SlideShare a Scribd company logo
Maths_2
3                                                                                             About this book
Great Clarendon Street, Oxford OX2 6DP
Oxford University Press is a department of the University of Oxford.                        Endorsed by Edexcel, this book is designed to help you achieve your best
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in                                                    possible grade in Edexcel GCE Mathematics Core 3 and Core 4 units.
Oxford New York                                                                             The material is separated into the two units, C3 and C4. You can use the
Auckland Cape Town Dar es Salaam Hong Kong Karachi                                          tabs at the edge of the pages for quick reference.
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto
                                                                                            Each chapter starts with a list of objectives and a ‘Before you start’
With offices in
                                                                                            section to check that you are fully prepared. Chapters are structured into
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore                                     manageable sections, and there are certain features to look out for
South Korea Switzerland Thailand Turkey Ukraine Vietnam
                                                                                            within each section:
© Oxford University Press 2009
The moral rights of the author have been asserted                                            Key points are highlighted in a blue panel.
Database right Oxford University Press (maker)
First published 2009                                                                        Key words are highlighted in bold blue type.
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,                  Worked examples demonstrate the key skills and techniques you need




                                                                                                                                                                             EXAMPLE 3
                                                                                                                                                                                         Divide 3x2 + 5 by x2 + 1
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate                to develop. These are shown in boxes and include prompts to guide you                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                         Rewrite the numerator to involve a multiple of the denominator:
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
                                                                                            through the solutions.                                                                                     3x 2 + 5 = 3(x 2 + 1) + 2
                                                                                                                                                                                                        x2 + 1        x2 + 1
Oxford University Press, at the address above                                                                                                                                            Divide each term in the numerator:

                                                                                                                                                                                                                                         =3+                           2
You must not circulate this book in any other binding or cover                               Derivations and additional information are shown in a panel.                                                                                                            x2 + 1
and you must impose this same condition on any acquirer
British Library Cataloguing in Publication Data
Data available
                                                                                            Helpful hints are included as blue margin notes and sometimes as blue type
ISBN-13: 9780-19-911784 0
                                                                                            within the main text.
1 3 5 7 9 10 8 6 4 2
                                                                                             Misconceptions are shown in the right     Investigational hints prompt you to
Printed in Great Britain by Ashford Colour Press, Ltd, Gosport.
                                                                                             margin to help you avoid making           explore a concept further.
Paper used in the production of this book is a natural, recyclable product made from         common mistakes.
wood grown in sustainable forests. The manufacturing process conforms to the
environmental regulations of the country of origin.
                                                                                            Each section includes an exercise with progressive questions, starting
Series Managing Editor Anna Cox
                                                                                            with basic practice and developing in difficulty.
                                                                                            Some exercises also include
Acknowledgements
                                                                                            ‘stretch and challenge’ questions marked with a stretch symbol
The Publisher would like to thank the following for permission to reproduce                 and investigations to apply your knowledge in a variety of situations.                  INVESTIGATION
photographs:                                                                                                                                                                        10 Use computer software or a graphical calculator to check
P38 PA Archive/PA Photos; p74 Daniel Padavona/Shutterstock; p90                                                                                                                        some of your answers to the questions in this exercise.
studiovanpascal/iStockphoto; p120 Image Source/Corbis; p138 evirgen/iStockphoto;            At the end of each chapter there is a ‘Review’ section which includes                      You may have to use abs (absolute value) button to
                                                                                                                                                                                       input a modulus.
p158 servifoto/iStockphoto; p178 Sylvanie Thomas/Shutterstock; p192 Dijital
Film/iStockphoto; p206 Jenny Horne/Shutterstock; p212 Toni Räsänen/Dreamstime;
                                                                                            exam style questions as well as past exam paper questions. There are also
p260 pixonaut/iStockphoto; p267 Lawrence Freytag/iStockphoto; p274 Dmitry                   two ‘Revision’ sections per unit which contain questions spanning a
Nikolaev/Shutterstock; p296 Hal Bergman/iStockphoto.
                                                                                            range of topics to give you plenty of realistic exam practice.
The cover photograph is reproduced courtesy of Frans Lemmens/Photodisc/Getty                The final page of each chapter gives a summary of the key points, fully
                                                                                            cross-referenced to aid revision. Also, a ‘Links’ feature provides an
The publishers would also like to thank Kathleen Austin, Judy Sadler and Charlie Bond for
their expert help in compiling this book.
                                                                                            engaging insight into how the mathematics you are studying is relevant
                                                                                            to real life.
                                                                                            At the end of the book you will find full solutions and an index.
                                                                                            The free CD-ROM contains a key word glossary and a list of essential
                                                                                            formulae as well as additional study and revision materials and the
                                                                                            student book pages.
Contents                                                                                      C4

                                                                                                  6      Partial fractions             147–158      10.8 Integration by parts                  240
C3                                                                                                6.1    Separating fractions              148      10.9 A systematic approach
                                                                                                  6.2    More partial fractions            152            to integration                       246
1     Algebra and                              3     Exponentials and                                    Review 6                          156      10.10 Volumes of revolution                248
      functions                        1–38          logarithms                           79–90          Exit 6                            158            Review 10                            256
1.1   Combining algebraic fractions       2    3.1   The exponential function, e  x
                                                                                             80
                                                                                                                                                          Exit 10                              260
1.2   Algebraic division                  4    3.2   The logarithmic function, ln x          84   7      Parametric
1.3   Mappings and functions              8    3.3   Equations involving e x and ln x        86          equations                     159–178      11     Differential
1.4   Inverse functions                  16          Review 3                                88   7.1    Parametric equations and                          equations                      261–274
1.5   The modulus function               22          Exit 3                                  90          curve sketching                     160    11.1 First-order differential equations   262
1.6   Solving modulus equations                                                                   7.2    Points of intersection              166    11.2 Applications of differential
      and inequalities                   26    4     Differentiation                     91–120   7.3    Differentiation                     168         equations                            268
1.7   Transformations of graphs                4.1   Trigonometric functions                 92   7.4    Integration                         172         Review 11                            272
      of functions                       28    4.2   The exponential function, e x           98          Review 7                            176         Exit 11                              274
      Review 1                           34    4.3   The logarithmic function, ln x         102          Exit 7                              178
      Exit 1                             38    4.4   The product rule                       104
                                                                                                                                                    12     Vectors                        275–296
                                               4.5   The quotient rule                      106   8      The binomial series 179–192                12.1   Basic definitions and notations    276
2     Trigonometry                     39–74   4.6   The chain rule                         110   8.1    The binomial series                 180    12.2   Applications in geometry           282
2.1   Reciprocal trigonometric functions  40   4.7   Further applications                   114   8.2    Using partial fractions             184    12.3   The scalar (dot) product           286
2.2   Trigonometric equations                        Review 4                               118   8.3    Approximations                      186    12.4   The vector equation of a
      and identities                      46         Exit 4                                 120          Review 8                            190           straight line                      290
2.3   Inverse trigonometric functions     50                                                             Exit 8                              192           Review 12                          294
2.4   Compound angle formulae             54   5     Numerical methods 121–138                                                                             Exit 12                            296
2.5   Double angle and half angle              5.1   Graphical methods                      122   9      Differentiation                  193–212
      formulae                            60   5.2   Iterative methods                      130   9.1    Differentiating implicit functions   194   Revision 4                             297–306
2.6   The equivalent forms for                       Review 5                               136   9.2    Differentiating parametric functions 198
      a cos + b sin                       66         Exit 5                                 138   9.3    Growth and decay                     200   Answers                                    307
      Review 2                            70                                                      9.4    Rates of change                      206   Index                                      345
      Exit 2                              74   Revision 2                               139–146          Review 9                             210
                                                                                                         Exit 9                               212
                                                                                                                                                         CD-ROM
Revision 1                            75–78
                                                                                                  Revision 3                           213–216             The factor formulae                 1–3
                                                                                                                                                           Formulae to learn
                                                                                                  10     Integration                    217–260            Formulae given in examination
                                                                                                  10.1 The trapezium rule                   218            Glossary
                                                                                                  10.2 Integration as summation             222            C3 Practice paper
                                                                                                  10.3 Integration using standard forms     224            C4 Practice paper
                                                                                                  10.4 Further use of standard forms        226
                                                                                                  10.5 Integration by substitution          228
                                                                                                  10.6 Integration using trigonometric
                                                                                                       identities                           232
                                                                                                  10.7 Integration using partial fractions 238
1
  Algebra and functions
   This chapter will show you how to
     combine algebraic fractions
     understand that some mappings are also functions
     find and use composite functions and inverse functions
     use the modulus function and sketch graphs involving it
     transform graphs of functions using translations, reflections,
     stretches and combinations of these.




Before you start
You should know how to:                                  Check in:
1 Combine numerical fractions.                           1 Calculate

   e.g. Calculate 3 + 1 = 9 + 2 = 11                        a 3+2




                                                                                                               C3
                  4 6 12 12            12                      8   3
                  3 1  3   1
                   × =   =
                  4 6 24 8                                  b 3×2
                                                               8   3

2 Find important facts to help you sketch                2 Sketch the graphs of
  graphs of functions.                                      a y = x(x - 2)
   e.g. The graph of f(x) = 1 passes through the
                            x−2                             b y = x2 + x - 2
         ( )
   point 0, − 1 , has a vertical asymptote, x = 2, and
               2                                            c y = 1 +2
                                                                    x
   approaches the value 0 as x ® ± ¥


3 Translate, reflect and stretch the graph               3 Write the equation of the image of the
  of y = f(x)                                              graph of y = f(x) when
   e.g. When the graph of y = x2 is translated              a f(x) = x2 is reflected in the x-axis
   +2 units parallel to the x-axis, its equation
                                                            b f(x) = x2 - 5x is reflected in the y-axis
   becomes y = (x - 2)2
                                                                                             ⎛ −5 ⎞
                                                            c f(x) = x2 + x is translated by ⎜    ⎟
                                                                                             ⎝ 0⎠
                                                            d f(x) = x2 is stretched with scale factor 4
                                                            parallel to the y-axis.




                                                                                                           1
1 Algebra and functions

                                                                                                                                                                                                                                                                                                                                                                      Dividing by a fraction is equivalent to multiplying by its reciprocal.
           1.1                             Combining algebraic fractions




                                                                                                                                                                                                                                                                                                                                                          EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                                                                           x 2 − 2x ÷ x 2 − 4
                     Addition and subtraction                                                                                                                                                                                                                                                                                                                           Simplify
                                                                                                                                                                                                                                                                                                                                                                                                                          x − 2x − 3
                                                                                                                                                                                                                                                                                                                                                                                                                                2     2x − 6
                     You can add or subtract algebraic fractions when they have a                                                                                                                                                                                                                                   This method is similar to adding or                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     common denominator.                                                                                                                                                                                                                                                                            subtracting numerical fractions.
                                                                                                                                                                                                                                                                                                                                                                         x 2 − 2x ÷ x 2 − 4 = x 2 − 2x × 2x − 6                                                                                                                                                                                                                                                           Multiply the first fraction by the
                                               +                                                                                                                                                                                                                                                                                                                        x − 2x − 3 2x − 6 x 2 − 2x − 3 x 2 − 4
                                                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          reciprocal of the divisor.
                     E.g. b + y = by + by = ay by bx
                          a x     ay bx
                                                                                                                                                                                                                                                                                                                    by is the common denominator.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 x(x − 2)       2(x − 3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =                        ×
                     You should find and use the lowest common denominator to                                                                                                                                                                                                                                                                                                                                                                                                 (x + 1)(x − 3) (x − 2)(x + 2)
                     keep the calculation as simple as possible.                                                                                                                                                                                                                                                                                                                                                                                                                   2x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (x + 1)(x + 2)
         EXAMPLE 1




                       Evaluate                                            a 3+1                                                                    b                2 + x−2
                                                                                         8                  6                                                      x2 + x x2 − 1
                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                      Exercise 1.1
                                                                                                                                                                                                                                                                                                                                                                      1 Simplify
                       a 3 + 1 = 9 + 4 = 13                                                                                                                                                                                                                                                                         The lowest common denominator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3p2q pq
                                     8                  6                   24                     24                        24                                                                                                                                                                                                                                                            6x 2 y
                                                                                                                                                                                                                                                                                                                    is 24.                                                  a                                                                                                                                                         b 8ab × 3ac
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2     2                                                                                                                         c       ÷ 2
                                                                                                                                                                                                                                                                                                                                                                                           3xyz                                                                                                                                                          c                       4b                                                                                            2r  4r
                       b Factorise the algebraic expressions first:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ( b ) × a b− a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2
                                                2 + x−2 =       2         x−2                                                                                                                                                                                                                                                                                                                x × x +1                                                                                                                                                  a                                         2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                x + 3 × x −1
                                                                     +                                                                                                                                                                                                                                                                                                      d                                                                                                                                                         e                                                                                                                                   f
                                             x 2 + x x 2 − 1 x(x + 1) (x + 1)(x − 1)                                                                                                                                                                                                                                                                                                       x2 − 1 x2                                                                                                                                                                                     2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              x + x − 2 x2 + x − 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C3
                                                                                                                                 2(x − 1)        x(x − 2)                                                                                                                                                           The lowest common denominator                                                x      ÷ x 2 + 2x
                                                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      h 1 × x2 − 9 ÷ x + 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                  =                          +                                                                                                                                                                                                                              g
                                                                                                                              x(x + 1)(x − 1) x(x + 1)(x − 1)                                                                                                                                                       is x(x + 1)(x - 1).                                                    x 2 − 5x + 6    x −4                                                                                                                                        x                 x − 3x                                               x

                                                                                                                  = 2x − 2 + x − 2x
                                                                                                                                                                            2

                                                                                                                                       x(x + 1)(x − 1)                                                                                                                                                                                                                2 Simplify and express as single fractions.
                                                                                                                                                                                                                                                                                                                                                                                 y
                                                                                                                 = x 2− 2
                                                                                                                    2
                                                                                                                                                                                                                                                                                                                                                                            a x+                                                                                                                                                       b a+b                                                                                                                              c    1 − 1
                                                                                                                                                                                                                                                                                                                                                                                            y                  z                                                                                                                                       b                  a                                                                                                   ax bx
                                                                                                                             x(x − 1)
                                                                                                                                                                                                                                                                                                                                                                            d               1 + 1                                                                                                                                      e                  1 +1                                                                                                            f     1 − 1
                                                                                                                                                                                                                                                                                                                                                                                           xy 2 x 2 y                                                                                                                                                   x +1 x                                                                                                                a −1 a +1
                     Multiplication and division                                                                                                                                                                                                                                                                                                                                             1         1
                                                                                                                                                                                                                                                                                                                                                                            g                    2 + a +1                                                                                                                              h 2+ 1                                                                                                                             i   3− 2
                     You do not need to have a common denominator when you                                                                                                                                                                                                                                          The method is similar to                                              (a + 1)                                                                                                                                                                        x                                                                                                           x +1
                     multiply or divide algebraic fractions.                                                                                                                                                                                                                                                        multiplying or dividing
                                                                                                                                                                                                                                                                                                                    numerical fractions.                                                      4 +2                                                                                                                                                        2 + 1                                                                                                               3+ 2
                                                                                                                                                                                                                                                                                                                                                                            j                                                                                                                                                          k                                                                                                                                  l
                                                                                                                                                                                                                                                                                                                                                                                            y −2 3                                                                                                                                                      x − 1 x2 − 1                                                                                                          x x2 + x
                     You can only cancel factors which are common to both the                                                                                                                                                                                                                                        Remember when cancelling
                     numerator and denominator.                                                                                                                                                                                                                                                                      brackets to cancel the whole                                                                                                                                                                                                         2 −     y                                                                                                                1
                                                                                                                                                                                                                                                                                                                     bracket and not just part of it.                       m                  1 −     2                                                                                                                               n                                                                                                                                  o              + 2 2
                                                                                                                                                                                                                                                                                                                                                                                             z + 1 z2 − z − 2                                                                                                                                           y + 2 y + 3y + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               x + 3x + 2 x + 4x + 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2


                                                                                                                                                                                                                                                                                                                                                                                              3y      y +1
         EXAMPLE 2




                                                                                                                                                                                                                                                                                                                                                                            p                     +                                                                                                                                    q                    2z     − 2z                                                                                                   r   2+         1   − 1
                       Simplify                                          x + 2 × x(x 2 − 1)
                                                                                                                                                                                                                                                                                                                                                                                            y2 − 4 y2 + y − 2                                                                                                                                            z + 2z − 3 z − 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     x 2 + 2x x 2 − 4
                                                                         x2 − x  x2 − x − 6
                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                      3 Simplify
                        x + 2 × x(x 2 − 1) = x + 2 × x(x − 1)(x + 1)                                                                                                                                                                                                                                                Factorise as much as you can
                        x2 − x  x 2 − x − 6 x(x − 1) (x + 2)(x − 3)                                                                                                                                                                                                                                                 before cancelling.                                                                                                                                   1+ 1
                                                                                                                                                                                                                                                                                                                                                                            a 1− x                                                                                     b    y                                                                                        c                x3 + 1                                                                         d x2 − 1 × x + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3


                                                                                                                  = x +1                                                                                                                                                                                                                                                      1− 1                                                                                                                                                                                                    x2 − 1                                                                            x +x         x −1
                                                                                                                                                                                                                                                                                                                     Cancel the fraction down to its                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1− 2
                                                                                                                             x−3                                                                                                                                                                                     simplest form.                                              x                                                                                          y

     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3
1 Algebra and functions

                                                                                                                                                                                                                                                                                                                                                                    Some divisions result in a remainder.
         1.2                              Algebraic division




                                                                                                                                                                                                                                                                                                                                                        EXAMPLE 2
                                                                                                                                                                                                                                                                                                                                                                      Divide                                    a 4037 by 16
                     You can use long division to divide a polynomial of degree m                                                                                                                                                                                                                                   The method is similar to dividing
                     by a polynomial of degree n, where m n.                                                                                                                                                                                                                                                        numbers using long division.                                                               b 4x3 + 3x + 7 by 2x - 1
                                                                                                                                                                                                                                                                                                                                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                     The degree of the resulting polynomial is m - n.                                                                                                                                                                                                                                                                                                 a                                                                   252
                                                                                                                                                                                                                                                                                                                                                                                                                                     16 4 0 3 7 )
                                                                                                                                                                                                                                                                                                                                                                                                                                        3 2↓↓
         EXAMPLE 1




                       Work out (x3 - 2x2 - x + 2) ÷ (x + 1)                                                                                                                                                                                                                                                                                                                                                                              83↓
                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                          80↓
                       Set out as a long division:                                                                                                                                                                                                                                                                                                                                                                                         37
                                                                                                                                                                                                                                                                                                                                                                                                                                           32
                                                                                                                                              )
                                                                                                                        x + 1 x 3 − 2x 2 − x + 2                                                                                                                                                                    Write each polynomial with the
                                                                                                                                                                                                                                                                                                                    highest power of x on the left.                                  So 4037 ¸ 16 = 252 remainder 5
                                                                                                                                                                                                                                                                                                                                                                                                                                             5                                                                                                                                                                                                                     The remainder is 5.


                       The lead term of x + 1 is x.                                                                                                                                                                                                                                                                                                                                                                                               = 252 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             16
                       Divide the lead term x into x3 and write x2 in the answer space:
                                                                                                                                                                                                                                                                                                                                                                                    or                                   4037 = (252 ´ 16) + 5
                       Multiply this x2 by x + 1.             x2                                                                                                                                                                                                                                                    Write like terms in the

                               3 + x2 below and
                                                x + 1 x 3 − 2x 2 − x + 2
                                                                         Bring down the next
                                                                                                                                           )                                                                                                                                                                        same column.                                      b 4x3 + 3x + 7 does not have an x2-term.
                                                                                                                                                                                                                                                                                                                                                                                    Insert a 0x2 to fill the place value for x2:                                                                                                                                                                                                                                   The 0x2 is similar to the 0 in
                       Write x                        x3 + x2 ↓
                       subtract.                                         term -x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  the number 4037, which
                                                           −3x − x
                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                    2x 2 + x + 2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C3
                                                                                                                                                                                                                                                                                                                                                                                                                                                )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   acts as place holder in the
                                                                                                                                                                                                                                                                                                                                                                                                                     2x − 1 4x 3 + 0x 2 + 3x + 7                                                                                                                                                                                                                   hundreds column.
                       Repeat this cycle until the division is complete.
                                                                                                                                                                                                                                                                                                                                                                                                                            4x 3 − 2x 2 ↓ ↓
                       The next step is to divide the lead term x into -3x2 and write - 3x in the                                                                                                                                                                                                                   Compare this method with the                                                                                   2x 2 + 3x ↓
                                                                                                                                                                                                                                                                                                                    numerical long division
                       answer space:                                                                                                                                                                                                                                                                                                                                                                                               2x 2 − x ↓
                                                                                                                                                                                                                                                                                                                                                                                                                                         4x + 7
                                                                                                                       x 2 − 3x + 2                                                                                                                                                                                      243
                                                                                                                                                                                                                                                                                                                                                                                                                                         4x − 2

                                                                                                                 x3 + x2 ↓ ↓
                                                                                                                                )
                                                                                                           x + 1 x 3 − 2x 2 − x + 2                                                                                                                                                                                    )
                                                                                                                                                                                                                                                                                                                    23 5 5 8 9
                                                                                                                                                                                                                                                                                                                       4 6↓ ↓
                                                                                                                                                                                                                                                                                                                         98↓
                                                                                                                                                                                                                                                                                                                                                                                                                                              9                                                                                                                                                                                                                    The remainder is 9.

                                                                                                                      −3x − x ↓
                                                                                                                          2                                                                                                                                                                                              9 2↓                                                                                4x 3 + 3x + 7 = 2x 2 + x + 2 remainder 9
                                                                                                                                                                                                                                                                                                                                                                                    So                                                                                                                                                                                                                                                                             You can also write this result as
                                                                                                                      −3x − 3x ↓
                                                                                                                          2                                                                                                                                                                                                69                                                                                    2x − 1
                        Subtract:                                                                                                                                                                                                                                                                                          69                                                                                                                                                                                                                                                                                                                                      4x3 + 3x + 7
                                                                                                                             2x + 2                                                                                                                                                                                         0                                                                                                 quotient    remainder                                                                                                                                                                                                                  = (2x - 1)(2x2 + x + 2) + 9
                                                                                                                             2x + 2                                                                                                                                                                                                                                                                                                                                                              ¯                                                      ¯
                                                                                                                                  0                                                                                                                                                                                 giving 5589 ÷ 23 = 243                                                                                                                                                                                                                                                                                                                         You can expand these brackets
                                                                                                                                                                                                                                                                                                                    or         5589 = 243 ´ 23                                                                                                                       = 2x + x + 2 + 9     2                                                                                                                                                                        to check your answer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2x − 1
                       Since the remainder is 0, x + 1 is a factor of x3 - 2x2 - x + 2.                                                                                                                                                                                                                             Since the remainder is 0,
                                                                                                                                                                                                                                                                                                                    23 must be a factor of 5589.                                                                                                                                                                                                         -
                       So (x3 - 2x2 - x + 2) ÷ (x + 1) = x2 - 3x + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           divisor
                       You could also write this result as x3 - 2x2 - x + 2 = (x + 1) ´ (x2 - 3x + 2)
                       You can then expand these brackets to check your answer.




     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5
1 Algebra and functions                                                                                                                                                                                                                                                                                                                                                                                          1 Algebra and functions

                     When the highest power of the numerator is the same as the                                                                                                                                                                                                                                                                        4 In each case find the quotient and remainder when the first expression is
                     highest power of the denominator you can use a quicker method.                                                                                                                                                                                                                                                                      divided by the second expression.
                                                                                                                                                                                                                                                                                                                                                          a x3 + 5x2 - 5x + 1; x - 1                        b x3 + 7x2 + 8x - 2; x + 2
         EXAMPLE 3




                       Divide 3x2 + 5 by x2 + 1                                                                                                                                                                                                                                                                          Both the numerator and
                                                                                                                                                                                                                                                                                                                                                          c 2x3 - 13x2 + 17x + 10; x - 3                    d x3 - 5x2 + x + 10; x - 2
                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                         denominator have degree 2.
                       Rewrite the numerator to involve a multiple of the denominator:                                                                                                                                                                                                                                                                    e 2n3 + 7n2 - 6; 2n + 3                           f   9n3 - 22n + 6; 3n - 4
                                     3x 2 + 5 = 3(x 2 + 1) + 2                                                                                                                                                                                                                                                           Compare this example to the
                                      x2 + 1        x2 + 1                                                                                                                                                                                                                                                               numerical division               g 3n3 - 11n2 + 2n + 1; 3n + 1                     h x4 + 2x3 - 6x - 7; x2 - 3
                                                                                                                                                                                                                                                                                                                         23 (3 × 7) + 2    2
                       Divide each term in the numerator:                                                                                                                                                                                                                                                                  =            =3
                                                                                                                                                                                                                                                                                                                         7       7         7              i   2x4 + x3 + x; x2 + 1                          j   x3 - 2; x2 - 1
                                                                       = 3 + 22
                                                                            x +1
                                                                                                                                                                                                                                                                                                                                                       5 Find the functions f(x) which complete these equations.
                                                                                                                                                                                                                                                                                                                                                          a x3 - 5x2 + x + 10 = (x - 2) ´ f(x)              b x3 - 7x2 - 10x - 2 = (x + 1) ´ f(x)
                     Exercise 1.2
                     1 In each case, divide the first expression by the second expression.                                                                                                                                                                                                                                                                c 2x3 - 11x2 + 15x - 50 = (x - 5) ´ f(x)          d x4 - 3x3 + 3x - 1 = (x2 - 1) ´ f(x)

                           a x3 - 7x2 + 14x - 8; x - 1                                                                                                                                                                              b x3 - x2 - 26x - 24; x + 1                                                                                        6 Find the functions and k values which complete these equations.
                           c x3 - 8x2 + 5x + 50; x + 2                                                                                                                                                                              d x3 - 10x2 + 31x - 30; x - 2                                                                                         a x3 - 4x2 + 4x - 1 = (x - 3) ´ f(x) + k          b x3 + 8x2 + 6x -1 = (x - 1) ´ f(x) + k
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C3
                           e 2x3 + 5x2 - 4x - 3; 2x + 1                                                                                                                                                                             f 9x3 + 5x - 2; 3x - 1                                                                                                c 4x3 - 3x + 2 = (2x - 1) ´ f(x) + k              d x4 + 3x - 4 = (x2 - x - 1) ´ f(x) + k    In part d k is not
                                                                                                                                                                                                                                                                                                                                                                                                                                                       a constant.
                           g n3 - 7n + 6; n + 3                                                                                                                                                                                     h 2n3 - 9n2 + 5n + 6; 2n - 3                                                                                       7 Divide each polynomial by the given factor and hence factorise
                                                                                                                                                                                                                                                                                                                                                         it completely.
                           i             9y3 - 16y - 8; 3y + 2                                                                                                                                                                      j 2a4 - 5a3 - 10a + 3; a - 3
                                                                                                                                                                                                                                                                                                                                                          a x3 - 4x2 + x + 6 has a factor x - 2             b x3 - 8x2 + 19x - 12 has a factor x - 4
                           k 8a4 - 20a3 + 60a - 18; 2a + 3                                                                                                                                                                          l 4z3 - 17z2 + 19z - 5; z2 - 3z + 1
                                                                                                                                                                                                                                                                                                                                                          c 4x3 - 13x - 6 has a factor 2x + 3               d x4 - 13x2 + 36 has a factor x2 - 4
                           m 6x3 + 7x2 - 23x + 4; 2x2 + 5x -1                                                                                                                                                                       n x3 + 1; x + 1                                                                                                       e x3 + 8 has a factor x + 2                       f x3 - 8 has a factor x - 2


                     2 Evaluate these divisions, giving each answer as an integer plus
                       an algebraic fraction.                                                                                                                                                                                                                                                                                                            INVESTIGATION
                                           x+6                                                                                       x +1
                           a                                                                                        b                                                                                                   c x−2                                                                                       d 3x + 7                             8 x2 - 1 factorises to give (x – 1)(x + 1) and
                                           x+2                                                                                       x+2                                                                                                x+2                                                                            x+2
                                                                                                                                                                                                                                                                                                                                                           x3 - 1 factorises to give (x – 1)(x2 + x + 1).
                                                                                                                                                                                                                                                                                                                    h 3x2 + 1
                                                                                                                                                                                                                                                                                                                         2
                           e 2x + 1                                                                                                 4x + 3
                                                                                                                                                                                                                        g x2 − 1
                                                                                                                                                                                                                           2
                                                                                                                    f                                                                                                                                                                                                                                         Factorise x4 - 1 and x5 - 1.
                                            x−3                                                                                     2x + 1                                                                                             x +1                                                                            x −1
                                          2−x                                                                                        x2 + x − 1                                                                                                                                                                                                               Can you make a deduction about x6 - 1?
                           i              1+ x
                                                                                                                    j
                                                                                                                                       x2 − 2                                                                                                                                                                                                                 Make a statement about xn - 1 and see if you can prove it.
                     3 In each case, divide the first expression by the second expression.
                           a 3x3 - 5x; x3                                                                                                           b 3x2 + 2; x2 - 3
                           c 4x2 + 1; 2x2 - 1                                                                                                       d 14x2 + 19; 2x2 + 3

     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7
1 Algebra and functions

                                                                                                                     There are four kinds of mapping.
         1.3      Mappings and functions
                                                                                                                     One-to-one                                 Many-to-one
          Domain and range                                                                                                                                      X                        Y
                                                                                                                     X                   Y
          A relationship between two sets of numbers is called a mapping.
          You can define a mapping as an equation.
          E.g. Consider y = 3x - 1                    X                      Y
                                                           1             2
          Set X maps onto set Y                                                                                                                                  y
                                                           2             5                                                  y
          under the mapping y = 3x - 1
                                                           3             8
          You can also write this                                                                                          5             y=x+2
                                                           4            11                                                                                      5
          as x ® 3x - 1                                                                                                    4
                                                                                                                                                                4
                                                                                                                           3                                                       y = x2 – 4x + 5
          You can also represent a mapping by a set of ordered pairs                                                                                            3
                                                                                                                           2                                    2
          (x, y) which you can show in a table or as a graph.                                                              1                                    1
                                                          y                                                                                      x                                           x
                                                                                                                      −2 −1 O    1 2     4                      O        2     4 5 6
                                                     12
                  x   1 2 3 4                        10                                                              Each value of x maps onto one and          Each value of x maps onto one and
                  y   2 5 8 11                         8                                                             only one value of y, and vice versa.       only one value of y, but not vice versa.
                                                       6
                                                       4                                                                  A one-to-one mapping is a function.        A many-to-one mapping is a function.
C3




                                                                                                                                                                                                                           C3
                                                      2

                                                          O                  x
                                                               1 2 3 4                                               One-to-many                                Many-to-many
                                                                                                                     X                   Y                      X                    Y
           Set X is called the domain of the mapping. Its elements are
           denoted by x, the independent variable.
           Set Y is called the range of the mapping. Its elements are
           denoted by y, the dependent variable.
                                                                                                                                                                     y
                                                                                                                      y                                                  x2 + (y – 4)2 = 4
          You say that ‘x maps onto y’ or that ‘y is the image of x’.                                                                                                6
                                                                                                                          x = (y – 2)2
                                                                                                                     4                                               5
                                                                                                                     3                                               4
           A mapping is a function only if each x-value maps onto one                                                2
                                                                                                                                                                     3
           and only one y-value.                                                                                                                                     2
                                                                                                                     1                                               1
                                                                                                                     O          2 3 4        x                  −2 −1O       1 2             x
          In the example shown, the mapping is a function.
                                                                                                                     Each x-value maps onto more than one       Many x-values map onto many y-values.
          You can therefore write y = 3x - 1
                                                                                                                     y-value.
          as either              f(x) = 3x - 1                   You say ‘f(x) equals 3x - 1’.
                 or              f: x ® 3x - 1                   You say ‘the function f that maps x onto 3x - 1’.
                                                                                                                          A one-to-many mapping is not               A many-to-many mapping is not
                                                                                                                          a function.                                a function.



     8                                                                                                                                                                                                                 9
1 Algebra and functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 Algebra and functions




                                                                                                                                                                                                                                                                                                                                                           EXAMPLE 2
          EXAMPLE 1
                        Find the range of these functions and state the type of the                                                                                                                                                                                                                                                                                    Find the range of the function f(x) = 4 - x2
                        function in each case.                                                                                                                                                                                                                                                                                                                         when the domain is                                                                                                                                                                                                                                                                           x Î R means that the domain
                        a f(x) = 2x - 1, x = {0, 1, 2, 3}                                                                                                                                                                                                                                                                                                              a xÎR                          b -1 < x 3                                                                                                                                                                                                                                                    contains all real numbers.

                        b f(x) = x2 + 4, x Î R, -2 < x                                                                                                                      3                                                                                                                                                                                          ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                     Sketch the graph of the function for each of the given domains:
                        a Sketch the mapping diagram and graph:                                                                                                                                                                                                                                                                                                                                                                       y                                                                                                                                   y
                                                                                                                                                                                           y
                                                                                                                                                                                                                                                                                                                                                                                                                                  4                                                                                                                                   4
                                                                                                                                                                                        5
                                                           X                                                                             Y                                                                                                                                                                                                                                                                                        3                                                                                                                                   3
                                                                     0                                                      −1                                                          4
                                                                                                                                                                                                                                                                                                                                                                                                                                  2                                                                                                                                   2
                                                                     1                                                           1                                                      3                                                                                                                            Both the domain and range are
                                                                                                                                                                                                                                                                                                                     discrete as x can take only the                                                                              1                                                                                                                                   1
                                                                     2                                                           3                                                      2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The maximum and minimum
                                                                                                                                                                                                                                                                                                                     four given values.                                                                                                                                                    x                                                                                                                                           x
                                                                     3                                                           5                                                      1                                                                                                                                                                                                                −2 −1 O                                       1 2                                                                                   −2 −1 O                                       1 2 3                                                                     y-values are not always at the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 −1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     end points of the domain.
                                                                                                                                                                                    O                        1 2 3 4                                                        x                                                                                                                                                                                                                                                                                    −2
                                                                                                                                                                                   −1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 −3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 −4
                                      The range of f(x) is y = {-1, 1, 3, 5}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     −5
                                      f(x) is a one-to-one function.
                                                                                                                                                                                                                                                                                                                                                                       a The points on the graph for                                                                                                               b The points on the graph
                        b Sketch the graph of f(x):                                                                                                                                                                                                                                                                                                                                  x Î R have y-values from                                                                                                        for -1 < x 3 have
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C3
                                                                                                                                                                                                                                                                                                                                                                                     - ¥ to 4.                                                                                                                       y-values from -5 to 4,
                                                                                                                                                     y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     including -5 itself.
                                                                                                                                                                                                                                                                                                                                                                                     The range of f(x) is
                                                                                                                                            12                                                                                                                                                                                                                                       y Î R, y 4                                                                                                                                   The range of f(x) is
                                                                                                                                            10
                                                                                                                                                                                                 y = x2 + 4                                                                                                          The domain is continuous as it
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  y Î R, -5 y 4
                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                     takes all values from -2 to 3
                                                                                                                                                  6
                                                                                                                                                                                                                                                                                                                     (including 3 but not -2). The range
                                                                                                                                                  4




                                                                                                                                                                                                                                                                                                                                                           EXAMPLE 3
                                                                                                                                                                                                                                                                                                                     is therefore also continuous.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8
                                                                                                                                                  2                                                                                                                                                                  The lowest value of the range is 4                a Find the range of f(x) =                                                                                                           x Î R, x                                                                      1
                                                                                                                                                                                                                                                                                                                     which occurs when x = 0.                                                                                                                                                      (x − 2)2
                                                                                                                         −2 −1 O                                                                                       x
                                                                                                                                                                       1 2 3
                                                                                                                                                                                                                                                                                                                                                                       b Find the value of k such that f(k) = 4
                                                                                                                                                                                                                                                                                                                                                                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Refer to C1 for revision of
                                      The graph of f(x) shows that the range of f(x) is                                                                                                                                                                                                                                                                                              Sketch the graph of f(x).                                                                                                                                                                                                                                                      sketching graphs of functions.
                                      y Î R, 4 y 13
                                                                                                                                                                                                                                                                                                                                                                       a From the graph, you can see that, for                                                                                                                                                                                                                                                              y
                                      f(x) is a many-to-one function.                                                                                                                                                                                                                                                                                                    the given domain, the range is
                                                                                                                                                                                                                                                                                                                                                                         y Î R, y > 0                                                                                                                                                                                                                                                                                     10
                                                                                                                                                                                                                                                                                                                                                                                                                                                  8                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                       b When x = k,                                                                    =4                                                                                                                                                                                                                 8            y=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (x – 2)2
                                                                                                                                                                                                                                                                                                                                                                                                                                               (k − 2)2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6
                                                                                                                                                                                                                                                                                                                                                                                                                                               (k − 2)2 = 8 = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                          4                                                                                                                                                                                                                4
                                                                                                                                                                                                                                                                                                                                                                                                                                                        k−2 = ± 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                                                                                                             giving k = 2 ± 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       −2 O        2    4     6         x
                                                                                                                                                                                                                                                                                                                                                                                     The value x = 2 - 2 lies outside the domain, so the only
     10                                                                                                                                                                                                                                                                                                                                                                              possible value of k is 2 + 2.                                                                                                                                                                                                                                                                                          11
1 Algebra and functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1 Algebra and functions

                      Composite functions




                                                                                                                                                                                                                                                                                                                                                            EXAMPLE 5
                                                                                                                                                                                                                                                                                                                                                                         Given f(x) = 2x - 1 and g(x) = x2 + 1, prove that
                      A composite function is formed when you combine two
                                                                                                                                                                                                                                                                                                                                                                         gf(x) ¹ fg(x) except for two values of x.
                      (or more) functions. The output from the first function
                                                                                                                                                                                                                                                                                                                                                                         Find these two values.
                      becomes the input to the second function.                                                                                                                                                                                                                                                                                                          ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                      When f is applied first and g second, the composite function                                                                                                                                                                                                                                     x            f(x)            gf(x)                fg(x) = f(x2 + 1) = 2(x2 + 1) - 1 = 2x2 + 1
                                                                                                                                                                                                                                                                                                                                f          g
                      gf(x) is formed.                                                                                                                                                                                                                                                                                                                                   gf(x) = g(2x - 1) = (2x - 1)2 + 1 = 4x2 - 4x + 2

                      When g is applied first and f second, the composite function                                                                                                                                                                                                                                     x            g(x)          fg(x)                  Equate fg(x) and gf(x) and solve to find the values of x:
                                                                                                                                                                                                                                                                                                                                g           f
                      fg(x) is formed.                                                                                                                                                                                                                                                                                                                                                 4x2 - 4x + 2 = 2x2 + 1
                      For a composite function to be formed, the range of the                                                                                                                                                                                                                                                                                                          2x2 - 4x + 1 = 0
                      first function must be all or part of the domain of the                                                                                                                                                                                                                                                                                            giving                                                       x = 4 ± 16 − 8 = 1 ± 1 2
                      second function.                                                                                                                                                                                                                                                                                                                                                                                                                                           4                                                          2

                                                                                                                                                                                                                                                                                                                                                                         Hence fg(x) ¹ fg(x) except when x = 1 ± 1 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2
          EXAMPLE 4




                        If f(x) =                             x2, g(x)                            = 3x - 1 and h(x) = 1
                                                                                                                      x
                        find                                                                                                                                                                                                                                                                                          Take care with the order of
                        a fg(x)                                                                                           b gf(x)                                                                                                                                                                                     the functions.                                    Exercise 1.3
                        c fgh(x)                                                                                          d              g2(x)                                                                                                                                                                                                                           1 For each function, draw a mapping diagram or a graph, find
                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                           the range, and state if the function is one-to-one or many-to-one.
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C3
                        a fg(x) means that g(x) is the input of f(x).                                                                                                                                                                                                                                                                                                              a f(x) = 4x - 3, x = {0, 2, 4, 6}
                                      Draw a flow diagram:                                                                                                                                                                                                                                                                                                                         b f(x) = 4x - 3, x Î R, 1 < x < 6
                                                                                                                                                                                                                                   2
                                                                                                          x                                           3x – 1                                        (3x – 1)
                                                                                                                                         g                                              f                                                                                                                                                                                          c f(x) = 9 - x, x Î R, 1 < x < 4

                                                                                                                                                                                                                                                                                                                                                                                   d f(x) = x2 + 2, x Î R
                                      fg(x) = f(3x - 1) = (3x - 1)2
                                                                                                                                                                                                                                                                                                                                                                                   e f(x) = + x, x = {0, 1, 4, 9}
                        b Draw a flow diagram:
                                                                                                                                                                                                                                                                                                                                                                                   f               f(x) = - x, x = {0, 1, 4, 9}
                                                                                                             x                                                   x2                                   3x2 – 1
                                                                                                                                                                                                                                                                                                                                                                                   g f(x) = x + 2 , x Î R, x ¹ 2
                                                                                                                                              f                                         g
                                                                                                                                                                                                                                                                                                                                                                                                                                 x−2
                                      gf(x) =                           g(x2)                    =        3x2               -1
                                                                                                                                                                                                                                                                                                                                                                                            ⎧ x 2, x ∈ R, 0 x
                                                                                                                                                                                                                                                                                                                                                                                            ⎪                                                                                                                                         2
                                                                                                                                                                                                                                                                                                                                                                                   h f(x) = ⎨
                        c fgh(x) means that h(x) is the input of g(x) and then                                                                                                                                                                                                                                       Draw a flow diagram if you
                                                                                                                                                                                                                                                                                                                     find it helps.
                                                                                                                                                                                                                                                                                                                                                                                            ⎩4, x ∈ R, 2 < x
                                                                                                                                                                                                                                                                                                                                                                                            ⎪                                                                                                                                         6
                          the result of this composite function is the input
                          of f(x).
                                                                                                                                                                                                                                                                                                                                                                         2 a Given g(x) = mx + c, g(2) = 8 and g(3) = 11, find m and c.
                                                                                       (x) (                                                                         ) (x ) (x )
                                                                                                                                                                                                                                                                       2
                                      fgh(x) = fg 1 = f 3 × 1 − 1 = f 3 − 1 = 3 − 1                                                                                                                                                                                                                                                                                                b Given h(x) = ax2 + bx + c and h(0) = 1, h(1) = 0, h(2) = 1,
                                                                                                                                              x
                                                                                                                                                                                                                                                                                                                                                                                     find a, b, and c.
                        d g2(x) = gg(x) = g(3x - 1) = 3(3x - 1) - 1 = 9x - 4                                                                                                                                                                                                                                         g²(x) means that g(x) is used
                                                                                                                                                                                                                                                                                                                     as the input of g(x).




