SlideShare a Scribd company logo
Math for 800   07 powers, roots and sequences
edwinxav@hotmail.com 
elapuerta@hotmail.com
CONTENTS
POWERS
Math for 800   07 powers, roots and sequences
1 
2 
3 
... n 
n times 
a a 
a a a 
a a a a 
a a a a a 
 
  
   
     
EXPONENTS 
Square 
Cube
Math for 800   07 powers, roots and sequences
0 a 1, when a  0 
ZERO EXPONENT 
0 
0 
0 
2 1 
5 1 
1 
1 
4 
 
 
  
   
 
when: 
 
 , and n is even 
0 n a  
a  0 
a  0 
PROPERTIES OF THE 
EXPONENTS 
  
  
  
4 
3 
4 
2 16 
2 8 
2 16 
 
 
 
when: 
 , and n is odd 
0 n a  
a  0 
PROPERTIES OF THE 
EXPONENTS 
  
  
3 
3 
2 8 
3 27 
   
  
even 
odd 
positive positive 
positive positive 
 
 
even 
odd 
negative positive 
negative negative 
 
 
ODD/EVEN EXPONENTS 
4 
5 
2 16 
2 32 
 
 
  
  
4 
5 
2 16 
2 32 
  
  
 , when n > 0 
 is undefined 
0n  
0 0 n  
0 0 
POWERS OF ZERO
2 m m m a  a  a 
ADDITION OF POWERS 
3 3 3 a  a  2a 
2 2 2 3a  5a  8a
 m m m a  b  a  b 
If a  0, b  0, and m  1, then 
 2 2 2 a  b  a  b
0 m m a  a  
SUBTRACTION OF 
POWERS 
3 3 a  a  0 
2 2 2 7a  4a  3a
 m m m a b  a b 
If a  0, b  0, a  b, and m  1, then 
 3 3 3 a b  a b
m n m n a a a    
MULTIPLICATION OF 
POWERS 
23 24  27 
    7 2 2 2  2 2 2 2  2
7 
4 
3 
2 
2 
2 
 
DIVISION OF POWERS 
m 
m n 
n 
a 
a 
a 
  
4 2 2 2 2 2 2 2 
2 2 2 2 2 
2 2 2 
      
     
 
k 1 k a a a    1 
k 
k a 
a 
a 
  
MULTIPLICATION/DIVISION 
OF POWERS
 n 
m m n a a  
POWERS TO A POWER 
 4 
23  212 
          4 
12 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 
              

 m m m ab  a b 
POWER OF A PRODUCTS 
 2 2 2 23  2 3 
      2 
2 2 
2 3 2 3 2 3 
2 3 
     
 
 p 
m n mp np a b  a b 
 2 
4 5 8 10 2 3  2 3 
      2 
4 5 4 5 4 5 
4 5 4 5 
8 10 
2 3 2 3 2 3 
2 3 2 3 
2 3 
     
    
 
2 2 
2 
3 3 
4 4 
  
   
  
POWER OF QUOTIENTS 
m m 
m 
a a 
b b 
  
   
  
2 2 
2 
3 3 3 3 
4 4 4 4 
      
       
     
n a  
1 1 
n 
n 
n a 
a a 
   
   
  
1 n 
n a 
a  
NEGATIVE EXPONENTS 
3 
3 
1 
2 
2 
  
3 
3 
1 
2 
2 
NEGATIVE EXPONENTS 
1nnaa 
POWERS
Edwin Lapuerta, May 2014 
ROOTS
Math for 800   07 powers, roots and sequences
3 
... n 
n times 
b a a a b 
c a a a a c 
d a a a a a d 
    
     
       
ROOTS 
Square root 
Cubic root
Math for 800   07 powers, roots and sequences
a b a b 
a b a b 
   
