participate and Provide Your Feedback
PDF
APNIC Update - Global Synergy among the RIRs: Connecting the Regions
PDF
Measuring Starlink Protocol Performance, presented at LACNIC 43
APNIC Report, presented at APAN 60 by Thy Boskovic
APNIC Update, presented at PHNOG 2025 by Shane Hermoso
RPKI Status Update, presented by Makito Lay at IDNOG 10
The Internet -By the Numbers, Sri Lanka Edition
Triggering QUIC, presented by Geoff Huston at IETF 123
DNSSEC Made Easy, presented at PHNOG 2025
BGP Security Best Practices that Matter, presented at PHNOG 2025
APNIC's Role in the Pacific Islands, presented at Pacific IGF 2205
IPv6 Deployment and Best Practices, presented by Makito Lay
Cleaning up your RPKI invalids, presented at PacNOG 35
The Internet - By the numbers, presented at npNOG 11
Transmission Control Protocol (TCP) and Starlink
DDoS in India, presented at INNOG 8 by Dave Phelan
Global Networking Trends, presented at the India ISP Conclave 2025
Make DDoS expensive for the threat actors
Fast Reroute in SR-MPLS, presented at bdNOG 19
DDos Mitigation Strategie, presented at bdNOG 19
ICP -2 Review – What It Is, and How to Participate and Provide Your Feedback
APNIC Update - Global Synergy among the RIRs: Connecting the Regions
Measuring Starlink Protocol Performance, presented at LACNIC 43

Recently uploaded (20)

PDF
Behind the Smile Unmasking Ken Childs and the Quiet Trail of Deceit Left in H...
PDF
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
DOCX
Unit-3 cyber security network security of internet system
PDF
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
PDF
Tenda Login Guide: Access Your Router in 5 Easy Steps
PPTX
Introduction to Information and Communication Technology
PPTX
artificial intelligence overview of it and more
PPTX
Internet___Basics___Styled_ presentation
PPT
tcp ip networks nd ip layering assotred slides
PDF
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
PDF
Slides PDF The World Game (s) Eco Economic Epochs.pdf
PPTX
522797556-Unit-2-Temperature-measurement-1-1.pptx
PPTX
Slides PPTX World Game (s) Eco Economic Epochs.pptx
PDF
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
PPTX
introduction about ICD -10 & ICD-11 ppt.pptx
PDF
Decoding a Decade: 10 Years of Applied CTI Discipline
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
PPTX
presentation_pfe-universite-molay-seltan.pptx
PPTX
SAP Ariba Sourcing PPT for learning material
PPTX
INTERNET------BASICS-------UPDATED PPT PRESENTATION
Behind the Smile Unmasking Ken Childs and the Quiet Trail of Deceit Left in H...
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
Unit-3 cyber security network security of internet system
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
Tenda Login Guide: Access Your Router in 5 Easy Steps
Introduction to Information and Communication Technology
artificial intelligence overview of it and more
Internet___Basics___Styled_ presentation
tcp ip networks nd ip layering assotred slides
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
Slides PDF The World Game (s) Eco Economic Epochs.pdf
522797556-Unit-2-Temperature-measurement-1-1.pptx
Slides PPTX World Game (s) Eco Economic Epochs.pptx
LABUAN4D EXCLUSIVE SERVER STAR GAMING ASIA NO.1
introduction about ICD -10 & ICD-11 ppt.pptx
Decoding a Decade: 10 Years of Applied CTI Discipline
Unit-1 introduction to cyber security discuss about how to secure a system
presentation_pfe-universite-molay-seltan.pptx
SAP Ariba Sourcing PPT for learning material
INTERNET------BASICS-------UPDATED PPT PRESENTATION

MATATABI: Cyber Threat Analysis and Defense Platform using Huge Amount of Datasets

  • 1. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu MATATABI : Cyber Threat Analysis and Defense Platform using Huge Amount of Datasets Yuji Sekiya* *The University of Tokyo, Japan
  • 2. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Multi-layer Threat Analysis Victim side action Filtering Load balancing Isolation Countermeasure for Attackers Report to ISP Announce to users Filtering at ISP level Configuration to servers Data collection at Multiple layers/locations Network device Servers Users Device Analysis Platform Analysis 1 Analysis 2 Analysis 3 Threat analysis (detection) across multiple datasources Threat Information Share Among organizations Announce to public 2