     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         13
1 Algebra and functions                                                                                                                        1 Algebra and functions

           3 Find the domain of each function.                                         9 When f: x ® 5 - x, g: x ® x            and    h: x → 1 ,
             Say whether the function is one-to-one or many-to-one.                                                                           x
                                                                                          find
              a f: x ® 3x + 5 with the range y = {5, 20, 35, 50, 65}                      a fg                      b fh                       c gh
              b f: x ® x2 with the range y Î R, 0       y   9                             d fgh                     e hgf                      f    f2
              c f: x ® x − 3 with the range y Î R, 0            y       3                 g g2                      h h2
              d f: x →     4 with the range y Î R, 1        y       4
                          x−2                                                         10 a Given that f(x) = 2x - 1 and g(x) = x2, show that
                                                                                           fg(x) ¹ gf(x) for all values of x except x = a
           4 Sketch each of these functions, given the domain x Î R.                       Find the value of a.
             Find the range of each function.
                                                                                          b Solve the equations
              a f(x) = (x - 2)2 + 3                     b f(x) = (x + 4)2 - 3
                                                                                              i fg(x) = 49
              c f(x) = x2 - 6x + 10                     d f(x) = 1 + 2x - x2                  ii gf(x) = 9
                                                                                              iii f 2(x) = 13
           5 Explain why these mappings are not functions.
                                                                                          c Find the values of x which map onto themselves under
                   ⎧3x,    x ∈ ,0                                                           the function fg.
                                                        b y = 6+ x,xÎR
                                                x   2
              a y =⎨
                                                                    2−x
                   ⎩6 − x, x ∈ , 2              x   8
                                                                                      11 Given that f(x) = 2x + 1 and g(x) = 3x + c,

           6 Sketch the graph of the function                                             a find c if fg(x) = gf(x) for all x
C3




                                                                                                                                                                                        C3
                  f(x) = x + 4 , x Î R, x ¹ 2                                             b find a if f 2(a) = a
                          x−2
              Find the range of f(x) and the values of x which                        12 Given f(x) = p + qx, g(x) = x2 - 4 and h(x) = 3x + 1,
              are unchanged by this function.                                             find p and q such that hgf(x) = 4(3x2 + 3x - 2)

           7 If f(x) = x2 + 1 and g(x) = 2x - 1, find                                 13 a If f(x) = 2x + 3,
              a f(3)                     b gf(3)                            c gf(x)           find     i f 2(x)
                                                                                                       ii f 3(x)
              d g(3)                     e fg(3)                            f fg(x)
                                                                                                       iii f 4(x)
              g f 2(3)                   h f 2(x)                           i g2(3)
                                                                                          b If f(x) = 2x + 3, find an expression in n for f n(x).
              j   g2(x)

           8 Find fg(x), gf(x), f 2(x) and g2(x) when                                   INVESTIGATION

              a f(x) = x2 - 2, g(x) = 3x + 4                                            14 Explain why the composite function fg(x) is not allowed
                                                                                           when f(x) = 2x + 1, x Î R, -5 x 5
              b f(x) = 1 , g(x) = 3x2 + 2, x ¹ 0                                           and g(x) = x2, x Î R, x 0
                          x
                                                                                            How would you change the domains so that the function
              c   f(x) = x + 3, g(x) = 4x - 2                                               fg(x) can exist?
                         2

              d f(x) =      1 , g(x) = 2 - x, x ¹ 1
                          x −1


     14                                                                                                                                                                            15
1 Algebra and functions

                                                                                                                                  You can find an inverse function
          1.4      Inverse functions
                                                                                                                                  algebraically by                                                                                                                                                                              x                                 f                        f(x)
                                                                                                                                  either using a flow
            The inverse function f -1(x) of the function f(x) maps the range                                                             diagram in                                                                                                                                                               f –1(x)                                     f –1                            x
            of f(x) back onto its domain.                                                                                                reverse
                                                                                                                                  or                        rearranging the
                                                                                                                                                            function y = f(x) to give
           E.g.   If f(x) = 3x - 1              x      ×3           –1   3x – 1
                                                                                                                                                            x in terms of y, then
                                                                                                                                                            interchanging x and
            then f -1(x) = x + 1            x+1         ÷3          +1   x                                                                                  y and writing y as f -1(x).
                              3              3
                                                                                                                                  graphically by                                                                                                                                                                           y
           The range of f(x) is the domain of f -1(x).                             The notation for the inverse
                                                                                                                                       reflecting the graph of                                                                                                                                                                                         y=x
           The range of f -1(x) is the domain of f(x).                             function uses -1.
                                                                                   Do not confuse it with the                          y = f(x) in the line y = x                                                                                                                                                                                                             x
           Both composite functions         andff -1        f -1f                  reciprocal.                                         (which is equivalent to
                                                                                   E.g. (sin x)-1 is the reciprocal                    interchanging x and y).
           map x back onto itself,
                                                                                      1
           so ff -1: x ® x and f -1f: x ® x                                               , whereas sin-1 x is the
                                                                                    sin x
           or ff -1(x) = x and f -1f(x) = x                                        inverse function of sin x.




                                                                                                                      EXAMPLE 1
                                                                                                                                                                                                                                                                                                                                                                                                                 +                   +
           The inverse of a one-to-one function is a function.                                                                         Find the inverse function f -1(x) when f(x) = 5x2 + 4, x Î                                                                                                                                                                                                                0                  R0 means all positive real
                                                                                                                                       Find the domain and range of the inverse function.                                                                                                                                                                                                                                           numbers and zero.
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C3
           E.g.                                                                   For a one-to-one function,
                                              f -1(x) = x + 1
                                                                                                                                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


           If     f(x) = 3x - 1      then                                         f(x) = y leads to f -1(y) = x
                                                            3                     with no ambiguity.                                   Sketch a graph to help you to visualise the function and its inverse:                                                                                                                                                                                                                               y
           and    f(5) = 14          so      f -1(14) = 5                                                                                                                                                                                                                                                                                                                                                                                            f(x)
                                                                                                                                       If x Î R, then the inverse of y = 5x2 + 4 would not be a                                                                                                                                                                                                                                                                  y=x
           The inverse of a many-to-one function is a one-to-many mapping so                                                           one-to-one mapping and therefore not a function.
                                                                                                                                                                       +                                                                                                                                                                                                                                                                                         f –1(x)
           the inverse is not a function. In such a case, the inverse can be a                                                         By restricting the domain to 0 , the inverse is then a                                                                                                                                                                                                                                             4
           function only if the domain of f(x) is restricted to certain values                                                         one-to-one mapping and a function.
           to make the inverse a one-to-one mapping.
                                                                                                                                       First method                                                                                                                                                                       Second method                                                                                                    O        4                  x
           E.g.                                                                                                                        Draw a flow diagram for f(x):                                                                                                                                                      Write y = 5x2 + 4
           If      f(x) = x2 then f -1 (x) = ± x                                                                                                x                                                                                                                                   f(x)                                  Rearrange to make x
                                                                                                                                                                     square                                           ×5                                    +4                                                            the subject:
           and f(3) = 9 so         f -1 (9) = ±3                                             y
                -1                                                                                                                                                                                                                                                                                                                                                                                                                  Use the method that you feel most
           So f (x) is not a function.                                                                    y = x2
                                                                                                                                       Draw the flow diagram in reverse:                                                                                                                                                                                  y−4                                                                       comfortable with. You can use a
                                                                                            9                                                                                                                                                                                                                                                         x=+
           For f -1 (9) to have a unique                                                                                                                                                                                                                                                                                                                   5                                                                        different method to check your answer.
                                                                                                                                        f –1(x)                      square                                                                                                         x
           value, the domain of f(x) must                                                                                                                                                                             ÷5                                     –4                                                           Interchange x and y and
           be restricted to non-negative numbers.                                                                                                                     root
                                                                                                                                                                                                                                                                                                                          replace y by f -1(x):
           In this case, f -1(x) = + x
                                                                                                                                       This reverse flow diagram gives                                                                                                                                                                                y = + x−4
                                                                                                                                                                                                                                                                                                                                                                                               5
                                                                                     −3      O
                                                                                                      3           x                    f −1(x) = + x − 4                                                                                                                                                                             f −1(x) = + x − 4
                                                                                                                                                                                                  5                                                                                                                                                                                            5
                                                                                                                                                                                                                                                   +
                                                                                                                                       The domain of f(x) is 0 (x 0) and the range of f(x) is y                                                                                                                                                                                                                          4
                                                                                                                                       So, the domain of f -1(x) is x 4 and the range of f -1(x) is y                                                                                                                                                                                                                    0


     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                      17
1 Algebra and functions                                                                                                                                                                                                                                                                                                                                                                                                                             1 Algebra and functions

          EXAMPLE 2




                                                                                                                                                                                                                                                                                                                                                            EXAMPLE 3 (CONT.)
                        Find the inverse function and its domain and range if                                                                                                                                                                                                                                        The domain has x ¹ 3 because                                c f(x) = f -1(x) gives the equation + x + 2 = x 2 − 2
                       f(x) =                         4 for x Î R, x ¹ 3                                                                                                                                                                                                                                             when x = 3 the denominator,                                   This is not easy to solve.
                                                     x−3                                                                                                                                                                                                                                                             x - 3, is zero and division by
                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••   zero is not defined.                                            However, the graphs of f(x) and f -1(x) intersect on the
                        Make x the subject of y =                                                                           4 :                                                                                                                                                                                                                                                      line y = x
                                                                                                                           x−3                                                                                                                                                                                                                                                       So, at this point of intersection, f(x) = f -1(x) = x
                                      y(x - 3) = 4
                                            xy = 3y + 4                                                                                                                                                                                                                                                                                                                              Solve the two equations x + 2 = x and x2 - 2 = x:
                                                                                       3y + 4                                                                                                                                                                                                                                                                                        Both these equations give x2 - x - 2 = 0
                                                                   x=
                                                                                          y                                                                                                                                                                                                                                                                                                               (x - 2)(x + 1) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   x = -1 is outside the
                        Interchange x and y and replace y by f -1(x):                                                                                                                                                                                                                                                                                                                So the only solution is x = 2                                                 domain of f -1(x).
                                                                   y = 3x + 4
                                                                                                  x

                                                 f −1(x) = 3x + 4                                                                                                                                                                                                                                                                                                               Exercise 1.4
                                                                                                 x
                                                                                                                                                                                                                                                                                                                                                                                 1 Find the inverse function f -1(x) of each of these functions, f(x),
                        f -1(x)exists for all real values of x except x = 0                                                                                                                                                                                                                                                                                                        where the domain of f(x) is R.
                        So, the domain of f -1(x) is x Î R, x ¹ 0
                                                                                                                                                                                                                                                                                                                                                                                    a f(x) = 3x - 2                        b f(x) = 2x + 1                            c f(x) = 2(x + 1)
                        The range of f -1(x) is the domain of f(x) giving y Î R, y ¹ 3
                                                                                                                                                                                                                                                                                                                                                                                    d f(x) = x + 3                         e f(x) = 1 x + 3                           f f(x) = (x + 1)2, x                  -1
                                                                                                                                                                                                                                                                                                                                                                                                 2                                       2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C3
          EXAMPLE 3




                        a Find f -1(x) given that                                                                                                                                                                                                                                                                                                                                   g f(x) = x2 + 1, x         0           h f(x) = 6 - x                             i     f(x) =       x − 3,     x       3
                          f(x) = + x + 2, x Î R, x -2                                                                                                                                                                                                                                                                f(x) only exists if x + 2 0 so
                          Sketch the graphs of f(x) and f -1(x).                                                                                                                                                                                                                                                     the domain of f(x) is limited to                            2 Find the inverse function f -1(x) of each of these functions, f(x),
                        b Show algebraically that f -1f(x) = x                                                                                                                                                                                                                                                       x -2. Also, only the positive                                 where the domain of f(x) is R.
                                                                                                                                                                                                                                                                                                                     value of the square root is
                        c Find x such that f(x) = f -1(x)                                                                                                                                                                                                                                                                                                                          In each case, sketch the graphs of f(x) and f -1(x) on the same axes.
                                                                                                                                                                                                                                                                                                                     allowed, so that f(x) is a function.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      c f(x) = x + 4
                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                                    a f(x) = 2x + 1                        b f(x) = 10 - 2x
                        a Make x the subject of y = x + 2:                                                                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                                    y2 = x + 2                                                                                                                                                                                                                                                      d f(x) = x2 + 2, x     0               e f(x) = (x - 2)2, x           2           f f(x) =           x − 4, x       4
                                                                                                                     x = y2 - 2
                                                                                                                                                                                                                                                                                                                                                                                                                                          1 ,x>2
                                      Interchange x and y. Replace y by f -1(x):                                                                                                                                                                                                                                                                                                    g f(x) = x + 3 , x      -3             h f(x) =                                   i     f(x) = 1 + 2, x > 0
                                                                                                                                                                                                                                                                                                                                                                                                                                         2−x                                         x
                                                                                                           y = x2 - 2
                                                                                                     f -1(x) = x2 - 2                                                                                                                                                                                                        y                                                   3 A function is self-inverse if the function and its inverse are identical.
                                      The graph of the inverse function is half of the curve y =                                                                                                                                                                                                                                   f –1(x)                                         Determine which of these functions have an inverse function.
                                      x2 translated 2 units downwards.                                                                                                                                                                                                                                                                       y=x                                   Find the inverse function where one exists and say whether the
                                      The graph of f -1(x) is a reflection of f(x) in the line y = x                                                                                                                                                                                                                                          f(x)
                                                                                                                                                                                                                                                                                                                                                                                   function is self-inverse or not.
                                      From the graph, the domain of f -1(x) is x Î R, x 0                                                                                                                                                                                                                                                                                           a f(x) = 8 - x, x Î R                          b f(x) = 12 , x Î R, x ¹ 0
                                                      and the range of f -1(x) is y Î R, y -2                                                                                                                                                                                                                                O                       x
                                                                                                                                                                                                                                                                                                                                                                                                                                                  x
                                                                                                                                                                                                                                                                                                                     −2
                                                                                                                                                                                                                                                                                                                                                                                    c f(x) =    4 − x 2 , x Î R, 0     x   2       d f(x) =           4 − x 2 , x Î R, -2     x      2
                        b Substitute f(x) = + x + 2 into f -1f(x):                                                                                                                                                                                                                                                         –2

                                      f −1f(x) = f −1 ( + x + 2 ) = ( + x + 2 ) − 2 = x + 2 − 2 = x
                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                                                    e f(x) = 8 - x, x Î R, 0       x   8           f     f(x) =     x , x Î R, x ¹ 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                  x −1
                                      So, f followed by f -1 leaves x unchanged.

     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          19
1 Algebra and functions                                                                                                                                                              1 Algebra and functions


       4 Find the inverse of f(x) = 8 - x, x Î R, x    0 and explain why                                       10 The function g(x) is defined as g: x →      2 , x Î R, x ¹ 2
                                                                                                                                                             x−2
         the function f(x) is not self-inverse.
                                                                                                                   Find the inverse function g -1(x) and its domain.
                                                                                                                   Solve the equation g(x) = g -1(x)
       5 Prove that g(x) = x + 1, x Î R, x ¹ 1 is self-inverse.
                             x −1
          Find the elements of the domain that map onto themselves                                             11 Find the inverse g-1(x) of the function g(x) = 3x + 1 , x Î R,       Find the horizontal asymptote by
                                                                                                                                                                 x−3                   letting x ® ¥. Also find the
          under g(x).                                                                                             x ¹ 3. And show that g(x) is self-inverse.                           vertical asymptote.
                                                                                                                  Sketch the graphs of g(x) and g -1(x).
       6 The function f(x) is defined by f(x) = x2 - 6x + 14, x Î R, x 3     To complete the square, rewrite      Find the values of x which map onto themselves.
         By completing the square, draw the graph of f(x) and find           in the form (x - a)2 + b
         its range.                                                          See C1 for revision.              12 The function h(x) = cx + 1 , x Î R, x ¹ 2 is self-inverse.
                                                                                                                                           x−2
         Find the inverse function f -1(x), stating its domain and range.                                          Find the value of c.
         Sketch its graph on the same axes as f(x).                                                                Find the values of x which map onto themselves.

       7 For each of these functions, find its range and its                 You can use the ‘completing       13 Prove that f(x) = a x + b , x ¹ a is self-inverse for all a and b.
                                                                             the square’ method.                                         x −a
         inverse function.                                                                                         Find the values of x which map onto themselves.
         State the domain and range of the inverse function.
         Sketch the graphs of y = f(x) and y = f -1(x) on the same axes.
                                                                                                               14 Sketch the graph of the function f(x) = x 2 + 1 , x ∈ R 0 , x ≠ 1
                                                                                                                                                            2
                                                                                                                                                                          +
          a f: x ® x2 - 4x + 5, x Î R, x      2                                                                                                               x −1
                                                                                                                   and its inverse f -1(x) on the same axes.
          b f: x ® x2 - 8x + 21, x Î R, x         4
                                                                                                                   State the domain and range of the inverse function.
C3




                                                                                                                                                                                                                               C3
          c f: x ® 4x - x2, x Î R, x > 2                                                                           Explain why the solution of the equation f(x) = f -1(x) is also
                                                                                                                   a solution of x3 - x2 - x - 1 = 0
          d f: x ® x2 + 4x + 2, x Î R, x > -2
                                                                                                                   Show that an approximate solution is x = 1.84
       8 For each of these functions, f(x), find f -1(x) and its domain.
         Solve the equation f(x) = f -1(x)
         Find the points where the graphs of y = f(x) and y = f -1(x) intersect.                                 INVESTIGATION

          a f(x) = 1 x + 4, x Î R                                                                                15 Which one of these four functions has an inverse function?
                    2
                                                                                                                      Explain why the other three functions do not have
          b f(x) = x2, x Î R, x     0
                                                                                                                      inverse functions.
          c f(x) = (x - 2)2, x Î R, x     2                                                                           f1(x) = x2 - 5, x Î R
          d f(x) = x2 + 8x + 12, x Î R, x     -4
                                                                                                                      f2(x) = 32 , x ∈
                                                                                                                              x
       9 a Find a, b and c such that f -1(x) = x2 + ax + b, x Î R, x c
                                                                                                                      f3(x) = 5 – 2x, x Î R+
           is the inverse function of f(x) = 1 + x + 1, x Î R, x -1
                                                                                                                      f4(x) = sin x, x Î R, 0    x   p
          b Find the values of
             i f(8)
             ii f -1(8)
             iii x such that f(x) = f -1(x)




 20                                                                                                                                                                                                                       21
1 Algebra and functions




                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 2
      1.5                              The modulus function                                                                                                                                                                                                                                                                                                       Sketch the graph of y = 2|x| - 3
                                                                                                                                                                                                                                                                                                                                                                  ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                  The modulus of a number |x| is its magnitude or absolute value.                                                                                                                                                                                                                                                                                 Sketch the graph of y = 2x - 3 for x                                                                                                             0                                             y
                                                                                                                                                                                                                                                                                                                                                                  and reflect it in the y-axis:

                   In general,                                                         when x 0, |x| = x                                                                                                                                                                                                         On your calculator, |x| may be
                                                                                                                                                                                                                                                                                                                                                                  The reflection has the equation                                                                                                                                                            3
                                                                                                                                                                                                                                                                                                                                                                  y = -2x - 3                                                                                                                                                                                                                                  y = 2|x| – 3
                                                                                       when x < 0, |x| = -x                                                                                                                                                                                                      written as ABS(x).
                                                                                                                                                                                                                                                                                                                                                                  The function f(x) = 2|x| - 3
                                                                                                                                                                                                                                                                                                                                                                  can be written as                                                                                                                                                                             O                                                                                       x
                  E.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.5
                  |2| = 2 and |-2| = 2
                                                                                                                                                                                                                                                                                                                                                                                       ⎧2x − 3, x 0
                  |x| < 2 can also be written as -2 < x < 2                                                                                                                                                                                                                                                      An empty circle shows that                                     f(x) = ⎨
                                                                                                                                                                                                                        −2                                                           2                           the end value is not included.                                        ⎩ −2x − 3, x < 0                                                                                                                                                  –3

                  |x|               2 can also be written as x                                                                                   2 or x                            -2                                                                                                                            A filled circle on a number
                                                                                                                                                                                                                        −2                                                           2                           line shows that the end
                                                                                                                                                                                                                                                                                                                 value is included.
                  The graph y = |f(x)|




                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 3
                  |f(x)| is always positive, so the graph y = |f(x)| always lies above
                                                                                                                                                                                                                                                                                                                                                                  Sketch the graphs of
                  the x-axis.
                                                                                                                                                                                                                                                                                                                                                                  a y = f(x)           b y = |f(x)|                                                                                                                                                     c y = f(|x|)
                                                                                                                                                                                                                                                                                                                                                                  when f(x) = x 2 - 2x - 8
      EXAMPLE 1




                                                                                                                                                                                                                                                                                                                                                                  ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                    Sketch the graph of y = |2x - 3|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           y
                                                                                                                                                                                                                                                                                                                                                                  a y = x2 - 2x - 8
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C3
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Differentiating or completing the
                                                                                                                                                                                                                                                                                                                                                                      = (x - 4)(x + 2)                                                                                                                                                                          y = x2 – 2x – 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               square shows that there is a
                    Sketch the graph of y = 2x - 3                                                                                                                                                                                                                                                               Show the part below the x-axis                                                                                                                                                                                                                                                                                                                minimum value at (1, -9).
                                                                                                                                                                                                                                                                                                                                                                    When x = 0, y = -8
                    Where y < 0, reflect the graph in the x-axis:                                                                                                                                                                                                                                                as a dashed line.
                                                                                                                                                                                                                                                                                                                                                                    When y = 0, x = 4 or -2                                                                                                                                                                                                                                                                     You could use computer software
                    The reflected line has the equation y = -2x + 3                                                                                                                                                                                                                                                      y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                or a graphical calculator to check
                    The function f(x) = |2x - 3| can be written as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              these results.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 −2 O                                         4                  x
                               ⎧2x − 3, x 1 1                                                                                                                                                                                                                                                                           3
                               ⎪             2                                                                                                                                                                                                                                                                                        y = |2x – 3|
                        f(x) = ⎨
                               ⎪−2x + 3, x < 1 1
                               ⎩               2
                                                                                                                                                                                                                                                                                                                         O    1.5                 x                                                                                                                                                                                   –8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (1, –9)

                                                                                                                                                                                                                                                                                                                       –3
                  The graph of y = f(|x|)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y
                                                                                                                                                                                                                                                                                                                                                                  b For y = |f(x)|, reflect the
                  |x| is always positive. So, the two points on the graph with x = k                                                                                                                                                                                                                                                                                part of the graph below the                                                                                                                                                         (1, 9)
                  and x = -k have the same value of f(|x|). The graph y = f(|x|) is                                                                                                                                                                                                                                                                                 x-axis in the x-axis.                                                                                                                                                                                                     y = |x2 – 2x – 8|
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8
                  therefore symmetrical about the y-axis.




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 −2 O                                          4                 x




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      –8                                                                                                                       The solution to part c is shown
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               on the next page.
 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  23
1 Algebra and functions                                                                                                                                        1 Algebra and functions

      EXAMPLE 3 (CONT.)
                                                                                                               4 Sketch the graph of g(x) = |6 - 2x| for the domain 0 x 8
                            c For y = f(|x|), reflect the part of                 y
                                                                                      y=   |x|2   – 2|x| – 8     Find the range of the function and the solution of the equation
                                 the graph to the right of the
                                                                                 8                               g(x) = 4
                                 y-axis in the y-axis:

                                                                                                               5 Sketch the graph of h(x) = |2x + 5| for the domain -4 x 1
                                                                                                                 Find the range of the function and solve the equation h(x) = 3

                                                                           −4     O                   x
                                                                                              4                6 Sketch the graph of y = f(x), y = |f(x)| and y = f(|x|) for p   x   p
                                                                                                                 where
                                                                                                                  a y = |sin x|
                                                                                 –8
                                                                                                                  b y = sin |x|
                                                                            (–1, –9) (1, –9)
                                                                                                                  c y = |cos x|
                                                                                                                  d y = cos |x|
                          Exercise 1.5
                          1 Sketch the graphs of these functions.                                              7 Find the point of intersection of the graphs of y = |5 - x|
                            Give the coordinates of any point where a graph meets the                            and y = |x + 1|
                            x-axis or y-axis.
                             a y = |x - 3|                          b y = |x| - 3                              8 Find all points of intersection of the graphs of y = |x + 2|
                                                                                                                 and y = 2|x| - 4
C3




                                                                                                                                                                                                                    C3
                             c y = |2x - 1|                         d y = 2|x| - 1

                             e y = |4 - x|                          f y = 4 - |x|                              9 How many solutions are there to the simultaneous equations
                                                                                                                 y = (|x| - 2)2 and y = |2x - 4|?
                             g y = |2x + 3|                         h y = -|2x + 3|                              Find them.
                             i    y = |x2 - 4x + 3|                 j   y = |x|2 - 4|x| + 3

                             k y = |3 - 2x + x2|                    l   y = 3 - 2|x| + |x|2                      INVESTIGATION
                                                                                                                 10 Use computer software or a graphical calculator to check
                             m y= 6                                 n y = -|x|                                      some of your answers to the questions in this exercise.
                                       x
                                                                                                                    You may have to use abs (absolute value) button to
                             o y = |log10 x |                                                                       input a modulus.

                          2 Sketch the graphs of these functions.
                             a y = |x + 4| + |x - 1|
                             b y = |x - 2| + |x - 1|

                          3 On separate axes, sketch the graphs of y = f(x), y = |f(x)|
                            and y = f(|x|) where
                             a f(x) = x2 - 3x - 4
                             b f(x) = 4x - x2



 24                                                                                                                                                                                                                25
1 Algebra and functions

                                                                                                                                                                                                                                                                                                                                                           Exercise 1.6
      1.6                              Solving modulus equations and inequalities
                                                                                                                                                                                                                                                                                                                                                           1 Use these two diagrams to help you solve
                                                                                                                                                                                                                                                                                                                                                              a                                                       b        y
                  You can use a graphical or an algebraic method to find solutions                                                                                                                                                                                                                                                                                   y
                                                                                                                                                                                                                                                                                                                                                                                         y = |x – 4|                                y = |x| + 2
                  to equations and inequalities which involve modulus signs.
                                                                                                                                                                                                                                                                                                                                                                     5
      EXAMPLE 1




                                                                                                                                                                                                                                                                                                                                                                     4                      y=5                               4                       y = |x – 4|
                    Solve |2x + 1| = 5
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                              2
                    Algebraic method                                                                                                                            Graphical method                                                                                                                                                                                     O         4                       x                   –2 O           4                x
                          (2x + 1)2 = 52                                                                                                                        Find the points of intersection                                                                                                                                y
                      4x 2 + 4x + 1 = 25                                                                                                                        of y = |2x + 1| and y = 5:                                                                                                                                                                          –4                                                        –4
                                                                                                                                                                                                                                                                                                                 y = –2x – 1           y = 2x + 1
                    4x2 + 4x - 24 = 0                                                                                                                           At P, 2x + 1 = 5                                                                          so x = 2
                                                                                                                                                                                                                                                                                                                                            y=5
                         x2 + x - 6 = 0                                                                                                                         The reflection of y = 2x + 1 in the                                                                                                                      Q             P
                                                                                                                                                                                                                                                                                                                                                                  i |x - 4| = 5          ii |x - 4| < 5                   i |x - 4| = |x| + 2          ii |x - 4| > |x| + 2
                    (x + 3)(x - 2) = 0                                                                                                                          x-axis is y = -2x - 1:
                                                                                                                                                                                                                                                                                                                              1
                       x = -3 or 2                                                                                                                              At Q, -2x - 1 = 5
                                                                                                                                                                                                                                                                                                                              O                       x    2 Solve these equations and inequalities.
                                                                                                                                                                          -2x = 6 so x = -3
                    The solutions are                                                                                                                                                                                                                                                                                                                         a i    |x + 2| = 5                ii |x + 2| < 5
                                                                                                                                                                The solutions are
                    x = -3 and x = 2
                                                                                                                                                                x = -3 and x = 2                                                                                                                                                                              b i    |2x + 3| = 7               ii |2x + 3| > 7
                                                                                                                                                                                                                                                                                                                                                              c i    |3x - 1| = 8               ii |3x - 1|       8
      EXAMPLE 2




                    Solve                              a |x| + 4 = 3x                                                                                                          b |x| + 4 < 3x                                                                                                                                                                 d i    |6 - 2x| = 2               ii |6 - 2x|       2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C3
                                                                                                                                                                                                                                                                                                                 The graph of y = |x| + 4 involves
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                 a reflection in the y-axis.
                                                                                                                                                                                                                                                                                                                                                              e i    |x - 2| = |x|              ii |x - 2| < |x|
                    Sketch the graphs of y = |x| + 4 and y = 3x:
                                                                                                                                                                                                                                                                                                                               y
                    a The two graphs have only                                                                                                                                                                                                                                                                                                                f i    |3x - 2| = |x + 1|         ii |3x - 2| < |x + 1|
                                                                                                                                                                               b For |x| + 4 < 3x, you                                                                                                                                 y = 3x
                      one point of intersection, P.                                                                                                                              need the graph of                                                                                                               y = –x + 4

                      At P, x + 4 = 3x                                                                                                                                                                                                                                                                                                     y=x+4           3 Solve these equations.
                                                                                                                                                                                 y = |x| + 4 to be below
                                4 = 2x                                                                                                                                           the graph of y = 3x                                                                                                                                   P                      a |x + 1| = x + 4                b |x| + 1 = x + 4                   c |2x + 3| = 3x - 2
                                                                                                                                                                                                                                                                                                                               4
                                                                                                                                                                                 This occurs to the                                                                                                                                                           d |2x + 3| = 6 - x               e 2|x| + 3 = 4x                     f |2x - 4| = |x| + 2
                                  The solution is x = 2
                                                                                                                                                                                 right of P.                                                                                                                                   O                  x
                                                                                                                                                                                                                                                                                                                         –4
                                                                                                                                                                                 The solution is x > 2                                                                                                                                                        g |x2 - 4x| = 3x - 6             h |x|2 - 4|x| = x

                                                                                                                                                                                                                                                                                                                                                           4 Solve these inequalities.
      EXAMPLE 3




                                                                                                                                                                                                                                                                                                                 Both graphs involve a reflection in          a |2x - 1| > x + 1               b 2|x| - 1 < x + 1                  c |3x - 6| < |x|
                    How many solutions has the equation |x2 - 3x| = |x - 2| ?
                                                                                                                                                                                                                                                                                                                 the x-axis.
                    Find the solution nearest to x = 3                                                                                                                                                                                                                                                                                                        d |2x - 2|       |x| - 3         e |x2 - 3x|         2|x| - 4     f |x2 - 4| < |x| + 2
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                       y
                                                                                                                                                                                                                                                                                                                                           y = |x2 – 3x|
                    Sketch the graphs of y =                                                                     |x2            - 3x| and y = |x - 2|:                                                                                                                                                                                                                                                                x−2 < 4
                                                                                                                                                                                                                                                                                                                                                           5 Solve       a |x2 - x - 6| = |x| + 2             b
                    The two graphs intersect four times.                                                                                                                                                                                                                                                                                                                                                              x+3
                    So, there are four solutions to the equation |x2 - 3x| = |x - 2|                                                                                                                                                                                                                                 2                     y = |x – 2|
                                                                                                                                                                                                                                                                                                                                   P
                    The solution nearest to x = 3 is given by the point P.                                                                                                                                                                                                                                            O                       x              INVESTIGATION
                                                                                                                                                                                                                                                                                                                              1 2 3
                    At P, the graphs of y = x - 2 and y = -(x2 - 3x) intersect.                                                                                                                                                                                                                                     –2                                       6 If |x2 + bx + c| = x2 + bx + c for all x, find a condition
                    So      x - 2 = -(x2 - 3x)                                                                                                                                                                                                                                                                                                                 which b and c must satisfy.
                      x2 - 2x - 2 = 0 giving x = 1 ± 3                                                                                                                                                                                                                                                            Reflecting y = x2 - 3x in the x-axis
                                                                                                                                                                                                                                                                                                                  gives y = -(x2 - 3x) = -x2 + 3x
                    Reject the invalid value 1 - 3 which is negative.
                    The required solution is x = 1 + 3 = 2.73 (to 2 d.p.)                                                                                                                                                                                                                                        Use the quadratic formula.
 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   27
                                                                                                                                                                                                                                                                                                                 See C1 for revision.
1 Algebra and functions




                                                                                                                                                                                                                                                                                                                                                   EXAMPLE 2
      1.7                              Transformations of graphs of functions                                                                                                                                                                                                                                                                                  Describe the two transformations needed to transform
                                                                                                                                                                                                                                                                                                                                                               the graph of y = x2 into the graph of y = 4 - x2
                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                  Recall the rules of transforming a function:                                                                                                                                                                                                                                                   Refer to   C1   for revision.
                                                                                                                                                                                                                                                                                                                                                               Work out the result of a reflection in                                                                                                                                                               y                                                                                                             You can use a sketch to check
                                                                                                                                                                                                                                                                                                                                                               the x-axis:                                                                                                                                                                                                           y = x2                                                                                       your work.
                              y = f(x) ± a is the result of translating y = f(x) parallel to the
                                           y-axis by ± a units                                                                                                                                                                                                                                                                                                 If y = f(x) = x2, then after                                                                                                                                                                      4                                                                                                                     In Example 2, the order matters:
                                                                                                                                                                                                                                                                                                                                                               reflection in the x-axis                                                                                                                                                                                                                                                                                                the reflection must be first and
                              y = f(x ± a) is the result of translating y = f(x) parallel to the
                                                                                                                                                                                                                                                                                                                                                               y = -f(x) = -x2                                                                                                                                                                                                                                                                                                         the translation must be second.
                                           x-axis by a units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           If you did the translation first and
                              y = -f(x) is the result of reflecting y = f(x) in the x-axis                                                                                                                                                                                                                                                                     Now work out the result of translating                                                                                                                                                                                                                                                                                  the reflection second, then the
                              y = f(-x) is the result of reflecting y = f(x) in the y-axis                                                                                                                                                                                                                                                                     the new function, y = -x2, parallel to                                                                                                                                                                                                                                                                                  final graph would have the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        −2                         O                                2               x
                              y = af(x) is the result of stretching y = f(x) parallel to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           equation y = -(x2 + 4) = -x2 - 4
                                                                                                                                                                                                                                                                                                                                                               the y-axis 4 units upwards:                                                                                                                                                                                                                       y = 4 – x2
                                           y-axis by a scale factor of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              y
                              y = f(ax) is the result of stretching y = f(x) parallel to the                                                                                                                                                                                                                                                                   After the translation, y = f(x) = -x2                                                                                                                                                                                                   y = –x2                                                                                                                      y = x2 + 4

                                           x-axis by a scale factor of 1                                                                                                                                                                                                                                                                                       is transformed into y = f(x) + 4
                                                                                                                                                                                                          a                                                                                                                                                                             = 4 - x2
                                                                                                                                                                                                                                                                                                                                                               These are the two required transformations.                                                                                                                                                                                                                                                                                                                                        y = x2
                  You can combine these transformations to give new functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                  E.g. When y = f(x) is transformed by:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              −4 −2 O                                                                                  x
                                                                                ⎛a⎞                                                    ⎛0⎞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        −2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 4
                         translations of ⎜ 0 ⎟ and then ⎜ ⎟ , the result is y = f(x - a) + b
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C3
                                         ⎝ ⎠            ⎝b⎠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       −4
                                                                                                                                                                                                                                                                                                                  The order in which you do the
                         a stretch of scale factor 2 parallel to the x-axis and then a reflection                                                                                                                                                                                                                 transformations can sometimes
                         in the x-axis, the result is y = −f x                                                                                 ( 2)                                                                                                                                                               affect the final function.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 y = –x2 – 4
      EXAMPLE 1




                    The quadratic function f(x) = x2 - 3x is reflected in the y-axis




                                                                                                                                                                                                                                                                                                                                                   EXAMPLE 3
                                                                                                                                                                             ⎛2⎞                                                                                                                                                                               Sketch the graph of the function y = 3sin 2x, x Î R and find its range.
                    and then translated by the vector ⎜ ⎟ .
                                                       0
                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                             ⎝ ⎠
                    Find the equation of the final function.                                                                                                                                                                                                                                                                                                   If y = sin x, then y = sin 2x is the result of a stretch                                                                                                                                                                                                                                               y
                                                                                                                                                                                                                                                                                                                                                               parallel to the x-axis with scale factor 1 .
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                               The ‘stretch’ is really a ‘squash’.                                                                                                                                                                                                                                                                 3
                    After reflection in the y-axis, the function becomes                                                                                                                                                                                                                                         The reflection in the y-axis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        y = 3sin 2x
                       f(x) = (-x)2 - 3(-x) = x2 + 3x                                                                                                                                                                                                                                                            changes f(x) to f(-x).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 y = sin 2x                                                                                                        2

                    After the translation, the function now becomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1
                                                                                                                                                                                                                                                                                                                 The translation changes the new               If y = sin 2x, then y = 3sin 2x is the
                       f(x) = (x - 2)2 + 3(x - 2)                                                                                                                                                                                                                                                                f(x) to f(x - 2).                             result of a stretch parallel to the y-axis                                                                                                                                                                           −2p                                        −p                                    O                                                                                                                                x
                            = x2 - 4x + 4 + 3x - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                p                                    2p
                                                                                                                                                                                                                                                                                                                                                               with scale factor 3.                                                                                                                                                                                                                                                                           −1
                            = x2 - x - 2
                                                                                                                                                                                                                                                                                                                 You can check the answer using                The range of y = 3sin 2x is -3 x 3 (or |x|                                                                                                                                                                           3).                                                                                                                                                                                  y = sin x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              −2
                    The equation of the final function is f(x) = x2 - x - 2                                                                                                                                                                                                                                      a graph-plotter.                              Each point on y = sin 2x maps onto a point three
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              −3
                                                                                                                                                                                                                                                                                                                                                               times further away from the x-axis.
                                                                                                                                                                                                                                                                                                                                                               The stretch parallel to the x-axis has changed
                                                                                                                                                                                                                                                                                                                                                               the period from 2p to p (360° to 180°).




 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         29
1 Algebra and functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 Algebra and functions




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EXAMPLE 6
      EXAMPLE 4

                    Sketch the graph of y = 1 + cos x − p , x Î R and find its range.                                                                            (                              )                                                                                                                                                                                                                                                                              This diagram shows the graph of y = f(x)                                                                                                                                                                                                                                                                           This function is defined by its

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (2 )
                                                                                                                                                                                         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        graph rather than by an equation.
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                 On the same axes, sketch the graph of y = 3 − f 1 x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     y
                    If y = cos x, then y = cos x − p is the
                                                   4                                                                            (                              )                                                                                                                                    y

                                                                                                                                                                                                                                                                                                                            y = 1 + cos x – p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Find the coordinates of the images of points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O (0, 0) and P (2, 3).
                    result of a translation parallel to the                                                                                                                                                                                                                                  2                                              4                            (                        )                                                                                                                                                                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    y = f(x)
                                                                                                                                                                                                                                                                                                                                                                                               y = cos x
                    x-axis of + p units to the right.                                                                                                                                                                                                                                        1
                                4                                                                                                                                                                                                                                                                                                                                                                 y = cos x – p                (                        )
                                                                                                                                                                                                                                                                                                                                                                                                              4
                    y = f(x - a) is the result of translating y = f(x)                                                                                                                                                                                                                            O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 O                                                        x
                                                                                                                                                                                                           −2p                                           −p                                                                                          p                                            2p                                   x                                                                                                                                                                                                                                                                                                                                                                                                             2
                    parallel to the x-axis by +a units.
                                                                                                                                                                                                                                                                                           −1

                                                              (                              )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    If y = cos x − p , then                                                                                                                                                                                                                                                −2                                                                                                                                                                                  The three transformations involved are, in this order:
                                   4
                    y = 1 + cos x − p is the result of a
                                     4                               (                              )                                                                                                                                                                                                                                  By not involving any stretches
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              y = f(x)
                    translation parallel to the y-axis of +1 unit upwards.                                                                                                                                                                                                                                                             in this problem, you have not                                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O#
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     P                                                 y=f 1x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2             ( )
                                                                                                                                                                                                                                                                                                                                       changed the period of 2p.
                    y = f(x) + a is the result of translating y = f(x) parallel to the y-axis
                    by +a units.                                                                                                                                                                                                                                                                                                       In this problem, the order in
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          y = 3 –f 1x                     (2 )
                                                                                                                                  (                       4)
                                                                                                                                                                                                                                                                                                                                       which you do the two                                                                                                                                                                                                                                                                                      O                                                                                                             x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2                            4 P#
                    The range of y = 1 + cos x − p is 0                                                                                                                                             x                   2.                                                                                                             translations does not matter.                                                                                                                                                                                                                                                                            –1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                –2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                –3                                                                               y = –f 1x              ( )
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                –4
      EXAMPLE 5




                    Sketch the graph of y = 2|x + 3| - 4, x Î R and find its range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             –5
                    •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                                                                                                                               i a stretch parallel to the x-axis of scale factor 2
                                                                                                                                                                                                                                                                                                                                        Three transformations of y = |x|
                    Firstly, there is a translation of y = |x|                                                                                                                                                                                                                                        y                                                                                                                                                                        ii a reflection in the x-axis
                                                                                                                                                                                                                                                                                                                                        are involved.
                    parallel to the x-axis of -3 units to                                                                                                                                                                                                                                                                                                                                                                                                                      iii a translation parallel to the y-axis of +3 units upwards.
                                                                                                                                                                                                    y = 2|x + 3|                                                                                               y = |x + 3|
                    the left.                                                                                                                                                                                                                                                                                                                                                                                                                                                  The image points are O¢(0, 3) and P¢(4, 0).
                                                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                                                                                                                                                      y = |x|
                    Secondly, there is a stretch parallel                                                                                                                                                                                                                                         2
                    to the y-axis of scale factor 2.                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Exercise 1.7
                    Thirdly, there is a translation parallel                                                                                                                                                                                               −3 −2 −1 O                                                  1 2 3                                                          x
                                                                                                                                                                                                                                                                  −1                                                                                                                                                                                                           1 This diagram gives the graph of y = x                                                                                                                                                                                                                y
                    to the y-axis of -4 units downwards.                                                                                                                                                                                                                                                                                                                                                                                                                         On the same axes, sketch the graphs of
                                                                                                                                                                                                                                                                                             −2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   y = √x
                    The range is y                                                               -4                                                                                   y = 2|x + 3| – 4                                                                                       −3                                                                                                                                                                                                                                                                                                                                                                                                                                   3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         i               y= x                                                                             ii y = x + 3
                                                                                                                                                                                                                                                                                             −4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         iii y = x − 3                                                                                    iv y = x + 3                                                                                                                               O                                                                                                          x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3                           6                          9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         v y= x -3                                                                                                                                                                                                                            –3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Label each sketch with its equation.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2 On the same axes, sketch the graphs of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         y = x2                                             y = x2 + 3                                                        y = x2 - 3                                                        y = (x + 3)2                                                               y = (x - 3)2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Label each sketch with its equation.

 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         31
1 Algebra and functions                                                                                                                                     1 Algebra and functions

       3 a If f(x) = |x|, sketch on the same diagram the graphs of                          8 Describe the transformations of the graph of y = cos x which
                  y = f(x),       y = f(2x),     y = 2f(x)                                    result in a graph with the equation
                                                                                               a y = 1 + 2cos x
          b If f(x) = |x|, sketch on the same diagram the graphs of
                  y = f(x)        y = f(x + 2)   y = f(x - 2)                                  b y = 3 + cos x + p(           4   )
          Label each graph with its equation.
                                                                                               c y = 3 - cos 2x
       4 Sketch the graph of y = x2 - 3x
         Sketch the graph and write the equation after the graph
                                                                                                              (
                                                                                               d y = 4cos x − p
                                                                                                                       2   )
         of y = x2 - 3x has been transformed by                                                e y = 2cos 3x
          a a reflection in the x-axis           b a reflection in the y-axis                  f y = 1 cos(-x)
                                                                                                      2
                             ⎛2⎞                                    ⎛ 0⎞
          c a translation of ⎜ ⎟                 d a translation of ⎜ ⎟ .
                             ⎝0⎠                                    ⎝ −4 ⎠                  9 On the same axes, sketch the graphs of y = tan x and

                              2
                                                                                                             (
                                                                                               y = 1 + tan x − p for 0
                                                                                                                      2   )           x   p
       5 The graph of y = x is reflected in the x-axis and then translated
         5 units upwards parallel to the y-axis. Sketch the final image of
                                                                                           10 The graph shows the function y = f(x)
         y = x2 and write its equation.
                                                                                                                       y
       6 Sketch the graph of y = 4 - x2
C3




                                                                                                                                                                                             C3
          a Sketch the image of the graph of y = 4 - x2 after a reflection
                                                                                                                                              x
            in the x-axis followed by a stretch (scale factor 2) parallel                          (–5, 0)            O (0, –1)
            to the x-axis.
                                                                                                             (–3,–4)
          b Sketch the image of the graph of y = 4 - x2 after a
            reflection in the y-axis followed by a stretch
                                                                                               a The graph of the function y = f(x) is transformed into the
            (scale factor 2) parallel to the x-axis.
          Write the equations for the resulting graphs.                                           graph of y = f 1 x + 1      (2 )
                                                                                                  i Describe the transformations which have taken place.
       7 Sketch the graph of y = f(x) and its image when                                          ii Sketch the graph of y = f(x) and its image on the same diagram.
          a f(x) = x2 - 4x + 3 is stretched (scale factor 2) parallel to the                   b Repeat when f(x) is transformed into y = 2 - 3f(x - 1)
            y-axis and then reflected in the x-axis
          b f(x) = x2 - 3x is reflected in the x-axis and then translated
            +1 units parallel to the x-axis                                                  INVESTIGATION

          c f(x) = |x - 4| is stretched (scale factor 3) parallel to the x-axis              11 Which two transformations result in the graph of
            and then translated -2 units parallel to the x-axis                                 y = f(x) being
                                                                                                 a enlarged with scale factor k and centre (0, 0)
          d f(x) = sin x is reflected in the y-axis and translated +1 unit
            parallel to the y-axis                                                               b rotated through 180° about the origin (0, 0)?
                                                                                 ⎛π⎞             Write the equation of the image of y = f(x) in each case.
          e f(x) = sin x is reflected in the x-axis and translated by the vector ⎜ 2 ⎟ .
                                                                                 ⎜3 ⎟
                                                                                 ⎝ ⎠
          In each case, write the equation of the image.