   
ADDITION/SUSTRACTION 
OF ROOTS 
9 16 9 16 
25 16 25 16 
   
  
a b ab 
ab a b 
  
  
MULTIPLYING ROOTS 
4 9 36 6 
36 4 9 4 9 6 
   
    
a a 
b b 
a a 
b b 
 
 
DIVIDING ROOTS 
36 36 
2 
9 9 
36 36 
2 
9 9 
  
 
a a b 
b b b 
a b 
b 
  
 
RATIONALIZATION 
2 2 3 
3 3 3 
2 3 
3 
  

1 
m 
n n m 
n n 
a a 
a a 
 
 
FRACTIONAL EXPONENT 
2 
3 3 2 
1 
2 2 1 
8 8 4 
9 9 9 3 
  
  
  
1 
1 
n 
n 
n n 
a a 
a a 
  
   
  
 
If a ≥ 0 
FRACTIONAL EXPONENT 
  
3 
1 
3 
1 
3 3 
2 2 
2 2 
  
   
  

 n 
n 
n n 
a a 
a a 
 
 
If a ≥ 0 
FRACTIONAL EXPONENT 
 3 
3 
3 3 
2 2 
2 2 
 

m n m n 
m n n m 
a a 
a a 
 
 
If a ≥ 0 
ROOT OF A ROOT 
2 3 2 3 6 
2 3 3 2 6 
64 64 64 2 
64 64 64 2 
   
  
ROOTS
SOLVING EXPONENTIAL EQUATIONS 
If ax= ay, then x= y( a≠ 0 and a≠ 1).
EXPONENTIAL EQUATIONS
SEQUENCES
Math for 800   07 powers, roots and sequences
SEQUENCE 
The first term of a sequence is represented by a1, the second term a2, and so on to the nth term, an.
2 1 1 2 ..., , , , , ,... n n n n n a a a a a     
SEQUENCE 
..., a2 , a3, a4 , a5 , a6 , ...
ARITHMETIC SEQUENCES 
A sequence in which each term, after the first, if found by adding a constant, called the common difference, to the previous term. 
2, 5, 8, 11, 14, …
2 
5 
8 
11 
14 
a1 
a2 
a3 
a4 
a5 
2, 5, 8, 11, 14, …
  1 1 1 1 1 
1 2 3 4 
, , 2 , 3 ,..., 1 
, , , ,..., n 
a a d a d a d a n d 
a a a a a 
     
2, 5, 8, 11, 14, … 
an  a1 n 1d
Math for 800   07 powers, roots and sequences
Math for 800   07 powers, roots and sequences
GEOMETRIC SEQUENCES 
A sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio. 
2, 6, 18, 54, 162, …
a1 
a2 
a3 
a4 
a5 
2, 6, 18, 54, 162, …
2 3 1 
1 1 1 1 1 
1 3 3 4 
, , , ,..., 
, , , ,..., 
n 
n 
a a r a r a r a r 
a a a a a 
     
2, 6, 18, 54, 162, … 
1 
1 
n 
n a a r   
Apple Inc. Cash Growth 
BullishCross 2013 Outlook 
(in millions)
ARITHMETIC AND GEOMETRIC SEQUENCES
Math for 800   07 powers, roots and sequences
Math for 800   07 powers, roots and sequences
SEQUENCES
SUMMARY
edwinxav@hotmail.com 
elapuerta@hotmail.com
Math for 800   07 powers, roots and sequences

More Related Content

PPTX
Presentacion final X-house (año 2009)
PDF
Math for 800 04 integers, fractions and percents
PDF
Math for 800 11 quadrilaterals, circles and polygons
PDF
4 ESO Academics - UNIT 02 - POWERS, ROOTS AND LOGARITHMS
PPTX
Fractions ppt
PDF
Math for 800 05 ratios, rates and proportions
PDF
Math for 800 09 functions
PPSX
Alice In Wonderland Figerative Language
Presentacion final X-house (año 2009)
Math for 800 04 integers, fractions and percents
Math for 800 11 quadrilaterals, circles and polygons
4 ESO Academics - UNIT 02 - POWERS, ROOTS AND LOGARITHMS
Fractions ppt
Math for 800 05 ratios, rates and proportions
Math for 800 09 functions
Alice In Wonderland Figerative Language

Viewers also liked (11)