  • 3. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Security Information Pipeline  Making pipeline through divert activities  Data collection (Traffic, User behavior, etc)  Threat Analysis  Human decision  Protection (Enforcement) ProtectionData Analysis Human Inputs 3
  • 4. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Datasets 4 MATATABI Switch Router DNS Firewall SPAM Phishing Site External Information sFlow NetFlow URL SPAM Sender URL syslog querylog pcap text URL
  • 5. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Data Volume N*10GByte/day 20TB/10months Traffic sampling Packet dump E-mail DNS Web traffic 5
  • 6. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 1. Forensics : preserving log data  To keep evidences as traceable.  To analyze multi-source data exhaustively 2. Scalability : should be tolerable to huge data  To store a huge amount of datasets  To process datasets in a reasonable time 3. Real-time analysis : processing performance  Possibly real-time analysis of any datasets 4. Uniform programmability :  Various data format should be easily accessible  Various analysis program can be used Goals of MATATABI 6
  • 7. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu NECOMA ECO System Infrastructure Data End Point Data API API Analysis Module / Early Warning System API Threat Information Sharing External Knowledge DB API Crawler API External Resource (web) Infrastructure Devices End Point Devices API API Resilience Mechanism API Get external threat information Get data Put analysis results Get threat information and other results Get threat information Control infrastructure and end point devices Crawling external resource and extracting knowledge Collection Probe Collection Probe Get data Petsas et al., A Trusted Knowledge Management System for Multi-layer Threat Analysis. TRUST 14’ (poster session), June 2014 7
  • 8. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu HDFS DGA Analyzer DDoS detection Hive/ Presto Thrift Mahout Rhadoop DNS querylog dns-pcap sflow netflow spam open resolver phishing darknet topology endpoint user behavior client honeypot Hadoop Cluster API (JSON) hadoop- pcap anomaly detection (2) Data import Measurement Data (3) Analysis Module (1) Data Storage (4) MATATAPI  4 components 1) Storage 2) Data import/process module 3) Analysis module 4) Application Programming Interface (API) MATATABI Overview 8
  • 9. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Built by Open-Source Software  Actively using open-sourced software  Apace Hadoop (HDFS, MapReduce, etc)  Apache Hive (SQL-like language => distributed jobs)  Facebook Presto (Distributed SQL engine)  Apache Mahout (Machine learning library)  Apache Thrift (Language bindings)  Hadoop-pcap (pcap file parser)  Fixed issues and packaged by NECOMA  https://github.com/necoma 9
  • 10. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 1) Storage  Storing measured data to Hadoop Distributed FileSystem (HDFS)  Easily scaled-out • Data access by tools – Hive/Presto-db – Hadoop-pcap HDFS DGA Analyzer DDoS detection Hive/ Presto Thrift Mahout Rhadoop DNS querylog dns-pcap sflow netflow spam open resolver phishing darknet topology endpoint user behavior client honeypot Hadoop Cluster API (JSON) hadoop- pcap anomaly detection (2) Data import Measurement Data (3) Analysis Module (1) Data Storage (4) MATATAPI 10
  • 11. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 2) Data import module  Pre-processing measurement data • By each dataset – Raw data (e.g., pcap) – Converting to Hive tables HDFS DGA Analyzer DDoS detection Hive/ Presto Thrift Mahout Rhadoop DNS querylog dns-pcap sflow netflow spam open resolver phishing darknet topology endpoint user behavior client honeypot Hadoop Cluster API (JSON) hadoop- pcap anomaly detection (2) Data import Measurement Data (3) Analysis Module (1) Data Storage (4) MATATAPI 11
  • 12. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 3) (Threat) Analysis module  Easily implement-able  Bunch of analysis  Distributed computations (MapReduce) HDFS DGA Analyzer DDoS detection Hive/ Presto Thrift Mahout Rhadoop DNS querylog dns-pcap sflow netflow spam open resolver phishing darknet topology endpoint user behavior client honeypot Hadoop Cluster API (JSON) hadoop- pcap anomaly detection (2) Data import Measurement Data (3) Analysis Module (1) Data Storage (4) MATATAPI 12