 32                                                                                                                                                                                         33
1 Algebra and functions


      Review 1                                                                                                  5 The function f is defined over the domain 0       x    4 by
                                                                                                                                          f(x) = x              0   x<2

      1 Express each of these expressions as a single fraction in its                                                                     f(x) = 4 - x          2   x    4
        simplest form.                                                                                            a   Sketch the graph of f over its domain.
              1 + 2                                      2 − 2x
        a
            x − 1 2x + 3
                                                   b
                                                       x +1 x +2                                                  b   Find all the values of x for which f(x) = x + 4                       [(c) Edexcel Limited 2002]
                                                                                                                                                                    4
                                                                       2
                   3      +       3                    2a3(a + b) × 6b
        c   (x + 1)(x − 4) (x − 1)(x − 4)
                                                   d                                                            6 The function g is defined by g: x ® 4x2 + 9, x Î R, x      0
                                                           3b      a2 − b2
                                                                                                                  a   Find the inverse of g.
            3m(m − 2) m2 − m − 2                         4x 2 × x 2 − 3x + 2
        e            ÷                             f
              m −1       m2                            (x − 1)2  8x 3(x − 2)                                      b   Find the value of g -1(18).

      2a    Express          x      + x + 12 as a single fraction in its
                      (x + 1)(x + 3) x 2 − 9                                                                    7 Prove that the function f(x) = x + 2 , x Î R, x ¹ 1 is self-inverse.   Self-inverse means that the
                                                                                                                                                     x −1
            simplest form.                                                         [(c) Edexcel Limited 2001]                                                                            function and its inverse
                                                                                                                  Also prove that the only elements of the domain which map              are identical.
                                                                                                                  onto themselves are x = 1 ± 3
        b   Hence, find the solution of            x      + x + 12 = −1 1
                                            (x + 1)(x + 3) x 2 − 9      2
                                                                                                                8 Given that f(x) = x2 - 5x + 6, sketch the graphs of
      3a    Find the quotient and remainder when                                                                  a y = |f(x)|
C3




                                                                                                                                                                                                                          C3
            i 4x3 + 4x2 - 5x - 3 is divided by 2x + 1                                                             b y = f(|x|)
            ii x3 - 7x + 8 is divided by x - 2
        b   Find the function f(x) and the constant k which satisfy the identity                                9 This diagram shows the graph of the function
            2x3 - 3x2 + 4 º (x -1) f(x) + k                                                                       y = f(x), -1 x 6
                                                                                                                               y
        c   Divide f(x) = x3 - 2x2 - 9x + 18 by x - 2 and so factorise
            f(x) completely.                                                                                                 2                   y = f(x)

      4 The functions f and g are defined by f(x) = x2 - 1, x Î R, x         0
        and g(x) = 2x - 1, x Î R
        a   Find the values of
                                                                                                                           –1 O          3           6      x
            i f(3)                  ii g(3)               iii fg(3)
            iv gf(3)                v f -1(3)             vi g -1(3)
        b   Find algebraic expressions for
                                                                                                                  Sketch, on separate diagrams, the graphs of
            i   fg(x)               ii gf(x)
            iii f -1(x)             iv gf -1(x)                                                                   a   y = f(x) - 2

        c   Prove that there are no solutions to the equation                                                     b   y = |f(x)|
            fg(x) = gf(x)                                                                                         c   y = f(|x|)
                                                                                                                  Give the coordinates of any turning points on your three diagrams.




 34                                                                                                                                                                                                                      35
1 Algebra and functions                                                                                                                                   1 Algebra and functions

      10 The graphs of y = x - 2 and y = 1 are shown on this diagram.     15 The graph of the function f(x) = 3 - x, x                    0   y

                            y                                                is shown on this diagram.
                                  y=x–2                                      a Give the range of f(x).                                        3
                            1             y=1                                b Find the values of                                             2
                                                                                                                                                          y = 3 – √x
                            O     2             x                              i f -1f(6)                         ii f -1(-1)                 1

                                                                                                                                              O   2   4     6   8 10 12 14 16 18               x
                           –2
                                                                             c        Sketch the graph of y = |f(x)|
                                                                             Find the values of the constant c if the equation
         Sketch the graphs of y = |x - 2| and y = 1 on the same diagram      |f(x)| = c has exactly two roots.
         and find their points of intersection.
                                                                          16 This diagram shows the graph of y = f(x)
      11 Sketch the graphs of                                                     y
         a y = |2x - 3|                     b y = 2|x| - 3                                (2, 4)
                                                                                 4
         c   y = |4 - x|                    d y = 4 - |x|                                                      f(x)
                                                                                 3
         e y = |x2 - 5x + 4|                f   y = |x|2 - 5|x| + 4              2
                                                                                 1
         g y = |2x - x2|                    h y = 2|x| -|x|2
                                                                                  O      1 2 3 4 5 6 7                     x
                                                                                 –1
      12 Solve the equations
C3




                                                                                                                                                                                                     C3
                                                                                 –2
         a |3x - 2| = x + 2                 b 3|x| - 2 = x + 2                   –3
                                                                                                     (5, –3)
         c   |2x - 3| = |4 - x|             d 2|x| - 3 = |4 - x|
                                                                             Sketch on separate diagrams the graphs of
         e |6 - 2x| = x + 3                 f   |6 - 2x| = |x| + 3
                                                                             a y = 1 f(x + 1)
                                                                                          2
                                                                                                                      b            (2 )
                                                                                                                           y = f 1x +1
      13 Solve the inequalities
                                                                          17 The graph of y = x2 is transformed onto each of these graphs
         a   |2x - 3| > |4 - x|             b 2|x| - 3 < |4 - x|
                                                                             by successive transformations.
         c   |2x - 4| < x                   d |6 - 2x| > x + 3               Describe the transformations which have taken place in each case.
                                                (|x| - 2)2                                                                     1
         e   6 - 2|x|      1-x              f                x+4             a y = 3x2 - 5                            b y = 2 (x - 2)2
                                                                             c y = 1 - 2x2
      14 Solve
         a |x2 - 4| = x + 2
                                                                          18 f(x) = 2x + 5 −             1        , x > −2
                                                                                         x+3       (x + 3)(x + 2)
         b |x2 - 4|     x+2
                                                                             a        Express f(x) as a single fraction in its simplest form.
         c |x2 - 4|     |x| + 2                                                                                            1 , x > −2
                                                                             b        Hence show that f(x) = 2 −
                                                                                                                          x+2
                                                                             c        The curve y = 1 , x > 0, is mapped onto the curve y = f(x),
                                                                                                       x
                                                                                      using three successive transformations T1, T2 and T3,
                                                                                      where T1 and T3 are translations.
                                                                                      Describe fully T1, T2 and T3.                                                    [(c) Edexcel Limited 2005]


 36                                                                                                                                                                                                 37
1
       Exit
                                                                                                   2 Trigonometry
                                                                                                     This chapter will show you how to
                                                                                                       use reciprocal and inverse trigonometric functions
                                                                                                       solve trigonometric equations and prove identities
      Summary                                                                          Refer to
                                                                                                       use the compound angle formulae
       Algebraic division follows the same procedure as numerical long division.           1.2
                                                                                                       use the double angle and half angle formulae
       A function maps each element of the domain onto one and only one
                                                                                                       find equivalent forms for acos q + bsin q.
       element of the range.                                                               1.3
       The composite function gf(x) means that the function f is applied
       first and the function g is applied second. The function gf(x)
       only exists if the range of f is part of the domain of g.                           1.3
                                                                                                  Before you start
       To find the inverse function f -1 (x) of f(x)                                              You should know how to:                                           Check in:
       either use a flow diagram in reverse
                                                                                                  1 Use the special triangles.                                      1 Find the values of
       or         make x the subject of y = f(x) and then interchange x and y
       or         reflect the graph of y = f(x) in the line y = x.                                                                                                     a sin 60° + cos 30°
       A one-to-one function always has an inverse. A many-to-one function has                            30º                                                          b tan 60° + tan 45°
       an inverse only if the domain is restricted to make it a one-to-one function.       1.4
                                                                                                                 2
C3




                                                                                                                                                                                                                       C3
       If |x| < a, then -a < x < a. If |x| > a, then x > a or x < -a.                                √3                                                                c sin2 30° + sin2 60°
                                                                                                                                                 √2
                                                                                                                                        1
       To sketch the graph of y = |f(x)|, sketch y = f(x) and reflect
                                                                                                                                                                       d sin2 45° - cos2 45°
       any part below the x-axis in the x-axis.                                                                 60º                               45°
       To sketch the graph of y = f(|x|), sketch y = f(x) for x > 0 only                                     1 mm                                1
       and reflect it in the y-axis.                                                   1.5, 1.6                                     1
                                                                                                     e.g. sin 30° + tan 45° = 2 + 1 = 1.5
       You can apply a combination of transformations to the graph of y = f(x).
       The order of the transformations may affect the result.                             1.7                                                                                                        8
                                                                                                  2 Find cos q when q is acute and                                  2 a If q is acute and sin q = 17 , find the
                                                                                                    tan q is known.                                                       values of cos q and tan q.
                                                                                                     e.g. If tan q = 7 ,                7
                                                                                                                                                         x
                                                                                                                       24                                                                              4
                                                                                                                                                             i         b If q is obtuse and sin q = 5 , find the
       Links                                                                                         then x = 7 + 24 = 25
                                                                                                                   2        2                         24               values of cos q and tan q.
       Many situations in real life involving several variables and                                                  24
       uncertainty can be modelled using mathematics.                                                and cos q =
                                                                                                                     25

       Computation using complex numerical methods is used in
       forecasting weather, and mathematics is essential in                                       3 Find angles in all four quadrants.                              3 Find q such that 0°      q     360° when
       understanding and predicting climate change.                                                  e.g. If cos q = - 1 , then q is in the second                     a sin q = 0.3               b tan q = -2
                                                                                                                       2
       Even though, in reality, the variables involved are complicated,                              and third quadrants.                                                        1
                                                                                                                                                                       c cos q = 4
       they can be simplified using a mathematical model which can                                   Possible values of q = 180° ± 60° = 120° or 240°
       then be used to understand the system being studied and to
       make predictions.                                                                          4 Use identities involving sin q, cos q and tan q.                4 a If q is obtuse and sin q = 0.4, find cos q.
                                                                                                     e.g. If sin q = 0.6 and q is acute, then sin2 q + cos2 q = 1                                     1 ≡ 1
                                                                                                                                                                       b Prove the identity 1 +
                                                                                                     gives cos q = 1 − (0.6) =  2
                                                                                                                                            0.64 = 0.8                                              tan 2 q sin 2 q



 38                                                                                                                                                                                                                   39
2 Trigonometry

                                                                                                                                                                                                                                                                                                                                                      Similarly, you can sketch the graph of y = cosec q                                        cosec q is not defined when
      2.1                               Reciprocal trigonometric functions                                                                                                                                                                                                                                                                                                                                                                      sin q = 0
                                                                                                                                                                                                                                                                                                                                                                                                    y
                  The reciprocal trigonometric functions, secant, cosecant and
                  cotangent, are defined as                                                                                                                                                                                                                                                                                                                y = cosec i
                                                                                                                                                                                                                                                                                                                                                                                                   3

                                                                                                                                                                                                                                                                                                                  Be careful not to confuse these.                                                 2
                                                                                                                                                                                                                     cot q = tanq = cosq
                                                         1                                                                                                       1                                                                                             1
                   sec q = cos q                                                                              cosec q = sin q                                                                                                                                                                                     You would expect cosec to be
                                                                                                                                                                                                                                    sin q
                                                                                                                                                                                                                                                                                                                  related to cos and sec to sin.                                                   1
                                                                                                                                                                                                                                                                                                                                                                                                                   y = sin i

                                                                                                                                                                                                                                                                                                                                                                      –360º–270º–180º–90º O              90º 180º 270º 360º i
      EXAMPLE 1




                    Find, to 3 decimal places, the values of                                                                                                                                                                                                                                                     162° is in the second quadrant                                                                                                y = sin q and y = cosec q have
                                                               2p                                                                                                                                                                                                                                                where tan is negative.                                                        –1                                              periods of 360° (2p radians).
                    a sec 40°       b cot 162°          c cosec 5
                                                                                                                                                                                                                                                                                                                                                                                               –2
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                               When sin q = ±1, cosec q = ±1
                                   1         1                                                                                                                                                                                                                                                                                                                                                                                                 When sin q = 0, the graph of
                    a sec 40° = cos 40° = 0.76604 = 1.305                                                                                                                                                                                                                                                                                                                                      –3
                                                                                                                                                                                                                                                                                                                           162º                                                                                                                cosec q has a vertical asymptote.
                                                                                                                                                                                                                                                                                                                             O
                                    1          1          1
                    b cot 162° = tan162° = - tan18° = -0.32492 = -3.077
                                                                                                                                                                                                                                                                                                                                                      The domains and ranges of sin q and cosec q are:                                         When sin q is positive, cosec q is
                                                                                                                                                                                                                                                                                                                                                                                                                                               also positive. When sin q is
                                                                                                1                                         1                                                                                                                                                                                                                                         Domain                             Range
                    c cosec 2p = sin 2p = 0.95106 = 1.051                                                                                                                                                                                                                                                        2p
                                                                                                                                                                                                                                                                                                                    radians =
                                                                                                                                                                                                                                                                                                                              360°
                                                                                                                                                                                                                                                                                                                                   = 72°
                                                                                                                                                                                                                                                                                                                                                                                                                                               negative, cosec q is also negative.
                             5        5                                                                                                                                                                                                                                                                           5            5                        y = sin q                    qÎR                        y Î R, -1      y     1
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C3
                                                                                                                                                                                                                                                                                                                                                       y = cosec q     q Î R, q ¹ 0°, ±180°, ±360°, . . .       y Î R, y    1, y     -1

                  The graphs of sec q, cosec q and cot q                                                                                                                                                                                                                                                                                              The graph of cot q is shown here.                                                         cot q is not defined when
                                                                                                                                                                                                                                                                                                                  sec q is not defined when                                                                                                     sin q = 0
                  Starting with the graph of y = cos q, you can sketch the graph of
                                                                                                                                                                                                                                                                                                                  cos q = 0                                                                        y
                  its reciprocal y = sec q
                                                                                                                                     y                                                                                                                                                                                                                                                          3
                                                                                  y = sec i
                                                                                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                 3

                                                                                                                                 2                                                                                                                                                                                                                                                              1

                                                                                                                                 1                                                                                                                                                                                                                                                                                                             y = tan q and y = cot q have
                                                                                                                                                                                                                                                  y = cos i                                                                                                          –360º –270º –180º –90º O            90º 180º 270º 360º i                  periods of 180° (p radians).
                                                                                                                                                                                                                                                                                                                 y = cos q and y = sec q both have
                  –540º –450º –360º –270º –180º –90º                                                                                O                      90º 180º 270º 360º 450º 540º                                                                                           i                              a period of 360° (2p radians).
                                                                                                                                                                                                                                                                                                                                                                                               –1
                                                                                                                             –1                                                                                                                                                                                                                                                                                                                When tan q = ±1, cot q = ±1
                                                                                                                                                                                                                                                                                                                                                                                               –2                                              When tan q = 0, the graph of cot q
                                                                                                                             –2                                                                                                                                                                                  When cos q = ±1, sec q = ±1            y = tan i                                                                  y = cot i
                                                                                                                                                                                                                                                                                                                                                                                                                                               has vertical asymptotes.
                                                                                                                                                                                                                                                                                                                 When cos q = 0, sec q = ¥ and                                                 –3
                                                                                                                             –3                                                                                                                                                                                  its graph has vertical asymptotes.


                                                                                                                                                                                                                                                                                                                                                      The domains and ranges of tan q and cot q are:
                  The domains and ranges of cos q and sec q are:
                                                                                                                                                                                                                                                                                                                 When cos q is positive, sec q is
                                                                                                                                                                                                                                                                                                                 also positive. When cos q is                                  Domain                   Range
                                                                                                      Domain                                                                                                      Range                                                                                                                                                                                                                         You should be familiar with all of
                                                                                                                                                                                                                                                                                                                 negative, sec q is also negative.     y = tan q     q Î R, q ¹ ±90°, ±270°, . . .      yÎR                                     these graphs when q is in
                   y = cos q                                                                              qÎR                                                                              y Î R, -1                                        y                1
                                                                                                                                                                                                                                                                                                                                                       y = cot q     q Î R, q ¹ 0°, ±180°, . . .        yÎR                                     radians as well as in degrees.
                   y = sec q                                    q Î R, q ¹ ±90°, ±270°, . . .                                                                                          y Î R, y                                   1, y                       -1
 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  41
2 Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                    2 Trigonometry

      Standard trigonometric results
                                                                                                                                                                                                                                  1                                 1
      The standard trigonometric results from these two special                          See   C2    Chapter 12 for revision.                Consider cot q = tanq = sinq = cosq
                                                                                                                                                                            sinq
      triangles are:                                                                                                                                                                                                                                        cosq
                                                                                                                                             Use Pythagoras’ Theorem.
                                                                                                                                                                                                                                                         (b )                                            (c )
      sin 0° = 0                      cos 0° = 1         tan 0° = 0                                                                                                                                                                                       a
                                                                                                                                                                                                                                                                        2                                               2
                                                                                                                                             Divide a2 + b2 = c2 by b2:                                                                                                        +1= b                                            so tan2 q + 1 = sec2 q
                                                                      1
      sin 30° = 1                     cos 30° = 3        tan 30° =
                                                                                                                                                                                                                                                                          () ()
               2                                    2                  3                       30°
                                                                                                                                                                                                                                                                               b
                                                                                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                                                               c
                                                                                                                                                                                                                                                                                                                         2
                                                                                         √3            2                                     Divide a2 + b2 = c2 by a2:                                                                                  1 + a = a so 1 + cot2 q = cosec2 q
                                                1
      sin 60° = 3                     cos 60° = 2        tan 60° = 3                                             1
                                                                                                                        √2
                   2

      sin 45° = 1                     cos 45° = 1        tan 45° = 1                                   60°               45°
                                                                                                                                            You have
                    2                               2                                                 1                 1

                                                                                         You should also know these results
      The same two special triangles also give you:                                      in radians, where 180° = p radians.                 cot q = cosq                                                                                                                                                                                                                                                                                  You need to be able to recall
                                                                                                                                                                             sin q                                                                                                                                                                                                                                                         all of these trigonometric
                                                                        1
      cosec 60° = 2                   sec 60° = 2         cot 60° =                                                                          tan q = cot (90° - q)                                                                                                                                                                                                                                                                         values and formulae. They are
                         3                                               3                                                                                                                                                                                                                                                                                                                                                                 not provided in the formulae
      cosec 30° = 2                   sec 30° = 2         cot 30° = 3                                                                        sec2 q = 1 + tan2 q                                                                                                                                                                                                                                                                           booklet in the examination.
                                                    3
                                                                                                                                             cosec2 q = 1 + cot2 q
      cosec 45° = 2                   sec 45° = 2         cot 45° = 1




                                                                                                                                EXAMPLE 2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
      and from the trigonometric graphs you get:                                                                                              Find, giving each answer as a surd, the exact values of
      sin 90° = 1                 cos 90° = 0           tan 90° = ¥                                                                           a sec 330°                                                                        b cosec 225°                                                                                c cot 7p
                                                                                                                                                                                                                                                                                                                                                             6
      sin 180° = 0                cos 180° = -1         tan 180° = 0                                                                          ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                              a 330° is in the fourth quadrant where cosine is positive.
       The triangle shown gives                                                          See   C2    for revision.                                                                                               1       1              2 3
                                                                                                                                                             sec 330° =                                              =        = 1 = 2 =
                        a                                                                                                                                                                                    cos 330° cos 30°    3   3   3                                                                                                                                                                                                          330º
                    a = c                                                                                                                                                                                                                                                                                   2
            tan q = b                                                                                                                                                                                                                                                                                                                                                                                                                                      O
                        b
                        c                                                        c
                                                             a
                      = sin q
                        cos q
                                                                                     i
       By Pythagoras’ Theorem, a2 + b2 = c2                                  b                                                                b 225° is in the third quadrant where sine is negative.
       Divide by   c2:   sin2 q   +   cos2 q   =1                                                                                                                                                                                     1                      = 11 =                                   −            2
                                                                                                                                                             cosec 225° =                                               − sin 45°                                       −
                                                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                                                                                                                                                    225º
                                                                                                                                                                                                                                                                                                                                                                                                                                                      O
      You have the following results:


       tan q = sin q                            sin2 q + cos2 q = 1
               cosq
                                                                                                                                              c 7p radians = 7 × 180° = 210° is in the third
       sin q = cos (90° - q)                    cos q = sin (90° - q)                                                                            6               6
                                                                                                                                                quadrant where tangent is positive.
                                                                                                                                                                                                                                                                                                                                                                                                                                                    210º
                                                                                                                                                            cot 7p = cot 210° = tan 210° = tan 30° = 1 =
                                                                                                                                                                                    1         1      1                                                                                                                                                                        3                                                                       O
                                                                                                                                                                 6                                    3



 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                        43
2 Trigonometry                                                                                                                                                                                                                                                                                                                                                                                            2 Trigonometry

      EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                           5 Angle a is a reflex angle and cos a = 9
                    If cos q = − 5 and q is an obtuse angle,                                                                                                                                                                                                                                                                                                                                        41
                                13                                                                                                                                                                                                                                                                                                            Find the value of
                    find the exact value of cot q.
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                              a cosec a                   b cot a
                        Method 1                                                                                                                                    Method 2
                                                                                                                                                                                                                                                                                                                                           6 Write each of these expressions as a power of sec b, cosec b or cot b.
                        Use 1 + tan2 q = sec2 q                                                                                                                     Draw a right-angled triangle for
                        with sec q = − 13 :                                                                                                                                                                                                                                                                                                         1
                                                                                                                                                                    a first quadrant angle, f, where                                                                                                                                          a                           b sec2b
                                                                                5
                                                                                                                                                                    cos f = 5 :                                                                                                                                                                   tan 2 b                     cos b
                                                                                                                                                                                                  13

                                                             ( 13 ) − 1
                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                              cot 2 b sec 2 b
                                                                                                                                                                                                                                                                                                                                              c 1 − cos b
                                                                                                                                                                                                                                                                                                                                                       2
                        tan2 q =                                 −                                                                                                                                                                                                                                                                                                        d
                                                                5                                                                                                                                                                                                                                                                                    3
                                                                                                                                                                                                                                                                                                                                                    sin b                         sin 3 b
                                 = 169 − 1                                                                                                                                                                   13                                 x
                                    25
                                   144                                                                                                                                                                                                                                                                                                     7 Find the value of cot q when
                                 =
                                    25
                                                                                                                                                                                                   i z
                                                                                                                                                                                                                                                                                                                                              a 2sin q = 3cos q                                 b 4tan q = 1
                           tan q = ± 12                                                                                                                                                                                  5
                                      5                                                                                                                                                                                                                                                                                                       c cos q sin q = sin2 q                            d cos q = 9sin q tan q
                        But q is obtuse, so tan q                                                                                                                   Use Pythagoras’ theorem:                                                                                                                                                  e sin q = 3tan2 q cos q                           f        cosec q = 2
                        is negative.
                                                                                                                                                                                                x = 169 − 25 = 12 and
                                                                                                                                                                                                                                                                                                                                           8 Simplify these expressions.
                        So                    tan q = − 12
                                      5                                                                                                                                         cot f = 5
                                      1                                                                                                                                                12                                                                                                                                                     a cot x tan x                                     b cot x sin x tan x
                        and cot q = tanq
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                              C3
                                                                                                                                                                    Angle q is obtuse, so tan q
                                  =−5                                                                                                                               and cot q are negative.                                                                                                                                                   c cot2 x sec x sin x                              d cosec x sec x sin2 x
                                      12
                                                                                                                                                                                cot q = -cot f = − 5                                                                                                                                                                                                       1 − sec 2 a
                                                                                                                                                                                                                                                            12                                                                                e sin x(cot x cos x + sin x)                      f
                                                                                                                                                                                                                                                                                                                                                                                                         cos2 a cos ec 2a

                  Exercise 2.1                                                                                                                                                                                                                                                                                                                g      1     + cot2 a sin2 a                      h           1 − cot a
                                                                                                                                                                                                                                                                                                                                                  cosec 2a                                               sin 2 a tan a
                  1 Use your calculator to find, to 3 significant figures, the values of
                        a sec 200°                                                                                    b cot 130°                                                                                              c cosec 340°                                                                                                                             tan a ⎞
                                                                                                                                                                                                                                                                                                                                                  sec a ⎛ 1
                                                                                                                                                                                                                                                                                                                                                        ⎜         −
                                                                                                                                                                                                                                                                                                                                                                      cos ec a ⎟
                                                                                                                                                                                                                                                                                                                                              i
                                                                                                                                                                                                                                                                                                                                                        ⎝ cos a                ⎠
                        d sec 3p                                                                                      e cot 5p                                                                                                f cosec 2p
                                                         5                                                                                             6                                                                                                                  9

                  2 Find, in surd form where needed, the values of                                                                                                                                                                                                                                                                            INVESTIGATION
                        a cot 135°                                                                                    b sec 120°                                                                                              c cosec 210°                                                                                                    9 What transformation maps the graph of y = sec x onto y = sec (x - 90°)?

                        d cot 4p                                                                                      e sec 7p                                                                                                f cosec 3p                                                                                                          What two transformations are needed to map the graph of y = cot x
                                                         3                                                                                             4                                                                                                                  2                                                                       onto y = cot (90° - x)?

                  3 Find angle q such that -180° < q < 180° when                                                                                                                                                                                                                                                 Use the graphs of these          Use computer software to compare the graphs of
                                                                                                                                                                                                                                                                                                                 functions to help you.           y = sec (x - 90°) and y = cosec x and to compare the graphs of
                        a sec q = 1.25                                                                                b cot q = 2.5                                                                                           c cosec q = 3.0
                                                                                                                                                                                                                                                                                                                                                  y = cot (90° - x) and y = tan x.
                        d sec q = -1.25                                                                               e cot q = -3.5                                                                                          f cosec q = -2.0
                                                                                                                                                                                                                                                                                                                                                  What can you deduce?
                                                                                                                                                                                                                                                                                                                                                  Is this investigation sufficient as proof of your results?
                  4 Given that angle q is obtuse and tan q = − 8 , find the value of
                                                                                                                                                                                                                    15
                        a sec q                                                                                       b cot q
 44                                                                                                                                                                                                                                                                                                                                                                                                                                          45
2 Trigonometry




                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 3
      2.2                              Trigonometric equations and identities                                                                                                                                                                                                                                                                                       Solve the equation                                                                             1 + tan x = sec2 x                                                                    for 0                               x                  2p
                                                                                                                                                                                                                                                                                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                    Substitute 1 + tan2 x for sec2 x:                                                                                          1 + tan x = 1 + tan2 x                                                                                                                                            tan is positive in the first and
                  An equation is true for some, but not all, values of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       third quadrants.
                  variables involved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0 = tan2 x - tan x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0 = tan x (tan x - 1)
                  An identity is true for all values of the variables involved.                                                                                                                                                                                                                                                                                                                                                                                                               so tan x = 0 or tan x = 1
                  There are two strategies for proving identities.                                                                                                                                                                                                                                                                                                                           tan x = 0 gives x = 0 or 2p                                                                                                                                                                                                                                                5p
                  You prove:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4
                  either that the LHS of the identity is equal to the RHS                                                                                                                                                                                                                                        It is usual to start with the more                 or                       tan x = 1 gives x = p or 5p                                                                                                                                                                                                                                                              4
                                                                                                                                                                                                                                                                                                                                                                                                                 4     4                                                                                                                                                                                                                                                        O
                         (or vice versa).                                                                                                                                                                                                                                                                        complicated side of the identity.
                  or     that both sides of the identity are equal to a common                                                                                                                                                                                                                                                                                      The solutions are x = 0, p , 5p , 2p
                         third expression.                                                                                                                                                                                                                                                                                                                                                                                                                                        4               4
      EXAMPLE 1




                    Prove that                                                tan x sin x + cos x º sec x                                                                                                                                                                                                                                                         Exercise 2.2
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                    1 Solve these equations for -180°                                                                                                                                 x                  180°                                                                                                      See C2 for revision of
                    Manipulate the LHS of the identity:                                                                                                                                                                                                                                                           Choose one side of the                                                                                                                                                                                                                                                                                                                         translations of trignometric
                                                                                                                                                                                                                                                                                                                                                                        a sec (x - 10°) = 3
                                                                                                                                                                                                                                                                                                                  identity to work on.                                                                                                                                                                                                                                                                                                                           functions.
                                                    sin x
                    LHS = tan x sin x + cos x = cos x ´ sin x + cos x                                                                                                                                                                                                                                                                                                   b cosec (x + 20°) = -4

                                                                                                                                 = sin x + cos x
                                                                                                                                      2       2
                                                                                                                                                                                                                                                                                                                                                                        c cot (x + 30°) = -2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C3
                                                                                                                                                               cos x
                                                                                                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                    1                                                                                                                                                                                                                   d cot 2x = 2
                                                                                                                                 = cos x = sec x = RHS
                                                                                                                                                                                                                                                                                                                                                                        e sec (2x + 40°) = -2
                    So the identity is proved.
                                                                                                                                                                                                                                                                                                                                                                        f cosec 1 x - 10° = - 3                 (2                                          )                       2
                                                                                                                                                                                                                                                                                                                                                                        g 3cos x = sec x
      EXAMPLE 2




                                                                                                                                                    3
                                                                               cos x tan x cos x
                    Prove that                                                            º                                                                                                                                                                                                                                                                             h 4cot x = 3tan x
                                                                                cosec 2 x   cot 3 x
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                          i             3cos x - cot x = 0
                    Show that both sides are equal to a common expression:
                                                                                                                                                                                                                                                                                                                                                                        j             4sin x = 3tan x
                                  sin x
                    LHS = cos x ´ cos x ´ sin 2 x = sin3 x                                                                                                                                                                                                                                                       Remember      cosec2   x = 2
                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                        k 2cot x = cosec x
                                                                                                                                                                                                                                                                                                                                           sin x

                                                                                        sin 3 x                                                                                                                                                                                                                                1     cos 3 x                            l             cot x = tan x
                    RHS = cos3x ´                                                          3    = sin3 x                                                                                                                                                                                                         cot 3 x =      3
                                                                                                                                                                                                                                                                                                                                   =
                                                                                        cos x                                                                                                                                                                                                                                tan x   sin3 x
                                                                                                                                                                                                                                                                                                                                                                  2 Solve these equations for -p                                                                                                                     q                   p
                    Hence, LHS º RHS and the identity is proved.
                                                                                                                                                                                                                                                                                                                                                                        a             sec2 q                      =2
                                                                                                                                                                                                                                                                                                                                                                        b cot2 q = 3
                                                                                                                                                                                                                                                                                                                                                                        c 4sin q = 3cosec q
                                                                                                                                                                                                                                                                                                                                                                        d tan q = 4sin q cos q



 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 47
2 Trigonometry                                                                                                                            2 Trigonometry


      3 Solve these equations for 0       x   360°                            6 Find the points of intersection of these pairs of curves for
                                                                                -360° x 360°, giving answers to 2 significant figures
         a 2 + sec2 x = 4tan x
                                                                                where necessary.
         b 2cot x = tan x + 1                                                    a y = 1 + cos x, y = 2sin2 x
         c 3sin x - 2cosec x = 1                                                 b y = 1 + 2tan x, y = 1 + sec x
                              2
         d 2sec x - 1 = tan x                                                    c y = sec x, y = 1 + cos x
         e 4cos x - 3sec x = 1                                                   d y = tan x - sin2 x, y = (cos x - sec x)2
         f cosec2 x = 4cot x - 3
                                                                              7 Prove these identities.
         g cos x + sec x = 2
                                                                                 a tan q sin q + cos q º sec q
         h tan q + cot q = 2
                                                                                 b tan q + cot q º sec q cosec q
         i   tan q + 3cot q = 5sec q
                                                                                                          1
                                                                                 c sec q - tan q º secq + tanq
      4 Rewrite each pair of equations as one equation in terms of x and y.
                                                                                 d 1 − tan 2q ≡ 1 − 2 sin2q
                                                                                           2
         a x = 4sec a, y = 2tan a
                                                                                     1 + tan q
         b x = 3cosec a, y = 2cot a
                                                                                 e     sinq ≡ cosq
         c x = 4cos a, y = 3tan a                                                    1 + tanq 1 + cotq
C3




                                                                                                                                                                  C3
         d x = 1 - sin a, y = 1 + cos a                                          f (1 + sec q)(1 - cos q) º tan q sin q
         e x = 3cos a, y = 4 + tan a                                                   sinq + 1 + cosq ≡ 2
                                                                                 g
                                                                                     1 + cosq   sinq    sinq
         f x = asin a, y = bsec a

      5 Describe the transformations which map the graph of the                  h          1        ≡ 1 − cosq
                                                                                     cot q + cosec q     sin q
        first equation onto the graph of the second equation.
         a y = sec x, y = sec 1 x (2 )                                           i   tan 2q + cos2q ≡ secq − sinq
                                                                                      sinq + secq
         b y = sec x, y = 1 sec 2x
                          2

         c y = cosec x, y = 2cosec (x + 90°)                                     INVESTIGATION
                                                                                 8 Use a graphical package on a computer to check your
         d y = cot x, y = -cot(-x)                                                 answers to all the questions in this exercise.
                                                                                     For example, you can check question 1 part a by plotting
                                                                                     the graph of y = sec (x - 10°) and finding the points
                                                                                     where y = 3.
                                                                                     For question 3 part a, you can plot the graphs of
                                                                                     y = 2 + sec2 x and y = 4tan x and then find their points
                                                                                     of intersection.



 48                                                                                                                                                              49
2 Trigonometry

                                                                                                                                                                 The graphs show their domains and ranges as:
      2.3           Inverse trigonometric functions
                                                                                                                                                                                                                                               Domain                                                        Range
                                                                                                                                                                  f(x) = cos x                                                             0                 x                p                     -1                    y               1
       If f(x) = sin x, then the inverse function is                                                               Do not confuse sin-1 x
       f -1(x) = arcsin x or sin-1 x.                                                                              with (sin x)-1.                                 -1
                                                                                                                                                                  f (x) = arccos x                                                       -1                    x               1                      0                 y                p

                    p                        p
       E.g. sin       = 0.5, so arcsin 0.5 =
                    6                        6                                                                                                                   The principal values of arccos x are in the range 0                                                                                                                                                                                   y                  p
       arcsin 0.5 is the angle whose sine is 0.5.
                                                                                                                                                                                                                                                 Domain                                                          Range
       f(x) = sin x is a many-to-one function.                                                                    See Chapter 1 for revision of
                                                                                  p for it                                                                        f(x) = tan x                                                           −p                                        p                              yÎR
       Its domain must be restricted to − p x                                                                     inverse functions.
                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                 x
                                                                                                                                                                                                                                                                                   2
                                          2                                       2                                                                                                                                                                                                                                                            p
       to have an inverse.                                                                                                                                        f -1(x) = arctan x                                                                 xÎR                                              −p                      y
                                                                                                                                                                                                                                                                                                            2                                  2
       The graph of y = arcsin x is a reflection of y = sin x
       in the line y = x                                                                                                                                         The principal values of arctan x are in the range − p                                                                                                                                                                                            y                  p
                                                                                                                                                                                                                                                                                                                                                                                           2                                         2
                                                             y
                                                                 y = arcsin x
                                                         3




                                                                                                                                                     EXAMPLE 1
                                                         2
                                                                                                                                                                   Find the values of
                                                         1                   y = sin x
                                                                                                                                                                   a arccos 3                                                                                                                                                                                                                                                                                   For arccos ⎛ 3 ⎞ , you need to find
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ⎜ 2 ⎟
                                                                                                                   For the reflection to work, the                                                                   2                                                                                                                                                                                                                                                     ⎝    ⎠
                                                                                         x
                                          –3 –2 –1 0               1 2 3                                           scales on the two axes must be                  b arctan (-1)                                                                                                                                                                                                                                                                                the angle whose cosine is 3 .
                                                 –1                                                                                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                                   the same, with angles measured
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
                                                     –2
                                                                                                                   in radians.                                     c arcsin (-0.3)
                                                     –3
                                            y=x                                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                   Use the special triangles:
       The graphs show their domains and ranges as:

                                       Domain                    Range
                                                                                                                                                                                  30°
        f(x) = sin x                −p     x     p       -1         y    1
                                     2           2                                                                                                                 √3                                        2
                                                         −p                 p                                                                                                                                                                                                  √2
            -1(x)   = arcsin x
        f                           -1     x     1                  y
                                                          2                 2                                                                                                                                                                 1
                                                                                                                                                                                                            60°                                                              45°
                                                                                                                                                                                                           1                                                                1
        The principal value of arcsin x is the unique value of arcsin x                                           This is shown as the continuous
        within the allowed range − p y p                                                                          blue line on the graph.
                                                     2                  2
                                                                                                                                                                   a arccos 3 = p (or 30°)
                                                                                                                                                                                                                    2                       6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                The principal values of arctan are
       Similarly, provided that domains are restricted,                                                           The alternative notations are                                                                                                                                                                                                                                                                                                                 in the first and fourth quadrants.
                                                                                                                  cos-1 x and tan-1 x.
                                                                                                                                                                   b arctan (-1) = − p (or -45°)
       y = cos x and y = tan x have inverse functions                                                                                                                                4                                                                                                                                                                                                                                                                          So, an angle with a negative
       y = arccos x and y = arctan x                                                                                                                                                                                                                                                                                                                                                                                                                            tangent (in this case, -1) is in the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                fourth quadrant.
                             y                                                           y                                                                         c Use a calculator:
                                                                                             y = tan x                                                               arcsin (-0.3) = -0.305 (or -17.5°)                                                                                                                                                                                                                                                         A negative principal value of
                         3                                                           3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                arcsin is a fourth quadrant angle.
                         2                                                           2
                         1                                                           1
                                     y = cos x                                                 y = arctan x
                                                         x                                                    x
            –3 –2 –1 0            1 2 3                                  –3 –2 –1 O           1 2 3
                   –1                                                           –1
                                 y = arccos x
                        –2                                                          –2
                        –3                                                          –3
 50          y=x                                                            y=x                                                                                                                                                                                                                                                                                                                                                                                                                        51
2 Trigonometry                                                                                                                                                                                                                                                                                                                                                                                          2 Trigonometry

      EXAMPLE 2                                                                                                                                                                                                                                                                                                                                       2 Find, as a surd where necessary, for angles between 0° and 180°
                    Find tan arcsin 3 .
                                    4                       (                                      )                                                                                                                                                                                                                                                     a sin x, given that x = arccos 1
                                                                                                                                                                                                                                                                                                                                                                                                  3
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    You need to find tan q given that q = arcsin 3 ;
                                                                                                                                                                                                                          4                                                                                                                                     (
                                                                                                                                                                                                                                                                                                                                                         b tan arccos 3
                                                                                                                                                                                                                                                                                                                                                                          4     )
                    that is, find tan q given that sin q = 3
                                                           4                                                                                                                                                                                                                                                                                             c cos (arcsin 1)
                    Take angle q to be an acute angle.                                                                                                                                                                                                                                                           Sine is positive, so angle q is in

                        Method 1                                                                                                                                       Method 2
                                                                                                                                                                                                                                                                                                                 the first or second quadrant.
                                                                                                                                                                                                                                                                                                                                                               (
                                                                                                                                                                                                                                                                                                                                                         d sin arcsin 5
                                                                                                                                                                                                                                                                                                                                                                         8   )
                        tan q = sinq                                                                                                                                   Draw a triangle to show sin q = 3 :                                                                                                                                               e cos [arctan (-1)]
                                                                                                                                                                                                                                                                                              4
                                                          cosq

                        You know sin q = 3 and so                                                                                                                                                                                                                                                                                                        f sin [arccos (-0.5)]
                                         4
                        you need cos q.
                                                                                                                                                                                          3                                                     4
                                                                                                                                                                                                                                                                                                                                                         g tan éarccos
                                                                                                                                                                                                                                                                                                                                                               ê
                                                                                                                                                                                                                                                                                                                                                               ë         ( 2 )ùûú
                                                                                                                                                                                                                                                                                                                                                                           3
                                                                                                                                                                                                                                                                                                                                                                            -
                        Use sin2 q + cos2 q = 1:

                                                                                        (4)
                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                      3 Find the values of
                                 cos q = 1 − 3

                                   = 7
                                                                                                                                                                                                                                           x
                                                                                                                                                                                                                                                                        i
                                                                                                                                                                                                                                                                                                                                                         a arccos 3 + arcsin
                                                                                                                                                                                                                                                                                                                                                                    2                ( 1)
                                                                                                                                                                                                                                                                                                                                                                                      −
                                                                                                                                                                                                                                                                                                                                                                                       2
                                      4                                                                                                                                Use Pythagoras’ Theorem:
                        Take +ve square root for cosine in                                                                                                                                                                                                                                                                                               b arctan 1 - arctan (-1)
                                                                                                                                                                       x2 + 32 = 42
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
                        the first quadrant.
                                            3                                                                                                                          x = 16 − 9 = 7                                                                                                                                                                 4 a If q = arcsin x, find in terms of x
                        Hence, tan q = 4                                                                                                                               So tan q = 3
                                                                                                                                                                                                                                                                                                                                                          i cos q             ii tan q
                                             7                                                                                                                                                                                7
                                            4                                                                                                                                                                                                                                                                                                            b Express sec (arccos x) as an algebraic expression in x.
                                         = 3
                                             7
                                                                                                                                                                       and tan arcsin 3 = 3
                                                                                                                                                                                      4    7
                                                                                                                                                                                                           (                                          )                                                                                               5 a Given that a = arctan x, express sin a + cos a in
                                                                                                                                                                                                                                                                                                                                                          terms of x.
                                                                                                                                                                                                                                                                                                                                                         b Given that x = tan q, find arccot x in terms of q.
                  Exercise 2.3
                  1 Giving answers in terms of p, find
                                                                                                                                                                                                                                                                                                                                                      6 Prove these identities.
                        a arcsin ⎛ 1 ⎞
                                 ⎜   ⎟                                                                                                                                                    b arctan ( 3 )                                                                                                                                                 a arctan x º p - arccot x
                                 ⎝ 2⎠                                                                                                                                                                                                                                                                                                                                   2

                        c arccos 1                                                                                                                                                        d arctan (-1)                                                                                                                                                  b arcsin x + arccos x º p
                                                                                                                                                                                                                                                                                                                                                                                          2

                        e arccos ⎜ 3 ⎞
                                 ⎛
                                     ⎟
                                                                    ⎝ 2 ⎠
                                                                                                                                                                                          f              arcsin 0                                                                                                                                        c arctan x + arctan 1 º p  (x)       2


                        g arccos ⎛ −
                                                                                    1 ⎞
                                 ⎜                                                    ⎟                                                                                                   h arctan ⎛ − 1 ⎞
                                                                                                                                                                                                   ⎜      ⎟                                                                                                                                              INVESTIGATION
                                                                    ⎝                2⎠                                                                                                                 3                              ⎝                         ⎠
                                                                                                                                                                                                                                                                                                                                                         7 Explore how to input the inverse trigonometric functions
                                                                                                                                                                                                                                                                                                                                                           using a computer’s graphical package.




