Mathematical induction is a method of proof that can be used to prove that a statement is true for all positive integers. It involves two steps: 1) proving the statement is true for the base case, usually n = 1, and 2) assuming the statement is true for an integer k and using this to prove the statement is true for k + 1. Examples are provided to demonstrate how to use mathematical induction to prove statements such as the sum of the first n positive integers equalling n(n+1)/2 and that 7n - 1 is divisible by 6 for all positive integers n.