SlideShare a Scribd company logo
2
Most read
Compressibility factor, Z, of real gas using the Redlich-Kwong equation of state
by Julio C. Banks, P. E.
Consultant
The Redlich-Kwong equation of state can be rearranged [1] to yield a two-equation set
The use of these equations is illustrated via the following three (3) examples.
Example 2.7 [Reference 2, page 26] Calculate the compressiblility factor, Z, of steam using the 

Redlich-Kwong equation of state. 

T :=773 K
T c :=647.3 (Critical Temperature of steam) Pc 22.09,106
(Critical Pressure of steam)
(Reduced Temperature of steam) (Reduced Pressure of steam)
Guess: Z 1 Given 

Z-ZRK(PR' TR,Z) 

Z(PR,TR)' Find(Z) 

Therefore the compressiblility factor, Z, of steam using the Redlich-Kwong equation ofstate is
Where PR =0.362 and TR = 1.194
Solved Problem 2.8 [Reference 2, page 28] Calculate the compressiblility factor, Z, and corresponding
temperature, T of steamusing the Redlich-Kwong equation of state.
P :=3.998.105
Pa v := 1.541 m3/kg R. 461.9 joule/kg
Guess: Z 1 and T 1.334.103
K (guess from ideal-gas law)
P T
(Reduced Pressure of steam) TR :=r (Reduced Temperature of steam)
c c
P
c: --'v Given
R·T c
(Z) (0.999)
TR 2.062
Postprocess: T = 1.334-103
K
Julio C. Banks, P.E. ZRK.MCD Page 1
Solved Problem 3.2 [Reference 2, page 42] Calculate the compressiblility factor, Z, and corresponding
temperature, T of steamusing the Redlich-Kwong equation of state.
T :=673 K v:=0.458 m3/kg
Guess: Z and P :=678.7.103
Pa (from the ideal-gas equation)
PR'
P
-
Pc
(Reduced Pressure of steam) T R
T
c
(Reduced Temperature of steam)
P = 6.787-105
Pa
Given
Z=ZRK(PR,TR'Z)
Z ) = (0.991 )
(pZR)· Find(Z,PR) (PR 0.03)
Postprocess: P = 6.724-105
Pa
Reference
1. Kenneth Wark, Jr. ''Thermodynamics''. 5th Edition, Pages 479, and 837
2. M. C. Potter, C. W. Somerton. "Engineering Thermodynamics", Pages 26, 28, 42.
Julio C. Banks, P.E. ZRK.MCD Page 2
6-16 THERMODYNAMICS
(0..
~
U
N
1~
1.10
1.00
0.90
0.80
~70
0."
0.40
0.30
I ~-t---+---+----t----t----t---;----f---+---+---+---I----+T/T
c
_ 3.50 __- _--.:::; ______-
- -­ ---­__ --_--­ ::-':;:::"JJil~~- "'::'F::'"::.--...~~
/ X ,~ .().::~
~~-r---r---r---r--~--~--~--+---+---+---+---~--~~--~
",/,, /' /"'6~i"""
" /~L~~~~~~--~--~---T---r---r---r--~--~--~--+---+---+---+---+-~
v / i~~ ~~--+---+---~---r---+--~--~~--+---4---~--~--~---4----~--+-~
",,' ..........Ki1';~ ~--r--+--+-~--~--r--r--+-~--~__~~--+--4--4-~
0~0~--~--~1~~--~~L~0--~--~3~----~--4~.0--~--~~~0--~---~~0--~----7L.0--~--~aO--~~--9~.0--~---1~~0
PIPe
Figure 6.11 Compresslblllty Factors for.Low P.ressure~
As originally presented by Professor Edward F. Obert and L.C. Nelson In "Generallzed P-V-T Properties of
Gases," ASME Trans~ctlons, 76,1057 (1954).
4.0
3~
2.0
1.0
!
m"''-'!. :::;;~ t::::~
1""", :::;~ :::;:."~
..... !!::: fO":..-
~~
....~
~~m
-~~~--
T I I I
10 15 20
i~~
~!"'"
-.....
".
'" "",~
'" ",~ ...-: i'. ~...t;: ...
....~ ;"':10-'
~~ ~ ,,~
.....~""."
~~
"""""""
I!::i ..-: .......
~ ...~ ...~
...~ !"'"
-
~;..!-"
- !--
....'-10-1-1--
"""~
ier.;.. ~~~~,.
:= i' ,-,"'" ~
i' i' "",'r' 1,.0' ....
""'"
i'
"""
iooo'" ... t!-.
~.~,," io'" "",i' ~ ':';[}," ...t!.
11~:.t'~~.,,.'...'rt ... ~~
~'
~ "" ..~<;" ""'.... ""'.... ~
io'" i' ". i'I"~~
"'"'r's~
'r'
i' ~~~11' ".' "","'"r. ... .n t::~"'"
'" ....
-::::I~ 1""", ""'"", '"....,.I"" ".
, , ~
~.)..
~
"'"
~;;;"";~)l "-f--
~ .~ ... ".~."" .... ;.,.
,.~ , ....I;"~
""'~
t...-"I;" i' ~r:;.;""
~ ~~ ....~ -"'! ....
""""'"
1;" .... ~I"'" ,""
I;'r':..-
""-i' :..-... ~P.:~
.......-'te'-:::'i--:;;""~ i..o..,.. ....
......... ....""....
.... ~I-'"
=•
20'S
.....1-~
-~.....
", .... ""." "","
, ....."" , ....
:;,;;.... ,,~
"'".-""....~:::'f-, ....
""..... ~~
........ .-~;... ....
..,..........
10- ....
'- --.....~
I
-I-~
I-"'n
'-l-
30
~I~
"" ........
..... .~
.... 'f:':-A ,- -.
I..., ~1Jr- ~ ....""
f"" .... 'til,,,!""'-
14,- .......::
i..o"" 1--
~~I-'"
....i2-5(''''
11'.boo.
,-Io-~ ,-I- -I-'"
~
:::~
~.~ 0' _....~-I-
j)j i-
.- ...-'-'
--..., ...n
=F(." .A
V<Vc T)JO.
I I
35
PIP.,.
Figure 8.12 Compresslbll1ty Factors for HIgh - Pressures
Z.cpp
#pragma hdrstop
#include <condefs.h>
#include <iostream.h>
#include <math.h>
#include <conio.h>
#include <iomanip.h>
/
#pragma argsused
int main(int argc, char **argv)
{
float Pr = 1.0, //Reduced Pressure 