 52                                                                                                                                                                                                                                                                                                                                                                                                                                        53
2 Trigonometry

                                                                                                                              Similarly, you can derive formulae for cos (A ± B):
      2.4     Compound angle formulae
                                                                                                                                                                 cos (A + B) = cos Acos B - sin Asin B                                                                                                                                                                                                                       Try this for yourself.
       You can find an expression for sin (A + B) in terms of the                                                              and                               cos (A - B) = cos Acos B + sin Asin B
       trigonometric ratios of angle A and angle B.
       It is not true that sin (A + B) = sin A + sin B                                                                        You can derive expressions for tan (A + B) and tan (A - B)
       You can prove this statement using a counter-example:                                                                  using tanq = sinq :
                                                                                                                                                                                     cosq


        Let A = B = 45°                                                                                                                                                                       sin(A + B) sin A cos B + cos A sin B
                                                                                                                               tan (A + B) =                                                            =                                                                                                                                                                                                                    Divide all terms by cos A cos B.
                                                                                                                                                                                              cos(A + B) cos A cos B − sin A sin B
               sin (A + B) = sin (45° + 45°) = sin 90° = 1
                                                                                                                                                                                              sin A cos B   cos A sin B
        and sin A + sin B = 1 + 1 = 2 = 2 ≠ 1                                                                                                                                                             +
                                 2     2       2                                                                                                                                              cos A cos B   cos A cos B                                                                                                tan A + tan B
                                                                                                                                                                                    =                                                                                                                        =                                                                                                               Cancel as shown and use
                                                                                                                                                                                                 cos A cos B sin A sin B                                                                                              1 − tan A tan B
        So, sin (A + B) ¹ sin A + sin B                                                                                                                                                                     −                                                                                                                                                                                                                tan q = sin q
                                                                                                                                                                                                 cos A cos B cos A sin B                                                                                                                                                                                                              cos q


       In fact, sin (A + B) = sin Acos B + cos Asin B                                                                          By replacing B by -B, you can derive the formula
                                                                                                                                                                                            tan A − tan B
                                                                                                                               tan (A - B) =
                                                                                                                                                                                           1 + tan A tan B
        Consider angles A and B in the                              R
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
        right-angled triangles OPQ and OQR:
                                                                        A                                                     These compound angle formulae can be summarised as:
        Triangles OMN and RMQ are similar
        so ÐMRQ = ÐMON = angle A                                    L       Q                                                  sin (A ± B) = sin Acos B ± cos Asin B                                                                                                                                                                                                                                                          Take care with the signs:
                                                                    M                                                                                                                                                                                                                                                                                                                                                         sin (A ± B) uses only the ± sign
                                                                                                                               cos (A ± B) = cos Acos B sin Asin B                                                                                                                                                                                                                                                            cos (A ± B) uses only the sign
                                                            B                                                                                                                              tan A ± tan B                                                                                                                                                                                                                      tan (A ± B) uses both ± and .
                                                                A                                                              tan (A ± B) =
                                                       O                    P                                                                                                             1 tan A tan B
                                                                    N

                                       NR NL + LR PQ LR
        In triangle ORN, sin (A + B) = OR = OR = OR + OR




                                                                                                                  EXAMPLE 1
                                                                                NL = PQ
                                                                                                                                Find cos 15° as a surd.
                                                                                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                             PQ OQ LR RQ                                                                                                                                                                                                                                                                                                                                                                     Use the special triangles.
                                           = OQ × OR + RQ × OR                                                                  Use the formula cos (A - B) = cos Acos B + sin Asin B:

                                           = sin Acos B + cos Asin B                                                            cos 15° = cos (45° - 30°)
                                                                                                                                                                                                                                                                                                                                                                                                                                  30°
        Although proved here for A and B as acute angles,                                                                                                           = cos 45°cos 30° + sin 45°sin 30°                                                                                                                                                                                                                        √3            2
        this formula is true for all values of A and B.                                                                                                                                                                                                                                                                                                                                                                                                             √2
                                                                                                                                                                                   1 × 3 + 1 ×1                                                                                                                                                                                                                                                         1
                                                                                                                                                                    =
                                                                                                                                                                                    2  2    2 2
                                                                                                                                                                                                                                                                                                                                                                                                                                          60°                        45°
       Replacing B by -B and using                                                                                                                                                3 +1
                                                                                                                                                                                                                                                                                                                                                                                                                                         1                          1
       sin (-B) = -sin B and cos (-B) = cos B                                   Angle -B is in the fourth                                                           =
                                                                                                                                                                                  2 2
       gives                                                                    quadrant where sine is negative                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                                                                                                                                                             Multiply by           to rationalise
                                                                                                                                                                    = 1 2 ( 3 + 1)
                sin (A - B) = sin Acos (-B) + cos Asin (-B)                     and cosine is positive.                                                                                                                                                                                                                                                                                                                                        2
       or       sin (A - B) = sin Acos B - cos Asin B                                                                                                                         4                                                                                                                                                                                                                                              the denominator.
                                                                                                                                                                                                                                                                                                                                                                                                                             You could also have used
                                                                                                                                                                                                                                                                                                                                                                                                                             cos 15° = cos (60° - 45°)
 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                        55
2 Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2 Trigonometry




                                                                                                                                                                                                                                                                                                                                                    EXAMPLE 5
      EXAMPLE 2
                   Find the value of cos (a + b) when a is acute, b is obtuse,                                                                                                                                                                                                                                                                                   Solve the equation arctan (1 + x) + arctan (1 - x) = arctan 2
                   cos a = 3 and sin b = 5
                                                                                                                                                                                                                                                                                                                                                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                           5            13                                                                                                                                                                                                                                                                                                                       Let a = arctan (1 + x):                                                                                  tan a = 1 + x
                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                 Let b = arctan (1 - x):                                                                                  tan b = 1 - x
                   From the triangles, you have
                                                                                                                                                                                                                                                                                                                         5            4
                                                                sin a = 4 and cos b = − 12                                                                                                                                                                                                                                                                       The equation to solve is now a + b = arctan 2
                                                                                                   5                                                                    13                                                                                                                                                                                       or                       tan (a + b) = 2
                   so cos (a + b) = cos acos b - sin asin b
                                                                                                                                                                                                                                                                                                                 a
                                                                                                                                                                                                                                                                                                                                                                 Consider tan (a + b) = tana + tan b = (1 + x) + (1 − x)
                                                                                         = 3 × − 12 − 4 × 5
                                                                                           5     13   5 13        ( )                                                                                                                                                                                                        3                                                                                                                                      1 − tana tan b 1 − (1 + x)(1 − x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2       2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  =           2 = 2
                                                                                          −36 − 20    56                                                                                                                                                                                                                         13                                                                                                                                 1 − (1 − x ) x
                                                                                         = 5 × 13 = − 65                                                                                                                                                                                                             b
                                                                                                                                                                                                                                                                                                                                             5
                                                                                                                                                                                                                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                                                                                                                                                 Hence                                                                                 =2
                                                                                                                                                                                                                                                                                                                                 12                                                                                                                 x2

                                                                                                                                                                                                                                                                                                                                                                 The solution is                                                                             x = ±1
      EXAMPLE 3




                   Solve the equation sin (q - 30°) = 3cos q                                                                                                                                                           for 0° < q < 360°
                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                Exercise 2.4
                   Expand the brackets:                                                                          sin qcos 30° - cos qsin 30° = 3cos q                                                                                                                                                                                                           1 Write as a single trigonometric ratio and so find the exact value of
                                                                                                                                                                                                                                                                                                                                                                           a sin 35°cos 10° + cos 35°sin 10°                                                                                                                                 b sin 70°cos 10° - cos 70°sin 10°
                                                                                                                                   sin q ´ 3 - cos q ´ 1 = 3cos q
                                                                                                                                                                        2                                                       2
                                                                                                                                                                                                                                                                                                                                                                           c cos 40°cos 10° + sin 40°sin 10°                                                                                                                                 d cos 80°cos 40° - sin 80°sin 40°
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
                                                                                                                                                                                                        3
                                                                                                                                                                                                          sin q = 7 cos q
                                                                                                                                                                                                       2          2                                                                                                                                                                        tan 70° − tan 45°                                                                                                                                                  tan100° + tan 35°
                                                                                                                                                                                                                                                                                                                                                                           e                                                                                                                                                                 f
                                                                                                                                                                                                                                                                                                                                                                                          1 + tan 70° tan 45°                                                                                                                                                1 − tan100° tan 35°
                                                                                                                                                                                                                tan q = 7                                                                                       tan q is positive, so q is in the
                                                                                                                                                                                                                         3                                                                                      first and third quadrants.
                                                                                                                                                                                                                                                                                                                                                                2 Simplify
                   For 0° < q < 360°, q = 76.1° or 256.1°
                                                                                                                                                                                                                                                                                                                                                                           a sin 2Acos A + cos 2Asin A                                                                                                                                       b cos 3acos 2a - sin 3a sin 2a

                                                                                                                                                                                                                                                                                                                                                                           c               tan 2x + tan x                                                                                                                                    d 1 + tan 3x tan x
                                                                                                                                                                                                                                                                                                                                                                                          1 − tan 2x tan x                                                                                                                                                        tan 3x − tan x
      EXAMPLE 4




                   Prove the identity sin(A + B) º tan A + tan B
                                      cos A cos B                                                                                                                                                                                                                                                                                                               3 Write each expression as a single trigonometric ratio.
                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                                              1          1
                   Show that the LHS is equivalent to the RHS:                                                                                                                                                                                                                                                                                                             a                     cos x -    sin x                                                                                                                            b                   3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   cos x + 1 sin x
                                                                                                                                                                                                                                                                                                                                                                                               2          2                                                                                                                                                     2          2

                                                                         LHS = sin A cos B + cos A sin B
                                                                                                                                   cos A cos B                                                                                                                                                                                                                             c               3 + tan x                                                                                                                                         d 1 + tan x
                                                                                                         sin A cos B   cos A sin B                                                                                                                                                                                                                                                       1 − 3 tan x                                                                                                                                                        1 − tan x
                                                                                                =                    +
                                                                                                         cos A cos B   cos A cos B                                                                                                                                                                                                                                         e sin (90° - x)cos x + cos (90° - x)sin x                                                                                                                                                                                       f cos2 x - sin2 x
                                                                                                = tan A + tan B
                                                                                                                                                                                                                                                                                                                Using tan q = sinq                              4 By expanding sin (A - B), show that
                                                                                                = RHS                                                                                                                                                                                                                            cos q
                                                                                                                                                                                                                                                                                                                                                                           a sin (90° - A) = cos A                                                                                                                                           b sin (180° - A) = sin A
                   Hence the identity is proved.
                                                                                                                                                                                                                                                                                                                                                                5 Find the exact value of
                                                                                                                                                                                                                                                                                                                                                                           a sin 15°                                                                                                                                                         b cos 75°                                                                                                        c tan 75°
                                                                                                                                                                                                                                                                                                                                                                           d tan 15°                                                                                                                                                         e tan 105°                                                                                                       f sec 75°
 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        57
2 Trigonometry                                                                                                                                                           2 Trigonometry


       6 Given acute angles a and b such that sin a = 12 and tan b = 3 , find            13 Find
                                                               13             4             i the greatest value               ii the least value
          a sin (a + b)                       b tan (a + b)             c sec (a + b)
                                                                                             that each of these expressions can have, given that q varies with 0° < q < 360°
                      4                   8                                                  a sin q cos 40° + cos q sin 40°
       7 If sin q = 5 and sin f = 17 where q is acute and f is obtuse, find
                                                                                             b cos q cos 20° - sin q sin 20°
          a cos (q - f)                       b sin (q - f)             c cot (q - f)
                                                                                             Give the values of q at which the greatest and least values occur in each case.
       8 Angles A and B are obtuse and acute respectively, such that
         tan A = -2 and tan B = 5. Find the value of                                                (    3   )
                                                                                         14 If tan q + p = 1 , show that tan q = 2 - 5 3
                                                                                                                 3                            3
          a cot (A + B)                       b sin (A - B)

       9 a If tan (a + b) = 4 and tan a = 3, find tan b.                                                      2  ()      3         ()
                                                                                         15 Prove that arcsin 1 + arcsin 1 ≡ arcsin ⎛ 2 2 + 3 ⎟
                                                                                                                                    ⎜
                                                                                                                                              ⎞
                                                                                                                                               ⎝    6   ⎠
          b If sin (a + b) = cos b and sin a = 3 , find tan b.
                                                      5                                  16 Solve these equations.
          c If tan (a - b) = 5, find tan a in terms of tan b.                                a arctan x = arctan 7 - arctan 2

      10 If sin (q + f) = cos f, show that tan q + tan f = sec q                                                   ( 13 )
                                                                                             b arcsin x + arccos 12 = arcsin 4   (5)
      11 Solve these equations for 0 < q < 360°                                              c   x = arcsin k + arcsin ( 1 − k )   2


          a 3sin q = sin (q + 45°)                            b 2cos q = cos (q + 30°)
C3




                                                                                                                                                                                                 C3
                                                                                         17 Prove these identities.
          c 2sin q + sin (q + 60°) = 0                        d tan(q - 45°) = 3cot q
          e sin(q - 60°) = 3cos (q - 30°)                     f sin(q + 90°) = tan q                                 (x)
                                                                                             a arctan x + arctan 1 º p
                                                                                                                               2

          g tan(60° - q) = tan(q - 45°)                       h sin q + cos q = 1            b arcsin x + arccos x º p
                                                                                  2                                        2

      12 Prove these identities.
          a sin (a + 30°) + sin (a - 30°) º 3sin a                                          INVESTIGATION

          b (sin a + cos a)(sin b + cos b) º sin (a + b) + cos (a - b)                      18 Use graphical software on a computer to check your
                                                                                               answers to any equations in this exercise and to confirm
          c sin(a + b ) º tan a + tan b                                                        any identities that you have proved.
              cosa cos b                                                                       For example, for question 11 a, draw the graphs of

                 (4 )                (4 )
          d sin p + a + sin p − a ≡ 2 cos a
                                                                                               y = 3sin q and y = sin (q + 45°)

          e cos (a - b) - cos (a + b) º 2sin asin b
              cos(a + b )
          f   sina sin b
                          º cot acot b - 1

          g cos (a + b)cos (a - b) º cos2 a - sin2 b

                  (       4   )       (           )
          h sin2 q + p + cos2 q − p ≡ 1 + 2sinq cosq
                                              4

          i   cot(a + b) ≡ cot a cot b − 1
                                  cot a + cot b
 58                                                                                                                                                                                             59
2 Trigonometry


      2.5      Double angle and half angle formulae                                                                                                                                                               cos2 A = 1 (1 + cos 2A)                                                                                                                                                                                         Learn these formulae. They are not
                                                                                                                                                                                                                            2                                                                                                                                                                                                     in the formulae booklet.
                                                                                                                                                                                                                            1
                                                                                                                                                                                                                   sin2 A = 2 (1 - cos 2A)
       Double angle formulae
                                                                                  A + A = 2A is called a
       Let A = B in the expansions of sin (A + B), cos (A + B) and tan (A + B):   double angle.




                                                                                                                         EXAMPLE 1
                                                                                                                                     Find the solutions of cos 2q + 3sin q = 2 for 0 < q < p
                                 sin 2A = 2sin Acos A                                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                 2        2
                                cos 2A = cos A - sin A                                                                               Choose an identity which gives the equation in terms of sin q or cos q only:
                                           2 tan A                                                                                                                                          cos 2q + 3sin q = 2
                                tan 2A =
                                         1 − tan 2 A
                                                                                                                                     Substitute cos 2q = 1 - 2sin2 q :
       These are the double angle formulae.                                                                                                                             1 - 2sin2 q + 3sin q = 2

       There are two other forms of the formula for cos 2A:                                                                          Rearrange to equate to 0:                                                                                                                                                                                                                                                                    This is a quadratic equation
                                                                                                                                                                        2sin2 q - 3sin q + 1 = 0                                                                                                                                                                                                                                  in sin q.

         Use cos2 A + sin2 A = 1                                                                                                     Factorise:
                                                                                                                                                            (2sin q - 1)(sin q - 1) = 0
         Substitute cos2 A = 1 - sin2 A into the formula for cos 2A:
                                                                                                                                                                                                                                                                                                                                                                                                                                  sin q = 1 gives a first or second
                  cos 2A =   cos2 A
                                  -     sin2 A                                                                                       Solve for sin q :                                                                                  sin q = + 1 or +1                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                 2                                                                                                                                                quadrant angle.
                         = (1 - sin2 A) - sin2 A
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C3
                         = 1 - 2sin2 A                                                                                               For 0 < q < p,
                                                                                                                                                                           sin q = + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                           5p
                                                                                                                                                                                                                                    gives q = p or p - p = 5p
         Similarly, substituting sin2 A = 1 - cos2 A                              Work through this proof on your own.                                                                                             2                          6                                                                            6                     6                                                                                          6
                                                                                                                                                                                                                                                                                                                                                                                                                                                        p
         gives cos 2A = 2cos2 A - 1                                                                                                  and                                   sin q = +1                                              gives q = p                                                                                                                                                                                                          6
                                                                                                                                                                                                                                             2                                                                                                                                                                                                  O


       The three versions of the formula for cos 2A are                                                                              The solutions are q = p , p and 5p .
                                                                                                                                                                                                                                         6 2                                            6


                                   ⎧cos2 A − sin 2 A




                                                                                                                         EXAMPLE 2
                                   ⎪
                                   ⎪                                                                                                 Prove the identity cot a - tan a º 2cot 2a
                          cos 2A = ⎨2 cos2 A − 1
                                   ⎪
                                                                                                                                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                   ⎩1 − 2 sin A
                                             2
                                   ⎪                                                                                                 Show that the LHS of the identity is equivalent to the RHS:
                                                                                                                                                                                                                                                                                                                                                                                                                                  Choose one side of the identity
                                                                                                                                                       LHS = cosa − sina                                                                                                                                                                                                                                                          to work with.
       You can rearrange the identities for cos 2A to give expressions for                                                                                   sina cosa
                                                                                                                                                           = cos a − sin a
                                                                                                                                                                2       2
       cos2 A and sin2 A:
                                                                                                                                                               sina cosa
                                                                                                                                                                              =    cos 2a
         Rearrange cos 2A = 2cos2 A - 1:                                                                                                                                        sina cosa
                  2cos2 A = 1 + cos 2A                                                                                                                                        = 2 cos 2a
                                                                                                                                                                                2 sina cosa
         Divide through by 2:
                                                                                                                                                                              = 2 cos 2a
                                                                                                                                                                                 sin 2a
                      cos2 A = 1 (1 + cos 2A)                                                                                                                                 = 2cot 2a
                             2
         Similarly, sin2 A = 1 (1 - cos 2A)                                       Work through this proof on your own.                                                        = RHS
                             2
                                                                                                                                     The identity is proved.
 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                    61
2 Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 Trigonometry


                                                                                                                                                                                                                                                                                                                                                       You can also find expressions for cos2 A and sin2 A .
      EXAMPLE 3
                    Find y in terms of x given that x = sec q and y = cos 2q                                                                                                                                                                                                                                                                                                                                                                                                                                                2                                                 2
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    Express x in terms of cos q :                                                                                                                                                                                                                                                                                                                                                                                                cos2 A = 1 (1 + cos A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                       2 2
                        x = sec q = 1                                                                                                                                                                                                                                                                                                                                                                                                                  A 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Try to prove these results yourself.
                                     cosq
                                                                                                                                                                                                                                                                                                                                                                                                                                                   sin2 = (1 – cos A)
                    Rearrange to make cos q the subject:                                                                                                                                                                                                                                                                                                                                                                                               2 2

                                                  cos q = 1
                                                                                     x




                                                                                                                                                                                                                                                                                                                                           EXAMPLE 5
                    Use the double angle formula to express y in terms of cos q :                                                                                                                                                                                                                                Choose the double angle                 Given that angle q is acute and sin q = 0.6
                                                                                                                                                                                                                                                                                                                 formula which converts
                     y = cos 2q = 2cos2 q - 1 = 2 ⎛ 12 ⎞ − 1 = 22 − 1
                                                  ⎜ ⎟                                                                                                                                                                                                                                                            cos 2q to cos q only.
                                                                                                                                                                                                                                                                                                                                                         find the value of cos q .
                                                                                                                                                                                                                                                                                                                                                                                                                                                       2
                                                  ⎝x ⎠         x
                                                                                                                                                                                                                                                                                                                                                         ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                    So, y = 22 − 1                                                                                                                                                                                                                                                                                                                       Firstly find the value of cos q:
                            x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Using sin2 q + cos2 q = 1
                                                                                                                                                                                                                                                                                                                                                                                          cos2 q = 1 - sin2 q
                                                                                                                                                                                                                                                                                                                                                          Substitute sin q = 0.6:
      EXAMPLE 4




                    Given that 2arctan 3 = arccot x, find x.                                                                                                                                                                                                                                                                                                                              cos2 q = 1 - (0.6)2
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                                                   = 0.64
                    Let arctan 3 = a so that tan a = 3                                                                                                                                                                                                                                                                                                   Hence cos q = ± 0.64 = ±0.8 = 0.8 as q is acute.
                    Let arccot x = b so that cot b = x and tan b = 1
                                                                   x                                                                                                                                                                                                                                                                                     Now use cos2 q = 1 (1 + cos q) and substitute cos q = 0.8:
                                                                                                                                                                                                                                                                                                                                                                                                              2                2
                    Substitute a and b into the equation:
                                                                                                                                                                                                                                                                                                                                                                                        cos2 q = 1 (1 + 0.8) = 0.9
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C3
                                                                                    2arctan 3 = arccot x                                                                                                                                                                                                                                                              2 2
                                                                                          2a = b                                                                                                                                                                                                                                                                      q = ±0.949 to 3 s.f.
                                                                                                                                                                                                                                                                                                                                                         Hence cos
                                                                                                tan 2a = 2 tan a = tan b
                                                                                                                                                                                                                                                                                                                                                                      2
                    So                                                                                         2
                                                                                                                                        1 − tan a                                                                                                                                                                                                        q is acute, so cos q = 0.949 to 3 s.f.
                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                                             2×3 = 1
                                                                                                                                            1 − 32 x

                                                                                                                        x = 1 - 9 = -1 1




                                                                                                                                                                                                                                                                                                                                           EXAMPLE 6
                    The solution is
                                                                                                                                                 6                                    3                                                                                                                                                                  Solve the equation sin a = cos a                                                                                                                          for 0                               a                     p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                         ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                         Change LHS into half angles:
                  Half angle formulae
                  You can also change between single angles and half angles.                                                                                                                                                                                                                                                                                           2sin a cos a = cos a
                                                                                                                                                                                                                                                                                                                                                                             2      2     2
                  You can find the half angle formulae by replacing 2A by A and                                                                                                                                                                                                                                                                              2sin a cos a - cos a = 0
                                                                                                                                                                                                                                                                                                                                                                  2       2         2
                  replacing A by 1 A in the double angle formulae.                                                                                                                                                                                                                                                                                       Factorise by taking out cos
                                                                                                                                                                                                                                                                                                                                                                                                                                                             a
                                                                                                                                                                                                                                                                                                                                                                                                                                                               as a common factor:
                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                                             2
                                                                                                                                                                                                                                                                                                                                                                                        cos a (2sin a - 1) = 0
                                                                                                                                                                                                                                                                                                                                                                      2         2
                                                                                                                  sin A = 2 sin A cos A                                                                                                                                                                                                                            a
                                                                                                                              2      2                                                                                                                                                                                                                   either cos = 0                                                                                    or sin a = 1                                                                                                                                                                                  a                 a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      sin 2 is positive, so 2 is in
                                                                                                                                                                                                                                                                                                                                                                    2              2 2
                                                                                                                        ìcos2 A - sin 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             the first or second quadrant.
                                                                                                                        ï       2       2                                                                                                                                                                                                                                     a = p , 5p , . . .
                                                                                                                                                                                                                                                                                                                                                             a = p , 3p , . . .
                                                                                                                        ï
                                                                                                                        ï      2A
                                                                                                                                                                                                                                                                                                                                                             2 2 2             2 6 6
                                                                                                                cos A = í2 cos - 1
                                                                                                                        ï
                                                                                                                                  2                                                                                                                                                                                                                         a = p, 3p, . . .   a = p , 5p , . . .
                                                                                                                        ï1 - 2 sin 2 A                                                                                                                                                                                                                                              3 3
                                                                                                                        ï
                                                                                                                        î            2                                                                                                                                                                                                                   For 0 a p, the solutions are a = p or p
                                                                                                                                A                                                                                                                                                                                                                                                            3
                                                                                                                          2 tan
                                                                                                                tan A =          2
                                                                                                                        1 − tan 2 A
 62                                                                                                                                2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         63
2 Trigonometry                                                                                                                                                                     2 Trigonometry

      Exercise 2.5                                                                                   8 Solve the equations for 0          q       360°
       1 Write each expression as a single trigonometric ratio.
                                                                                                        a 2sin q cos q = 1                               b cos2 q - sin2 q = 3
                                              2 42°                              2 tan 70°                                    2                                                2
          a    2sin 23°cos 23°          b cos           -       sin2 42°   c
                                                                               1 − tan 2 70°
                                                                                                        c sin q cos q = 1                                d cos 2q = sin q
          d    2cos2 50°      -1        e 2sin 3q cos 3q                   f   1-   2sin2 4q                   2      2       8
               1                                                                                        e cos 2q + 3sin q + 1 = 0                        f sin 2q = cos q
          g    2 (1 + cos 40°)          h 1 + cos 2q                       i   sin q cos q
                                                                                                        g cos 2q - cos q + 1 = 0                         h tan 2q = 3tan q
                 2 tan 3q                                                      1 - tan 4q
                                                                                       2
          j    1 - tan 2 3q
                                        k cos2 p - sin2 p                  l                            i   cos q - 2 = 3cos 2q                          j sin 2q - 1 = cos 2q
                                                5                  5             2 tan 4q
                                                                                                        k sin 2q + sin q = tan q                         l 4sin q = sin q
          m 1 + cos q                   n sec q cosec q                    o cot q - tan q                                                                                2
                                                                                                        m tan q = 6tan q                                 n 3cos q = 2 + cos q
       2 Find the exact value of each expression.                                                                         2                                        2
         Give each answer as a surd where necessary.                                                    o sin q = cot q                                  p cos q = 5sin q + 3
                                                                                                                      2                                                   2
          a 2sin p cos p                b 2cos2 p - 1                      c 1 - 2sin2 p
                   12          12                   8                                          8        q cos 2q = tan 2q                                r sin q - 2 = 3cos q
                                                                                                                                                               2
                                                                               sin p                                                                     t 4sin2 q + 5sin 2q cos q = 4
                            °                                                                           s tan q tan 2q = 2
            1 - tan 22 1
                      2
                                                                                   8
          d               2             e 1 - sin2 75°                     f
               tan 22 1
                        °
                                                                               sec p                    u sin q + 2cos q = 1
                      2                                                            8
C3




                                                                                                                                                                                                           C3
       3 Find the values of sin 2a, cos 2a and tan 2a when                                           9 Prove these identities.

          a cos a = 3                   b sin a = − 1                      c tan a = − 5                a 1 − cos 2A ≡ tan A                             b sin 2A º 2 tan A
                          5                                 3                                  12            sin 2A                                                    1 + tan A
                                                                                                                                                                          2

                                                                                                                                  cos A + sin A
                                                                                                        c sec 2A + tan 2A º cos A − sin A                d cot A - tan A º 2cot 2A
       4 Find the values of cos q and sin q when
          a cos q = 3                   b cos q = 1                                                     e tan A + cot A º 2cosec 2A                      f cosec 2A + cot 2A º cot A
                  2       4                     2       3
                                                                                                        g 2cosec 2A º sec Acosec A                       h cosec A - cot A º tan A
                                                                                                                                                                                   2
       5 Find the values of sin x, cos x and tan x when x is acute and
          a cos 2x = 17                 b sin 2x = 4 5                     c tan 2x = 3                 i tan Asec A º 2sin A sec A
                          25                            9                                  4                          2           2

       6 Find the values of sin a , cos a and tan a when a is acute and                             10 Prove that 2arctan 2 + arctan 3 = arccot 3
                                    2    2                  2
                                                        3                                  4
          a cos a = 1                   b sin a = 5                        c tan a = 3
                          9                                                                         11 Use 3A = 2A + A to prove that
                                                                                                       sin 3A = 3sin A - 4sin3 A
       7 Find y in terms of x given that                                                               and cos 3A = 4cos3 A - 3cos A
          a x = sin a, y = cos 2a                                                                      Find an expression for tan 3A in terms of tan A.
          b x = 3tan a, y = tan 2a
          c x = 3sec a, y = cos 2a



 64                                                                                                                                                                                                       65
2 Trigonometry


      2.6      The equivalent forms for a cos q + b sin q                                                                        In general, acos q ± bsin q is equivalent to rsin (q ± a) or
                                                                                                                                 rcos (q ± a), where r is positive and a is an acute angle.
       Consider y = 3cos q + 4sin q
       Compare the graphs of y = 3cos q, y = 4sin q and
                                                                                                                                 Let acos q + bsin q = rsin (q + a)
       y = 3cos q + 4sin q
                                                                                                                                                     = rsin q cos a + rcos q sin a
                           y
                                                                                For each value of x, you can add                 Equate the coefficients of sin q and cos q :
                                      y = 3cos i + 4sin i                       the two y-values on the two blue                                                                                                  a = rsin a
                          4                                                     curves to give the y-value on the                                                                                                 b = rcos a
                                                                                black curve as the arrows show.
                                                    y = 3cos i                                                                   Divide these two equations:
                          2                                                                                                                          a = r sina = tan a
                                                                                                                                                                                                                                                                                                                                                                                                                               Cancel through by r.
                                                                                                                                                     b r cosa

                           O        90º      180º      270º      360º      i
                                                                                                                                                     a = arctan a
                                                                                                                                                                 b                                                                                               ()
                                                                                                                                 Square a and b and add:
                         –2
                                                                                                                                                                                         a2 + b2 = r2(sin2 a + cos2 a) = r2                                                                                                                                                                                                    sin2 a + cos2 a = 1

                         –4                                   y = 4sin i                                                         So                                                                                r = a2 + b2                                                                                                                                                                                                 r is positive.
                                                                                y                                                Hence, acos q + bsin q = rsin (q + a)
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C3
       The graph of y = 3cos q + 4sin q is a transformation of the             5                                                 where r =                                                a2 + b2 and tana = a
                                                                               4          y = 5sin (i + 37º)
                                                                                                                                                                                                                                                                                        b
       basic sine curve y = sin q under a stretch (scale factor 5)
                                                                               3
       parallel to the y-axis and a translation of about 37°
                                                                               2
       to the left.                                                                                                             You can also find r and a for each of rsin (q ± a) and rcos (q ± a).
                                                                               1              y = sin i                                                                                                                                                                                                                                                                                                                        Try this yourself.
       This diagram shows y = sin q transformed into y = 5sin (q + 37°)         O     90º 180º 270º 360º i
                                                                               –1




                                                                                                                    EXAMPLE 1
       The 37° is only approximate.
                                                                               –2                                                 If 4sin q + 3cos q = rsin (q + a),
       You will find a more accurate value later.                              –3                                                 find r and a such that r > 0 and a is acute.
                                                                               –4                                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                               –5                                                 Expand r sin (q + a): 4sin q + 3cos q = rsin qcos a + rcos q sin a                                                                                                                                                                                                                            Both sides contain + signs.
                                                                                                                                  Compare coefficients of sin q and cos q :
                                                                                                                                                                                                                                                                                      4 = rcos a                                                                                         [1]
                                                                                y                                                                                                                                                                                                     3 = rsin a                                                                                         [2]
       Alternatively, the graph of y = 3cos q + 4sin q is a
       transformation of the basic cosine curve y = cos q under                5                                                  Divide equation [2] by equation [1]:                                                                                                               3 = r sin a = tan a
                                                                                        y = 5cos (i – 53º)                                                                                                                                                                                                                                                                                                                     a is acute, so sin a, cos a and
       a stretch (scale factor 5) parallel to the y-axis and a                                                                                                                                                                                                                       4 r cos a
                                                                               4                                                                                                                                                                                                                                                                                                                                               tan a are all positive.
       translation of about 53° to the right.                                  3                                                                                                                                                                                                     a = arctan 3 = 36.9°
                                                                                                                                                                                                                                                                                                 4
                                                                               2
       This diagram shows y = cos q transformed into y = 5cos (q - 53°)        1                y = cos i                         Square equations [1] and [2] and add: 32 + 42 = r2(sin2 a + cos2 a)
       The 53° is only approximate.                                             O     90º 180º 270º 360º i                                                                                                                                                                                                             = r2
                                                                               –1                                                                                                                                                                                                                                    r = 25 = 5                                                                                                r is positive so ignore r = -5
       You will find a more accurate value later.                              –2
                                                                                                                                                                                                                                                                                                                                                                                                                               You can check your answer by
                                                                               –3                                                 Hence, 3cos q + 4sin q = 5sin (q + 36.9°)                                                                                                                                                                                                                                                    using a graphical package on
                                                                               –4
                                                                                                                                                                                                                                                                                                                                                                                                                               a computer.
                                                                               –5
 66                                                                                                                                                                                                                                                                                                                                                                                                                                                              67
2 Trigonometry                                                                                                                                                          2 Trigonometry

      Exercise 2.6                                                                                      9 a Show that 5sin q -12cos q º rsin (q - a) for r > 0 and a acute.
       1 In each equation find the values of r and a, where r > 0 and a is acute.                           Give the values of r and a.
         Give r as a surd where appropriate and a to the nearest 0.1°.
                                                                                                           b Find the maximum and minimum values of 5sin q - 12cos q
          a 4cos q + 3sin q = rcos (q - a)                  b 5sin q + 12cos q = rsin (q + a)              and the smallest positive values of a at which they occur.
          c cos q - 2sin q = rcos (q + a)                   d 4sin q - 2cos q = rsin (q - a)               Find the required stationary values of these expressions and,
          e 3sin q - 4cos q = rsin (q + a)                  f 8cos q + 15sin q = rcos (q + a)              in each case, give the smallest positive value of q at which
                                                                                                           they occur.
       2 Solve these equations, given that 0°           q     360°                                         c maximum of 5sin q - 12cos q + 20
          a 5cos q + 12sin q = 6                            b 2cos q - 3sin q = 1                          d maximum of 20 - (6cos q + 8sin q)
          c 8sin q + 15cos q = 10                           d 3sin q - 5cos q = 4                                                  20
                                                                                                           e minimum of
                                                                                                                             6 cosq + 8 sinq
       3 Prove that
                                   (       4)                                         (       4)
                                                                                                           f minimum of               15
          a cos q + sin q = 2 sin q + p                     b cos q - sin q = 2 cos q + p                                    5 sinq − 12 cosq + 2

       4 Prove that                                                                                    10 a Express 3sin q - 2cos q in the form rsin (q - a) such that
          a                            (
               3cos q + sin q = 2 sin q + p
                                          3     )           b cos q - 3sin q = 2cos q + p
                                                                                        3 (        )        r > 0 and a is an acute angle.
                                                                                                           b Sketch the graph of y = 3sin q - 2cos q for -360° < q < 360°,
       5 Solve these equations, given that -p           q    p                                             labelling all points at which the graph crosses the axes
                                                                                1
C3




                                                                                                                                                                                                C3
          a cos q + 3 sin q = 2                             b cos q + sin q =                              within this interval.
                                                                                 2
          c 3cos q + sin q = 1                              d cos q + 2sin q = 2                           c Describe the transformations which the graph of y = sin q
                                                                                                           undergoes to become the graph of y = 3sin q - 2cos q
       6 Solve these equations, given that -180°            q    180°
                                                                                                       11 Two alternating electrical currents are combined so that the
          a cos 2q + 2sin 2q = 1                            b 2cos 3q - 6sin 3q = 5                       resultant current I is given by I = 2cos wt - 4sin wt where the
                                                                                                          constant w = 4 and t is the time (t > 0).
          c 6cos q + 8sin q = 3                             d sin q - 4cos q = 1
                  2        2                                      2        2                              Find the maximum value of I and the smallest value of t at
                                                                                                          which it occurs.
       7 a Show that 2 cos q + 3 sin q can be written in the form rcos (q - a),
           where r > 0 and a is acute. Find the values of r and a.
                                                                                                          INVESTIGATION
          b Hence, find the maximum value of 2 cos q + 3sin q and
          the smallest positive value of q at which a maximum occurs.                                     12 Let 4cos q – 3sin q º r1cos (q + a1) º r2cos (q - a2)
                                                           1                                                                      º r3sin (q - a3) º r4sin (q + a4)
          c Find the minimum value of                               and the
                                                    2 cosq + 3 sinq                                           Find the values of r1, r2, r3, r4 and a1, a2, a3, a4.
              smallest positive value of q at which a minimum occurs.
                                                                                                              Use computer software to draw five sinusoidal graphs
                                                                                                              to confirm your results.
       8 a Express 8cos 2q - 6sin 2q in the form rcos (2q + a) where
           r > 0 and a is acute. State the values of r and a.
          b Find the minimum value of 8cos 2q - 6sin 2q and the smallest
          positive value of q at which a minimum value occurs.
          c Find the maximum value of 8cos 2q - 6sin 2q and the smallest
          positive value of q at which a maximum value occurs.
 68                                                                                                                                                                                            69
2 Trigonometry

                                                                                                            7a    Given that sin2 q + cos2 q º 1, show that 1 + tan2 q º sec2 q
      Review 2
                                                                                                              b   Solve, for 0 q < 360°, the equation 2tan2 q + sec q = 1
                                                                                                                  giving your answers to 1 decimal place.                              [(c) Edexcel Limited 2005]
      1a    If q is acute and tan q = 2 , find in surd form
            i cot q            ii sec q       iii cosec q                                                   8a    Sketch, on the same diagram, the graphs of
        b   If q is obtuse and sin q = 5 , find as fractions                                                      y = cos x and y = sec x for -270°             x      270°
                                      13
            i   cosec q          ii cot q             iii sec q                                               b   On the same diagram, also sketch the graph of y = sec (x - 90°),
                                                                                                                  stating the transformation which maps sec x onto sec (x - 90°).
      2 Solve these equations where 0°            q       180°
                                                                                                                                    15                  3
        a cosec q = 4                                 b cot (q + 20°) = 4                                   9 Given that sin A = 17 and sin B = 5 where A and B are both acute angles, find
                                                                                                              a sin (A + B)
        c   cot (2q - 30°) = 3                        d sec (3q - 80°) = 3
                                                                                                              b cos (A + B)
        e sin2 2q = 1
                        2
                                                      f           (2 )
                                                              sec2 1 q = 4
                                                                                                              c   tan (A - B)
      3 Prove these identities.
                                                                                                           10 Use the expansions of sin (A ± B) and cos (A ± B) to find
        a (sin2 q - 2cos2 q)sec2 q º sec2 q - 3
                                                                                                              a   sin 15° as a surd by substituting A = 60° and B = 45°
            tan q + 1 cot q + 1
        b            ≡                                                                                        b   sin (A + B) where A is obtuse, sin A = 5 and B = 15°
              sin q     cos q                                                                                                                                         13
C3




                                                                                                                                                                                                                         C3
            cosec q + sec q
        c                   º sin q + cos q
             cot q + tan q                                                                                 11 Solve these equations for 0°          q       360°
                                      1 + cos q                                                               a cos (q + 30°) = 2sin q                      b cos 2q + cos q + 1 = 0
        d (cot q + cosec q)2 ≡
                                      1 − cos q
                                                                                                              c   cos 2q = sin q                            d tan2 q = 2sec q - 1
      4 Solve these equations where -180°                 q     180°
                                                                                                              e 1 + sin q = 3cos q                          f       tan 2q = 3tan q
                                                                                                                          2
        a 2cot q + tan q = 3                          b 6sin q = 1 + cosec q
                                                                                                              g 4tan q + 3tan q = 0                         h 3sin q = 2 + cosec q
        c   cot q - 3cos q = 0                        d tan2 q - 7 = 2sec q                                                        2
        e 3cos2 q = 2sin q cos q                      f       tan q = 3 - 2cot q                              i   sin q + cos q = 1

      5a    Describe the successive transformations which map the                                          12 Prove these identities.
            graph of y = sin q onto                                                                                  cos 2q
                                                                                                              a               º cos q - sin q
            i               (
                y = 2sin q + p
                                 2   )    ii y = 3 - sin 2q                                (
                                                                         iii y = 1 + 2sin q − p
                                                                                                   4   )          cosq + sinq
                                                                                                                                   cota cot b − 1
                                                                                                              b cot (a + b) º
        b   Sketch, on one diagram, the graphs of y = cos q and y = 3 - cos 2q,                                                    cota + cot b
            for -180° x 180°, giving all points of intersection with the coordinate axes.                     c   sin 3q + sin q º 2sin 2qcos q
                                                                                                              d tan a + cot a º 2cosec 2a
      6a    Find, in terms of p, the principal value of
            i   arcsin 1(2)               ii arctan ( 3 )                iii arccos (-1)

        b   Find, as a surd, the value of

            i
                    ⎛
                    ⎝
                               ⎞
                cos ⎜ arcsin 3 ⎟
                                2 ⎠
                                          ii sin (arctan 1)                     (
                                                                         iii tan arccos 1
                                                                                           2   )
 70                                                                                                                                                                                                                 71
2 Trigonometry                                                                                                                                                                                   2 Trigonometry

                                                                                                                          Prove the identity 1 − tan 2 x º cos 2x
                                                                                                                                                        2
      13 Solve these equations for -180°           q   180°                                                        21 a
                                                                                                                                                1 + tan x
         a cos q + cos 2q = 2
                                                                                                                      b   Hence, prove that tan p = 7 − 4 3
                                                                                                                                                   12
         b   sin 2q = 1 sin2 q
                      2
         c   4tan 2q tan q = 1                                                                                     22 Find the values of r and a, where r > 0 and angle a is acute, when
                                                                                                                      a   12sin q + 5cos q º r sin (q + a)
      14 Rewrite each pair of equations as an equation in terms of x and y.
                                                                                                                      b   8sin q - 15cos q º r sin (q - a)
         a x = sin a, y = cos 2a
                                                                                                                      c   2cos q + sin q º r cos (q - a)
         b   x = 1 sec a, y = cos 2a
                 2                                                                                                    d   cos q - sin q º r cos (q + a)
         c   x = tan 2a, y = tan a
                                                                                                                   23 a   Find the values of r and a such that 3sin q + 4cos q º r sin (q + a),
      15 a   Given that sin x = 3 , use an appropriate double angle                                                       where r > 0 and a is an acute angle.
                                 5
             formula to find the exact value of sec 2x.                                                               b   Write down the maximum value of 3sin q + 4cos q.
         b   Prove that                                                                                               c   Solve the equation 3sin q + 4cos q = 2 for 0 < q < 360°
             cot 2x + cosec 2x º cot x   (   x ≠ np , n ∈ Z
                                                  2            )                      [(c) Edexcel Limited 2004]
                                                                                                                   24 a   Find the maximum and minimum values of each of these
      16 Find the values of                                                                                               expressions and the smallest positive values of q at which

                                                               ( 2)
                                                                                                                          they occur.
         a arcsin ⎜ 3 ⎞
                  ⎛
C3




                                                                                                                                                                                                                                C3
                      ⎟                            b arccos − 1                                                           i 3sin q + cos q
                    ⎝ 2 ⎠
                                                                                                                          ii cos q - 2sin q
         c      (       ( 3 ))
             sin arctan 2                          d   tan ( arcsin ( 2 ) )
                                                                      3                                               b   Solve these equations for 0°       q < 360°
                                                                                                                          i 3sin q + cos q = 2
                       (3)                   (5)
      17 If a = arcsin 1 and b = arccos 3 , find the values of sin(a + b).                                                ii cos q - 2sin q = 1

                                                                                                                   25 f(x) = 12cos x - 4sin x
                                                              2        ()
      18 Given that a + b = arctan ( 5 3 + 8 ) and b = arctan 1 , use the expansion                                   a   Given that f(x) = Rcos (x + a), where R       0 and 0   a   90°,
         of tan(a + b) to find the acute angle a.                                                                         find the value of R and the value of a.