  • 13. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 4) Application Programming Interface (API)  Export analysis results  Export dataset itself (if needed)  Implemented with n6 REST API  JSON/CSV/IODEF format HDFS DGA Analyzer DDoS detection Hive/ Presto Thrift Mahout Rhadoop DNS querylog dns-pcap sflow netflow spam open resolver phishing darknet topology endpoint user behavior client honeypot Hadoop Cluster API (JSON) hadoop- pcap anomaly detection (2) Data import Measurement Data (3) Analysis Module (1) Data Storage (4) MATATAPI 13
  • 14. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Analysis Modules (Use cases) 14 Name Datasets Frequency LoC (#lines) Remark ZeuS DGA detector DNS pcap, netflow daily 25 hadoop-pcap UDP fragmentation detector sflow daily 48 Phishing likelihood calculator Phishing URLs, Phishing content 1-shot – Mahout (RandomForest) NTP amplifier detector netflow, sflow daily 143 pyhive, Maxmind GeoIP sflow daily 24 DNS amplifier detector sflow, open resolver [19] daily 37 Anomalous heavy-hitter detector netflow, sflow daily 106 pyhive DNS anomaly detection DNS pcap, whois, malicious/legitimate domain list daily 57 hadoop-pcap, Mahout (RandomForest) SSL scan detector sflow 1-shot 36 DNS failure graph analysis DNS pcap daily 159 pyhive
  • 15. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu • Make a SQL request by Presto • Get IP addresses that sends UDP traffic on port 123 with a packet size = 468 • Packet size of Monlist reply = 468 bytes 15 Analysis Example (1) Finding NTP Amplifiers SELECT sa FROM netflow WHERE sp=123 AND pr='UDP' AND ibyt/ipkt=468 GROUP BY sa
  • 16. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu presto:default> SELECT sa FROM netflow_wide_rcfile WHERE sp=123 AND pr='UDP' AND ibyt/ipkt=468 AND dt>'20150401' GROUP BY sa; Query 20150810_090728_00174_u378i, RUNNING, 10 nodes, 845 splits 0:11 [ 457M rows, 9.8GB] [41.3M rows/s, 908MB/s] [======>>>>>> ] 14% STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE 0.........R 0 0 0B 0B 0 1 0 1.......R 1.88K 135 33.2K 2.39K 0 8 0 2.....R 457M 32.9M 9.8G 723M 622 94 120 Query 20150810_090728_00174_u378i, RUNNING, 10 nodes, 845 splits 1:05 [1.63B rows, 37.7GB] [25.2M rows/s, 596MB/s] [===========================>>>>>>>> ] 64% STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE 0.........R 0 0 0B 0B 0 1 0 1.......R 16.9K 260 299K 4.61K 0 8 0 2.....R 1.63B 25.1M 37.7G 595M 147 147 542 16 Analysis Example (1) Finding NTP Amplifiers
  • 17. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu sa ----------------- 17 Analysis Example (1) Finding NTP Amplifiers
  • 18. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 18 Analysis Example (2) Detecting DNS Amplifier Attacks Open Resolver DNS Server Attackers Spoofed Packets
  • 19. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu  Found Response with RD(Recursive Desired) flag.  Queries from Open Resolver Servers  Attempts of the Water Torture Attack select src,count(*) from dns_pcaps where dt='20150401' and dns_qr=true and dns_flags like '%rd%' and server=‘dns1-pcap’ group by src; Analysis Example (2) Detecting DNS Amplifier Attacks
  • 20. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 20 Authoritative DNS Servers Resolver DNS Server Attackers Spoofed Answers Analysis Example (3) Detecting DNS Cache Poisoning Attacks Query
  • 21. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Analysis Example (3) Detecting DNS Cache Poisoning Attacks  Normally # of query from resolver server > # of query to resolver server  Counting number of queries from resolver server  Counting number of answers to resolver server  If not, it is possibly ddos or cache poisoning attack against our DNS resolver server select floor(ts/60),count(*) from dns_pcaps where dt = '20150401’ and dns_qr=false and dns_flags not like ‘%rd%’ and server=’ns1-pcap‘ group by floor(ts/60); select floor(ts/60),count(*) from dns_pcaps where dt = '20150401’ and dns_qr=true and dns_flags like ‘%aa%’ and server=‘ns1-pcap’ group by floor(ts/60);
  • 22. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Detecting Botnet infected hosts by DGA Queries 22 • Domain Generation Algorithm (DGA) – Auto generated domain names used by botnets – Usually the names are changed in a short span – Difficult to detect botnets hosts by domain name. • ZeuS-DGA – [a-z0- 9]{32,48}.(ru|com|biz|info|o rg|net) – Example: f528764d624db129b32c21fbc a0cb8d6.com 001: gh3t852dwps7v47v4139eid62g190bjrs 002: g22tdk3q8097o97fcs0j46fe0l7wc56us 003: gj9d611364m0ysceiq0x250fm5u69zq5s : botmaster bot domain list: periodically generate 001: gh3t852dwps7v47v4139eid62g190bjrs 002: g22tdk3q8097o97fcs0j46fe0l7wc56us 003: gj9d611364m0ysceiq0x250fm5u69zq5s : domain list: periodically generate g22tdk3q8097o97fcs0j46fe0l7wc56us.ru 001.ru 001.com 002.ru