Tr = 1.0, //Reduced Temperature 

A, B, 

Tol 0.00005, 

Zi 0.6 

Dz 1.0 

C O. 

FO O. 

dFOdZ O. 

Zj 1.0
int 	i 1;
A 0.0867*Pr/Tr;
B 4.934/pow(Tr,1.5);
if ((1.0 <= Pr && Pr <= 3.0) && (1.0 <= Tr && Pr <= 1.125)) Zi 0
.35;
while (Dz > Tol)
{ C B/(A + Zi);
FO 1.0 - Zi + A*(1.0 - C*(1.0 - A/Zi));
dFOdZ A*C*(1.0 - A*(2.0*Zi + A)/pow(Zi,2))/(A + Zi} - 1.0;
Zj Zi - FO/dFOdZ;
Dz abs(Zj - Zi);
i += 1;
cout « "Compressibility Factor of Air" « endl; 

cout « "Solution Converged in " « i « " iterations" 

« endl « endl; 

cout « setiosflags(ios::fixed ios::showpoint) 

« setprecision(4); 

cout « "Pr " « Pr « endl; 

cout « "Tr = " « Tr « endl « endl; 

cout « " Z = " « setw(6)« Zj « endl;
cout « endl; 

cout « endl « "Press any key to continue . .. " ,. 

getch(); 

return 0;
Page 1

More Related Content

PPTX
Bessel equation
PDF
Interference
PDF
Numerical Methods: curve fitting and interpolation
PPTX
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
PPT
Ch05 4
PPT
Solution combustion method for syntheis of nano particles
PDF
Sommerfeld corrections to Bohr model.pdf
PDF
Nuclear rections ppt
Bessel equation
Interference
Numerical Methods: curve fitting and interpolation
Air- and water-stable halide perovskite nanocrystals protected with nearly-mo...
Ch05 4
Solution combustion method for syntheis of nano particles
Sommerfeld corrections to Bohr model.pdf
Nuclear rections ppt

What's hot (20)