      19 a   Prove that, for all values of x,                                                                         b   Hence, solve the equation
             cos x - cos(x + 60°) º cos(x - 60°)                                                                             12cos x - 4sin x = 7
                                                                                                                          for 0 x 360°, giving your answers to one decimal place.
         b   Use the fact that 36° = 120° - 84° to find the exact value of
             a given that sin a = sin 84° - sin 36°                                                                   c   i Write down the minimum value of 12cos x - 4sin x.
                                                                                                                          ii Find, to 2 decimal places, the smallest positive value of x
         c   For 0 x 360°, solve the equation                                                                                for which this minimum value occurs.                                 [(c) Edexcel Limited 2006]
             sin (60° + 2x) - 4sin 2x = 1 + sin(60° - 2x)
             giving your answer in degrees correct to 1 decimal place.

      20 a   If sin(x + 30) = 2sin(x - 30°), prove that tan x = 2 3
                                                                         3
         b   Solve the equation 2 - 2cos 2q = sin 2q,
             for 0 q 360°, giving answers correct to 0.1° where necessary.


 72                                                                                                                                                                                                                            73
Revision 1

      2Exit
                                                                                                                1 Simplify     3 − 3 −      2
                                                                                                                             1 + x 2 + x (2 + x)2
                                                                                                                                                  and express your answer as a single fraction.


                                                                                                                2 Simplify as far as possible
                                                                                                                      x 3 + x 2 − 2x
                                                                                                                  a
      Summary                                                                                        Refer to             x2 − 1
                                                                                                                        x + 2
       sec q =     1
                                  cosec q = 1             cot q =     1                                           b
                 cos q                     sin q                    tan q                                             x +1 x +2
       tan q = cot (90° - q)     sec2 q = 1 + tan2 q   cosec2 q =1 + cot2 q                          2.1, 2.2
       The inverse trigonometric functions are arcsin x, arccos x and arctan x.                                 3 Find the quotient and remainder when x4 + 4x3 + 2x2 + x - 5
       Their principal values are unique values within the allowed range.                                         is divided by x2 + x + 1.
       q = arcsin x exists within the allowed range - p q p
                                                      2             2                                           4 Given that x4 - 3x3 + 7x2 - 8x + 5 º (x2 - 2x + 1) ´ Q(x) + R(x)
       q = arcos x exists within the allowed range 0 q p
                                                                                                                  find the two function Q(x) and R(x).
       q = arctan x exists within the allowed range - p q p                                              2.3
                                                       2         2
       The compound angle formulae are                                                                          5a    Find the quotient and remainder when x2 - 3x + 2
       sin (A ± B) = sin Acos B ± cos Asin B            tan (A ± B) = tan A ± tan B                                   is divided into 2x3 - x2 - 9x + 6.
                                                                      1 tan A tan B
       cos (A ± B) = cos Acos B sin Asin B                                                               2.4
                                                                                                                  b   Hence, or otherwise, find the values of the constants l and m
C3




                                                                                                                                                                                                    C3
       The double angle formulae are
                                            ⎧cos2 A − sin 2 A                                                         so that there is no remainder when 2x3 - x2 + lx + m is divided
                                            ⎪
                                            ⎪                                                                         by x2 - 3x + 2.
       sin 2A = 2sin Acos A        cos 2A = ⎨2 cos2 A − 1           tan 2A = 2 tan A                     2.5
                                                                             1 − tan 2 A
                                            ⎪
                                            ⎩1 − 2 sin A
                                                      2                                                         6a    Express 4sin q + 3cos q in the form Rsin (q + a), where R > 0
                                            ⎪
       The half angle formulae are                                                                                    and a is an acute angle.
        sin A = 2sin A cos A                 ⎧cos2 A − sin 2 A                                                    b   Hence, solve the equation 4sin q + 3cos q = 5 for 0° < q < 360°
                         2    2              ⎪      2        2                                                                                                     2
                                             ⎪
                                             ⎪
                  2 tan A            cos A = ⎨2 cos2 A − 1                  cos2 A = 1 (1 + cos A)
        tan A =         2                             2                         2 2                             7a    Express cos q + 4sin q in the form Rcos (q - a) where a is an
                                             ⎪
                1 − tan 2 A                  ⎪1 − 2 sin 2 A                     A 1
                                                                            sin2 = (1 - cos A)                        acute angle. Give the exact value of R and the value of a correct
                          2                  ⎪
                                                                                                         2.5
                                             ⎩            2                     2 2                                   to the nearest degree.
       acos q ± bsin q can take the equivalent forms rcos (q ± a) or rsin (q ± a),
       where r is positive and a is an angle.                                                            2.6
                                                                                                                  b   Hence, or otherwise solve the equation cos q + 4sin q = 3 for 0 < q < 360°

                                                                                                                8 By writing 5sin q - 12cos q in the form Rsin (q - a) where R > 0 and
       Links                                                                                                      0°< a < 90°, find
       Trigonometry is behind the technology of modern                                                            a   the greatest possible value of 5sin q - 12cos q
       Satellite Navigation (Sat Nav) systems.
                                                                                                                  b   the smallest possible value of q for which the greatest value occurs.
       Sat Nav uses the Global Positioning System (GPS) which relies
       on a collection of satellites, orbiting the earth and transmitting                                       9 Given that f(x) = 9 - (x + 2)2, x Î R
       data. Information about how the satellites orbit, and their
       position at a particular time, allows a GPS receiver to calculate                                          a   find the range of f(x)
       its position on the surface of the Earth using basic trigonometry.                                         b   state whether f -1(x) exists or not
       Combined with some maps and planning software, this is the
                                                                                                                  c   find the value of ff(-4).
       basis of in-car Sat Nav technology.
 74                                                                                                                                                                                                75
Revision 1                                                                                                                                                                                                           Revision 1

      10 a    Express x2 - 4x + 1 in the form (x - a)2 + b.                                                      16 a   Solve these equations.
          b   Given that the function f is defined by f: x ® x2 - 4x + 1, x Î R, x       2,                             i |3x - 1| = 8        ii |x| + 3 = 2x             iii |x + 3| = 2x
              find    i the range of f          ii the inverse function f -1.                                       b   Solve these inequalities.
                                                                                                                        i |3x - 1| > 8         ii |x| + 2   1x            iii |x - 1| < 2x + 1
          c   Sketch the graphs of the functions f and f -1 on the same axes.                                                                               2

      11 a    Describe the transformations which are needed to transform
                                                                                                                 17 This sketch shows the curve y = f(x), x Î R. Point (1, 3) is a                    y
              the graph of y = x3 into the graph of y = 1 - 2x3
                                                                                                                    turning point on the curve. The x-axis and the
              Indicate the order in which the transformations occur.                                                                                                                                          P
                                                                                                                    line x = 3 are both asymptotes to the curve.                                     3
          b   The graph of y = x2 - 2x + 5 is reflected in the y-axis and then
                                                                                                                    Sketch, on three separate diagrams, the graphs of
                              ⎛ −1 ⎞
              translated by ⎜ ⎟ . Find the equation of the final image in its
                            ⎝ 0⎠                                                                                    a y = |f(x)|             b y = f(|x|)             c   y = f(x - 3)                                                  x
                                                                                                                                                                                                     O        1 2 3
              simplest form.                                                                                        showing any asymptotes and the coordinates of any
                                                                                                                    maximum or minimum points.
      12 The functions f and g are defined by
              f: x ® x2 - 5x + 4, x Î R, 2 x 5                                                                   18 a   Sketch the graphs of y = |3x - 2| and y = 1 on the same diagram.
                                                                                                                                                                  x
              g: x ® kx - 2, x Î R, where k is a constant.
                                                                                                                    b   Use your graphs to say why there is only one solution of the
          a   Find the range of the function f.                                                                         equation x|3x - 2| - 1 = 0
          b   If gf(5) = 2, find the value of k.                                                                    c   Use algebra to find the solution of the equation        x|3x - 2| - 1 = 0
C3




                                                                                                                                                                                                                                             C3
      13 a    The function f is defined by f: x ® 5x, x Î R.                                                     19 This diagram shows a sketch of the curve y = f(x), x -1                      y
              Write down f -1(x) and state the domain of f -1.                                                      The curve passes through the origin O, has a maximum value
                                                                                                                    at the point P(3, 2) and has the x-axis as an asymptote.                                      P
          b   The function g is defined by g: x ® 3x2 - 2, x Î R.                                                                                                                                2
              Find gf -1(x) and state the range of gf -1.                                                           On separate diagrams, draw sketches of the curves with
                                                                                                                    these equations                                                          –1 O                 3                 x
      14 This sketch shows the curve with equation y = f (x), x Î R, 0 x a                    y

         The curve meets the coordinate axes at the points (a, 0) and (0, b).             b
                                                                                                                    a y = |f(x)|             b y = f(|x|)             c   y = f(x + 3)
          a   Sketch, on two separate diagrams, the curves                                                          On each sketch, indicate the coordinates of points at which
                                                                                                  y = f(x)
              i y = f -1(x)                                                                                         the curves have turning points and the coordinates of points

                        (2)
                                                                                                                    where the curves meet the x-axis.
              ii y = 4f x
                                                                                              O       a      x
              marking the coordinates of all points where these two curves                                       20 This figure shows part of the graph of y = f(x), x Î R.                               y

              meet the coordinates axes.                                                                            The graph consists of two line segments that meet at the point
                                                                                                                    (1, a), a < 0. One line meets the x-axis at (3, 0).
          b   If f defined by f(x) = (x - 3)2, x Î R, 0       x   3, find the value of                              The other line meets the x-axis at (-1, 0) and the
              a and b. State the range of f.                                                                        y-axis at (0, b), b < 0.                                                         –1 O                       3       x
                                                                                                                                                                                                      –b
          c   The function g is defined by g(x) = 1 + x , x Î R, x > 0                                              On separate diagrams, sketch the graphs with equations
              Find gf(x), giving your answer in its simplest form.                                                  a y = f(x + 1)           b y = f(|x|)                                                             (1, –a)

                                                                                                                    Indicate clearly on each sketch the coordinates of any points
      15 a    Sketch the graphs of y = |2x + 1| and y = |x - 1| on the same axes.                                   of intersection with the axes.
          b   Solve the equation |2x + 1| = |x - 1|                                                                 c Given that f(x) = |x - 1| -2, find
                                                                                                                        i the value of a and the value of b
                                                                                                                        ii the value of x for which f(x) = 5x                                        [(c) Edexcel Limited 2005]
 76                                                                                                                                                                                                                                         77
Revision 1

      21 Prove these identities.
          a

          c
                sin 2q ≡ cotq
              1 − cos 2q
              cosq +   1
              secq 1 + cot 2q
                              ≡1
                                                    b cot q - tan q º 2cot 2q

                                                    d   tan 2q + 1 ≡ sec 2q
                                                        1 − tan 2q
                                                                                                             3 Exponentials and logarithms
      22 Solve these equations where 0°         q       180°                                                    This chapter will show you how to
                                                                                                                  discover the value of the irrational number e
          a 2sin2 q = 3(1 - cos q)                  b sec2 q = 2(2tan q - 1)                                      use natural (or Napierian) logarithms
          c   2cos q + cos (q + 60°) = 0            d cos 2q + cos q + 1 = 0                                      use the exponential function y = e x and its inverse function y = ln x
                                                                                                                  draw graphs of functions which involve e x and ln x
                                                        6 cos 2q                                                  solve equations which involve e x and ln x
      23 a    Prove the identity    6 - 3 sec2 q º 1 + cos 2q
                                                                                                                  use exponential and logarithmic functions to solve real-life problems.

          b   Solve the equation 6 cos 2q = 13 - 11tan q for 0° < q < 360°
                                   1 + cos 2q

      24 a    Prove the cos 3a º 4cos3 a - 3cos a by substituting                                            Before you start
              (2a + a) for 3a.                                                                               You should know how to:                            Check in:
          b   Solve the equation sec 2a cos 6a + 1 = 0 for 0° < a < 90°                                                     ax
                                                                                                             1 Calculate and loga x for different               1 Calculate the value of
                                                                                                               values of a and x.                                  a ax for a = -3, x = -2
      25 a    Find, in radians, the values of                                                                   e.g. If a = 1 and x = -3,
C3




                                                                                                                                                                                                                       C3
                                                                                                                            2                                      b a2x+1 for a = 1 , x = − 1
              i    arcsin ⎛ 1 ⎞                                                                                                                                                           9       4
                          ⎜    ⎟
                                                                                                                          ( 2)
                                                                                                                                 −3
                          ⎝  2 ⎠                                                                                then ax = 1           = 23 = 8                     c loga   (x2   + 2x + 1) for a = 10, x = 9
              ii sin (arctan 3 )
          b   Find the value of sin [arctan (-1)]                                                            2 Use the laws of logarithms.                      2 Find x, y and z given that log3 x = 2,
                                                                                                                e.g. If log10 y = 3, then y =    103   = 1000      log10( y + 1) = 1 and z = log216
          c   If sin a = 3 and sin b = 8 where a is acute and b is obtuse,                                                                                                            2
                         5            17
              find the value of cos (a - b).                                                                 3 Find the inverse function of f(x).               3 Find the inverse function, stating its
                                                                                                                e.g. If f(x) =3x2+ 1, x Î R, then undoing         domain and range, when
      26 a    i  Express (12cos q - 5sin q) in the form Rcos (q + a), where                                     the operations in reverse order gives
                 R > 0 and 0 < a < 90°                                                                                                                             a f(x) = 3x + 5
                                                                                                                f −1(x) = + x − 1 , x Î R, x
                                                                                                                                                                   b f(x) = x − 3
              ii Hence solve the equation                                                                                                         1
                                                                                                                              3
                                                                                                                                                                                  2
                      12cos q - 5sin q = 4
                   for 0 < q < 90°, giving your answer to 1 decimal place.                                                                                         c f(x) = + 2x − 1

          b   Solve 8cot q - 3tan q = 2                                                                      4 Reflect, stretch or translate a graph and        4 Find the equation of the resulting curve
              for 0 < q < 90°, giving your answer to 1 decimal place.           [(c) Edexcel Limited 2004]     find its new equation.                             when y = x2 + 2 is
                                                                                                                e.g. When the graph of y = x2 - x - 1 is           a stretched (scale factor 3) parallel to the
                                                                                                                translated by ⎛ ⎞ , the equation of the new
                                                                                                                               3
                                                                                                                              ⎜0⎟                                  y-axis and then reflected in the y-axis
                                                                                                                              ⎝ ⎠
                                                                                                                graph is y = (x - 3)2 - (x - 3) - 1                                       ⎛ 0⎞
                                                                                                                giving y = x2 - 7x + 11
                                                                                                                                                                   b translated by ⎜           ⎟ and then stretched
                                                                                                                                                                                          ⎝ −5 ⎠
                                                                                                                                                                      (scale factor 2) parallel to the x-axis.


 78                                                                                                                                                                                                                   79
3 Exponentials and logarithms

                                                                                                                              Altering the values in the                                                                                                                                 Altering the values in the
      3.1       The exponential function, ex                                                                                  spreadsheet gives:                                                                                                                                         spreadsheet again gives:

                                                                                                                                                          ( ad x − 1 )                                                                                                                                                        ( ad x − 1 )
       ax is an exponential function for all values of a.                                                                         a
                                                                                                                                                                     dx
                                                                                                                                                                                                                                                                                                      a
                                                                                                                                                                                                                                                                                                                                         dx

       You can use a table to draw the graph of a particular                                                                   2.60                        0.9556                                                                                                                              2.70                           0.9933
       exponential function, for example y = 2x:                                                                               2.65                        0.9746                                                                                                                              2.71                            0.9970
                                                                                                                               2.70                        0.9933                                                                                                                              2.72                            1.0007
            x     -2         -1         0           1      2                                                                   2.75                        1.0117                                                                                                                              2.73                           1.0044

            y          1          1   20 = 1    21 = 2   22 = 4                                                                2.80                        1.0297                                                                                                                              2.74                           1.0080
                2-2 = 4    2-1 = 2
                                                                           y
                                                                                                                              The value you want is between                                                                                                                              The value you want is slightly
       You can also draw graphs of other members of the                                                                       a = 2.70 and a = 2.75                                                                                                                                      less than 2.72.
       family of curves y = ax                                                 y = 4x x
                                                                                   y=3
                                                                                     y = 2x                                    This value of a is known as the exponential function, e,                                                                                                                                                                                                                                       e is an irrational number (like p).
       All the curves pass through the point (0, 1)                                                                            where e = 2.718 28 to 5 decimal places.
                                                                                          y = 1.5x
       because y = a0 = 1 for all values of a.
                                                                       1
                                                                                                                              The graph of y = e x has a gradient of 1 at the point (0, 1).                                                                                                                                                                                                                                   Sometimes e x is written as exp(x).
                                                                        O                             x




                                                                                                                  EXAMPLE 1
                                                                                                                                Sketch the graphs, for x Î R, of
                                                                                                                                a y = e-x            b y = 2e x - 3                                                                                                                                                       c y = e 2x +1
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C3
       To investigate the gradient of the curves at the point
                                                                           y                                                    State the range of each function.
       P(0, 1) from first principles, you calculate the gradient                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



       of the chord PQ for small values of dx.                                      y = ax
                                                                                                                                a The graph of y = e-x is the                                                                                                                                                                                          y
                              dy a −1          dx
                                                                                           Q (dx,   adx   )                       reflection of y = e x in the                                                                                                                                                                                  5
       Gradient of chord PQ =    =                                     adx                                                                                                                                                                                                                           y = e–x                                                                                      y = ex
                              dx   dx                                                                                             y-axis. Its range is y Î R,                                                                                                                                                                                   4
                                                                                           adx – 1
       In the limit, as dx ® 0,                                         P
                                                                       –1                                                         y>0                                                                                                                                                                                                           3
       the gradient of the chord PQ ® the gradient of the                      dx                                                                                                                                                                                                                                                               2
       tangent at P.                                                     O           dx                       x
                                                                                                                                                                                                                                                                                                                                                1

       You need to find the limit of a − 1 as dx ® 0.
                                      dx
                                                                                                                                                                                                                                                                                                      –3 –2 –1 O                                                         1               2               3 x
                                               dx
       Let dx take a very small value, say dx = 0.0001                                                                          b The graph of y = 2e x - 3                                                                                                                                                                             y
                                                                                                                                                                                                                                                                                                                                                  y = 2ex y = ex
                                                                                              ( ad x − 1 )                        is the result of a stretch
       This spreadsheet shows the values of a − 1
                                             dx
                                                                                       a
                                                                                                    dx
                                              dx                                                                                  (scale factor 2) of y = e x
       for graphs with different values of a:                                        2.0      0.6932
                                                                                                                                  parallel to the y-axis
                                                                                     2.2      0.7885
       Between a = 2 and a = 3, there is a point on the curve y = ax                                                              followed by a translation
                                                                                     2.4      0.8755                                                                                                                                                                                                                               2
                                                                                                                                  of -3 downwards parallel                                                                                                                                                                                                             y = 2ex – 3
       where the gradient at P is exactly 1. This value is between                   2.6       0.9556
       a = 2.6 and a = 2.8                                                                                                        to the y-axis.                                                                                                                                                                                   1
                                                                                     2.8       1.0297                             Its range is y Î R, y > -3
                                                                                     3.0      1.0987                                                                                                                                                                             −3 −2 −1 O                                                                  1                 2                  3                   x
       You can get a more accurate approximation of this value by
                                                                                                                                                                                                                                                                                         −1
       looking at the values between 2.6 and 2.8.
                                                                                                                                                                                                                                                                                                                              −2

                                                                                                                                                                                                                                                                                                                              −3
                                                                                                                                                                                                                                                                                                                                                                                                                              The solution to part c is shown
                                                                                                                                                                                                                                                                                                                                                                                                                              on the next page.
 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                 81
3 Exponentials and logarithms                                                                                                                                                                         3 Exponentials and logarithms

      EXAMPLE 1 (CONT.)                                                                                                                                   4 The growth of algae in a polluted river is governed by the equation
                            c y = e 2x+1 = e 2x ´ e1 = e ´ e 2x                                    y
                                                                                                                                                                N = N0eat,
                              The graph of y = e 2x+1 is the                                           y = e2x

                                                          (
                              result of a stretch scale factor 1
                                                                      2   )                    e
                                                                                                             y=   ex
                                                                                                                                                             where N is the number of organisms per unit volume of river
                                                                                                                                                             water, t is the time in weeks from the start of the observation,
                                  of y = e x parallel to the x-axis                                                                                          and N0 and a are constants.
                                  followed by a stretch (scale                    y = e2x+1                                                                  a After 4 weeks, the number of organisms N is observed to be
                                                                                               1
                                  factor e) parallel to the y-axis.                                                                                            double the initial number.
                                  Its range is y Î R, y > 0                                    O                  x
                                                                                                                                                               Find the value of a to 4 significant figures.
                                                                                                                                                             b If N0 = 20, what is the value of N after 10 weeks of observation?
                                                                                                                                                             c How many weeks does it take for N to treble its initial value?
                          Exercise 3.1
                                                                                                                                                             d Give a reason why this model of pollution is unrealistic.
                          1 Sketch the graphs of these functions for the domain x Î R.
                            State the transformations of y = e x which are involved.
                                                                                                                                                          5 A radio-active substance decays such that its mass M at time t (hours)
                             a y = 1 + e -x                                   b y = 1 - e-x                                                                 is given by M = M0e-kt, where M0 and k are both constants.
                             c y = 3e x + 2                                   d y = 2 - 3e x                                                                 a If k = 0.006 93 show that the half-life of this substance is 100 hours.
                             e y = 3e 2x                                      f   y = e x +1                                                                 b How long does the substance take to decay to a tenth of its
                                                                                                                                                               original mass?
                             g y = e x-2                                      h y = e -x +2
C3




                                                                                                                                                                                                                                                                 C3
                                                                                                                                                          6 The number of cells N which are infected with a virus were
                          2 The population, P, of rats infesting a sewer grows
                                                                                     t                                                                      observed to change with time t (hours) as given by
                            exponentially over time, t (weeks), according to P = Ae 20
                                                                                                                                                                N = 200 - 50e-2t
                             Find the value of A and copy and complete this table of values.                                                                 a Construct a table of values of N for 0     t   15 and draw the
                              t       0        5    10    15    20
                                                                                                                                                               graph of N against t.
                              P      100                                                                                                                     b How many infected cells were there initially?

                             Draw the graph of P against t.                                                                                                  c What is the limiting value of N as time increases?
                             How long does it take for the population to double its initial size?                                                            d What series of transformations of N = e-2t result in the
                                                                                                                                                               given relationship?
                          3 A mass of M units of a radioactive substance decays t
                                                                               −
                            exponentially over time t (seconds), where M = M 0e 10                                                                        7 State the transformation of the graph of y = e x which result in
                             Find the value of M0 and copy and complete this table of values.                                                                a y = e 2x+3 + 4

                              t      0     5       10    15    20
                                                                                                                                                             b y = e 2x-1 - 4
                              M      6                                                                                                                       c y = e 2-x - 3

                             Draw the graph of M against t.
                             How long does it take for the mass of the substance to                                                                         INVESTIGATION
                             reduce to 3 units?                                                                        This time period is known as the     8 Find other examples of exponential growth and decay
                                                                                                                       half-life of the substance.            which are governed by the equations
                                                                                                                                                                  y = Aekt and y = Ae-kt
                                                                                                                                                               E.g. What is Newton’s law of cooling?
 82                                                                                                                                                                                                                                                             83
3 Exponentials and logarithms

                                                                                                                                                                                                                                                                                                                                                           Exercise 3.2
      3.2                               The logarithmic function, ln x                                                                                                                                                                                                                                                                                     1 a Find the values (to 3 significant figures) of
                                                                                                                                                                                                                                                                                                                                                                                                                         1
                                                                                                                                                                                                                                                                                                                                                                 i e1.5                 ii e-1.5                      iii
                  The inverse of the exponential function y = e                                                                                                                                                         x                                                                                        You can show this by taking                                                                            e1.5
                  is the logarithmic function y = loge x                                                                                                                                                                                                                                                         logarithms in any base n and
                                                                                                                                                                                                                                                                                                                 finding x in terms of y.
                                                                                                                                                                                                                                                                                                                                                                 iv ln 1.5              v ln 1(1.5 )                  vi 1
                                                                                                                                                                                                                                                                                                                                                                                                                        ln1.5
                                                                                                                                                                                                                                                                                                                                                              b Simplify
                                                                                                                                                                                                                                                                                                                                                                 i ln (e5)              ii ln (ex)                    iii eln 5
                   Logarithms with base e are called natural logarithms.
                                                                                                                                                                                                                                                                                                                                                                 iv eln x               v ln (2e5)                    vi e2ln 5
                  They are usually written as ln x rather than loge x.
                                                                                                                                                                                                                                                                                                                                                           2 Describe the transformations of y = ln x which result in each of
                   The function y = e x has the inverse function y = ln x                                                                                                                                                                                                                                        Their graphs are reflections of             these functions. Sketch the graphs of these functions, labelling
                                                                                                                                                                                                                                                                                                                 each other in the line y = x                any points where the graphs intersect the coordinate axes.
                                                                                                                                                                                                                                                                                                                                                             State the domain and range of each function.
                                                                                                                                               y                                                                                                                                                                     y = e x has the x-axis as an
                                                                                                                                                                                 y = ex
                                                                                                                                                                                                                                                                                                                     asymptote                                a y = 2 + ln x        b y = 3 - ln x          c y = ln (x + 2)        d y = ln (x - 2)
                                                                                                                                                                                                                  y=x                                                                                                y = ln x has the y-axis as an
                                                                                                                                                                                                                                                                                                                     asymptote                                e y = 1 + 3ln x       f y = 1 + ln (2x)       g y = 1 - ln x          h y = 2ln (1 - x)
                                                                                                                                          1                                                                                                                                                                          for y = e x, the domain is x Î R
                                                                                                                                                                                                                                                                                                                     and the range is y Î R, y > 0         3 a Describe the successive transformations of the graph
                                                                                                                                                                                                          y = ln x                                                                                                   for y = ln x, the domain is               of y = ln x which produce the graph of y = 2ln (x + 3) + 1
                                                                                                                                            O                                  1                                           x                                                                                         x Î R, x > 0 and the range
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C3
                                                                                                                                                                                                                                                                                                                     is y Î R                                 b Find the points at which this graph cuts the x-axis and y-axis.
                                                                                                                                                                                                                                                                                                                     ex is positive for all values of x,
                                                                                                                                                                                                                                                                                                                     ln x does not exist for negative      4 Find the inverse function f -1(x) for each function f(x).
                                                                                                                                                                                                                                                                                                                     values of x.                            Sketch the graphs of f(x) and f -1(x) on the same diagram,
                                                                                                                                                                                                                                                                                                                                                             labelling any intersections with the coordinate axes.
      EXAMPLE 1




                    Find the inverse function f -1(x) for the function f(x) = 1 + e-x                                                                                                                                                                                                                                                                        In each case, give the domain and range of f -1(x).
                    Sketch the graphs of f(x) and f -1(x) on the same diagram,                                                                                                                                                                                                                                                                                a y = 1 + 2ln x,    x>0         b y = ln (x + 4),        x > -4
                    labelling any intersections with the coordinate axes.                                                                                                                                                                                                                                                                                                                                  1x

                    Give the domain and range of f -1(x).                                                                                                                                                                                                                                                                                                     c y = 3 + e-x,     xÎR          d y =2−     e2 ,        xÎR
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    To find the inverse, let y = 1 + e-x:                                                                                                                                                                                                                                                        The graph of y = 1 + e-x is the           5 The functions f and g are defined by
                                                                                                                                                                                            y                                                                                                                                                                                                                    1x
                                                   y - 1 = e-x                                                                                                                                                                                                                                                   graph of y = e x reflected in the               f: x ® ln (6 - 2x), x Î R, x < 3 and g: x ® e 2 , x Î R.
                                                                                                                                                                                                                                    y = – ln(x – 1)
                                                                                                                                                                                                                                                                                                                 y-axis and then translated
                    Take logarithms:                                                                                                                                                                                                                                                                             upwards by 1 unit.                           a Find expressions for f -1(x) and g-1(x). State their domains and ranges.
                                                                                                        -x                                                                                                                                                            y=x                                        The graph of y = -ln (x - 1) is the
                                ln (y - 1) = ln (e )                                                                                                                                    2
                                                                                                                                                                                                                                                                                                                 graph of y = ln x translated to the          b Sketch the curves y = f(x) and y = f -1(x) on the same axes,
                                           = -x ln e [ln e = 1]                                                                                                                                                                                                   y=1+                           e–x
                                                                                                                                                                                                                                                                                                                 right by 1 unit and then reflected             stating the points where they cut the axes.
                                           = -x                                                                                                                                         1
                                                                                                                                                                                                                                                                                                                 in the y-axis.
                                                                                                                                                                                                                                                                                                                                                              c Find an expression for gf(x) in its simplest form and
                    Interchange x and y:                                                                                                                                                                                                                                                                         These transformations are the
                                                                                                                                                                                                                                                                                                                 inverses of each other.                        calculate the value of gf(-5).
                                ln (x - 1) = -y                                                                                                                                           O                             1                                2
                                                                                                                                                                                                                                                                                                      x
                                         y = -ln (x - 1)
                                                                                                                                                                                                                                                                                                                                                             INVESTIGATION
                                                                                                                                                                                                                                                                                                                                                             6 What is semi-log and log-log graph paper?
                    Hence the inverse function is f -1(x) = -ln (x - 1)                                                                                                                                                                                                                                                                                        Explore why and how scientists and engineers use it to
                                                                                                                                                                                                                                                                                                                                                               draw graphs of y = Ae kx and other exponential curves.
                    The domain of f -1(x) is x Î R, x > 1 and its range is y Î R.
 84                                                                                                                                                                                                                                                                                                                                                                                                                                                               85
3 Exponentials and logarithms

                                                                                                                                                                                                                                                                                                                                                     4 Find the three points on the graph of y = 2e3x+1 where
      3.3                                Equations involving e x and ln x
                                                                                                                                                                                                                                                                                                                                                       a y = 20                 b y=2                    c y=1
                  You can use the laws of logarithms and the techniques from                                                                                                                                                                                                                                                                         5 Find the point of intersection of the curves y = 2e2x - 1 and y = 3e x - 2
                  unit Core 2 to solve equations involving ex and ln x.
                                                                                                                                                                                                                                                                                                                                                     6 The graph of the function f(x) = ln (2x - 5), x Î R, x > k
      EXAMPLE 1




                    Solve the equation                                                                             e3x+2                   = 25                                                                                                                                                                                                        has a vertical asymptote x = k
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                         a Find the value of k. b Find x such that f(x) = -1
                    Take logarithms to base e of both sides:
                                                                                                                                                                                                                                                                                                                                                     7 a Find the equation of the asymptote to the curve y = 3e2x + 5
                                                ln (e3x+2) = ln 25
                                              (3x + 2)ln e = ln 25                                                                                                                                                                                                                                               loga (xn) = nloga x                    b Find the points of intersection with the curve y = 8e x
                                                                                                               ln25 − 2 = 0.406 to 3 s.f.
                                                                                           x=                                                                                                                                                                                                                    loga a = 1 so ln e = 1
                                                                                                                                                                                                                                                                                                                                                     8 Find the point where the curve y = e x + 1 intersects the curve y = 6e-x
                                                                                                                  3

                                                                                                                                                                                                                                                                                                                                                     9 The population, P millions, of a country is growing exponentially
      EXAMPLE 2




                                                                                                                                                                                             1                                                                                                                                                         as given by P = 15e kt where t is the time in years.
                    Solve the equations a ln (3x + 1) = 2                                                                                                                                                                   b e2x = 2e x + 8                                                                                                           Given that P = 20 when t = 5, find the value of k.
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                       Calculate the population when
                    a Use loga x = y Û x = ay:
                                                                                                                                                                                                                                                                                                                                                        a t=0                      b t = 10
                                                                                                               1
                                                                      3x + 1 =                                e2                                                                                                                                                                                                 3x + 1 = e
                                                                                                                                                                                                                                                                                                                                                    10 The mass, m, of a radioactive material at a time t is given             The half-life is the time taken
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C3
                                                                                        x=                          e −1
                                                                                                                     3
                                                                                                                         = 0.216 to 3 s.f.                                                                                                                                                                                                             by m = m0e-kt where k and m0 are constants.                             for the material to decay to
                                                                                                                                                                                                                                                                                                                                                              9                                                                half of its original mass.
                                                                                                                                                                                                                                                                                                                                                       If m =   m0 when t = 10, find the value of k.
                                                                                                                                                                                                                                                                                                                                                                10
                    b Rearrange: e2x - 2e x - 8 = 0
                                                                                                                                                                                                                                                                                                                                                        Also find the half-life of the material.
                                  Let y = ex:                                              y2 - 2y - 8 = 0                                                                                                                                                                                                       y = ex is a useful substitution.
                                                                              (y - 4)(y + 2) = 0                                                                                                                                                                                                                 Remember it.
                                                                                                                                                                                                                                                                                                                                                    11 The isotope strontium-90 is present in radioactive fallout and
                                                                                           y = 4 or -2                                                                                                                                                                                                                                                 has a half-life of 29 years. Its mass m at a time t (years) is given
                                  Hence                                                   e x = 4 or -2                                                                                                                                                                                                                                                by m = m0e-kt where k and m0 are constants.
                                                                                                                                                                                                                                                                                                                                                       Find how many years elapse before any of this isotope in the
                                  ex > 0 for all x, so the solution is x = ln 4 = 1.39 to 3 s.f.
                                                                                                                                                                                                                                                                                                                                                       atmosphere decays to a hundredth of its original mass.

                  Exercise 3.3                                                                                                                                                                                                                                                                                                                      12 A hot liquid cools in such a way that the temperature difference, q,
                   1 Solve these equations. Give your answers to 3 s.f.                                                                                                                                                                                                                                                                                between its actual temperature and the room temperature is given
                     a ex = 9                 b e x = 7.39              c 4e x + 2 = 36                                                                                                                                                                                                                                    d e4x + 2 = 36              by q = ke-at where t is the time and k and a are constants. When the
                                                                                                                                                                                                                                                                                                                                                       room is at a constant temperature 20 °C and the initial temperature
                              e 4e-x + 2 = 36                                                                                                   f e-x = 7.39                                                                                                      g 7 - 2e-x = 4                                           h e x+2 = 20
                                                                                                                                                                                                                                                                                                                                                       of the liquid is 70 °C, the temperature falls to 60 °C after two minutes.
                              i              2e 3x-1 = 10                                                                                       j             e4x −1 = 1                                                                                          k e3-x = 1                                               l e2x-3 × e x = 0.1         Find the temperature of the liquid after 10 minutes.
                                                                                                                                                                                                2

                   2 Solve these equations.                                                                                                                                                                                                                                                                                                           INVESTIGATION
                     a ln x = 6                                                                                                                 b ln (x + 1) = 2                                                                                                  c ln (2x - 1) = 0
                                                                                                                                                                                                                                                                                                                                                      13 The graph of y = Asin w t can represent an oscillation of             The variable y can represent,
                              d ln (2x + 1) = 1                                                                                                 e ln (3 - x) = 2                                                                                                  f ln (5 - 2x) = 2.78                                                                   amplitude A over a time t, where A and w are constants.               for example, the noise of a
                                                                                                                                                                                                                                                                                                                                                         If A = A0ekt, where A0 and k are constants, then the                  siren or an electrical current.
                   3 Solve these equations.                                                                                                                                                                                                                                                                                                              amplitude A changes with time. Use computer software                   Start your exploration with
                     a e 2x - 3e x + 2 = 0                                                                                                      b e 2x + 12 = 7e x                                                                                                c e 2x = e x + 2                                  Use the substitution y = ex          to draw the graphs of y = A0 sin wt and y = A0ekt sin wt               A0 = 2, k = -0.2 and w = 1
                              d 2e 2x = e x + 10                                                                                                e 4e 2x - 8e x + 3 = 0                                                                                            f e2x - 16 = 0                                                                         for t > 0 for different values of A0 and k.
 86                                                                                                                                                                                                                                                                                                                                                                                                                                                              87
3 Exponentials and logarithms

                                                                                                               8 The population, P, of a certain organism grows exponentially
      Review 3                                                                                                                                                  t
                                                                                                                 over time t (days) according to P = Ae 20
                                                                                                                 Find the value of A and complete this table of values.
      1 Solve these equations for x, giving answers to 2 significant figures.                                    Draw the graph of P against t.
        a 3e x = 10                                   b e1-2x = 0.5
                                                                                                                     t    0    5   10   15    20
        c   ln (2x - 1) = 3                           d ln (1 - x) = -3                                              P    5

      2 Sketch the graph of y = e x                                                                              Calculate how long it takes for the population to double its
        Sketch the graphs of these functions, stating the                                                        initial size.
        transformations of y = e x which occur.
                                                                                                               9 The temperature T °C in a boiler rises exponentially over
        a y = e-x                                     b y = 2e x + 3                                                                                                      t
                                                                                                                 24 hours so that, after a time t hours, T = T0e 20
        c   y = 3 - e 2x                              d y = e|x|
                                                                                                                 a Given that the temperature is 165 °C after 10 hours, find
      3 Sketch the graph of y = ln x                                                                             the value of T0.
        Sketch the graphs of these functions, stating the
                                                                                                                 b What is the temperature after 24 hours?
        transformations of y = ln x which occur.
        a y = 2 - ln x                                b y = 2ln x + 1                                         10 Trees in a certain location are infected by a disease.
                                                                                                                 The number of unhealthy trees, N, was observed to change over
        c   1 - 2ln x                                 d y = |ln x|                                                                                                  −t
C3




                                                                                                                                                                                                                          C3
                                                                                                                 time t (in years) as given by N = 200 - Ae          20

      4 Solve the equations                                                                                      a       If there are 91 unhealthy trees after 10 years, find the
        a   e2x   +   ex   =6                         b   ex   +   e-x   = 2.5                                           value of A.
                                                                                                                 b       How many unhealthy trees were there initially?
      5 Find the exact solutions of
                                                                                                                 c       What is the limiting value of N as time increases?
        a e2x+3 = 6                                   b ln (3x + 2) = 4          [(c) Edexcel Limited 2003]

                                                                                                              11 Find, giving your answer to 3 significant figures where
      6 Given that f(x) =       ex   and g(x) = 1 e x − 1, find                                                  appropriate, the value of x for which
                                                2
        a the values of f(2), f -1(2) and g -1(2), to 2 decimal places                                           a       3x = 5

        b the functions f -1(x) and g -1(x).                                                                     b       log2 (2x + 1) - log2 x = 2
                                                                                                                 c       ln sin x = -ln sec x, in the interval 0 < x < 90°                  [(c) Edexcel Limited 2005]
      7 Find the inverse function f -1(x) for each function f(x).
        Sketch the graphs of f(x) and f -1(x) on the same diagram,
        labelling any intersections with the coordinate axes.
        In each case give the domain and range of f -1(x).
        a f(x) = 3 + ln x                             b f(x) = ln (x - 2)
        c f(x) = 2 + e-x                              d f(x) = 1 - e2x




 88                                                                                                                                                                                                                      89
3Exit
                                                                                         4Differentiation
                                                                                           This chapter will show you how to differentiate
                                                                                             the three basic trigonometric functions (sin x, cos x, tan x) and the
                                                                                             exponential and logarithmic functions (ex and ln x)
      Summary                                                                Refer to
                                                                                             the sums, differences, products and quotients of these functions
       f(x) = a x is an exponential function for all values of a.
                                                                                             composite functions formed by having functions within functions
       f(x) = e x is the exponential function, where the irrational number
                                                                                             functions of the type x = f( y)
       e has a value of 2.71 828 to 5 decimal places.                            3.1
       f(x) = e x has the inverse function f -1(x) = ln x,
       where the natural logarithm ln x denotes loge x.                                 Before you start
       The graph of y = ln x is the reflection of the graph of y = e x in
       the line y = x                                                            3.2
                                                                                        You should know how to:                                       Check in:
       You can solve the equation eax+b = q by taking natural                           1 Find the gradient of the tangent at a                       1 Draw the graph of y = x2 accurately.
       logarithms of both sides.                                                          point P on a curve using the method                           The point P(1, 1) is fixed and point Q moves
       You can solve the equation ln (ax + b) = q by rewriting it                         of small increments.                                          from (3, 9) to (1, 1). Draw the chord PQ in
       as ax + b = eq                                                            3.3       See   C2   Section 7.1.                                      several positions and find its gradient each
       Exponential growth occurs when a variable y changes with                                                                                         time. Compare these values with the
C3




                                                                                                                                                                                                               C3
       time t and y = Aekt where k > 0                                                                                                                  gradient of the tangent at P.
       Exponential decay occurs when a variable y changes with
       time t and y = Ae-kt where k > 0                                          3.3    2 Find the gradient of a tangent to a curve.                  2 Find the gradient of the tangent to these
                                                                                                                          dy                            curves at the point (1, 2).
                                                                                           e.g. If y = 3x2 - 4x + 1, then        = 6x − 4
                                                                                                                          dx                            a y = x2 + 2x - 1           b y = x3 - x + 2
                                                                                           The gradient of the tangent at (1, 0) is 6 ´ 1 - 4 = 2
                                                                                                                                                        c y = (2 - x)(3 - x)
       Links
                                                                                        3 Find the equation of a straight line if you                 3 Find the equation of the straight line which
       Exponentials and logarithms are used to understand
                                                                                          know its gradient and a point on the line.                    a has a gradient of 4 and passes through
       and quantify many natural phenomena.
                                                                                           e.g. The point (1, 2) is on a straight line, gradient 3.     the point (3, 2)
       The decibel scale, used to measure sound, is based on                               Substitute in y = mx + c: 2 = 3 ´ 1 + c so c = -1             b passes through the points (3, 1) and (5, 5).
       logarithms.                                                                         The equation of the line is y = 3x - 1
       The equation dB = 10log(I/I0)
       is used to compute the intensity of a sound, where dB                            4 Find a stationary value of a function and                   4 Find the turning points on the curve
       is a unit of sound in decibels, I is the intensity of the sound,                   decide if it is a maximum or minimum.                         y = x3 - 3x2 - 9x + 1
                                                                                                                           dy                           and determine whether they are maximums
       and I0 is the softest sound that a human ear can detect.                            e.g. If y = x2 - 6x + 1, then        = 2x − 6
                                                                                                                           dx                           or minimums.
                                                                                           dy
       This equation can be used to calculate certain values,                                   = 0 when x = 3 and y = 32 - 18 + 1 = -8
                                                                                           dx
       such as the threshold for noise pollution.
                                                                                           d2 y
                                                                                                = 2 > 0, so -8 is a minimum point.
                                                                                           dx 2

                                                                                        5 Use the laws of logarithms.                                 5 Prove that    log3 18 = 1 + 1 log3 2
                                                                                                                                                                                     2
                                                                                           e.g. log10 500 = log10 (5 ´ 102)
                                                                                                          = log10 5 + log10 102
                                                                                                          = log10 5 + 2log10 100
                                                                                                          = log10 5 + 2
 90                                                                                                                                                                                                       91
4 Differentiation

                                                                                                                                      The derivatives of sin x, cos x and tan x.
      4.1            Trigonometric functions
                                                                                                                                      Consider the function y = sin x, where x is in radians.