  • 23. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu  Found specific regular expression type in queries  Some botnet clients generate dynamic, randomized DNS name to contact botnet C&C servers (so called DGA) select src,dns_question from dns_pcaps where regexp_like (dns_question, '[a-z0-9]{32,48}.(ru|com|biz|info|org|net)') AND NOT regexp_like(dns_question, 'xn--') AND dt='20150401'; Analysis Example (4) Detecting DGA Queries
  • 24. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu presto:default> select src,dns_question from dns_pcaps where regexp_like (dns_question, '[a-z0- 9]{32,48}.(ru|com|biz|info|org|net)') AND NOT regexp_like(dns_question, 'xn--') AND dt>'20150401'; Query 20150810_114848_00226_u378i, RUNNING, 11 nodes, 1,435 splits 1:17 [ 123M rows, 4.15GB] [1.61M rows/s, 55.5MB/s] [ <=> ] STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE 0.........R 0 0 0B 0B 0 1 0 1.......S 123M 1.61M 4.15G 55.5M 1100 217 117 Query 20150810_115500_00228_u378i, RUNNING, 11 nodes, 143 splits 2:22 [87.4M rows, 4.73GB] [ 615K rows/s, 34.1MB/s] [========================================>>] 93% STAGES ROWS ROWS/s BYTES BYTES/s QUEUED RUN DONE 0.........R 0 0 0B 0B 0 1 0 1.......R 87.4M 615K 4.73G 34.1M 0 9 133 24 Analysis Example (4) Detecting DGA Queries
  • 25. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu 2001:XXXX:1d8:0:0:0:0:106 | cg79wo20kl92doowfn01oqpo9mdieowv5tyj. 0 IN A 2001:XXXX:0:1:0:0:0:f | cg79wo20kl92doowfn01oqpo9mdieowv5tyj.com. 0 IN A 157.XXX.234.35 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A 133.XXX.127.131 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A 23.XXX.104.44 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A 133.XXX.124.164 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN A 157.XXX.234.35 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA 133.XXX.127.131 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA 23.XXX.111.231 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA 133.XXX.124.164 | 96e4c3658d4cb4b559057995ae5a382c.com. 0 IN AAAA 157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 173.XXX.59.40 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 192.XXX.79.30 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 185.XXX.155.12 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 157.XXX.193.67 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.127.131 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 173.XXX.58.45 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 133.XXX.124.164 | bf3b6eb48a734f3abae02ae1d7ff62e7.com. 0 IN A 25 Analysis Example (4) Detecting DGA Queries
  • 26. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Movie : Zeus-DGA Analysis 26
  • 27. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Visualization of Zeus DGA and Botnet  2015/07/01 – 2015/07/05  The number of the most active DGA query is 23  Related traffic flows from netflow datasets. 27
  • 28. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Visualization : Zeus-DGA Distribution 28
  • 29. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu One of Protection Methods  SDN IX (PIX-IE)  Programmable IX in Edo : PIX-IE  Mitigating and filtering suspicious flows at IX  IX is a public space in the Internet  Before link saturation, an ISP operator can stop DDoS flows 29 Programmable IX (PIX-IE) ISP ISP ISP ISP ISP ISP Vic m ISP Vic m Service Spoofed SRC UDP Link Satura on The operator has to contact to each ISP, and ask to filter the DDoS packets … Human Interac on Programmable IX (PIX-IE) ISP ISP ISP ISP ISP ISP Vic m ISP Vic m Service Mi ga on Mi ga on Mi ga on Mi ga on REST API
  • 30. Yuji Sekiya <sekiya@wide.ad.jp> www.necoma-project.eu Summary and Ongoing Work  MATATABI: a platform for threat analysis  Exploiting (existing) big data software  Data collection to threat knowledge base  Toward security information pipeline  Enrichment of analytical results  To policy enforcement  Real-time analysis 30 ProtectionData Analysis Human Inputs

Editor's Notes

  • #3: セキュリティ情報のパイプライン構築
  • #8: Controlling several pieces of network components (measurements, analysis, endpoints, others actiivties) via Threat Information sharing (NECOMAtter)
  • #16: netflowテーブルスキーマの説明