PPSX
Alice In Wonderland (Pp Tminimizer) (1)
PPTX
Alice in wonderland
PPTX
Alice in Wonderland
PPT
Alice in Wonderland
PPTX
Understanding Fractions
PPTX
Fractions
PPTX
Fractions lesson3 4
PPT
Fractions Power Point
PPT
Alice In Wonderland Powerpoint
PPT
Fractions
PDF
GMAT Math Flashcards
Alice In Wonderland (Pp Tminimizer) (1)
Alice in wonderland
Alice in Wonderland
Alice in Wonderland
Understanding Fractions
Fractions
Fractions lesson3 4
Fractions Power Point
Alice In Wonderland Powerpoint
Fractions
GMAT Math Flashcards
Ad

Similar to Math for 800 07 powers, roots and sequences (20)

PPT
Chapter4.3
PPT
Exponents
PPTX
PPT
Exponents and powers by arjun rastogi
PPT
9 2power Of Power
DOC
Unit 2 powers
PDF
Working with exponents unit
DOCX
Digital textbook -EXPONENTS AND POWERS
PPT
Mathtest 01
PPTX
laws_of_exponents.pptx
PPTX
ppt /exp.pptx/ NCERT based /Class 8/2024
PPT
Law_of_Exponents_Grade7 Final Presentation
PPT
Exponents Intro with Practice.ppt
PPT
8 2power Of Power
DOCX
Chapter 1
PPTX
Radical and exponents (2)
PPTX
Exponent properties
PPTX
MATHS Chap 2 (System of Real no,Exponents,Radicals)).pptx
PPT
Power Laws
PPT
Laws of Exponents
Chapter4.3
Exponents
Exponents and powers by arjun rastogi
9 2power Of Power
Unit 2 powers
Working with exponents unit
Digital textbook -EXPONENTS AND POWERS
Mathtest 01
laws_of_exponents.pptx
ppt /exp.pptx/ NCERT based /Class 8/2024
Law_of_Exponents_Grade7 Final Presentation
Exponents Intro with Practice.ppt
8 2power Of Power
Chapter 1
Radical and exponents (2)
Exponent properties
MATHS Chap 2 (System of Real no,Exponents,Radicals)).pptx
Power Laws
Laws of Exponents
Ad

Recently uploaded (20)

PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Computing-Curriculum for Schools in Ghana
PDF
Trump Administration's workforce development strategy
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Updated Idioms and Phrasal Verbs in English subject
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Microbial disease of the cardiovascular and lymphatic systems
A systematic review of self-coping strategies used by university students to ...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Final Presentation General Medicine 03-08-2024.pptx
Final Presentation General Medicine 03-08-2024.pptx
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Chinmaya Tiranga quiz Grand Finale.pdf
Microbial diseases, their pathogenesis and prophylaxis
Computing-Curriculum for Schools in Ghana
Trump Administration's workforce development strategy
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Cell Structure & Organelles in detailed.
What if we spent less time fighting change, and more time building what’s rig...
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Updated Idioms and Phrasal Verbs in English subject
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