       You can find the value of the derivative of the function                                See C1 and C2 for revision
       y = sin x graphically from the gradient of the tangent at                               of differentiation.                     Let P (x, y) and Q (x + dx, y + dy) be two points on                                  y
       a given point.                                                                           When differentiating                   the graph of y = sin x
                                                                                                trigonometric functions you
                                                                                      p                                                                                                                                                    Q        y = sin x
                                       The tangent is parallel to the x-axis when x =           must work in radians.                  For P, y = sin x                                                                y + dy
                                            3p                                        2
                                       and 2 and the gradient is 0.                                                                    For Q, y + dy = sin (x + dx)                                                                            dy
                                                                                                                                                                                                                                 P             R
                                                                                                                                                                      QR                                                    y
                                                                                                                                       The gradient of the chord PQ =                                                                 dx
                                         y                                                                                                                            PR

       The tangent at the point                                                                                                                                                  sin(x + d x) − sin x                       O           x + dx          x
                                                                                                               The gradient is also                                          =                                                    x
       where x = 0 rises at 45°         1
                                                                                                               1 when x = 2p                                                        (x + d x) − x
       to the x-axis and has a                                                            y = sin x
                                                                                                                                                                             = sin x cos d x + cos x sin d x − sin x
                                                                                                                                                                                                                       Use the expansion of sin (A + B)
       gradient of 1.
                                        O             p              p          3p         2p    x                                                                                               dx                    from Chapter 2.
                                                      2                          2
                                       −1                                                                                              If P is fixed and Q approaches P, then dx ® 0                                   You can test these statements
                                                                                                                                                                            cos dx ® 1                                 by finding the sine and cosine
                                                                                                                                                                      and sin dx ® dx                                  of small angles (in radians) on
                                                    By symmetry, the gradient                                                                                                                                          your calculator.
                                                    is -1 when x = p                                                                   and, in the limit, the chord PQ becomes the tangent at P.
       For y = sin x
C3




                                                                                                                                                                                                                                                                 C3
                                                                                                                                                                                                              dy
                                                                                                                                       The phrase ‘in the limit’ indicates that d x has reduced to zero and      has
                             p          3p                                                     You can find other values using                                                                                 dx
            x            0        p            2p                                                                                                                     dy
                             2           2                                                     computer software to draw the           become an exact differential      .
                                                                                                                                                                      dx
         dy                                                                                    curve and its tangents.
                                                                                                                                       So, as dx ® 0, the gradient of PQ ® sin x × 1 + cos x × d x − sin x
                         1   0    -1    0       1
         dx
                                                                                                                                                                                                    dx

       which, as a graph, gives these points:                 The values in the table and on the                                                                                 ® cos x × d x
                                                                                                                                                                                           dx
                                                              graph are the same as those for the                                                                                ® cos x
                                                              function y = cos x
                                                                                                                                       In the limit, when Q reaches P, the gradient of the tangent
                     y                                           y                                                                     at P is cos x.
                dy
                dx                                                                             y = cos x
                     1                                          1

                                                                                                                                                                      d(sin x)                                          x is in radians in all of
                                                                                                                                                                               = cos x
                     O       p    p    3p      2p    x           O       p           p    3p      2p       x                                                            dx                                              these results.
                             2          2                                2                 2
                 −1                                            −1
                                                                                                                                      In a similar way, you can show that

                                                              This suggests that the derivative of                                                                    d(cos x) −
                                                                                                                                                                              = sin x                                   The derivative of cos x
                                                              y = sin x is closely related to the                                                                       dx                                              has a negative sign.
                                                              function y = cos x
                                                                                                                                                                                                                       Derive the results for cos x and
                                                                                                                                                                      d(tan x)
                                                                                                                                                                               = sec 2 x                               tan x for yourself.
                                                                                                                                                                        dx

 92                                                                                                                                                                                                                                                             93
4 Differentiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4 Differentiation




                                                                                                                                                                                                                                                                                                                                                    EXAMPLE 3
      EXAMPLE 1
                    Find the gradient of the curve y = x2 + cos x                                                                                                                                                                                                                                                                                                Find the values of q for which y = 3 + sin q has a
                    at the point where x = p                                                                                                                                                                                                                                                                                                                     maximum value.
                                                                                                                               2                                                                                                                                                                                                                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                 You have                                                                                     y = 3 + sin q
                    You have                                                                 y = x2 + cos x
                                                                                                                                                                                                                                                                                                                                                                                                                                                      dy
                    Differentiate wrt x:                                                                                                                                                                                                                                                                                                                         Differentiate wrt q :                                                                   = cos q = 0
                                                                                                                                                                                                                                                                                                                 wrt means ‘with respect to’.                                                                                                         dq
                                                                                      dy
                                                                                         = 2x − sin x                                                                                                                                                                                                                                                                                                                                            for stationary values when q = p , 3p , 5p , …
                                                                                      dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 2                              2
                    Substitute x = p :                                                                                                                                                                                                                                                                                                                                                                                                            d2 y
                                                                               2                                                                                                                                                                                                                                                                                 Differentiate again:                                                                  = − sinq
                                                                                                                                                                                                                                                                                                                                                                                                                                                  dq 2
                                                                                        = 2 × p − sin p
                                                                                     dy
                                                                                     dx       2       2
                                                                                                                                                                                                                                                                                                                                                                                                                                                  d2 y
                                                                                                     =p-1                                                                                                                                                                                                                                                        At q = p                                                                              = − sin p = −1 < 0
                                                                                                                                                                                                                                                                                                                                                                        2                                                                         dq 2         2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              d2 y
                    The required gradient is p - 1.                                                                                                                                                                                                                                                                                                                                                                                              which indicates a maximum value of y                                                                                                                                                                              < 0 indicates a maximum
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              dq 2

                                                                                                                                                                                                                                                                                                                                                                                                                                                  d2 y        3p
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 = − sin 2 = +1 > 0
                                                                                                                                                                                                                                                                                                                                                                 At q = 3p
                                                                                                                                                                                                                                                                                                                                                                                                                                                  dq
      EXAMPLE 2




                                                                                                                                                                                                                                                                                                                                                                                                2
                    Find the equation of the normal to the curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              d2 y
                    y = 1 + 2tan x at the point (0, 1).                                                                                                                                                                                                                                                                                                                                                                                          which indicates a minimum value of y                                                                                                                                                                              > 0 indicates a minimum
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              dq 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                               5p
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                        5p                                                                        d2 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 = sin = 2 = 1 < 0
                                                                                                                                                                                                                                                                                                                                                                 At q =                                                                                 −         −
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C3
                    You have                                                                 y = 1 + 2tan x                                                                                                                                                                                                                                                                                       2                                               dq
                    Differentiate wrt x:                                                                                                                                                                                                                                                                                                                                                                                                         which indicates a maximum value of y
                                       dy                                                                                                                                                                                                                                                                                                                        and so on.
                                          = 2 sec 2 x
                                       dx
                                                                                                                                                                                                                                                                                                                                                                 Maximum values of y occur when
                    Substitute x = 0:
                                                                                                     = 2sec2 0                                                                                                                                                                                                   sec x = 1                                                                                                                                q = p , 5p , 9p , …
                                                                                                                                                                                                                                                                                                                        cos x                                                                                                                                           2 2 2
                                                                                                      =  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      = p + 2np where n = 0, ±1, ±2, …
                                                                                                       cos2 0                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                      =2 =2
                                                                                                       1

                    The gradient of the tangent at the point (0, 1) is 2.                                                                                                                                                                                                                                        If the gradients of the tangent                Exercise 4.1
                                                                                                                                                                                                                                                                                                                 and normal are m and m¢, then
                    The gradient of the normal at (0, 1) is − 1 .                                                                                                                                                                                                                                                                                                1 Differentiate these functions with respect to x.
                                                              2                                                                                                                                                                                                                                                  mm¢ = -1 or m¢ = − 1
                                                                                                                                                                                                                                                                                                                                     m                                     a x2 + sin x
                    The y-intercept of the normal is 1.                                                                                                                                                                                                                                                          See C1 Chapter 2 for revision of
                                                                                                                                                                                                                                                                                                                 equations of straight lines.                              b 6x - cos x
                    So, the equation of the normal is y = 1 x + 1                                                                                                                               −
                                                          2                                                                                                                                                                                                                                                                                                                c sin x + tan x
                                                                                                                                                                                                                                                                                                                                                                           d sin x + x + 1
                                                                                                                                                                                                                                                                                                                                                                           e 3cos x - 4tan x
                                                                                                                                                                                                                                                                                                                                                                           f               3x2 + 2x - 1 - 1 cosx
                                                                                                                                                                                                                                                                                                                                                                                                                                                              2




 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          95
4 Differentiation                                                                                                                                                    4 Differentiation

       2 Find the gradient of the tangent to each of these curves at the           11 A pendulum bob swings such that the angle q that the pendulum makes
         point with the given value of x.                                             with the vertical is given by q = q0(sin t + cos t), where q0 is a constant.
          a y = 2x + tan x         when x = p                                          a Find the value of q when
                                            4
                                            p                                                                                p
          b y = x2 - sin x         when x =                                                i      t=0               ii t =
                                            2                                                                                2
          c y = 6x + 2cos x        when x = p                                          b Find the value of its angular velocity dq when
                                                                                                                                              dt
                                                                                                                             p
          d y = cos x + sin x      when x = p                                              i      t=0               ii t =
                                              2                                                                              2
          e y = 3tan x - 2cos x when x = 0                                             c Explain why the time taken for one oscillation of the bob is 2p.

       3 Find the equation of the tangent to the curve y = cos x at the            12 A particle moves in a straight line so that its distance, y metres,
         point where x = p                                                            from a fixed point O is given by
                             4
                                                                                       y = 5cos t + 3sin t
       4 Find the equation of the tangent to the curve y = sin x at the point
         where x = p . At which point does this tangent cut the x-axis?                where t is the time in seconds after it has begun to move.
                      4
                                                                                       a How far is the particle from O at the start of the motion?
       5 Find the equation of the normal to the curve y = sin x + cos x at the
                                                                                       b Find the first two times that the particle is at rest.
                (2 )
          point p , 1 . At which point does this normal intersect the x-axis?
                                                                                       c What is the particle’s acceleration after one second of motion
       6 Find the smallest positive value of q for which                                 and when does the particle next have this acceleration?
                                                                   1
C3




                                                                                                                                                                                                C3
          a the gradient of the curve y = q + sin q has the value 2

          b the gradient of the curve y = sin q - 3cos q has the value 0.             INVESTIGATION
                                                                                      13 Construct a table of values with these headings for 0            x   0.5 in radians.
       7 Find the smallest positive value of q for which these functions
         have maximum values.                                                                  x (radians)   x (degrees)      sin x   cos x       tan x

          a y = sin q - 2        b y = sin q + 2cos q
                                                                                       a When x is in radians, for what range of values of x is
       8 Find the smallest positive value of q for which these functions
                                                                                          i sin x » x                  ii tan x » x
         have minimum values.
                                                                                          so that they differ by no more than 10% of the value of x?
          a y = 5 + cos q        b y = cos q - sin q
                                                                                       b The diagram shows the graph of y = 1 - kx2
       9 Find the maximum and minimum values of the function                                                           y
         f(x) = 3sin x + 4cos x for -p x p
          Show that, if a and b are the smallest positive values of x at the                                           1
          maximum and minimum values respectively, then a - b = p                                                                y = cos x

                                                                                                                       O                      x
      10 An object moves in a straight line such that its distance y from                                      –p                 p
                                                                                                                2                 2
         a fixed point at a time t is given by y = A sin t, where A is a
         positive constant.                                                                                                  y = 1 – kx2

                                              dy                dy
          a Find the velocity of the object      and prove that dt =    A2 − y 2          Find a value of k such that
                                              dt
                                                                                          cos x » 1 - kx2 for small values of x (in radians).
                             d2 y
          b Prove that            +y=0
                             dt 2
 96                                                                                                                                                                                            97
4 Differentiation

                                                                                                                                                                   You can use these values to draw the graph of y = e x:                                                                                                                                                                                                                                                y
      4.2       The exponential function, ex
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  y = ex
                                                                                                                                                                   It is the exponential function and is one member of the family of
       Suppose you want to find a function that stays unchanged when                                                                                               exponential functions y = ax which you first met in unit C2.
       it is differentiated.
                                                                                                                                                                   In summary,                                                                                                                                                                                                                                                                                           1
       Start the search with the simple function y = 1                                                            For y = 1, dy = 0
                                                                                                                             dx                                                                                                                                                                                                                                                                                                                                          O                    x
       Now work backwards.                                                                                                                                                           dy                                                                                                                      d (ex )
                                                                                                                                                                    if y = e x, then    = e x or                                                                                                                     = ex
                                 dy
       In each step, make the same as y from the previous step and integrate
                                                                                                                                                                                     dx                                                                                                                        dx
                         dx
       to give a new y:
                dy
                   =0




                                                                                                                                                       EXAMPLE 1
                                Þ y=1                                                                                                                                Find the gradient of the tangent to the curve
                dx
               dy                                                                                                                                                    y = (e x + 1)2 - e2x at the point where x = 0
                  =1                              Þ       y=1+x                                                                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

               dx
                                                                   2
                                                                                                                                                                     You have                                                                      y = (e x + 1)2 - e2 x
               dy
                  =1+ x                           Þ       y=1+x+ x                                                                                                                                                                                   = e2x + 2e x + 1 - e2x
               dx                                                2
                                                                                                                                                                                                                                                     = 2e x + 1
               dy         x2                                      2    3
                  =1+ x +                         Þ       y=1+x+ x + x                                                                                                                                                                     dy
                                                                                                                                                                                                                                              = 2e x
               dx         2                                                       2         2×3                                                                      Differentiate wrt x:
                                                                                                                                                                                                                                           dx
       Continue this process to produce a series with an infinite number of terms:                                                                                                                                                          dy
                                                                                                                                                                     At x = 0                                                                 = 2e0
                                  2               3                       4                        n                                                                                                                                       dx
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C3
             y =1+ x + x              +     x     +     x       +                            +x +                 This series differentiates to give                                                                                                      =2´1=2
                             1× 2         1× 2 × 3 1× 2 × 3 × 4                                   n!
                                                                                                                  the same series.
                                                                                                                                                                     The gradient of the tangent is 2 at the point where x = 0
       By substituting different values of x, you can calculate the sum                                           You need to also show that this
       of the series and record the results in a table.                                                           series converges no matter what
                                                                                                                  value is given to x.
       For x = 0         y=1




                                                                                                                                                       EXAMPLE 2
                                                                                                                                                                     Find the point on the curve y = e x - x at which y has a
       For x = 1         y = 1 + 1 + 1 + 1 + 1 + . . . = 2.718 282…                                                                                                  stationary value.
                                              2       6        24
                                                                                                                                                                     Determine the nature of the stationary value.
       For x = 2         y = 1 + 2 + 4 + 8 + 16 + . . . = 7.389056. . . and so on.
                                              2       6        24                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                      dy
         x     0             1                            2                           3                 4
                                                                                                                                                                     Differentiate y = ex - x wrt x:                                                                                                     = ex − 1
                                                                                                                                                                                                                                                                                                      dx
         y     1     2.718 282. . .           7.389 056. . . 20.085 537. . . 54.598 150. . .
                                                                                                                  Recall from Chapter 3 that the                     At a stationary point, dy = 0                                                                                       ex - 1 = 0
                     =   2.718 2821           = 2.718 2822                = 2.718 2823             = 2.718 2824   number e = 2.718282…
                                                                                                                                                                                            dx
                                                                                                                                                                                                                                                                                             ex = 1
       Like 2 and p, the number e is irrational.                                                                                                                                                                                                                                              x=0
       It cannot be given an exact numerical value, but this series                                                                                                                                                                                  and                                                     y = e0 - 0 = 1
       allows you to calculate the value of e to as many decimal places                                                                                              There is a stationary value at the point (0, 1).
       as you wish.
                                                                                                                                                                                                                                                                                                 d2 y
                                                                                                                                                                     Differentiate again:                                                                                                             = ex
       You can also use negative values of x in the series.                                                                                                                                                                                                                                      dx 2
       For x = -1,       y = 1 − 1 + 1 − 1 + 1 − ... =                            1
                                                                                       = e−1                                                                                                                                                                                                     d2y                                                                                                                                                                                    d2 y
                                          2       6       24                  2.718282                                                                               At the point (0, 1)                                                                                                              = e0 = 1 > 0                                                                                                                                                At a minimum point,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        dx 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             is positive.
                                                                                                                                                                                                                                                                                                 dx 2
        x     -1         0        1       2       3           4     ...       n       ...                         Try substituting other negative
                                                                                                                                                                     Hence, the stationary value at the point (0, 1) is a minimum.
                                                                                                                  values of x into the series.
        y     e-1    e0 = 1       e   e2          e3          e4 . . . en             ...

 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         99
4 Differentiation                                                                                                                                                                           4 Differentiation

       Exercise 4.2                                                                                  8 Find the values of x for which these functions have stationary values.
                                                   x        x               x                          Determine the nature of the stationary values.
        1 a Draw the graphs of y = 2 , y = e and y = 3 accurately on the
            same axes for -3 x 3                                                                        a f(x) = 1 - x + e x
           b Calculate the gradient of y = e x when                                                     b f(x) = 1 + x - e x
               i      x=0              ii x = 1
                                                                                                        c f(x) = 1 + 4x - 2e x
           c Find the equation of the tangent to the curve y =                          ex   when
               i      x=0              ii x = 1                                                      9 Sketch the graph of the function y = x - e x
                                                                                                       Indicate any stationary values.
        2 Differentiate these functions with respect to x.
           a 3x2 + e x                         b 4e x + 6x - 1                                      10 Consider the function y = e2x - 3e x + 2
                                                                                                        a    By letting t = e x, find the points where the graph of                This substitution gives a
           c 5sin x + 2e x                     d 3tan x − 1 e x                                                                                                                    quadratic equation in t.
                                                                   2                                         y=   e2x   -   3e x   + 2 cuts the x-axis.
           e   (e x   + 1)(x - 1) -   xe x     f       (e x +   1)(e-x   - 1) -   e-x
                                                                                                        b    Find the value of x at which y has a stationary value.
        3 Find the gradient of the tangent to each of these curves at the                                    Find whether the stationary value is a maximum or a minimum.
          point with the given value of x.
          Give each answer      i in terms of e        ii as a decimal to 3 significant figures.    11 Sketch the curve y = x2 + e x

           a y = ex - x                      when x = 2
           b y = 3x2 - 4e x                  when x = 1
C3




                                                                                                                                                                                                                            C3
                                                                                                       INVESTIGATION
           c y=       ex   - cos x           when x = p                                                12 Use a spreadsheet with these headings, where
                                                      2
           d y = x2 + 2x + 1 - e x when x = -1                                                            f(x) = ax, f(x + dx) = ax+dx

           e y = tan x + 2e x                                                                               and the gradient g(x) = f(x + d x) − f(x)
                                             when x = 0                                                                                            dx

        4 Find the equation of the tangent to each curve at the point                                             a                x        dx          f(x)   f(x + dx)   g(x)

          where x = 0
           a y = 3x + 2e x
           b y = 3e x - sin x + 5                                                                           The function g(x) gives the gradient of the chord PQ which,
                                                                                                            for small values of dx such as 0.0001, is approximately                       y
        5 Find the equation of the normal to the curve y = 1 e x + 2x 2                                     equal to the gradient of the tangent at P.
                             ( 2)
                                                                                   2                                                                                                                   Q       y = f(x)
           at the point 0, 1 .                                                                              Use the spreadsheet for a ¹ e (say, a = 4) and confirm                f(x + dx)
                                                                                                            that f(x) ¹ g(x) for any value of x.                                              P
                                                                                                            Repeat for other values of a ¹ e                                           f(x)
        6 Prove that the normal to the curve y = 1 - x + e x at the point (1, e)
          passes through the point (e2, -1).                                                                Now let a = e
                                                                                                            Confirm the result of Chapter 3 that the gradient at the                      O    x      x + dx          x
        7 Line L1 is the tangent to the curve y = 2e x - x at the point (0, 2).                             point (0, 1) is e.
          Line L2 is the tangent to the curve y = sin x - x2 at the origin.
                                                                                                            Show that, for other values of x, f(x) and g(x) have (almost)
          Prove that the point of intersection of L1 and L2 is (2, 4).
                                                                                                            the same value. You have now illustrated (but not proved)
                                                                                                            that f(x) = e x stays unchanged when you differentiate it.


 100                                                                                                                                                                                                                      101
4 Differentiation

                                                                                                                                                                                                                                                                                                                                                        Exercise 4.3
       4.3                               The logarithmic function, ln x
                                                                                                                                                                                                                                                                                                                                                        1 Differentiate these functions with respect to x.
                                                                                                                                                                                                                                                                                                                                                           a 2ln x                      b ln x2                      c ln (4x3)
                                                                                                                                                                                                                                                                                                                           y
                    y = ln x is the inverse of the function y = ex                                                                                                                                                                                                                                                                   y = ex                      (2 )
                                                                                                                                                                                                                                                                                                                                                           d ln 1 x                          ( 2x )
                                                                                                                                                                                                                                                                                                                                                                                        e ln 1                       f ln 5x 3

                   The graph of y = ln x is the reflection of the graph of y = ex                                                                                                                                                                                                                                                                               ⎛   ⎞
                                                                                                                                                                                                                                                                                                                                                           g ln ⎜ 1 ⎟                   h ln (e2x)                   i   ln (xe x)
                   in the line y = x                                                                                                                                                                                                                                                                                                                             ⎝ x⎠
                                                                                                                                                                                                                                                                                                                          1
                   Consider the derivative of y = ln x                                                                                                                                                                                                                                                                                                     j   ln (x2 e2x)
                                                                                                                                                                                                                                                                                                                           O                    x
                                                                                                                                                                                                                                                                                                                                y = In x
                                                                                                                                                                                                                                                                                                                                                        2 Find the gradient of the tangent to each of these curves at the
                                                                                                                                                                                                                                                                                                                                                          point with the given value of x.
                    Rewrite the relationship:                                                                                                       x = ey                                                                                                                                                        logab = c implies b = ac                 a y = 2x + ln x          when x = 2

                                                                                                                                             dx                                                                                                                                                                                                            b y = x3 - ln x2         when x = 1
                    Differentiate with respect to y:                                                                                            = ey                                                                                                                                                               You differentiate x wrt y.
                                                                                                                                             dy                                                                                                                                                                                                            c y = ln x + ex          when x = 1
                                                                                                                                                                                                                                                                                                                  The derivative of e y wrt y is e y.
                                                                                                                                                                                                                                                                                                                                                                      ( 3x )
                                                                                                                                             dy    1
                    So                                                                                                                          =                                                                                                                                                                                                          d y = ln 1 + 1           when x = -1
                                                                                                                                             dx   dx                                                                                                                                                                           dy    1
                                                                                                                                                                                                                                                                                                                  The result dx = dx is shown                                  3x
                                                                                                                                                  dy
                                                                                                                                                                                                                                                                                                                                     dy                    e y = ln xp + sin x      when x = p
                                                                                                                                                            = 1y                                                                                                                                                  later in this chapter.                                                     2
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                             C3
                                                                                                                                                              e
                                                                                                                                                                                                                                                                                                                                                        3 Find the points at which the graphs of these functions have zero gradient.
                                                                                                                                                            = 1
                                                                                                                                                              x                                                                                                                                                                                           Determine whether the functions have a maximum or a minimum
                                                                                                                                                                                                                                                                                                                                                          at these points.
                                                                                                                                                                                                                                                                                                                                                           a f(x) = x - ln x            b f(x) = x2 - ln (x2)
                                                                                                             dy                                                                         d(ln x) 1
                    If y = ln x,                                                     then                       =1                                               or                            = x                                                                                                                                                      4 Find the equation of the tangent to the curve y = x - ln x at the
                                                                                                             dx x                                                                         dx
                                                                                                                                                                                                                                                                                                                                                          point where x = 2. At which point does the tangent cut the x-axis?

                                                                                                                                                                                                                                                                                                                                                        5 Find the equation of the normal to the curve y = 2ln x3 at the point
       EXAMPLE 1




                     Find the differential of                                                                                                                                                                                                                                                                                                             where x = 1. Find the distance between the points at which the
                                                                                                                                                                      b ln ⎛  ⎞                            3                                                                                                                                              normal cuts the x- and y-axes.
                     a                  ln (3x4)                                                                                                                           ⎜  ⎟
                                                                                                                                                                           ⎝ x⎠
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                        6 Show that the point (1, e) lies on the curve y = e x + ln x
                                                                                                                                                                                                                                                                                                                                                          Find the area of the triangle bounded by the two coordinate
                     a Let                                              y = ln (3x4)                                                                                   b Let                                                  y = ln ⎛ 3 ⎞                                                                        Where possible, simplify the
                                                                                                                                                                                                                                     ⎜   ⎟                                                                                                                axes and the tangent to the curve at this point.
                                                                          = ln 3 + ln x4                                                                                                                                             ⎝ x⎠                                                                         logarithmic function to make it
                                                                                                                                                                                                                                                                                             1                    easier to differentiate.
                                                                          = ln 3 + 4 ln x                                                                                                                                              = ln 3 - ln x 2
                                                                                                                                                                                                                                                                                                                                                           INVESTIGATION
                                                                                                                ()
                                                                                                                                                                                                                                                                                                                          1
                                                                 dy
                                   So                               =0+4 1
                                                                         x                                                                                                                                                             = ln 3 − 1 lnx                                                               x = x2
                                                                                                                                                                                                                                                                                                                                                           7 Differentiate y = log10 x by first changing the base of the
                                                                 dx                                                                                                                                                                             2

                                                                                                                                                                                                                                                                        ()
                                                                                                                                                                                                                                                                                                                                                             logarithm to base e.
                                                                    =4                                                                                                                                                  dy    1
                                                                     x                                                                                                               So                                    =0− 1                                                                                                                             You can then differentiate y = ln x to find d(log10 x).
                                                                                                                                                                                                                        dx    2 x                                                                                                                                                                               dx
                                                                                                                                                                                                                                       =−1                                                                                                                     Try other bases. What do you notice?
                                                                                                                                                                                                                                         2x

 102                                                                                                                                                                                                                                                                                                                                                                                                                                                       103
4 Differentiation




                                                                                                                                                                                                                                                                                                                                                        EXAMPLE 1 (CONT.)
       4.4                               The product rule                                                                                                                                                                                                                                                                                                                     b Let y = (x3 + 2)sin x
                                                                                                                                                                                                                                                                                                                                                                                    u = x3 + 2        v = sin x
                   Consider two functions u = f(x) and v = g(x)                                                                                                                                                                                                                                                                                                                     du = 3x 2            dv = cos x
                   which are multiplied so that y = uv                                                                                                                                                                                                                                                            y = f(x) ´ g(x)                                                   dx                   dx
                                                                                                                                                                                                                                                                                                                                                                                          dy
                                                                                                                                                                                                                                                                                                                                                                                   So        = u dv + v du = (x 3 + 2)cos x + 3x 2 sin x
                                                                                                                                                                                                                                                                                                                                                                                          dx     dx     dx
                     Let dx be a small increase in x which produces small increases
                                                                                                                                                                                                                                                                                                                                                                                                           dy                                           d(tan x)
                     of du, dv and dy in u, v and y respectively.                                                                                                                                                                                                                                                                                                             c When y = x2 tan x,            = x 2 ´ sec2 x + tan x ´ 2x                          = sec 2 x
                                                                                                                                                                                                                                                                                                                                                                                                           dx                                             dx
                     You have                                                                                         y + dy = (u + du)(v + dv)                                                                                                                                                                                                                                                                = x2 sec2 x + 2x tan x
                                                                                                                                                    = uv + udv + vdu + dudv
                                                                                                                                                                                                                                                                                                                                                                            Exercise 4.4
                     Subtract y = uv:                                                                                                  dy = udv + vdu + dudv                                                                                                                                                                                                                1 Differentiate these functions with respect to x.
                     Divide each term by dx:                                                                                       dy
                                                                                                                                      = ud v + vd u + d ud v                                                                                                                       (1)                                                                                         a xln x                          b x2sin x                      c e xtan x
                                                                                                                                   dx   dx     dx      dx
                                                                                                                                                                                                                                                                                                                                                                               d (x2 - 3x + 1) e x              e e x ln x                     f sin xln x
                     As dx ® 0                                               dy  dy d v  dv d u   du
                                                                                → ,     → ,     →                                                                                                                                                                                                                                                                              g x-2cos x                       h xe
                                                                                                                                                                                                                                                                                                                                                                                                                    1   x
                                                                                                                                                                                                                                                                                                                                                                                                                                               i (x3 - 1)ln x
                                                                             dx  dx d x  dx d x   dx
                                                                                                                                                                                                                                                                                                                              d udn
                                                and                             du ® 0, dv ® 0                                                                                                                                                                                                                    As x ® 0,         tends to zero.
                                            dy     dv     du
                                                                                                                                                                                                                                                                                                                                dx                                             j        x tan x                 k (x2 - 1)(x3 - x2 + 1)        l (x3 + 1)(x2 - 2x + 4)
                     In the limit from (1), dx = u dx + v dx
                                                                                                                                                                                                                                                                                                                                                                            2 Find the gradient of the tangent to the curve y = x2sin x at the
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C3
                                                                                                                                                                                                                                                                                                                                                                              point where x = p
                                                                                                                                                                                                                                                                                                                                                                                                    2
                    In the limit, if y = uv then                                                                                                                                                                                                                                                                                                                            3 Find the equation of the tangent to the curve y = x3 e x at the point where
                                                                                                          dy   dv  du
                                                                                                             =u +v                                                                                                                                                                                                                                                             a x=0                            b x = -3
                                                                                                          dx   dx  dx
                                                   d
                    or                             dx
                                                      [f(x) ´ g(x)] = f(x) ´ g¢(x) + g(x) ´ f ¢(x)                                                                                                                                                                                                                                                                          4 Find the equation of the normal to the curve
                                                                                                                                                                                                                                                                                                                                                                              y = (x2 - 2x + 1)(x3 - 4x2 + l) at the point (1, 0).
                   Think of the product rule as:
                   (1st function ´ derivative of the 2nd) + (2nd function ´ derivative of the 1st)                                                                                                                                                                                                                                                                          5 a Prove that the equation of the normal to the curve y = sin x ´ ln x
                                                                                                                                                                                                                                                                                                                                                                                at the point where x = 1 is given by y = 1.19(1 - x)
       EXAMPLE 1




                                                                                                                                                                                                                                                                                                                                                                               b Find the area of the triangle enclosed by the normal and the x- and y-axes.
                     Differentiate                                                            a x2 ln x                                                    b (x3 + 2)sin x                                                                               c x2 tan x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                            6 Find the turning points on the curve with the equation y = x2 (x + 1)8
                     a Let y = x2 ln x
                                                                                                                                                                                                                                                                                                                                                                              Determine the nature of each turning point and sketch the curve.
                                                        u = x2                                                       v = ln x
                                                  du                                                          dv 1                                                                                                                                                                                                                                                          7 Find the stationary value of the function f(x) = x3ln x
                                                     = 2x                                                       =                                                                                                                                                                                                 Differentiating both u and v wrt x.
                                                  dx                                                          dx x
                                                                                                                                                                                                                                                                                                                                                                              and show that it is a minimum.
                                                  dy   dv  du
                                   So                =u +v
                                                  dx   dx  dx                                                                                                                                                                                                                                                                                                                                                               dy
                                                                                                                                                                                                                                                                                                                                                                            8 Given that y = sin xcos x, prove that            = 2cos2 x - 1
                                                                                                                                                                                                                                                                                                                                                                                                                            dx
                                                                 = x × 1 + ln x × 2x
                                                                       x
                                                                                 2

                                                                                                                                                                                                                                                                                                                                                                               Find the stationary points on the graph of y = sin x cos x for 0     x      p
                                                                 = x + 2x ln x
                                                                                                                                                                                                                                                                                                                                                                               and determine whether they are maxima or minima.

 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        105
4 Differentiation




                                                                                                           EXAMPLE 1
       4.5      The quotient rule
                                                                                                                       Differentiate
                                                                                                                                                                                             sin x
                                                                                                                                                                                              ln x
                                                                                                                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




        Consider two functions u = f(x) and v = g(x)                                                                                                                                   sin x
                                                                                                                       You have y =
        which are divided to give y = u
                                      v                                                         y = f(x)                                                                                ln x
                                                                                                    g(x)                                                                                                                                                                                                                                                                                                             Take care not to mix up the
                                                                                                                       where u = sin x and                                                                                                     v = ln x
                                                                                                                                                                                                                                                                                                                                                                                                                     functions u and v.
          Let dx be a small increase in x which produces small increases                                                                      du = cos x                                                                               dv = 1
                                                                                                                                                                                                          and                          dx   x
          of du, dv and dy in u, v and y respectively.                                                                                        dx

          You have                          y + d y = u + du                                                                                  dy   ln x × cos x − sin x × 1
                                                                                                                                                                          x
                                                          v + dv                                                       So                        =
                                                                                                                                              dx            (ln x)2
          Subtract y = u:                        d y = u + du − u
                       v                                  v + dv      v                                                                                      = x ln x cos x − sin x
                                                                                                                                                                            2                                                                                                                                                                                                                                       Multiply both numerator and
                                                                                                                                                                                             x(ln x)                                                                                                                                                                                                                denominator by x.
                                                          v (u + d u ) − u ( v + d v )
          Combine the two fractions on the RHS:       =
                                                                 v (v + d v )




                                                                                                           EXAMPLE 2
                                                                                                                                                                                             x 2 + 4x + 1
          Expand and simplify:                        = vd2u − ud v                                                    Differentiate
                                                                                                                                                                                                 cos x
                                                         v + vd v                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                            y = x + 4x + 1
                                                                                                                                                                                                 2

          Divide by dx:                          dy   v × du − u × dv               (1)                                You have
                                                    =     dx         dx                                                                                                                                                      cos x
                                                 dx       v 2 + vd v
                                                                                                                                                                                      dy   cos x ´ (2x + 4) - (x 2 + 4x + 1) ´ (- sin x)                                                                                                                                                                            d(cos x) −
                                                                                                                                                                                                                                                                                                                                                                                                                            = sin x
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                          C3
                          dy  dy d u  du d v   dv
                                                                                                                       So                                                                =                                                                                                                                                                                                                             dx
          As dx ® 0          → ,     → ,     →                                                                                                                                        dx                    (cos x)2
                          dx  dx d x  dx d x   dx
                                                                                                                                                                                                     = (2x + 4)cos x + (x + 4x + 1)sin x
                                                                                                                                                                                                                         2
                  and       du ® 0, dv ® 0                                                                                                                                                                              2
                                                                                                                                                                                                                                                                       cos x
                                 dy  v du − u dv
                                    = dx 2 dx                                                                                                                                                        = (2x + 4) + (x + 4x + 1)tan x
                                                                                                                                                                                                                    2
          In the limit from (1),
                                 dx       v                                                                                                                                                                                                                     cos x




                                                                                                           EXAMPLE 3
                                 u                                                                                     Find the derivatives of                                                                                           a tan x                                                                               b cot x                                                                              These results are given on the
         In the limit, if y = v then                                                                                                                                                                                                                                                                                                                                                                                formulae list. You do not need
                                                                                                                                                                                                                                         c cosec x                                                                             d sec x
                                  du     dv                                                                                                                                                                                                                                                                                                                                                                         to memorise them.
                          dy   v×    −u×                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                             =    dx     dx
                          dx         v2                                                                                a Let y = tan x = sin x
                                                                                                                                                                                                         cos x
                 d ⎛ f(x) ⎞ g(x) × f ′(x) − f(x) × g′(x)
         or
                 dx ⎜ g(x) ⎟
                             =                                                                                                                                                  dy cos x × cos x − sin x × (− sin x)
                    ⎝      ⎠           (g(x))2                                                                                                                                     =
                                                                                                                                                                                dx              cos2 x

                                                                                                                                                                                               = cos x +2 sin x
                                                                                                                                                                                                    2        2
        Think of the quotient rule as:                                                                                                                                                                                     cos x
        (bottom ´ derivative of top) - (top ´ derivative of bottom), all divided by (bottom)2
                                                                                                                                                                                               =            1
                                                                                                                                                                                                          cos2 x
                                                                                                                                                                                                                                                                                                                                                                                                                    The solutions to parts b, c and d
                                                                                                                                                                                               = sec2 x                                                                                                                                                                                                             are on the next page.




 106                                                                                                                                                                                                                                                                                                                                                                                                                                                    107
4 Differentiation                                                                                                                                                                                                                                                                                                                                                                             4 Differentiation

       EXAMPLE 3 (CONT.)                                                                                                                                                                                                                                                                                                  Exercise 4.5
                                               cos x
                             b Let y = cot x = sin x                                                                                                                                                                                                                                                                      1 Differentiate these functions with respect to x.
                                                                                                                                                                                                                                                                                                                                                           x2
                                                                                                                                                                                                                                                                                                                                                                                  c x +1
                                                                                                                                                                                                                                                                                                                                                                                     2
                                                                                     dy sin x ´ (- sin x) - cos x ´ cos x                                                                                                                                                                                                         x
                                                                                                                                                                                                                                                                                                                                                                                                             d ln x
                                                                                        =                                                                                                                                                                                                                                    a sin x                  b tan x
                                                                                                                                                                                                                                                                                                                                                                                           x                      x
                                                                                     dx               sin 2 x

                                                                                                    = (sin x + cos x)
                                                                                                          2       2
                                                                                                      −                                                                                                                                                                                                                           ex                      x +1                           x                       cos x
                                                                                                             2                                                                                                                                                                                                               e sin x                  f                           g                          h
                                                                                                                                      sin x                                                                                                                                                                                                                ex                         sin x                       x2
                                                                                                                     -1
                                                                                                    =                                     = -cosec2 x
                                                                                                                                                                                                                                                                                                                                                                                  k 2x 2 − 1
                                                                                                                                                                                                                                                                                                                                                                                       3
                                                                                                              sin x   2
                                                                                                                                                                                                                                                                                                                             i   1− x                 j   x2 + 1                                             l    x2
                                                                                                                                                                                                                                                                                                                                 1+ x                     x2 − 1                      3x − 1                     ln x
                             c Let y = cosec x = 1
                                                sin x                                                                                                                                                                                                                                                                     2 Find the gradient of the tangent at the point where x = 0
                                                                                                 dy   sin x × 0 − 1 × cos x                                                                                                                                                                                                 for the curve
                                                                                                    =
                                                                                                 dx           sin 2 x
                                                                                                      −                                                                                                                                                                                                                      a y = 3x − 2                 b y = tan x
                                                                                                    = cos x                                                                                                                                                                                                                            2x + 1                          x +1
                                                                                                      sin 2 x

                                                                                                                =         -
                                                                                                                                  1 ´ cos x
                                                                                                                                sin x sin x
                                                                                                                                                                                                                                                                                                                          3 The tangent to the curve y =
                                                                                                                                                                                                                                                                                                                                                                 x3 + 1
                                                                                                                                                                                                                                                                                                                                                                                 1,
                                                                                                                                                                                                                                                                                                                                                                                    2 ( )
                                                                                                                                                                                                                                                                                                                                                                   x at the point 1 cuts the

                                                                                                                = -cosec xcot x                                                                                                                                                                                              x-axis at the point P. Find the coordinates of P.