PPT
3.magnetic materials 1dkr
PPT
Course dielectric materials
DOCX
Projekt kursi shperndarje dhe perdorimi i energjise elektrike
PPTX
PDF
UV PES.pdf
PPT
Practical Applications of Bessel's function
PPT
Active methods of neutron detection
PPTX
High resolution electron energy loss spectroscopy
PPTX
weiss theory of ferromagnetism and curie law modification.pptx
PDF
1.Metode Numerik Interpolasi.pdf
PDF
Tensor 1
PPTX
Neutron scattering from nanoparticles
PPTX
Proportional counter
PDF
X ray Photoelectron Spectroscopy (XPS)
PPTX
Radiometric titrations and radio-release methods
PDF
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
PPTX
Topic: Fourier Series ( Periodic Function to change of interval)
PDF
PPTX
Infrared spectroscopy
PDF
cylinderical and sperical co ordinate systems
3.magnetic materials 1dkr
Course dielectric materials
Projekt kursi shperndarje dhe perdorimi i energjise elektrike
UV PES.pdf
Practical Applications of Bessel's function
Active methods of neutron detection
High resolution electron energy loss spectroscopy
weiss theory of ferromagnetism and curie law modification.pptx
1.Metode Numerik Interpolasi.pdf
Tensor 1
Neutron scattering from nanoparticles
Proportional counter
X ray Photoelectron Spectroscopy (XPS)
Radiometric titrations and radio-release methods
Numerical Method Analysis: Algebraic and Transcendental Equations (Non-Linear)
Topic: Fourier Series ( Periodic Function to change of interval)
Infrared spectroscopy
cylinderical and sperical co ordinate systems
Ad

Viewers also liked (12)

PPT
Advance thermodynamics
PPTX
Thermodynamics
PDF
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
PDF
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
PDF
04 part1 general thermodynamic properties
PPT
Thermodynamics relations
PDF
Estimating Different Thermodynamic Relations using RKS equation
PDF
chapter 4 first law of thermodynamics thermodynamics 1
PDF
Advanced Chemical Engineering Thermodynamics-31-July-2016
PDF
191019853 solucionario-2520-2520 wark-2520termodinamica-2520oficial-5b1-5d
PDF
Problemas resueltos termodinmica
PDF
Problemas calor trabajo primera ley
Advance thermodynamics
Thermodynamics
Easy thermodynamics calculations with Simulis Thermodynamics from ProSim
124675104 termodinamica-6ta-edicion-kenneth-wark-jr-donald-e-richards
04 part1 general thermodynamic properties
Thermodynamics relations
Estimating Different Thermodynamic Relations using RKS equation
chapter 4 first law of thermodynamics thermodynamics 1
Advanced Chemical Engineering Thermodynamics-31-July-2016
191019853 solucionario-2520-2520 wark-2520termodinamica-2520oficial-5b1-5d
Problemas resueltos termodinmica
Problemas calor trabajo primera ley
Ad

Similar to Math cad compressibility factor, z, of real gas using the redlich-kwong equation of state (8)

PDF
Redlich,1975
PDF
Redlich kwong, 1949
PDF
Soave1972
PDF
Separation Process Engineering 4th Edition by Phillip Wankat – Comprehensive ...
PDF
Pipeline engineering gas
PDF
Cooling tower sollution in power plant
PDF
Thermodynamics Hw#4
PDF
2 10 How Are P And T Related
Redlich,1975
Redlich kwong, 1949
Soave1972
Separation Process Engineering 4th Edition by Phillip Wankat – Comprehensive ...
Pipeline engineering gas
Cooling tower sollution in power plant
Thermodynamics Hw#4
2 10 How Are P And T Related

More from Julio Banks (20)

PDF
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdf
PDF
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
PDF
MathCAD - Synchronicity Algorithm.pdf
PDF
Sharing the gospel with muslims
PDF
Mathcad explicit solution cubic equation examples
PDF
Math cad prime the relationship between the cubit, meter, pi and the golden...
PDF
Mathcad day number in the year and solar declination angle
PDF
Transcript for abraham_lincoln_thanksgiving_proclamation_1863
PDF
Thanksgiving and lincolns calls to prayer
PDF
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
PDF
Man's search-for-meaning-viktor-frankl
PDF
Love versus shadow self
PDF
Exposing the truth about the qur'an
PDF
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
PDF
Mathcad P-elements linear versus nonlinear stress 2014-t6
PDF
Apologia - The martyrs killed for clarifying the bible
PDF
Apologia - Always be prepared to give a reason for the hope that is within yo...
PDF
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasser
PDF
The “necessary observer” that quantum mechanics require is described in the b...
PDF
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
MathCAD - Synchronicity Algorithm.pdf
Sharing the gospel with muslims
Mathcad explicit solution cubic equation examples
Math cad prime the relationship between the cubit, meter, pi and the golden...
Mathcad day number in the year and solar declination angle
Transcript for abraham_lincoln_thanksgiving_proclamation_1863
Thanksgiving and lincolns calls to prayer
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
Man's search-for-meaning-viktor-frankl
Love versus shadow self
Exposing the truth about the qur'an
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
Mathcad P-elements linear versus nonlinear stress 2014-t6
Apologia - The martyrs killed for clarifying the bible
Apologia - Always be prepared to give a reason for the hope that is within yo...
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasser
The “necessary observer” that quantum mechanics require is described in the b...
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka

Recently uploaded (20)

PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Current and future trends in Computer Vision.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
UNIT - 3 Total quality Management .pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT
Total quality management ppt for engineering students
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Fundamentals of safety and accident prevention -final (1).pptx
Safety Seminar civil to be ensured for safe working.
Current and future trends in Computer Vision.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
III.4.1.2_The_Space_Environment.p pdffdf
UNIT - 3 Total quality Management .pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Abrasive, erosive and cavitation wear.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Total quality management ppt for engineering students
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
Visual Aids for Exploratory Data Analysis.pdf
Automation-in-Manufacturing-Chapter-Introduction.pdf
Exploratory_Data_Analysis_Fundamentals.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF

Math cad compressibility factor, z, of real gas using the redlich-kwong equation of state

  • 1. Compressibility factor, Z, of real gas using the Redlich-Kwong equation of state by Julio C. Banks, P. E. Consultant The Redlich-Kwong equation of state can be rearranged [1] to yield a two-equation set The use of these equations is illustrated via the following three (3) examples. Example 2.7 [Reference 2, page 26] Calculate the compressiblility factor, Z, of steam using the Redlich-Kwong equation of state. T :=773 K T c :=647.3 (Critical Temperature of steam) Pc 22.09,106 (Critical Pressure of steam) (Reduced Temperature of steam) (Reduced Pressure of steam) Guess: Z 1 Given Z-ZRK(PR' TR,Z) Z(PR,TR)' Find(Z) Therefore the compressiblility factor, Z, of steam using the Redlich-Kwong equation ofstate is Where PR =0.362 and TR = 1.194 Solved Problem 2.8 [Reference 2, page 28] Calculate the compressiblility factor, Z, and corresponding temperature, T of steamusing the Redlich-Kwong equation of state. P :=3.998.105 Pa v := 1.541 m3/kg R. 461.9 joule/kg Guess: Z 1 and T 1.334.103 K (guess from ideal-gas law) P T (Reduced Pressure of steam) TR :=r (Reduced Temperature of steam) c c P c: --'v Given R·T c (Z) (0.999) TR 2.062 Postprocess: T = 1.334-103 K Julio C. Banks, P.E. ZRK.MCD Page 1
  • 2. Solved Problem 3.2 [Reference 2, page 42] Calculate the compressiblility factor, Z, and corresponding temperature, T of steamusing the Redlich-Kwong equation of state. T :=673 K v:=0.458 m3/kg Guess: Z and P :=678.7.103 Pa (from the ideal-gas equation) PR' P - Pc (Reduced Pressure of steam) T R T c (Reduced Temperature of steam) P = 6.787-105 Pa Given Z=ZRK(PR,TR'Z) Z ) = (0.991 ) (pZR)· Find(Z,PR) (PR 0.03) Postprocess: P = 6.724-105 Pa Reference 1. Kenneth Wark, Jr. ''Thermodynamics''. 5th Edition, Pages 479, and 837 2. M. C. Potter, C. W. Somerton. "Engineering Thermodynamics", Pages 26, 28, 42. Julio C. Banks, P.E. ZRK.MCD Page 2