Math for 800 07 powers, roots and sequences

  • 6. 1 2 3 ... n n times a a a a a a a a a a a a a a            EXPONENTS Square Cube
  • 8. 0 a 1, when a  0 ZERO EXPONENT 0 0 0 2 1 5 1 1 1 4         
  • 9. when:   , and n is even 0 n a  a  0 a  0 PROPERTIES OF THE EXPONENTS       4 3 4 2 16 2 8 2 16    
  • 10. when:  , and n is odd 0 n a  a  0 PROPERTIES OF THE EXPONENTS     3 3 2 8 3 27      
  • 11. even odd positive positive positive positive   even odd negative positive negative negative   ODD/EVEN EXPONENTS 4 5 2 16 2 32       4 5 2 16 2 32     
  • 12.  , when n > 0  is undefined 0n  0 0 n  0 0 POWERS OF ZERO
  • 13. 2 m m m a  a  a ADDITION OF POWERS 3 3 3 a  a  2a 2 2 2 3a  5a  8a
  • 14.  m m m a  b  a  b If a  0, b  0, and m  1, then  2 2 2 a  b  a  b
  • 15. 0 m m a  a  SUBTRACTION OF POWERS 3 3 a  a  0 2 2 2 7a  4a  3a
  • 16.  m m m a b  a b If a  0, b  0, a  b, and m  1, then  3 3 3 a b  a b
  • 17. m n m n a a a    MULTIPLICATION OF POWERS 23 24  27     7 2 2 2  2 2 2 2  2
  • 18. 7 4 3 2 2 2  DIVISION OF POWERS m m n n a a a   4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2             
  • 19. k 1 k a a a    1 k k a a a   MULTIPLICATION/DIVISION OF POWERS
  • 20.  n m m n a a  POWERS TO A POWER  4 23  212           4 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               
  • 21.  m m m ab  a b POWER OF A PRODUCTS  2 2 2 23  2 3       2 2 2 2 3 2 3 2 3 2 3       
  • 22.  p m n mp np a b  a b  2 4 5 8 10 2 3  2 3       2 4 5 4 5 4 5 4 5 4 5 8 10 2 3 2 3 2 3 2 3 2 3 2 3           
  • 23. 2 2 2 3 3 4 4        POWER OF QUOTIENTS m m m a a b b        2 2 2 3 3 3 3 4 4 4 4                   
  • 24. n a  1 1 n n n a a a         1 n n a a  NEGATIVE EXPONENTS 3 3 1 2 2   3 3 1 2 2 
  • 27. Edwin Lapuerta, May 2014 ROOTS
  • 29. 3 ... n n times b a a a b c a a a a c d a a a a a d                 ROOTS Square root Cubic root
  • 31. a b a b a b a b       ADDITION/SUSTRACTION OF ROOTS 9 16 9 16 25 16 25 16      
  • 32. a b ab ab a b     MULTIPLYING ROOTS 4 9 36 6 36 4 9 4 9 6        
  • 33. a a b b a a b b   DIVIDING ROOTS 36 36 2 9 9 36 36 2 9 9    
  • 34. a a b b b b a b b    RATIONALIZATION 2 2 3 3 3 3 2 3 3   
  • 35. 1 m n n m n n a a a a   FRACTIONAL EXPONENT 2 3 3 2 1 2 2 1 8 8 4 9 9 9 3     
  • 36.   1 1 n n n n a a a a         If a ≥ 0 FRACTIONAL EXPONENT   3 1 3 1 3 3 2 2 2 2        
  • 37.  n n n n a a a a   If a ≥ 0 FRACTIONAL EXPONENT  3 3 3 3 2 2 2 2  
  • 38. m n m n m n n m a a a a   If a ≥ 0 ROOT OF A ROOT 2 3 2 3 6 2 3 3 2 6 64 64 64 2 64 64 64 2      
  • 39. ROOTS
  • 40. SOLVING EXPONENTIAL EQUATIONS If ax= ay, then x= y( a≠ 0 and a≠ 1).
  • 44. SEQUENCE The first term of a sequence is represented by a1, the second term a2, and so on to the nth term, an.
  • 45. 2 1 1 2 ..., , , , , ,... n n n n n a a a a a     SEQUENCE ..., a2 , a3, a4 , a5 , a6 , ...
  • 46. ARITHMETIC SEQUENCES A sequence in which each term, after the first, if found by adding a constant, called the common difference, to the previous term. 2, 5, 8, 11, 14, …
  • 47. 2 5 8 11 14 a1 a2 a3 a4 a5 2, 5, 8, 11, 14, …
  • 48.   1 1 1 1 1 1 2 3 4 , , 2 , 3 ,..., 1 , , , ,..., n a a d a d a d a n d a a a a a      2, 5, 8, 11, 14, … an  a1 n 1d
  • 51. GEOMETRIC SEQUENCES A sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio. 2, 6, 18, 54, 162, …
  • 52. a1 a2 a3 a4 a5 2, 6, 18, 54, 162, …
  • 53. 2 3 1 1 1 1 1 1 1 3 3 4 , , , ,..., , , , ,..., n n a a r a r a r a r a a a a a      2, 6, 18, 54, 162, … 1 1 n n a a r   
  • 54. Apple Inc. Cash Growth BullishCross 2013 Outlook (in millions)