                             d Let y = sec x =                                                                    1                                                                                                                                                                                                       4 Find the equation of the normal at the point (0, 0)
                                                                                                                cos x
                                                                                                                                                                                                                                                                                                                            on the curve y = 2x
                                                                                                                                                                                                                                                                                                                                              x
                                                                                      dy   cos x ´ 0 - 1 ´ (- sin x)                                                                                                                                                                                                                              e
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                               C3
                                                                                         =
                                                                                      dx           cos2 x                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                                                                          5 Find d y if y = 1 + x
                                                                                                     = sin2x                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                   dx             x
                                                                                                       cos x

                                                                                                      =           1 ´ sin x = sec xtan x
                                                                                                                cos x cos x                                                                                                                                                                                               6 Prove that the maximum value of f(x) = ln3x is 1
                                                                                                                                                                                                                                                                                                                                                                              x       3e

                                                                                                                                                                                                                                                                                                                          7 Use both the product rule and the quotient rule to differentiate
                           For some functions, you need to use both the product rule and
                                                                                                                                                                                                                                                                                                                            these functions.
                           the quotient rule.                                                                                                                                                                                                                                                                                                                                                       x
                                                                                                                                                                                                                                                                                                                                                                   x sin x
                                                                                                                                                                                                                                                                                                                             a sin x cos x                  b      cos x                       c xe
                                                                                                                                                                                                                                                                                                                                       x                                                           ln x
       EXAMPLE 4




                                                                                                         2 x
                             Differentiate                                                        xe                                                                                                                                                                                                                            x                              2
                                                                                                                                                                                                                                                                                                                                                                                                   x sin x
                                                                                                  sin x                                                                                                                                                                                                                      d e ln x                       e x ln x                           f
                                                                                                                                                                                                                                                                                                                                   x                             x
                                                                                                                                                                                                                                                                                                                                                                       e                            ln x
                             ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                             Firstly, consider the function f(x) = x2e x,
                             which is the product of x2 and e x.
                                                                                                                                                                                                                                                                                                                             INVESTIGATION
                             Differentiate f(x) using the product rule: f ¢(x) = x2e x + e x ´ 2x                                                                                                                                                                                                                                                         x
                                                                                                                                                                                                          = x2e x + 2xe x                                                                                                    8 You can differentiate y = e sin x
                                                                                                                                                                                                                                                                                                                                                             2
                                      2 x                                                                                                                                                                                                                                                                                                                          x
                             Let y = x e and use the quotient rule:
                                                             sin x                                                                                                                                                                                                                                                                     either by first using the product rule on ex sin x
                              dy   sin x(x 2e x + 2xe x ) − x 2e x cos x                                                                                                                                                                                                                                                               followed by the quotient rule on the whole expression
                                 =                                                                                                                                                                                                                                                                                                                                             x
                              dx                  sin 2 x                                                                                                                                                                                                                                                                              or by first using the quotient rule on e 2 followed by
                                                                                                                                                                                                                                                                                                                                                                                  x
                                                        xe x(x sin x + 2 sin x − x cos x)                                                                                                                                                                                                                                              the product rule on the whole expression.
                                             =
                                                                      sin 2 x
                                                                                                                                                                                                                                                                                                                                 Show that these two methods give the same answer.
                                                                                                                                                                                                                                                                                                                                 Is one method easier than the other?
 108                                                                                                                                                                                                                                                                                                                                                                                                                                         109
4 Differentiation




                                                                                                                                                                                                                                                                                                                                                         EXAMPLE 2
       4.6                               The chain rule                                                                                                                                                                                                                                                                                                                                      dy
                                                                                                                                                                                                                                                                                                                                                                     Find                       when                                                       a                 y = cos3 x                                                       b                 y = x3 − 1
                                                                                                                                                                                                                                                                                                                                                                                             dx
                                                                                                                                                                                                                                                                                                                                                                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                   A composite function is a ‘function of a function’.                                                                                                                                                                                                                                            Examples of composite functions:
                                                                                                                                                                                                                                                                                                                  ln (x³ - 1)      esin x                            a y = cos3 x, so if u = cos x then y = u3                                                                                                                                                                                                                                                    dy
                   You can differentiate ‘functions of functions’ using the chain rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = 3u2 = 3 cos 2 x
                                                                                                                                                                                                                                                                                                                                                                                                         dy                                                                                                                                                                                                                                                       du
                                                                                                                                                                                                                                                                                                                  (x² - 2x - 1)4        2+ x   3
                                                                                                                                                                                                                                                                                                                                                                                   so                       = 3cos2 x ´ (-sin x)
                                                                                                                                                                                                                                                                                                                                                                                                         dx                                                                                                                                                                                                                                                       du
                   Consider y = g(u)                                                                   and u = f(x), so that y = g(f(x))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = − sin x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dx
                                                                                                                                                                                                                                                                                                                                                                                                                        = -3cos2 xsin x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1                                                                            1              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          −               −
                     Let dx be a small increase in x which produces small increases                                                                                                                                                                                                                                                                                  b y = x 3 − 1, so if u = x3 - 1 then y =                                                                                                                                                        u = u2                                                                                       dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 1 u 2 = 1 (x 3 − 1) 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  du   2       2
                     of du and dy in u and y respectively.                                                                                                                                                                                                                                                                                                                                                dy  1         -
                                                                                                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                                                                   so                        = (x 3 - 1) 2 ´ 3x 2                                                                                                                                                                                                                                 du
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 3x 2
                                                                                      d y d y du                                                                                                                                                                                                                                                                                                          dx 2                                                                                                                                                                                                                                                    dx
                     Then                                                                =   ×
                                                                                      d x du d x                                                                                                                                                                                                                                                                                                                                                3 x2
                                                                                                                                                                                                                                                                                                                                                                                                                          =
                                     dy     dy                                                                                                   dy   dy                                                                               d u ® du                                                                                                                                                                                     2 x3 − 1
                     As dx ® 0,         ® ,                                                                                                         ®                                                   and                                                                                         (1)
                                     dx     dx                                                                                                   du   du                                                                               dx    dx
                                            dy                                                                                                   dy du
                     In the limit from (1),    =                                                                                                    ×
                                            dx                                                                                                   du dx




                                                                                                                                                                                                                                                                                                                                                         EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                     a Differentiate 2ln ( x x 2 + 1 )

                                                                                                                                                                 dy   dy du                                                                                                                                                                                          b Find the equation of the tangent to the curve
                    In the limit, if y = g(f(x)), then                                                                                                              =   ×
                                                                                                                                                                 dx   du dx                                                                                                                                                                                                        y = 2ln ( x x 2 + 1 ) at the point where x = 1
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C3
                                                                                                                                                                                                                                                                                                                                                                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                     a Let y = 2ln ( x x 2 + 1 )
                   Think of the chain rule as:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Where possible, simplify functions
                   derivative of ‘outer’ function wrt u ´ derivative of ‘inner’ function wrt x                                                                                                                                                                                                                                                                                                                                                                     1                                                                                                                                                                                              before you differentiate.
                                                                                                                                                                                                                                                                                                                                                                                                            = 2ln x +                                 2ln (x 2 + 1)2
       EXAMPLE 1




                     Differentiate                                                                 a sin (x2 + 4x + 3)                                                                                           b ln (sin x)                                                                                                                                                                               = 2ln x + ln (x2 + 1)                                                                                                                                                                                                                                 ln(a ´ b) = ln a + ln b
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                                                   Differentiate, using the chain rule for ln (x2 + 1):
                     a Let y = sin (x2 + 4x + 3)                                                                                                                 u = x2 + 4x + 3                                                                      y = sin u
                                                                                                                                                          du = 2x + 4
                                                                                                                                                          dx
                                                                                                                                                                                                                                                dy
                                                                                                                                                                                                                                                du
                                                                                                                                                                                                                                                   = cos u                                                        Differentiating u wrt x and y wrt u.
                                                                                                                                                                                                                                                                                                                                                                                            dy
                                                                                                                                                                                                                                                                                                                                                                                            dx
                                                                                                                                                                                                                                                                                                                                                                                                   1        ⎛ 1
                                                                                                                                                                                                                                                                                                                                                                                               = 2 x + 2x × ⎜ 2 ⎞  ⎟
                                                                                                                                                                                                                                                                                                                                                                                                            ⎝ x + 1⎠
                                                                                                                                                                                                                                                                                                                                                                                                                           ()                                                                                                                                                                                                                                          y = lnu and u = x2 + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  so dy = 1 and du = 2x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     du     u     dx
                                                                                                                                                                                                                                                                                                                                                                                                               ⎡ 2 1      2⎤
                                                                                                                                                                                                                                                                                                                                                                                                            = 2⎢ x + 2 + x ⎥
                                                                                                                                 dy   dy du
                                   Apply the chain rule:                                                                            =     ´
                                                                                                                                 dx du dx                                                                                                                                                                                                                                                                                   ⎣ x (x + 1) ⎦
                                                                                                                                    = cos u ´ (2x + 4)                                                                                                                                                                                                                                                                2(2x 2 + 1)
                                                                                                                                                                                                                                                                                                                                                                                                            =
                                   Substitute u = x2 + 4x + 3: = (2x + 4)cos (x2 + 4x + 3)                                                                                                                                                                                                                                                                                                                            x (x 2 + 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1
                     b Let y = ln (sin x)                                                                                               u = sin x                                                    y = ln u                                                                                                                                                        b When x = 1                                                                   y = 2ln (1 × 2 ) = 2 ln 2 2 = ln 2
                                                                                                                                                                                             dy
                                                                                                                                du = cos x                                                      = 1                                                                                                                                                                                                                                          dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                =
                                                                                                                                                                                                                                                                                                                                                                                                                                                  2´3
                                                                                                                                                                                                                                                                                                                                                                                                                                                      =3
                                                                                                                                dx                                                           du u
                                                                                                                                                                                                                                                                                                                                                                                                                                             dx 1 ´ 2

                                   Apply the chain rule:
                                                                                                                                 dy  1
                                                                                                                                    = ´ cos x                                                                                                                                                                                                                                      The equation of the tangent is y − ln2 = 3                                                                                                                                                                                                                                             y − y1
                                                                                                                                 dx u                                                                                                                                                                                                                                                                                                                                                                                                  x −1                                                                                                                       Using          =m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          x − x1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 y - ln 2 = 3(x - 1)
                                   Substitute u = sin x:                                                                                         = 1 × cos x                                                                                                                                                                                                                                                                                                                                                                            y = 3x + ln 2 - 3
                                                                                                                                                  sin x
                                                                                                                                                = cos x                                                                                                                                                           cos x   1
                                                                                                                                                        = cot x                                                                                                                                                         =     = cot x
                                                                                                                                                  sin x                                                                                                                                                           sin x tan x
 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   111
4 Differentiation                                                                                                                                                                                            4 Differentiation

       Exercise 4.6                                                                                                          7 Find the gradient of the curve y = ln 1 + sin x at the point            Simplify the logarithm before
        1 Differentiate with respect to x                                                                                      where x = p                                                             you differentiate.
                                                                                                                                             4
           a sin (x2 + 1)              b cos (x3 - 1)               c tan (x2)

           d ln (x2 + 2x + 3)          e ln (x3 + 1)                f ln (x3)        Simpify part f before                   8 Find the equation of the tangent to the curve y = x 2 + 16
                                                                                     you differentiate.                        at the point (3, 5).
           g ln (sin x)                h sin (ln x)                 i   ln (ln x)
                                                                             2                                               9 Differentiate with respect to x, where a and b are constants.
           j   esin x                  k e x+4                      l   ex                                                                                                                       2
                                                                                                                                                                   1
                                                                                                                                a    a 2 + b 2x 2         b                        c (a2x 2 − b2)3
           m (x2 + 1)5                 n (2x + 6)7                  o (x3 - 1)-2                                                                               ax 2 + b

                                                                          1          Write part r as (x - 1)-1 first.
           p     x2 − 1                q    x3 + 1                  r
                                                                        x −1
                                                                                                                            10 Given that a and b are constants, find the only value of x for
                                                                                     You could use the quotient rule
                                                                                                                                which        a    has a stationary value.
                                             3                                       instead of the chain rule but
                   2                                                             1
                                                                                     the working is longer.                              ax 4 + b
           s x 2 + 3x − 1              t                            u
                                            2x + 1                          x2 + 1
                                                                                                                                                                   ⎛          ⎞
                                                                                                                            11 a Prove that the curve y = ln ⎜ 1 + xe ⎟ has no stationary values.
                                                                                                                                                                          x
              1                            2                                                                                                                       ⎝ e        ⎠
           v ln x                      w x
                                         e +1
                                                                    x   3
                                                                            2x − 1
                                                                                                                                b Show that the tangent to this curve at the point where
        2 Find f ¢(q) when                                                                                                        x = 0 has the equation x + 2y = ln a.
                                                                                                                                  Find the value of a.
           a f(q) = sin (q 2)          b f(q) = sin2 q
C3




                                                                                                                                                                                                                                          C3
           c f(q ) = sin q             d f(q) = tan (q 3)                                                                   12 a Prove that the curve y = 82 +             1
                                                                                                                                                                                has only one turning point.
                                                                                                                                                               x       (1 − x)2
                                                         1
                                                                                                                                                                                            (3 )
           e f(q) = tan3 q             f f(q) =
                                                        tan q                                                                   b Show that the coordinates of the turning point are 2 , 27 .
                                                                                                                                                            2
               dy                                                                                                               c i Find an expression for d y .
        3 Find    when                                                                                                                                        2
               dx                                                                                                                                               dx
                   1                                x
                                                                                                                                    ii Hence, prove that the turning point is a minimum.
           a y = sin x                 b y = ee
                                                    1
                              4                                                                                             13 Find the position and nature of the stationary points of
           c y=                        d y = 4e x
                        x 2 + 4x − 1                                                                                           f(x) = sin2 x

           e y = ln x − 1              f   y = ln   (1 −sin x x )
                                                          cos
                                                                                     Simplify the function in parts e
                                                                                     and f before you differentiate as in
                                                                                     question 1 part f.                        INVESTIGATION
        4 Differentiate with respect to x.
                                                                                                                               14 Show that the function y = ln (x2 + 1) has only one stationary value.
           a y = sin kx                b y = cos kx                                                                               Determine its nature and position.
           c y = tan kx                d y = ln kx                                   The differential of tan kx is in the           Sketch the graph of the function.
                                                                                     formulae list provided in the exam.
                        kx
           e y=e                                                                     None of the other results here are             Check your answers by using computer software to draw the graph.
                                                                                     provided.
        5 Find the equation of the tangent to the curve y = (2x - 4)3                                                               Investigate the properties of ln (x2 + k) for different values of k.
          at the point where x = 3

        6 Find the point on the curve f(x) = (2x - 1)4                               When the gradient is 1, f¢(x) = 1
          where the gradient is 1.

 112                                                                                                                                                                                                                                    113
4 Differentiation




                                                                                                                                                                                                                                                                                                                                                 EXAMPLE 3
       4.7                                Further applications                                                                                                                                                                                                                                                                                                 Differentiate                                                            y = 3x
                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                   You can combine the product, quotient and chain rules to                                                                                                                                                                                                                                                                                    Take the logarithms of both sides to remove the index:
                   differentiate more complicated functions.                                                                                                                                                                                                                                                                                                                 ln y = ln 3x = xln 3
                                                                                                                                                                                                                                                                                                                                                               Now, ln y is a function of y and y is a function of x.
                                                                                                                                                                                                                                                                                                                                                               So, ln y is a function of a function of x.
       EXAMPLE 1




                     Differentiate                                                          y=                 (           x 2 + 1 ) sin x                                                                                                                                                                                                                                                                                                                                                             d(ln y) d(ln y) dy   1 dy
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                From the chain rule you have                                                                                                                   =       ×    = ×                                                                                                                              d(ln y) 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dx      dy     dx  y dx                                                                                                                             dy      y
                     The function y =                                                                  (          x 2 + 1 ) sin x is the product of                                                                                                                                                                                                            Differentiate                                                ln y = ln 3 ´ x with respect to x:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ln 3 is a numerical constant
                            x + 1 and sin x.
                                  2
                                                                                                                                                                                                                                                                                                                                                                                                          1 dy                                                                                                                                                                                                                                               that is multiplying x.
                                                                                                                                                                                                                                                                                                                                                                                                           ×   = ln 3 × 1
                                                                                                                                                                                                                                                                                                                                                                                                          y dx
                            x 2 + 1 is a function of a function.
                                                                                                                                                                       1                                                                                                                                                                                                                                                   dy
                     You have u = x 2 + 1 = ( x 2 + 1) 2 and v = sin x                                                                                                                                                                                                                                                                                                                                                        = y ´ ln 3 = 3x ln 3
                                                                                                                                                                                                                                                                                                                                                                                                                           dx
                     Use the chain rule to differentiate u:
                                                          1
                                             du 1 2     −                                                                                                                                                                                                                                                                                                                                                                                                                                    dy
                                               = (x + 1) 2 × 2x                                                                                                                                                                                                                                                                                               In general, if y = ax then                                                                                                        = a x ln a
                                             dx 2                                                                                                                                                                                                                                                                                                                                                                                                                                            dx
                     Use the product rule:
                                             dy                                                                                                                                       1                                     −
                                                                                                                                                                                                                                1                                                                                                                            Now consider a function of the type x = f(y)                                                                                                                                                                                                                                                   Examples are
                                                =                             x 2 + 1 × cos x + sin x × (x 2 + 1) 2 × 2x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            x = y 3 + 1 and
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C3
                                             dx                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            x = ln (y2 - 3y + 1)
                                                            =         (          x 2 + 1 ) cos x + x sin x                                                                                                                                                                                                                                                    Let dx be a small increase in x which produces a small
                                                                                                                                                          x2 + 1                                                                                                                                                                                              increase of dy in y.
                                                                       ( x 2 + 1)cos x + x sin x                                                                                                                                                                                                                                                              Then                                          dy
                                                                                                                                                                                                                                                                                                                                                                                                               =
                                                                                                                                                                                                                                                                                                                                                                                                                  1
                                                            =                                                                                                                                                                                                                                                                                                                                               dx   dx
                                                                                                           x2 + 1                                                                                                                                                                                                                                                                                                dy
                                                                                                                                                                                                                                                                                                                                                              As dx ® 0 and dy ® 0

                                                                                                                                                                                                                                                                                                                                                              then d y → dy and d x → dx giving dy = 1
       EXAMPLE 2




                     Differentiate                                                           y = ln sin (x2 + x + 1)                                                                                                                                                                                                                                                                dx                              dx                                  dy                              dy                                            dx                        dx
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                 dy
                     You have y = ln u and u = sin v and v = x2 + x + 1
                                                                                                dy   dy du dv
                     Use the chain rule:                                                           =   ´  ´                                                                                                                                                                                                       There are three links in the                                                                                                     dy    1
                                                                                                dx du dv dx
                                                                                                                                                                                                                                                                                                                  chain rule here.                            So, for x = f(y),                                                                       =
                                                                                                                                                                                                                                                                                                                                                                                                                                                   dx   dx
                                                                                                                 1                                                                                                                                                                                                                                                                                                                                      dy
                                                                                                               = u × cos v × (2x + 1)



                                                                                                                                                                                                                                                                                                                                                 EXAMPLE 4
                     Substitute for u and v: =                                                                              1 × cos (x2 + x + 1) ´ (2x + 1)                                                                                                                                                                                                                             dy
                                                                                                                          sin v                                                                                                                                                                                                                                Find                        when x = y2 + 3
                                                                                                                                                                                                                                                                                                                                                                                        dx
                                                                                                                         (2x + 1)cos(x 2 + x + 1)
                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                               =                                                                                                                                                                                                                                                                                                                                                                                                                          dx
                                                                                                                             sin(x 2 + x + 1)                                                                                                                                                                                                                  Differentiate x = y2 + 3 with respect to y:                                                                                                                                   = 2y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          dy
                                                                                                                = (2x + 1) cot(x2 + x + 1)                                                                                                                                                                                                                                                          dy
                                                                                                                                                                                                                                                                                                                                                               So                                      = 1 = 1 =  1
                                                                                                                                                                                                                                                                                                                                                                                                    dx   dx  2y 2 x - 3                                                                                                                                                                                                                                            dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Find      in terms of y first and
                                                                                                                                                                                                                                                                                                                                                                                                         dy                                                                                                                                                                                                                                                        dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            then in terms of x.
 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           115
4 Differentiation                                                                                                                                                                        4 Differentiation

       Exercise 4.7                                                                                                       7 Find the value of x which gives a stationary point on the
        1 Differentiate with respect to x.                                                                                  curve y = 52x - 4 ´ 5x
           a (x2 - 1)3 sin x                           b (x3 + 1)2 tan x
                                                                                                                                   dy
                                                                                                                          8 Find      in terms of x when
           c (3x +           2)4   ´   ex              d   (     x + 1) ´     ex                                                   dx
                                                                                                                             a x = 3y2 - 4               b x=     y2 + 3
           e sin2x                                     f   (     x − 1 ) ´ ln x
                                                                  2
               x2                                                                                                            c x = (y + 1)2
           g x sin (x2)                                h x sin2 x
                                                                                                                          9 Find dy in terms of y when
           i   x cos 3x                                j x2 tan 2x                                                                 dx
                                                                                                                             a x = 4y3 + y
           k x e 2x+1                                  l x2 ln (x2 - 1)
                                                                                                                             b x = 3sin4 y
           m sin x cos 2x                              n sin 4x cos x                                                        c x = 5tan3 (2y)
           o sin x cos2 x                              p e x sin 3x                                                          d x = y ln y
                                                           e3x                                                               e x = e -y sin y
           q e -2x cos x                               r    x
               sin x                                                                                                         f   x = 3sin 4y + 4cos 2y
           s e                                         t e -x sin 2x
                 x
                                                                                                                                        (
                                                                                                                             g x = ln y 2 × y − 2   )
        2 Differentiate with respect to x.
C3




                                                                                                                                                                                                                          C3
                                                                                                                         10 Find the equation of the tangent at the point (2, 1) on the
           a ln sin (x2)                               b ln tan (x2)                                                        curve x = 2y 3
           c sin2 3x                                   d cos3 4x
                                                                                                                         11 Find the equations of the tangents to the curve x = 4y2 at the
                                                                                      Can you see an easier method for
           e   tan2 2x                                 f   tan3 (x         + 4)                                             points where x = 4
                                                                  2
                                                                                      part h using inverse functions?
                     2                                     ln(x       +1)
           g esin        x
                                                       h e
                                                                                                                         12 Prove that the curve x = y2 e y has no stationary points.
                 dy
        3 Find      when
                 dx
           a y = 4x                                                    b y = 5x                                             INVESTIGATIONS
                                                                                      Can you see a connection
           c y = c x where c is a constant                             d y = 22x      between parts a and d?                13 Find the turning points on the curve y = e x sin 2x for 0 x 2p
                                                                                                                               Sketch its graph over this range and check your answers using
           e y = 52x                                                   f     y = xx
                                                                                                                               computer software.
        4 Find the value of x which gives a stationary point on the
                                                                                                                            14 a Find the turning points of the curve y = x + 1
                                                                                                                                                                              x
           curve y =               x −1 ´
                                   2
                                                ex                                                                               Sketch its graph.

                                            d2y                                                                                  b Prove that the curve x = y + 1 has no turning points.
                                                                                                                                                                y
        5 Find the value of                    2
                                                 when x = 0 and y = e x sin 2x
                                            dx                                                                                     Sketch its graph.

        6 Find the gradient of the curve y = ln 1 + sin 2x at the                                                                c What is the connection between your two sketches?
           point where x = p
                                            2


 116                                                                                                                                                                                                                117
4 Differentiation

                                                                                                                     9 The function y = sin (x) has the angle x measured in degrees.
       Review 4
                                                                                                                        a   Write the function so that the angle x is in radians.
                                                                                                                                    d (sin x)
       1 Use the product rule, quotient rule or chain rule to differentiate these functions with respect to x.          b   Find       dx
                                                                                              tan x
         a x3 tan x                  b       tan3 x                c   tan (x3)          d
                                                                                                x3
                                                                            1                                       10 Find the derivative with respect to x of these functions.
         e ex sin x                  f       esin x                g       sin x         h cos x ln x
                                                                       e                                                a   f(x) = ln tan x                               b f(x) = ln (sin x cos x)
         i   sin 3x                  j       tan 6x                k ln (2x + 3)         l    e3x-1
                                                                                                                        c   f(x) = (2x - 1)2(3x + 2)3                     d f(x) = ln ((2x - 1)2(3x + 2)3)
         m sinx x                    n       ex (x2 - 3x + 4)      o     x
              e                                                        x +12
                                                                                                                    11 Use the derivatives of cosec x and cot x to prove that
       2 Differentiate these functions with respect to x, given that a and b are constants.                                 d
                                                                                                                               [ln (cosec x + cot x)] = -cosec x                                      [(c) Edexcel Limited 2004]
                                                                                                                            dx
                    ax
         a y=e                       b       y = eax+b             c   y = ef(x)         d y = sin (ax)
                                                                                                                                                                       d2 y
         e y = sin (ax + b)          f       y = sin [f(x)]        g y = tan (ax)        h y = tan (ax + b)         12 Given that y = e x sin 2x, find the value of         when x = 0
                                                                                                                                                                       dx 2
         i   y = tan [f(x)]          j       y = ln (ax)           k y = ln (ax + b)     l    y = ln [f(x)]
                                                                                                                                                     d2 y    dy
                                                                                                                    13 If y = e-x cos x, show that        + 2 + 2y = 0
                                                                                                                                                     dx 2    dx
       3 Find the derivatives of these functions with respect to x.
         a ex cos 3x                 b e3x tan x                   c   e3x cos 2x        d 4 tan 1 x  (2 )          14 Find
                                                                                                                              d2 y
                                                                                                                              dx 2
                                                                                                                                   when y = 1 + x
                                                                                                                                            1− x
C3




                                                                                                                                                                                                                                     C3
         e ln (x3 sin x)             f       ln ( x x + 1 )        g   (3x + 1)2         h ln e x
                                                                       (2x − 1)3                                              dy
         i   sin 5x
             cos 5x
                                     j                (
                                             x 2 sin 2x + p
                                                           2   )   k e3tan x             l      (1 + sin x )
                                                                                              ln 1 − sin x
                                                                                                                    15 Find
                                                                                                                              dx
                                                                                                                                 in terms of x when

                                                                         x                                              a   x = (y + 1)2             b x = y2 + 3
         m xcot x                    n ln (tan x + sec x)          o   sec x
                                                                                                                    16 Differentiate with respect to x
       4 Find the values of x for which these functions have stationary points for -p < x < p.                                                              2x
                                                                                                                        a   x3e3x                    b     cos x                  c    tan2 x
         Determine the nature of the stationary points.
                                                  x                                                                                                        dy
         a y = xe-x                  b       y = e ,x¹0            c   y = e-x cos x                                    d   Given that x = cos y2 find dx in terms of y.                              [(c) Edexcel Limited 2002]
                                                  sin x

       5 Find the equation of the tangent to the curve y = ln 1 + sin 2q at the point where q = p                   17 a    Differentiate with respect to x
                                                                                                        2
                                                                                                                                                         3
                                                 3                                                                          i x2e3x+2           ii cos(2x )
       6 The curve C has equation y =      − ln(5x), where x > 0.
                                              4x 2                                                                                                    3x
         The tangent at the point on C, where x = 1, meets the x-axis at the point A.                                                                              dy
                                                                                                                        b   Given that x = 4sin (2y + 6) find         in terms of x.                  [(c) Edexcel Limited 2006]
                                             1                                                                                                                     dx
         Prove that the x-coordinate of A is 5 ln (5e).                                [(c) Edexcel Limited 2002]
                                                                                                                                    dy                                        1
       7 Differentiate with respect to x                                                                            18 Show that       for the function y = 2 x + 3 +
                                                                                                                                    dx                                       2x + 3
         a   y = 2x                  b y = ax                      c   y = log10 x                                                  dy      2 ( x + 1)
                                                                                                                        is given by     =
                                                                                                                                    dx      ( 2 x + 3 )3
       8a    Find the equation of the normal to the curve y = 1 + sin2 x
             at the point where x = p
                                         4                                                                          19 Find the turning points on the curve y = (x2 - 9)3 and determine
         b   Find the equation of the normal to the curve y = tan2 x                                                   whether each of them is a maximum or minimum.

 118         where x = p and the point where the normal cuts the x-axis.                                                                                                                                                           119
                           4
Exit
                                                                                           5 Numerical methods
                                                                                              This chapter will show you how to
                                                                                                use graphical methods to solve equations of the type f(x) = g(x)
                                                                                                use graphical methods to solve equations of the type f(x) = 0
       Summary                                                                  Refer to
                                                                                                find non-integer roots of the equation f(x) = 0
        The derivatives of these functions f(x) are:                                4.1
                                                                                                use iterative methods to solve equations
                               f(x)    f¢(x)                                                    distinguish between a sequence of convergent and divergent iterations
                              sin x   cos x                                                     represent iterative methods graphically.
                              cos x   -sin x
                              tan x   sec2 x
                              ex      ex                                            4.2
                                       1                                                   Before you start
                              ln x                                                  4.3
                                       x
                                                                                           You should know how to:                                    Check in:
                                                    dy   dv     du
        The product rule        If y = uv,     then    =u +v                        4.4    1 Rearrange an algebraic expression.                       1 Find f(x) such that f(x) = 0 when
                                                    dx   dx     dx
                                                                                              e.g. x = 5x + 7
                                                                                                          2
                                                         du     dv                                                                                       a x=     x3 + 1    b x=   3   x2 − 1
                                                    dy v dx − u dx                                      3x + 4
                                                                                                                                                                   2x                   2x
        The quotient rule If y = u ,           then    =                            4.5       becomes 2x2 - 4x + 7 = 0
C3




                                                                                                                                                                                                            C3
                                       v            dx      v2
        The chain rule          If y = g(u) and u = f(x) so that y = g(f(x)),       4.6
                                                                                           2 Solve equations graphically.                             2 a Plot the graph of y = x2 - 2x - 4
                                                      dy   dy du                                                                                          for -2 x 4
                                               then      =   ×                      4.7       e.g. Plot the graph of y = x3 - 4x2 + 3x
                                                      dx   du dx                                                                                          Hence solve the equation x2 - 2x - 4 = 0
                                                                                              Hence find that the solutions of
                         d(sin ax) = a cos ax    d(cos ax) = −a sin ax                        x3 - 4x2 + 3x = 0 are x = 0, 1 or 3.
                                                                                                                                                         b Plot the graph of y = x − 2x + 1
                                                                                                                                                                                  2
        In particular,      dx
                                              and dx
                                                                                                                                                                                    x−2
                                                                                                                                                            for -2 x 4 and find the point where
                                           dy      dy    1
        If x = f(y), then you can find        from    =                             4.7                                                                     the graph touches the x-axis.
                                           dx      dx   dx
                                                        dy
                                                                                           3 Solve simultaneous equations graphically.                3 Plot the graphs of y = 4 - x2 and y = 1 for
                                                                                                                                                                                              x
                                                                                              e.g. Plot the graphs of y = x2 - x + 1 and y = 2x - 1     |x| 3. Explain how the graphs can be
                                                                                              Hence find that the solutions of x2 - 3x + 2 = 0 are      used to solve the equation x3 - 4x + 1 = 0
        Links
                                                                                              x = 1 and x = 2                                           and find the solutions.
        Mathematics is used extensively in the financial world,
        which relies on accurate forecasts of the future.
                                                                                           4 Use a spreadsheet to find the values of                  4 Create a spreadsheet to show the values of
        In calculus, a derivative shows how a dependent variable                             f(x) for a range of values of x.                           f(x) = x2 + 2x - 3 and g(x) = x + 2 for
        is affected as an independent variable changes.                                       e.g. For f(x) = x3 - x + 2                                integer values of x where 0 x 7.
                                                                                                                            x    x3 - x + 2
        This can be applied in a financial setting to, for example,                                                         0        2
                                                                                                                                                        State the value of the integer a such
        predict how the change in price of an underlying asset                                                              1        2                  that the solution of x2 + x - 5 = 0
        will affect the related market value. Techniques such as                                                            2        8                  lies between a and a + 1.
        the chain rule are usually used to calculate the                                                                    3        26
        mathematical derivatives involved.

 120                                                                                                                                                                                                  121
5 Numerical methods

                                                                                                                                                                                                                                                                                                                                                                           Intersection with the x-axis
       5.1                               Graphical methods
                                                                                                                                                                                                                                                                                                                                                                           Another graphical method for solving an equation of the type
                                                                                                                                                                                                                                                                                                                                                                           f(x) = g(x) is to define a new function h(x) = f(x) - g(x)
                   Many equations, including those derived in real-life scenarios                                                                                                                                                                                                                                                                                          and then find the solution of the equation h(x) = 0
                   in science, engineering, economics and elsewhere, cannot be
                   solved algebraically.                                                                                                                                                                                                                                                                                                                                   You are now searching for the x-values of the points at which the
                                                                                                                                                                                                                                                                                                                                                                           graph of y = h(x) crosses (or touches) the x-axis.
                   Instead, you have to use numerical methods to find                                                                                                                                                                                                                                              ‘Solutions’ are also called ‘roots’.
                   approximate solutions.




                                                                                                                                                                                                                                                                                                                                                               EXAMPLE 2
                                                                                                                                                                                                                                                                                                                                                                             Find the solution of the equation cos x = x for 0 < x < p                                                                                                                                                                                                                                    This equation is the same as in
                   Intersection of two graphs                                                                                                                                                                                                                                                                                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••   Example 1.
                   One method for finding an approximate solution to an equation                                                                                                                                                                                                                                                                                             Let h(x) = cos x - x                                                                                                                                                                                                                                                                                           y
                   of the type f(x) = g(x) is to draw the graphs of y = f(x) and y = g(x)
                                                                                                                                                                                                                                                                                                                                                                             Sketch the graph of h(x) = cos x - x:
                   and find the x-values of any points of intersection.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1    y = cos x – x
                                                                                                                                                                                                                                                                                                                                                                             The sketch gives an approximate value of the root as x = 0.7
       EXAMPLE 1




                     Find the solution of the equation cos x = x                                                                                                                                                                         for 0 < x < p                                                                                                                                                                                                                                                                                                                                                                                                                                                             x
                                                                                                                                                                                                                                                                                                                                                                             The x-value where y = cos x - x crosses the x-axis is the same x-value                                                                                                                                                                                                                           –2       –1 0      1     2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                                             as that at the point of intersection in Example 1.                                                                                                                                                                                                                                                          –1
                     Sketch the graphs of y = cos x and y = x on the same axes:                                                                                                                                                                                                                                                      y
                                                                                                                                                                                                                                                                                                                                                   y=x                       Use a spreadsheet to record values with increments in x of 0.01:                                                                                                                                                                                                                                              –2
                     There is only one point of intersection so the equation
                                                                                                                                                                                                                                                                                                                                 1                                           For x                                0.73, h(x) > 0                                                                                                                                   x                               cos x - x
                     cos x = x has only one solution.                                                                                                                                                                                                                                                                                         y = cos x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.70                             0.065 >                                         0                                y
                                                                                                                                                                                                                                                                                                                    –3 –2 –1 O                             x                 For x                                0.74, h(x) < 0
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C3
                     The sketch gives a rough approximation of the solution as x = 0.7                                                                                                                                                                                                                                                   1     2    3                                                                                                                                                                                                            0.71                             0.048 >                                         0                        0.065
                                                                                                                                                                                                                                                                                                                           –1                                                                                                                                                                                                                                    0.72                             0.032 >                                         0
                     This is an approximation. It is not an accurate answer.                                                                                                                                                                                                                                                                                                 The root is between 0.73 and 0.74.                                                                                                                                                  0.73                             0.015 >                                         0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                y = cos x – x
                     You can find a more accurate value using                                                                                                                                                                                                                                                                                                                The root is nearer to 0.74 because
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.74                            -0.002 <                                         0
                     either a graphical calculator or graphical computer software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.75                            -0.018 <                                         0
                                                                                                                                                                                                                                                                                                                    x is in radians.                                         -0.002 is closer to 0 than is 0.015.                                                                                                                                                0.76                            -0.035 <                                         0
                     or     an ordinary calculator or computer spreadsheet.
                                                                                                                                                                                                                                                                                                                     y                                                       Reduce the increments in x to 0.001:                                                                                                                                                                                                                                                                  O 0.7                               x
                     Tabulate values of x and cos x with increments in x of 0.01:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.76
                                                                                                                                                                                                                                                                                                                  0.77                                                       For x                                0.739, h(x) > 0                                                                                                                               x                             cos x - x
                     For x                                0.73, x < cos x                                                                                                                                                               x                                      cos x                                              y = cos x                                                                                                                                                                                                           0.737                                 0.0035 > 0
                     For x                                0.74, x > cos x                                                                                                                                                             0.70                       <            0.765                                                                y=x                       For x                                0.740, h(x) < 0                                                                                                                     0.738                                 0.0018 > 0                                                                    –0.035
                                                                                                                                                                                                                                      0.71                       <            0.758
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.739                                 0.0001 > 0
                     The solution is between 0.73 and 0.74                                                                                                                                                                            0.72                       <            0.752                                                                                          The root is between 0.739
                                                                                                                                                                                                                                      0.73                       <            0.745                                                                                                                                                                                                                                                                   0.740                                -0.0015 < 0                                                                                 y
                                                                                                                                                                                                                                                                                                                                                                             and 0.740
                     0.74 and 0.738 are closer together than                                                                                                                                                                          0.74                       >            0.738                                                                                                                                                                                                                                                                   0.741                                -0.0032 < 0
                                                                                                                                                                                                                                      0.75                       >            0.732                                                                                                                                                                                                                                                                                                                                                                                        0.0035
                     0.73 and 0.745, so the solution is between                                                                                                                                                                                                                                                                                                              The root is closer to 0.739
                                                                                                                                                                                                                                      0.76                       >            0.725                                0.7
                     0.735 and 0.740.                                                                                                                                                                                                                                                                                                                                        than 0.740 because 0.0001 is
                                                                                                                                                                                                                                                                                                                     O                                     x                 closer to 0 than is -0.0015.                                                                                                                                                                                                                                                                                          y = cos x – x
                                                                                                                                                                                                                                                                                                                         0.7                       0.76
                     Reduce the increment in x to 0.001:
                                                                                                                                                                                                                                                                                                                         y
                     x < cos x for x                                                              0.739                                                                                                                   x                                           cos x                                                                                                  To 3 significant figures, the solution of the equation                                                                                                                                                                                                                                                 O 0.737                 0.741
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           x
                                                                                                                                                                                                                                                                                                                   0.740
                                                                                                                                                                                                                        0.736                           <            0.7412                                                                          y=x                     cos x = x is x = 0.739
                     x > cos x for x                                                              0.740                                                                                                                                                                                                                         y = cos x
                                                                                                                                                                                                                        0.737                           <            0.7405
                                                                                                                                                                                                                                                                                                                                                                             Check:
                     The solution is between 0.739 and                                                                                                                                                                  0.738                           <            0.7398
                                                                                                                                                                                                                                                                                                                                                                             h(0.7395) = cos(0.7395) - 0.7395 = -0.0007 is negative, so the root
                     0.740 but it is closer to 0.739.                                                                                                                                                                   0.739                           <            0.7391                                                                                                                                                                                                                                                                                                                                                                                               –0.0032
                                                                                                                                                                                                                                                                                                                                                                             must lie between x = 0.739 and x = 0.7395
                                                                                                                                                                                                                        0.740                           >            0.7385
                     To 3 significant figures, the solution                                                                                                                                                                                                                                                        0.735
                     of the equation cos x = x is x = 0.739                                                                                                                                                                                                                                                              O 0.735                           x
                                                                                                                                                                                                                                                                                                                                                   0.740
 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       123
5 Numerical methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5 Numerical methods

                   Sometimes it is best to combine both approaches as shown in Example 3.                                                                                                                                                                                                                                                                                 Be aware that f(x) might cross the x-axis more than once in the                                                                                                                                                                                                                                       [a, b] means the interval
                                                                                                                                                                                                                                                                                                                                                                          interval [a, b].                                                                                                                                                                                                                                                                                      a x b
       EXAMPLE 3




                     Solve the equation x2 = sin x for − p < x < p                                                                                                                                                                                                                                                                                                        Also be aware of the following three possibilities:
                                                                                                                                                                              2                                        2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                   y                                        y                                                                                                                                             y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         y
                                                                                                                                                                                                                                                                                                                                                                                                                                    y = f(x)                                                                                                                                                                                                                                    y = f(x)
                     Sketch the graphs of y =                                                                     x2        and y = sin x:                                                                                                                                                                                                                                                                                                                                                                                                                                           y = f(x)
                                                                                                                                                                                                                                                                                                                       y = x2
                     There are two roots.                                                                                                                                                                                                                                                                                                   y = sin x
                     x = 0 is an obvious root.                                                                                                                                                                                                                                                                                                                                                                                                      f(b)                                                                                                                                                                                                                     f(a)
                                                                                                                                                                                                                                                                                                                                                                                f(a)                                                                                                                                              f(a)
                     From the sketch, the other root is approximately x = 0.8                                                                                                                                                                                                                                        –3 –2 –1 O         1    2     3      x                                                                                                                                                                                                                     f(b)                                                                                                       b
                                                                                                                                                                                                                                                                                                                                                                           O               a                                                    b                         x                                            O                     a                                 b                                       x                                            O           a                         x
                     Let h(x) = sin x - x2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           f(b)
                     The solution of the equation x2 = sin x
                     occurs when h(x) = sin x - x2 = 0

                                                                                                                                                                                                                                                                                                                        y                                                 f(a) and f(b) are both positive,                                                                                                        f(a) and f(b) are both positive                                                                                                              f(a) and f(b) have different signs.
                     Record values for x from 0.85 to 0.90 in a table:
                                                                                                                                                                                                                                                                                                                   0.03                                                   but there are two roots between                                                                                                         but there is a single root when                                                                                                              However there is no root between
                     h(x) changes from positive to negative                                                                                                                                                                                                                                                                      y = sin x – x2
                                                                                                                                                                                                                                                                                                                   0.02                                                   x = a and x = b                                                                                                                         the curve touches the x-axis.                                                                                                                x = a and x = b because f(x) has
                                                                                                                                                                                                                        x                         sin x -                             x2
                     between x = 0.87 and x = 0.88                                                                                                                                                                                                                                                                 0.01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               a discontinuity.
                                                                                                                                                                                                                 0.85                            0.0288                                  >0
                     The solution is between x = 0.87                                                                                                                                                            0.86                            0.0182                                  >0
                                                                                                                                                                                                                                                                                                                                                                          Sketching a graph will help you to visualise what is happening.
                                                                                                                                                                                                                                                                                                                      O 0.85                      0.9 x
                     and 0.88.                                                                                                                                                                                   0.87                            0.0074                                  >0                       –0.01
                                                                                                                                                                                                                 0.88                           -0.0037                                  <0                                                                               When you have found an interval [a, b] which contains a root,
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C3
                                                                                                                                                                                                                                                                                                                  –0.02
                     h(0.875) = 0.0019 > 0, so the root is                                                                                                                                                       0.89                           -0.0150                                  <0                                                                               you can then reduce the width of the interval to find the solution
                     between 0.875 and 0.88.                                                                                                                                                                     0.90                           -0.0267                                  <0                                                                               to the required accuracy.
                                                                                                                                                                                                                                                                                                                  h(0.875) = sin(0.875) - 0.8752
                     The solutions are x = 0 and x = 0.88 to 2 significant figures.                                                                                                                                                                                                                                        = 0.001918. . .




                                                                                                                                                                                                                                                                                                                                                              EXAMPLE 4
                                                                                                                                                                                                                                                                                                                                                                            Find all the solutions (to 2 d.p.) of the equation e x + x - 7 = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  y
                                                                                                                                                                                                                                                                                                                                                                            ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                   The location of roots on the x-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    y = ex
                                                                                                                                                                                                                                                                                                                                                                            The graph of y = e x + x - 7 cannot be sketched quickly.                                                                                                                                                                                                                                                             8
                   The roots of the equation f(x) = 0 are the x-values of the points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6
                   where the graph y = f(x) intersects the x-axis.                                                                                                                                                                                                                                                                                                          Rearrange the equation e x + x - 7 = 0 as e x = 7 - x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4            y=7–x
                   Let f(x) be continuous between x = a and x = b                                                                                                                                                                                                                                                 'Continuous' means that there is no                       and sketch the graphs of y = e x and y = 7 - x:
                                                                                                                                                                                                                                                                                                                  break or discontinuity in the graph.                                                                                                                                                                                                                                                                                                                                           2
                                    y                                                                                                                                             y                                                                                                                                                                                         The graphs intersect only once so there is only one root.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  O     2 4 6 8              x
                                                                                                                  y = f(x)                                                                                      y = f(x)                                                                                                                                                    The sketch gives its approximate value as x = 1.5

                                                                                                                                                                                                                                                                                                                                                                            Consider f(x) = e x + x - 7                                                                                                                                                                                                                                                                             y
                                                                                                            f(b)                                                                   f(a)
                                                                                                          positive                                                               positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1
                                                                                                                                                                                                                                                                                                                                                                            Take values for x between 1.4 and 1.8 with steps of 0.1:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y = ex + x – 7
                                  O f(a)   a                                                       b                                                   x                         O       a                                                            b          f(b)   x
                                  negative                                                                                                                                                                                                                     negative                                                                                                     f(1.6) < 0                                            and                          f(1.7) > 0                                                                                                 x                          ex + x - 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.4                       -1.545 < 0                                                                       O                                            x
                                                                                                                                                                                                                                                                                                                                                                            The root is in the interval [1.6, 1.7]                                                                                                                                                                                                                                                                         1.4                         1.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.5                       -1.018 < 0
                                                                                                                                                                                                                                                                                                                                                                            The root is nearer to 1.7 because 0.174
                    If f(a) and f(b) have different signs for distinct values a and b,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.6                       -0.447 < 0
                                                                                                                                                                                                                                                                                                                                                                            is nearer to 0 than is -0.447.                                                                                                                                                                                                                                                                      –1
                    then there must be at least one root of f(x) = 0 in the interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.7                        0.174 > 0
                    from a to b.                                                                                                                                                                                                                                                                                                                                            Example 4 is continued on the next page.                                                                                                                                                     1.8                        0.850 > 0




 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 125
5 Numerical methods                                                                                                                                                                              5 Numerical methods

       EXAMPLE 4 (CONT.)                                                                                                                     3 a Sketch the graphs of y = x 3 and y = 9 - x on the same axes.
                            Explore within this interval in steps of x = 0.01:                                 y
                                                                                                                                                b Explain why there is only one root of the equation
                            f(1.67) < 0      and     f(1.68) > 0                                       0.046
                                                                                   x      ex + x - 7               y = ex + x – 7                 x3 + x - 9 = 0
                                                                                 1.65   -0.143 < 0
                            The root is in the interval [1.67, 1.68]                                                                            c Use your graph to state the interval [a, b] within which the
                                                                                 1.66   -0.081 < 0
                                                                                                       0.014
                            As f(1.675) = 0.014 which is positive,               1.67   -0.018 < 0                                                root of the equation x 3 + x - 9 = 0 lies, where a and b are
                                                                                                            O                            x        consecutive integers.
                            the root is in the interval [1.67, 1.675]            1.68    0.046 > 0                 1.67 1.675 1.68
                                                                                 1.69    0.109 > 0     –0.018
                            So, to 2 decimal place, the root                                                                                    d Find the root of the equation x 3 + x - 9 = 0
                            is x = 1.67                                                                                                           correct to 1 decimal place.

                                                                                                                                             4 a Sketch the graphs of y = x 2 and y = e-x on the same axes.

                           Exercise 5.1                                                                                                         b Show that the only root of the equation x 2 - e-x = 0
                            1 Sketch the graphs of each pair of functions f(x) and g(x).                                                          lies in the interval [0.70, 0.71].
                              State how many roots there are to the equation f(x) - g(x) = 0                                                    c Find the root correct to 3 decimal places.
                               a f(x) = x 2            g(x) = x + 2
                                                                                                                                                                           1
                               b f(x) = x 3            g(x) = x + 2                                                                          5 a Sketch the graphs y = x and y = 5 - x 2 on the same axes.