  • 3. 6-16 THERMODYNAMICS (0.. ~ U N 1~ 1.10 1.00 0.90 0.80 ~70 0." 0.40 0.30 I ~-t---+---+----t----t----t---;----f---+---+---+---I----+T/T c _ 3.50 __- _--.:::; ______- - -­ ---­__ --_--­ ::-':;:::"JJil~~- "'::'F::'"::.--...~~ / X ,~ .().::~ ~~-r---r---r---r--~--~--~--+---+---+---+---~--~~--~ ",/,, /' /"'6~i""" " /~L~~~~~~--~--~---T---r---r---r--~--~--~--+---+---+---+---+-~ v / i~~ ~~--+---+---~---r---+--~--~~--+---4---~--~--~---4----~--+-~ ",,' ..........Ki1';~ ~--r--+--+-~--~--r--r--+-~--~__~~--+--4--4-~ 0~0~--~--~1~~--~~L~0--~--~3~----~--4~.0--~--~~~0--~---~~0--~----7L.0--~--~aO--~~--9~.0--~---1~~0 PIPe Figure 6.11 Compresslblllty Factors for.Low P.ressure~ As originally presented by Professor Edward F. Obert and L.C. Nelson In "Generallzed P-V-T Properties of Gases," ASME Trans~ctlons, 76,1057 (1954). 4.0 3~ 2.0 1.0 ! m"''-'!. :::;;~ t::::~ 1""", :::;~ :::;:."~ ..... !!::: fO":..- ~~ ....~ ~~m -~~~-- T I I I 10 15 20 i~~ ~!"'" -..... ". '" "",~ '" ",~ ...-: i'. ~...t;: ... ....~ ;"':10-' ~~ ~ ,,~ .....~""." ~~ """"""" I!::i ..-: ....... ~ ...~ ...~ ...~ !"'" - ~;..!-" - !-- ....'-10-1-1-- """~ ier.;.. ~~~~,. := i' ,-,"'" ~ i' i' "",'r' 1,.0' .... ""'" i' """ iooo'" ... t!-. ~.~,," io'" "",i' ~ ':';[}," ...t!. 11~:.t'~~.,,.'...'rt ... ~~ ~' ~ "" ..~<;" ""'.... ""'.... ~ io'" i' ". i'I"~~ "'"'r's~ 'r' i' ~~~11' ".' "","'"r. ... .n t::~"'" '" .... -::::I~ 1""", ""'"", '"....,.I"" ". , , ~ ~.).. ~ "'" ~;;;"";~)l "-f-- ~ .~ ... ".~."" .... ;.,. ,.~ , ....I;"~ ""'~ t...-"I;" i' ~r:;.;"" ~ ~~ ....~ -"'! .... """"'" 1;" .... ~I"'" ,"" I;'r':..- ""-i' :..-... ~P.:~ .......-'te'-:::'i--:;;""~ i..o..,.. .... ......... ...."".... .... ~I-'" =• 20'S .....1-~ -~..... ", .... ""." ""," , ....."" , .... :;,;;.... ,,~ "'".-""....~:::'f-, .... ""..... ~~ ........ .-~;... .... ..,.......... 10- .... '- --.....~ I -I-~ I-"'n '-l- 30 ~I~ "" ........ ..... .~ .... 'f:':-A ,- -. I..., ~1Jr- ~ ...."" f"" .... 'til,,,!""'- 14,- .......:: i..o"" 1-- ~~I-'" ....i2-5('''' 11'.boo. ,-Io-~ ,-I- -I-'" ~ :::~ ~.~ 0' _....~-I- j)j i- .- ...-'-' --..., ...n =F(." .A V<Vc T)JO. I I 35 PIP.,. Figure 8.12 Compresslbll1ty Factors for HIgh - Pressures
  • 4. Z.cpp #pragma hdrstop #include <condefs.h> #include <iostream.h> #include <math.h> #include <conio.h> #include <iomanip.h> / #pragma argsused int main(int argc, char **argv) { float Pr = 1.0, //Reduced Pressure Tr = 1.0, //Reduced Temperature A, B, Tol 0.00005, Zi 0.6 Dz 1.0 C O. FO O. dFOdZ O. Zj 1.0 int i 1; A 0.0867*Pr/Tr; B 4.934/pow(Tr,1.5); if ((1.0 <= Pr && Pr <= 3.0) && (1.0 <= Tr && Pr <= 1.125)) Zi 0 .35; while (Dz > Tol) { C B/(A + Zi); FO 1.0 - Zi + A*(1.0 - C*(1.0 - A/Zi)); dFOdZ A*C*(1.0 - A*(2.0*Zi + A)/pow(Zi,2))/(A + Zi} - 1.0; Zj Zi - FO/dFOdZ; Dz abs(Zj - Zi); i += 1; cout « "Compressibility Factor of Air" « endl; cout « "Solution Converged in " « i « " iterations" « endl « endl; cout « setiosflags(ios::fixed ios::showpoint) « setprecision(4); cout « "Pr " « Pr « endl; cout « "Tr = " « Tr « endl « endl; cout « " Z = " « setw(6)« Zj « endl; cout « endl; cout « endl « "Press any key to continue . .. " ,. getch(); return 0; Page 1