                               c f(x) = x
                                             1
                                                       g(x) = x + 2                                                                             b How many roots has the equation 1 + x2 - 5 = 0?
                                                                                                                                                                                        x
                                             1                                                                                                  c Show that one root lies in the interval [2, 3] and find its
C3




                                                                                                                                                                                                                                                    C3
                               d f(x) = x              g(x) = x 3
                                                                                                                                                  value correct to 2 decimal places.
                               e f(x) = x 2 - 4        g(x) = 1
                                                                x                                                                            6 Without drawing any graph, show that each of these equations
                               f   f(x) = sin x        g(x) = x + 2                                                  In parts f and g,         has a root within the given interval.
                                                                                                                     x is in radians.
                                                                                                                                                a x 3 - 5x 2 + 6x - 1 = 0 [0, 1]
                               g f(x) = sin x          g(x) = 1 x
                                                                2
                                                                                                                                                b x 3 - 2x 2 + x - 3 = 0   [2, 3]
                               h f(x) = e x            g(x) = 4 - x2
                                                                                                                                                c x3 - 1 - 6 = 0           [1, 2]
                                                                                                                                                         x
                            2 By sketching appropriate graphs, find how many roots there                                                        d ex - x - 8 = 0           [2, 3]
                              are for each of these equations.
                                                                                                                                                e ln x - x 2 + 5 = 0       [2.4, 2.5]
                               a x3 + x - 5 = 0
                                                                                                                                                f   sin x + x - 5 = 0      [5.6, 5.7]
                               b x3 - 1 + 1 = 0
                                         x
                               c e - x2 + 1 = 0
                                     x                                                                                                       7 Show that the equation xsin x + 2 = 0 has a root a such
                                                                                                                                               that 3 < a < 4. Find the value of a correct to 1 decimal place.
                               d sin x + x - 1 = 0
                                                                                                                                             8 The equation e-x - x + 1 = 0 has a root in the interval [a, a + 1]
                               e e-x + x 2 - 4 = 0
                                                                                                                                               where a is a positive integer.
                               f   x2 + 1 - sin x = 0                                                                                          Find the value of a and the value of the root correct to 2 decimal places.




 126                                                                                                                                                                                                                                              127
5 Numerical methods                                                                                                                                            5 Numerical methods

        9 a Copy and complete this table for the function                                     13 a By sketching the graphs of y = 2 x and y = x 3 on the
            f(x) = x 3 - 4x 2 - x + 5                                                              same axes, find how many solutions there are to the
                                                                                                   equation 2 x − x 3 = 0
                 x     -2   -1   0    1      2    3           4       5
                f(x)                                                                              b Find the non-zero solution of the equation correct to
                                                                                                    2 decimal places.
           b Sketch the curve y = x 3 - 4x 2 - x + 5 for -2                   x   5
           c Write down the three intervals [a, b] where a, b are                             14 a Sketch the graphs of y = ln x and y = 12 - x 2 on the same axes.
             consecutive integers within which roots of the equation                               Explain why the equation ln x + x 2 - 12 = 0 has only one root.
             x3 - 4x2 - x + 5 = 0 lie.                                                            b Find the root of the equation correct to 2 decimal places.
           d Find the largest root of -      x3   4x 2        -x+5=0
             correct to 2 decimal places.                                                     15 a Choose two functions f(x) and g(x) and sketch the graphs
                                                                                                   of y = f(x) and y = g(x) to find the number of roots of the
       10 a Copy and complete this table for the function                                          equation cos x - x + 6 = 0
                       1                                                                          b Show that a root a exists such that 6     a      7
               f(x) = 2 x 3 - 2x 2 - x + 1
                                                                                                  c Find a correct to 3 decimal places.
                 x     -2   -1    0   1      2    3           4       5
                f(x)
                                                                                              16 Solve the equation 3x - x 3 = 0
           b Write down the three intervals [a, a + 1], where a is integer,                      giving solutions correct to 3 decimal places where necessary.
               within which roots of the equation 1 x 3 − 2x 2 − x + 1 = 0 lie.
C3




                                                                                                                                                                                              C3
                                                                      2                       17 Find all the roots of the equation xcos x + x = 0
           c Find the smallest root of x 3 - 4x 2 - x + 5 = 0                                    Sketch the graph of y = xcos x + x
             correct to 2 decimal places.
                                                                                                 INVESTIGATION
       11 a Find the interval [a, a + 1], where a is a positive integer,
                                                           1
            such that the only root of the equation e x + 2 x − 10 = 0                           18
                                                                                                                     P
            lies within it.
                                                                                                                                          Q
           b Find the root correct to 2 decimal places.                                                                           i
                                                                                                                              O

       12 a Show that the function f(q ) = sin q − q + 2 for 0                        q   p
               has a solution in the interval ⎡ 4 p , 8 p ⎤.
                                                          3       7
                                              ⎢       ⎣   ⎥               ⎦
                                                                                                      In this diagram, the area of triangle OPQ is half the area
           b Find the solution correct to 2 decimal places.                                           of the sector OPQ.
                                                                                                      Show that the angle, q, in radians, must be a solution of
                                                                                                      the equation
                                                                                                         2sin q - q = 0
                                                                                                      Solve this equation to find q.




 128                                                                                                                                                                                        129
5 Numerical methods

                                                                                                                                                                                                                                                                                                                                                          Whether a sequence converges or diverges depends on the
       5.2                                Iterative methods                                                                                                                                                                                                                                                                                               gradient of f(x) at the point of intersection where x = f(x)

                   The root of the equation x - f(x) = 0 is at the point of intersection                                                                                                                                                                                                                                                                  There are four possibilities:
                   of the graphs of y = x and y = f(x) where x = f(x)                                                                                                                                                                                                                                                                                                                                         y                                At the point of intersection, x = a
                                                                                                                                                                                                                                                                                                                                                                  y
                   You can show the steps of the iterative process of finding a root of                                                                                                                                                                                                                           An iterative method is a                                                                                                     is the root of x = f(x) in each case.
                                                                                                                                                                                                                                                                                                                                                                                                                        y = f(x)         y=x
                   the equation x - f(x) = 0                                                                                                                                                                                                                                                                      repetitive process which uses a                                y=x                    f(x1)
                                                                                                                                                                                                                                                                                                                  succession of approximations.
                                                  Numerical process                                                                                                                                        Graphical process                                                                                      Each approximation builds               f(x0)                          y = f(x)       f(x0)
                                                                                                                                                                                                                                                                                                                  on the preceding approximation          f(x1)
                               Choose a value x0 close to the                                                                                                                           Locate the value x0 on the x-axis                                                                                                                                 f(x2)
                               root a                                                                                                                                                                                                                                                                             until the required degree of
                               Calculate f(x0)                                                                                                                                          Rise vertically at x0 to meet                                                                                             accuracy is achieved.
                                                                                                                                                                                                                                                                                                                                                                                                              O      a x0 x1       x2          x
                                                                                                                                                                                        the curve at a height of f(x0)                                                                                                                                        O          a x3 x2 x1 x0              x
                               Let f(x0) = x1                                                                                                                                           Go horizontally to the line y = x
                                                                                                                                                                                        where f(x0) = x1
                                                                                                                                                                                                                                                                                                                                                          y = f(x) is a rising curve and                y = f(x) is a rising curve
                               Let x1 be the next                                                                                                                                       Locate x1 on the x-axis
                                                                                                                                                                                                                                                                                                                                                          0 < f ¢(a) < 1                                and f ¢(a) > 1
                               approximation to the root
                                                                                                                                                                                                                                                                                                                                                          The iterations converge.                      The iterations diverge.
                               Perform the next iteration and                                                                                                                           Go vertically to the curve and
                               calculate x2                                                                                                                                             then go horizontally to the line
                                                                                                                                                                                        to find x2                                                                                                                                                                                                        y
                                                                                                                                                                                                                                                                                                                                                              y                                                   y = f(x)
                               Perform more iterations.                                                                                                                                 Go vertically to the curve and                                                                                                                                                y = f(x)
                                                                                                                                                                                                                                                                                                                                                                                    y=x                                            y=x
                                                                                                                                                                                        go horizontally to the line for
                                                                                                                                                                                                                                                                                                                                                          f(x0)
                                                                                                                                                                                        each iteration.
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C3
                                                                                                                                                                                                                                                                                                                                                          f(x2)

                                                                                                                                                                                                                                                                                                                                                          f(x1)
       EXAMPLE 1




                     Find the root of the equation 3 x + 1 − x = 0 using an iterative
                     method, starting with x0 = 1 as the first approximation.                                                                                                                                                                                                                                                                                                                            O          x2 x0 a x1 x3         x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                             O           x0 x2 a x3 x1          x

                     Rearrange the equation:                                                                                                                                                                                                                                                                                                              y = f(x) is a falling curve                   y = f(x) is a falling curve
                                                       3
                                  x=                          x +1                                                                                                                                                                                                                                                                                        and -1 < f ¢(a) < 0                           and f ¢(a) < -1
                     Define the iterative formula:                                                                                                                                                                                                                                                                                                        The iterations converge.                      The iterations diverge.

                     xn+1 =                            3      xn + 1 with x0 = 1                                                                                                                                                                                                                                                                          Overall, the iterative process converges provided that                               This condition can also be
                     Carry out the iterations:                                                                                                                                                                                                                                                                                                            -1 < f ¢(a) < 1 where a is the root.                                                 written as |f¢(a)| < 1
                              x1 =                    3       x0 + 1 = 3 1 + 1 = 3 2                                                                                                      = 1.259 921. . .
                                                                                                                                                                                                                                                                                                                                                          Try to choose a starting value x0 which is close to the root.                            A different iterative formula with
                              x2 =                    3       x1 + 1 = 3 1.259921                                                                                    + 1 = 1.312 293. . .                                                                                                                                                                                                                                                          the same starting value can lead
                                                                                                                                                                                                                                                                                                                                                          Start by looking for an interval which contains the root and then
                                                                                                                                                                                                                                                                                                                  The iterations seem to be converging.                                                                                            to a different root.
                              x3 =                    3      x2 + 1 = 3 1.312293                                                                                    + 1 = 1.322 353. . .                                                                                                                                                                  choosing x0 from within that interval.
                                                                                                                                                                                                                                                                                                                                                                                                                                                   The same iterative formula with a
                                                                                                                                                                                                                                                                                                                                                                                                                                                   different starting value can lead
                              x4 =                    3       x3 + 1 = 3 1.322353                                                                                    + 1 = 1.324 268. . . and so on.                                                                                                               n          x            3
                                                                                                                                                                                                                                                                                                                                            x+1                                                                                                    to a different root or even a
                                                                                                                                                                                                                                                                                                                   0         1          1.25992105                                                                                                 diverging sequence.
                     After four iterations, the root is correct to                                                                                                                                                                                                                                                 1    1.25992105      1.31229384
                     2 decimal places and has a value of 1.32                                                                                                                                                                                                                                                      2    1.31229384      1.32235382
                                                                                                                                                                                                                                                                                                                   3    1.32235382      1.32426874
                     More iterations will improve the accuracy.
                                                                                                                                                                                                                                                                                                                   4    1.32426874      1.32463263
                     You can do these calculations efficiently on a spreadsheet or                                                                                                                                                                                                                                 5    1.32463263      1.32470175
                     using the ‘Ans’ key on a scientific or graphical calculator.                                                                                                                                                                                                                                  6    1.32470175      1.32471488
                                                                                                                                                                                                                                                                                                                   7    1.32471488      1.32471737
                     After 8 iterations, the root is correct to 5 decimal places.
                                                                                                                                                                                                                                                                                                                   8    1.32471737      1.32471785
 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    131
5 Numerical methods                                                                                                                                                                                                                                                                                                                                                                                          5 Numerical methods

       EXAMPLE 2                                                                                                                                                                                                                                                                                                                                     Exercise 5.2
                    Explore the roots of the equation x3 - 5x - 3 = 0                                                                                                                                                                                                                                                                                1 a Show, without drawing a graph, that the equation
                    using iterative methods.                                                                                                                                                                                                                                                                                                             x2 - 5x + 2 = 0
                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                         has a root in the interval [4, 5].
                    First method
                    Rearrange x3 - 5x - 3 = 0 into the form x = f (x):                                                                                                                                                                                                                                                                                   b Show that x2 - 5x + 2 = 0 can be rewritten as x = 5 − 2
                                                                                                                                                                                                                                                                                                                                                                                                                            x
                                                                                             x3 = 5x + 3
                                                                                                                                                                                                                                                                                                                                                         c Using the iterative formula xn +1 = 5 − 2 and x0 = 4
                                                                                               x = 3 5x + 3                                                                                                                                                                                                                                                                                            xn
                                                                                                                                                                                                                                                                                                                                                                                          2
                    Define the iterative formula: xn +1 =                                                                                                             3      5xn + 3                                                                                                                                                                        find a root of the equation x - 5x + 2 = 0
                                                                                                                                                                                                                                                                                                                                                            correct to 2 decimal places.
                        Let x0 = 2:                                                                                                                                                     Let x0 = -2:
                        x1 = 3 13 = 2.351 334                                                                                                                                           x1 = 3 −7 = −1.912 931                                                                                                                                       2 a Show that the equation x3 - 4x - 5 = 0
                                                                                                                                                                                                                                                                                                                                                         has a root in the interval [2, 3].
                        x2 = 2.452 803…                                                                                                                                                 x2 = -1.872 423…
                        x3 = 2.480 597…                                                                                                                                                 x3 = -1.852 964…                                                                                                                                                 b Show that the equation x3 - 4x - 5 = 0
                        x4 = 2.488 102…                                                                                                                                                 x4 = -1.843 470…                                                                                                                                                   can be rearranged as x = 3 4x + 5
                        x5 = 2.490 121…                                                                                                                                                 x5 = -1.838 803…                                                                                                                                                 c Use the iterative formula xn +1 = 3 4xn + 5 with x0 = 2
                        x6 = 2.490 664…                                                                                                                                                 x6 = -1.836 499…                                                                                                                                                   to find a root of the equation x3 - 4x - 5 = 0
                                                                                                                                                                                                                                                                                                                                                           correct to 2 decimal places.
                                                                                                                                                                                        x7 = -1.835 360…
                                                                                                                                                                                                                                                                                                                                                         d Show that the equation x3 - 4x - 5 = 0
                        The sequence is converging.                                                                                                                                     The sequence is
C3




                                                                                                                                                                                                                                                                                                                                                                                                                                                        C3
                                                                                                                                                                                                                                                                                                                                                                                                                 xn − 5
                                                                                                                                                                                                                                                                                                                                                                                                                  3
                        The root is x = 2.49                                                                                                                                            converging on a                                                                                                                                                     can also produce the iterative formula xn +1 =          4
                                                                                                                                                                                                                                                                                                                                                                                                                        .
                        to 2 decimal places.                                                                                                                                            different root. The root                                                                                                                                            Take x0 = 2 and find whether this iterative formula
                                                                                                                                                                                        is x = -1.84
                                                                                                                                                                                                                                                                                                                                                            creates a converging or diverging sequence of
                                                                                                                                                                                        to 2 decimal places.
                                                                                                                                                                                                                                                                                                                                                            approximations to the root.
                    Second method
                    Rearrange x3 - 5x - 3 = 0 into the form x = f (x):
                                                                                                                                                                                                                                                                                                                                                     3 a Show that the equation x3 - x2 - 1 = 0
                                                     x = x −3
                                                           3
                        5x = x3 - 3 giving
                                                             5                                                                                                                                                                                                                                                                                           has a root in the interval [1, 2].
                                                          xn − 3
                                                           3
                    Define the iterative formula: xn+1 =                                                                                                                                                                                                                                                                                                 b Show that the equation x3 - x2 - 1 = 0
                                                             5
                                                                                                                                                                                                                                                                                                                                                           can produce the iterative formula xn +1 =        3   xn + 1
                                                                                                                                                                                                                                                                                                                                                                                                                 2
                        Let x0 = 2:                                                                                                                                                        Let x0 = 3:
                                                                                                                                                                                                                                                                                                                                                            Take x0 = 1 and find this root correct to 3 decimal places.
                                                                                                                                                                                           x1 = 3 − 3 = 4.8
                                                                                                                                                                                                 3
                        x1 = 2 − 3 = 1
                              3

                                                        5                                                                                                                                                                   5
                                                                                                                                                                                                                                                                                                                                                      4 Show that the iterative formula xn +1 = 1 e n
                                                                                                                                                                                                                                                                                                                                                                                                   −x

                                                                                                                                                                                           x2 = 4.8 − 3 = 21.51
                                                                                                                                                                                                   3
                        x2 = 1 − 3 = −0.4
                              3
                                                                                                                                                                                                                                                                                                                                                                                                2
                                5                                                                                                                                                                  5                                                                                                                                                    can be derived from the equation e-x - 2x = 0
                        x3 = -0.6128                                                                                                                                                       x3 = 1992.18…                                                                                                                                                Taking x0 = 1 find a root of this equation to 2 decimal places.
                        x4 = -0.64 602…                                                                                                                                                    This sequence is
                        x5 = -0.65 392…                                                                                                                                                    diverging very fast.                                                                                                                                       5 To find the value of 4 50, show that the equation x4 = 50 can be
                                                                                                                                                                                           No root is found.
                        x6 = -0.65 593…                                                                                                                                                                                                                                                                                                                  rearranged to give the iterative formula xn +1 = 3 50
                                                                                                                                                                                                                                                                                                                                                                                                                 xn
                        x7 = -0.65 644…                                                                                                                                                                                                                                                                                                                                                            4
                                                                                                                                                                                                                                                                                                                                                         Use this formula with x0 = 3 to calculate 50
                        This series is converging on                                                                                                                                                                                                                                                                           x3
                                                                                                                                                                                                                                                                                                                 The equation - 5x - 3 = 0               correct to 4 significant figures.
                        a third root which is                                                                                                                                                                                                                                                                    is a cubic. This example shows
                                                                                                                                                                                                                                                                                                                 that it has three roots x = 2.49,
                        x = -0.66 to 2 decimal places.
                                                                                                                                                                                                                                                                                                                 -1.84 and -0.66 (to 2 d.p.).
 132                                                                                                                                                                                                                                                                                                                                                                                                                                                  133
5 Numerical methods                                                                                                                                                     5 Numerical methods

        6 a Find the values of l and m such that the iterative formula                             11 a Show that the equation 2x - e x + 3 = 0 has a root between
                                                                                                        -1 and -2.
                  xn +1 = l xn + m                                                                                                                  e xn + xn
                                    xn                                                                 b Show that the iterative formula xn +1 =              −1
                                                                                                                                                         3
              can be used to solve the equation x 3 - 5x2 - 7 = 0                                        can be used to solve this equation.

           b Show that a root of the equation lies between x = 5 and x = 6                             c Take x0 = -2 and find the root of 2x - e x + 3 = 0
                                                                                                         correct to 4 decimal places.
           c Take x0 = 5 and find the root correct to 3 significant figures.
                                                                                                       d Hence find a root of the equation 2tan q - etanq + 3 = 0
        7 a Evaluate f(1.1) and f(1.4) for the function f(q) = 6q - 5sin q - 3                           in degrees correct to 1 decimal place.
            where q is in radians.
                                                                                                   12 a Show that the equation x 3 - 4x - 3 = 0 has a root in the
              Explain why there is a root of the equation 6q - 5sin q - 3 = 0
                                                                                                        interval [2, 3].
              in the range 1.1 < q < 1.4
                                                                                                                             3(xn + xn + 1)
                                                                                                                                3
           b Find the values a, b and c such that the iterative formula                                b Show that xn +1 =                  is an iterative formula for the
                                                                                                                                4xn − 1
                                                                                                                                   2


                 q n +1 = a sin q n + 1                                                                   equation x 3 - 4x - 3 = 0
                             b       c
                                                                                                       c Take x0 = 3 and find a root of the equation correct to 3 decimal places.
              can be used to solve the equation 6q - 5sin q - 3 = 0
                                                                                                       d Hence, find a root of the equation 8y - 2y+2 = 3
           c Taking q0 = 1.1 find a root of equation 6q - 5sin q - 3 = 0
                                                                                                         correct to1 decimal place.
             correct to 3 decimal places.
C3




                                                                                                                                                                                                       C3
                                            3
        8 The iterative formula xn +1 = 6 − x is used to find the root                               INVESTIGATION
                                                     n
           of the equation f(x) = 0                                                                  13 Create several of your own iterative formulae to solve the
           Find the function f(x) and the root of the equation correct to                               cubic equation
           3 decimal places, given that x0 = 2                                                              ax3 + bx2 + cx + d = 0
                                                                                                         for your choice of a, b, c and d.
        9 Find the equation f(x) = 0 which each of these iterative formulae
          can be used to solve.                                                                          Use a computer spreadsheet to calculate the iterations
                        −                                                              2                 for different starting values x0.
           a xn+1 = 5xn 2 7                     b xn+1 = 3 5xn + 1        c xn+1 = 8 − x
                        xn                                                                               See if your iterations converge or diverge.
                             2                                                                           Which one of your formulae converges most quickly to a root?
                                                e xn+1 = 4x2 − 1
                                                           3                                −x n
                       50 − xn
           d xn+1 =     2   2
                                                           n              f xn+1 = 6 − 2e
                       xn                                       3xn + 2               xn


       10 a Find the constants a and b which would allow these two
            iterative formulae to be used to solve the equation x4 = 20
                                  2
                  xn +1 =    a + xn               xn +1 =       b
                              2  2
                                          and               3
                                                                xn
                             xn

           b Taking x0 = 2 find which one of these two iterative formulae
             converges faster to the root of the equation.

           c Find the value of 4 20 correct to 5 decimal places.

 134                                                                                                                                                                                                 135
5 Numerical methods


       Review 5                                                                                                        6 f(x) = x 3 − 2 − 1 , x ≠ 0
                                                                                                                                             x
                                                                                                                         a Show that the equation f(x) = 0 has a root between 1 and 2.
       1 Sketch the graphs of each pair of functions f(x) and g(x).                                                      An approximation for this root is found using the iteration formula
         State how many roots there are to the equation f(x) - g(x) = 0                                                                      1
                                                                                                                                 = ⎛2 + 1 ⎞
                                                                                                                                             3
                                                                                                                         xn +1     ⎜             with x0 = 1.5
         a f(x) = x 2       g(x) = x + 2             b f(x) = e x      g(x) = 4 - x                                                ⎝    xn ⎟
                                                                                                                                           ⎠
                                                                                                                         b   By calculating the values of x1, x2, x3 and x4, find an
       2 By sketching appropriate graphs, find how many roots there
                                                                                                                             approximation to this root, giving your answer to 3 decimal places.
         are for each of these equations.
         a x3 + 2 − 1 = 0                            b sin x - x 3 = 1                   In part b, x is in radians.     c   By considering the change of sign of f(x) in a suitable
                        x                                                                                                    interval, verify that your answer to part b is correct to
         c ln x - x2 + 2 = 0                         d |x + 2| - x 2 = 1                                                     3 decimal places.                                                        [(c) Edexcel Limited 2004]


       3 a Sketch the graphs of y = 3 - x 2 and y = e-x on the same axes.                                              7a    Sketch, on the same set of axes, the graphs of
                                                                                                                             y = 2 - e-x and y = x
         b Explain why there are only two roots of the equation
           x 2 + e-x = 3                                                                                                     [It is not necessary to find the coordinates of any points of
           Show that one root lies in the interval [1.6, 1.7] and find                                                       intersection with the axes.]
           this root correct to 2 decimal places.
                                                                                                                         Given that f(x) = e −x +     x − 2, x    0
         c Find the other root correct to 2 decimal places.
                                                                                                                         b   explain how your graphs show that the equation f(x) = 0
C3




                                                                                                                                                                                                                                     C3
                                                                                                                             has only one solution
       4 Without drawing any graph, show that each of these
         equations has a root within the given interval. In each case,                                                   c   show that the solution of f(x) = 0 lies between x = 3 and x = 4
         find the root correct to 2 decimal places.
                                                                                                                         The iterative formula xn+1 = ( 2 − e −xn ) is used to solve the
                                                                                                                                                                   2

         a   x − 12 − 2 = 0
              3
                                     [1.3, 1.4]      b ln x -   e-x   =0    [1.0, 1.5]
                 x                                                                                                       equation f(x) = 0
         c cos x + 2x - 4 = 0 [2.3, 2.4]             d e x + x2 - 8 = 0 [-3, -2]                                         d   Taking x0 = 4, write down the values of x1, x2, x3 and x4,
                                                                                                                             and hence find an approximation to the solution of
       5 a Show that the equation x 3 - 3x - 4 = 0 has a root in the                                                         f(x) = 0, giving your answer to 3 decimal places.                        [(c) Edexcel Limited 2003]
           interval [2, 3].
                                                                                                                       8 f(x) = x 3 + x 2 - 4x - 1
         b Show that the equation x 3 - 3x - 4 = 0 can be rearranged
                                                                                                                         The equation f(x) = 0 has only one positive root, a.
           as x = 3 3x + 4
         c Use the iterative formula xn +1 = 3 3xn + 4 with x0 = 2 to find the                                           a   Show that f(x) = 0 can be rearranged as x =      ( 4xx ++11),   x ¹ -1
           root of the equation x3 - 3x - 4 = 0 correct to 2 decimal places.                                                                                ⎛ 4x + 1⎞
                                                                                                                         The iterative formula xn+1 = ⎜ n      ⎟ is used to
         d Show that the equation          x3   - 3x - 4 = 0 can also produce the                                                                     ⎝ xn + 1 ⎠
                                        x3 − 4                                                                           find an approximation to a.
             iterative formula xn +1   = n     . Take x0 = 2 and find whether
                                           3
                                                                                                                         b   Taking x1 = 1, find, to 2 decimal places, the values
             this iterative formula creates a converging or diverging
                                                                                                                             of x2, x3 and x4.
             sequence of approximations to the root.
                                                                                                                         c   By choosing values of x in a suitable interval, prove that
                                                                                                                             a = 1.70, correct to 2 decimal places.
                                                                                                                         d   Write down a value of x1 for which the iteration formula
                                                                                                                                         æ 4x + 1 ö
                                                                                                                             xn+1 = ç n ÷ does not produce a valid value for x2.
                                                                                                                                      è xn + 1 ø
 136                                                                                                                         Justify your answer.                                                     [(c) Edexcel Limited 2004]   137
Revision 2

       5Exit
                                                                                         1 Express as a single fraction in its simplest form.
                                                                                                  3x 2 − x    − 2 12
                                                                                               (3x − 1)(x + 2) x − 2x − 8


                                                                                               Simplify 3x − x − 14
                                                                                                          2

       Summary                                                                           2a
                                                                              Refer to                      2
                                                                                                             x −4
        Graphical methods
                                                                                               Hence, express 3x − x − 14 +
                                                                                                                2
          To solve an equation of the type f(x) = g(x), draw the graphs                    b                                      2     as simply as possible.
          of y = f(x) and y = g(x) and find the x-values of any
                                                                                                                  2
                                                                                                                    x −4       x(x − 2)
          points of intersection.
          To solve an equation of the type f(x) = 0, draw the graph of                   3a    Express as a fraction in its simplest form
          y = f(x) and find the x-values of the points at                                            2 +       1
                                                                                                   x − 3 x 2 − 8x + 15
          which the graph intersects (or touches) the x-axis.
          If, between x = a and x = b, the graph of y = f(x) is continuous                                                    2 +     1
                                                                                           b   Hence, solve the equation                      =1
          and f(x) changes its sign, then there is at least one root of the                                                 x − 3 x − 8x + 15
                                                                                                                                   2

          equation f(x) = 0 between x = a and x = b.                              5.1

                                                                                         4 Given that 2x − 32 + x + 1 º (ax2 + bx + c) + dx + e ,
                                                                                                        4
        Iterative methods                                                                                   x2
                                                                                                             (x − 1)                      2
                                                                                                                                             (x − 1)
        To solve an equation of the form g(x) = 0
C3




                                                                                                                                                                                                     C3
                                                                                           find the values of the constants a, b, c, d and e.                         [(c) Edexcel Limited 2008]
           rearrange g(x) into the form x = f(x)
           choose a value x0 which is close to the root                                                       1
                                                                                         5a    Express 2 -       as a single fraction.
           use the iterative formula xn+1 = f(xn) to generate the sequence                                   x−4
           x0, x1, x2, x3, …
                                                                                                                                              1
           decide if this sequence of x-values is converging or diverging                  b   The function f is defined by     f(x) = 2 -       ,     x Î R, x ¹ 4
                                                                                                                                             x−4
           if it is converging, continue until you have the root to the                        Find an expression for the inverse function f -1(x).
           required accuracy.                                                     5.2
                                                                                           c   Write down the domain of f -1.

                                                                                         6 The functions f and g are defined by
        Links
                                                                                              f: x® 2x + ln 2, x Î R
        In cases where a real-life problem cannot be solved
                                                                                              g: x ® e2x,       xÎR
        analytically, a numerical method is applied to find
        an approximate soluton.                                                            a   Prove that the composite function gf is       gf: x ® 4e4x, x Î R
        Applied problems can arise from diverse areas such                                 b   Sketch the curve with equation y = gf(x), and show the coordinates
        as engineering, economics and biological sciences.                                     of the point where the curve cuts the y-axis.
        Solutions to such problems often require scientific                                c   Write down the range of gf.
        computation involving advanced iterative methods.
                                                                                           d   Find the value of x for which d [gf(x)] = 3,
                                                                                                                               dx
                                                                                               giving your answer to 3 significant figures.                           [(c) Edexcel Limited 2006]




 138                                                                                                                                                                                               139
Revision 2                                                                                                                                                                                                   Revision 2

        7 The function f is defined by                                                                              13 a Using sin2 q + cos2 q º 1, show that cosec2 q - cot2 q º 1
             f: x ® |2x - a|, x Î R, where a is a positive constant.
                                                                                                                        b Hence, or otherwise, prove that cosec4 q - cot4 q º cosec2 q + cot2 q
          a   Sketch the graph of y = f(x), showing the coordinates of
              the points where the graph cuts the axes.                                                                 c Solve, for 90° < q < 180°, cosec4 q - cot4 q = 2 - cot q                      [(c) Edexcel Limited 2006]

          b   On a separate diagram, sketch the graph of y = f(2x), showing                                         14 a Show that
              the coordinates of the points where the graph cuts the axes.
          c
                                                            1
              Given that a solution of the equation f(x) = 2 x is x = 4,
                                                                                                                            i     cos 2x
                                                                                                                               cos x + sin x                            4 (    )
                                                                                                                                             º cos x - sin x, x ¹ n − 1 p, n Î Z
                                                                                                                               1
              find the two possible values of a.                                       [(c) Edexcel Limited 2002]           ii 2 (cos 2x - sin 2x) º cos2 x - cos x sin x - 1
                                                                                                                                                                            2
        8 The functions f and g are defined by                                                                          b Hence, or otherwise, show that the equation
                                                1
              f: x ® ln(2x - 1), x Î R,       x>2      g: x ® 2 ,       x Î R, x ¹ 3                                            cos q æ    cos 2q ö 1
                                                             x−3                                                                      ç              ÷=
                                                                                                                                      è cosq + sin q ø 2
          a   Find the exact value of fg(4).
                                                                                                                            can be written as sin 2q = cos 2q
          b   Find the inverse function f -1(x), stating its domain.
                                                                                                                        c Solve, for 0 q 2p, sin 2q = cos 2q
          c   Sketch the graph of y = |g(x)|. Indicate clearly the equation                                               giving your answers in terms of p.                                            [(c) Edexcel Limited 2006]
              of the vertical asymptote and the coordinates of the point
              at which the graph crosses the y-axis.                                                                15 f(x) = 5cos x + 12sin x
                                                      2                                                                Given that f(x) = Rcos(x - a), where R > 0 and 0 < a < p ,
          d   Find the exact values of x for which x − 3 = 3                           [(c) Edexcel Limited 2008]                                                                          2
                                                                                                                        a find the value of R and the value of a to 3 decimal places
C3




                                                                                                                                                                                                                                       C3
        9 The functions f and g are defined by                                                                          b hence, solve the equation 5cos x + 12sin x = 6 for 0                 x   2p
             f: x ® | x - a | + a, x Î R,     g: x ® 4x + a, x Î R                                                      c i Write down the maximum value of 5cos x + 12sin x.
             where a is a positive constant.                                                                              ii Find the smallest positive value of x for which this
          a   On the same diagram, sketch the graphs of f and g, showing clearly                                             maximum value occurs.                                                      [(c) Edexcel Limited 2008]
              the coordinates of any points at which your graphs meet the axes.
                                                                                                                    16 a   The graph of y = e x is transformed into the graph of each
          b   Use algebra to find, in terms of a, the coordinates of the point                                             of the following equations.
              at which the graphs of f and g intersect.                                                                    Name the transformations involved in each case and give the order
          c   Find an expression for fg(x).                                                                                in which they occur. Sketch the graph of y = e x and each of its images.
          d   Solve, for x in terms of a, the equation fg(x) = 3a                      [(c) Edexcel Limited 2003]          i    y = 1 + 2ex            ii y = 2 + e -x        iii y = 3e x-2
                                                                                                                       b   Name the transformations (and the order in which they occur)
       10 Prove that 1 − tan 2 x º cos 2x. Hence, prove that tan2 p = 7 - 4 3
                             2
                                                                                                                           that transform the graph of y = ln x into the graphs of each of these
                     1 + tan x                                   12
                                                                                                                           equations. Sketch the graph of y = ln x and each of its images.
                                                                                                                                                                                      1
       11 a   By writing sin 3q as sin(2q + q), show that sin 3q = 3sin q - 4sin3 q                                        i    y = 3 - ln x           ii y = 1 + 2ln x       iii y = 2 ln (x + 2)

          b   Given that sin q = 3 , find the exact value of sin 3q.                   [(c) Edexcel Limited 2007]   17 a   A population P of individuals increases over a time t (days) from
                                  4                                                                                                                                                            t
                                                                                                                           an initial value of P0, according to the relation P = P0 e10
       12 a   Given that 2sin(q + 30)° = cos (q + 60)°, find the exact value of tan q °.                                   How many days have to elapse for the population to double in size?
          b   i Using the identity cos (A + B) º cos Acos B - sin Asin B,                                              b   A number of cells are being infected with a virus. The number N
                  prove that cos 2A º 1 - 2 sin2 A                                                                         of uninfected cells reduces with time t (hours) as given by
                                                                                                                                                   t
              ii Hence solve, for 0 x 2p, cos 2x = sin x,                                                                     N = 80 + 25e 2
                                                                                                                                               −

                  giving your answers in terms of p.                                                                       i How many uninfected cells were there initially?
              iii Show that sin 2y tan y + cos 2y º 1 for 0 y < 1 p                    [(c) Edexcel Limited 2005]
                                                                                                                           ii What is the limiting value of N as time increases?
                                                                    2
 140                                                                                                                                                                                                                                 141
Revision 2                                                                                                                                                                                                                   Revision 2

       18 A savings account earns interest on the money invested in it                                               22 Differentiate with respect to x.
          at a constant rate of 5% each year. An initial investment of                                                                                                                                          ex
                                                                                                                        a e x sin x                   b x3 ln x                 c     e -x (x 2 - 3)       d
          £1 thus has a value of £y after t years where y = 1.05t                                                                                                                                              sin x
          a   Sketch the graph of y = 1.05t             for t   0                                                             ln x                           x3 − 1                                                 3
                                                                                                                        e                             f                         g ln(tan x)                h   ex
                                                                                                                             x2 − 1                          x3 + 1
          b   Find the total value of an initial investment of £500 after it has been
              in the account for 6 years. Give your answer to the nearest £.                                                 3
                                                                                                                                 x 2 − 2x + 5
                                                                                                                                                                3                       ex
                                                                                                                        i                             j                         k                          l   cos2 x sin x
                                                                                                                                                              x3 − 1                   e −1
                                                                                                                                                                                        x
          c   How many years does it take for any investment to double in value?
          d   What must be the interest rate (to 1 decimal place) if an                                              23 a   Differentiate with respect to x.
              investment is to double in value after 10 years?                                                                                                        cos ( 2x 3 )
                                                                                                                            i      x 2e 3x + 2                 ii
                                                                                                                                                                         3x
       19 A particular species of orchid is being studied. The population                                                                                                    dy
          p at time t years after the study started is assumed to be                                                    b   Given that x = 4sin (2y + 6), find                  in terms of x.                          [(c) Edexcel Limited 2006]
                                                                                                                                                                             dx
                             0.2t
              p = 2800ae0.2t          where a is a constant.
                    1 + ae                                                                                           24 a   Differentiate with respect to x
          Given that there were 300 orchids when the study started,
                                                                                                                            i      e 3x(sin x + 2cos x) ii x3 ln(5x + 2)
          a   show that a = 0.12
                                                                                                                        Given that y = 3x + 6x 2− 7 ,
                                                                                                                                         2
                                                                                                                                                                      x ¹ -1,
          b   use the equation with a = 0.12 to predict the number of                                                                              (x + 1)
              years before the population of orchids reaches 1850.                                                                          dy    20
                                                                                                                        b   show that          =
C3




                                                                                                                                                                                                                                                       C3
                                                                                                                                            dx (x + 1)3
                                        336
          c   Show that p =                 −
                                    0.12 + e 0.2t                                                                                                d2y                                     d2y     15
                                                                                                                        c   Hence find              2 and the real values of x for which      =−                        [(c) Edexcel Limited 2008]
          d   Hence show that the population cannot exceed 2800.                        [(c) Edexcel Limited 2005]                               dx                                      dx 2     4


                                                                                                                     25 a   The curve C has equation y =                     x
       20 A heated metal ball is dropped into a liquid. As the ball cools,
                                                                                                                                                                          9 + x2
          its temperature, T °C, t minutes after it enters the liquid, is                                                   Use calculus to find the coordinates of the turning points of C.
          given by
                                                                                                                                                               3
                                                                                                                                                                                            dy
              T = 400 e -0.05t + 25,         t      0                                                                   b   Given that y = (1 + e2x)2, find the value of    at x = 1 ln 3                               [(c) Edexcel Limited 2007]
                                                                                                                                                                         dx        2
          a   Find the temperature of the ball as it enters the liquid.
                                                                                                                     26 Find the stationary points on these curves and determine their nature.
          b   Find the value of t for which T = 300, giving your answer                                                          x
              to 3 significant figures.                                                                                 a    y=e                          b y = xe x
                                                                                                                                    x
          c   Find the rate at which the temperature of the ball is                                                          y=       x
                                                                                                                        c                                 d y = e-2x sin x           where -p     x    p
              decreasing at the instant when t = 50. Give your answer                                                               x +1
                                                                                                                                      2

              in °C per minute to 3 significant figures.
                                                                                                                     27 A curve C has equation y = x2e x
          d   From the equation for temperature T in terms of t, given                                                               dy
              above, explain why the temperature of the ball can never                                                  a   Find        , using the product rule for differentiation.
                                                                                                                                     dx
              fall to 20 °C.                                                            [(c) Edexcel Limited 2006]      b   Hence, find the coordinates of the turning points of C.
                                                                                                                                     d2y
       21 Solve the equations                                                                                           c   Find
                                                                                                                                     dx 2
          a   6 + 3e-x = 8               b ln (x + 3)2 = 4          c e2x = 3ex - 2
                                                                                                                        d   Determine the nature of each turning point of the curve C.                                  [(c) Edexcel Limited 2008]


 142                                                                                                                                                                                                                                                 143
Revision 2                                                                                                                                                                                              Revision 2

                                                         x and explain why
       28 a   Find dy for the curve C where y =                                                                   33 a   Show that the equation 1 x4 - x - 3 = 0
                    dx                                 x2 − 1                                                                                        10
              the graph of C is a falling curve for all values of x.                                                     has a root in the interval [2, 3].
          b   Find the equation of the tangent to C at the point where                                               b   Show that the equation 1 x4 - x - 3 = 0
              x = 2. Also find the equation of the normal to C at the                                                                                10
              point where x = -2.                                                                                        can produce the iterative formula xn + 1 = 4 10 xn + 30

          c   Find, to 2 decimal places, the coordinates of the point                                                c   Take x0 = 1 and find the root correct to 3 decimal places.
              where this tangent and normal intersect.
                                                                                                                  34 Find the equation in the form f(x) = 0 which each of these
       29 A curve C has equation y =   e2x    tan x,   x ¹ (2n+1)p                                                   iterative formulae can be used to solve.
                                                                 2
                                                                                                                                 3 − xn
          a   Show that the turning points on C occur where tan x = -1                                               a xn +1 =                   b        xn +1 = 3 5(xn - 2)       c   xn +1 = 3 + 2
                                                                                                                                    2
                                                                                                                                   xn                                                               xn
          b   Find the equation of the tangent to C at the point where x = 0         [(c) Edexcel Limited 2008]

                                                                                                                                                                     x
       30 a   Given that y = loga x, x > 0, where a is a positive constant,                                       35 a   Show that the iterative formula xn + 1 = a − n can be
                                                                                                                                                                          xn    b
                                                                                                                                                             3    2
              i express x in terms of a and y                                                                            used to solve the equation 2x + x - 24 = 0
              ii deduce that ln x = y ln a                                                                               Find the values of a and b in this case.
          b   Show that dy = 1                                                                                       b   Show that a root of the equation lies between x = 2 and x = 3
                        dx x ln a
                                                                                                                     c   Take x0 = 2 and find the root correct to 3 significant figures.
C3




                                                                                                                                                                                                                                  C3
          The curve C has equation y = log10 x, x > 0
          The point A on C has x-coordinate 10.
          Using the result in part b,                                                                             36 f(x) = x3 - 2 - 1 , x ¹ 0
                                                                                                                                     x
          c   find an equation for the tangent to C at A.                                                            a   Show that the equation f(x) = 0 has a root between 1 and 2.
          d   The tangent to C at A crosses the x-axis at the point B.                                               b   An approximation for this root is found using the
              Find the exact x-coordinate of B.                                      [(c) Edexcel Limited 2004]          iteration formula
                                                                                                                                             1

       31 a   Sketch the graphs of y =   x3   and y = 6 -   x2   on the same axes.                                          xn+1 = ⎛ 2 + 1 ⎟
                                                                                                                                   ⎜
                                                                                                                                            ⎞3   with x0 = 1.5
                                                                                                                                   ⎝     xn ⎠
          b   Explain why there is only one root of the equation                                                         By calculating the values of x1, x2, x3 and x4, find an
              x3 + x2 - 6 = 0                                                                                            approximation to this root, giving your answer to
          c   Use your graph to state the interval [a, b] within which the                                               3 decimal places.
              root of the equation x3 + x2 - 6 = 0 lines, where a and b are                                          c   By considering the change of sign of f(x) in a suitable
              consecutive integers.                                                                                      interval, verify that your answer to part b is correct to
          d   Find the root of the equation x3 + x2 - 6 = 0                                                              3 decimal places.                                                         [(c) Edexcel Limited 2004]
              correct to 1 decimal place.

       32 a   Find the interval [a, a + 1], where a is a positive integer,
              such that the only root of the equation e x - x2 - 2 = 0
              lies within this interval.
          b   Find the root correct to 2 decimal places.



 144                                                                                                                                                                                                                            145
Revision 2

       37 This diagram shows part of the curve C with equation                    y
          y = f(x), where f(x) = 0.5e x - x2
          The curve C cuts the y-axis at A and there is a minimum at
          the point B.
          a   Find an equation of the tangent to C at A.
                                                                                  A
                                                                                                              C

                                                                                                                       6 Partial fractions
          The x-coordinate of B is approximately 2.15. A more exact               O                                x      This chapter will show you how to
          estimate is to be made of this coordinate using iterations                               B                        separate a fraction with different linear factors in its denominator
          xn+1 = ln g(xn)                                                                                                   into partial fractions
                                                                                                                            separate a fraction with a repeated linear factor in its denominator
          b   Show that a possible form for g(x) is g(x) = 4x
                                                                                                                            into partial fractions
          c   Using xn+1 = ln 4xn, with x0 = 2.15, calculate x1, x2 and x3.                                                 separate an improper fraction into partial fractions
              Give the value of x3 to 4 decimal places.                               [(c) Edexcel Limited 2002]            use the methods of equating coefficients and substitution, including
                                                                                                                            the cover-up rule.
       38 f(x) = 1 - 1 + ln x , x > 0                                             y
                    2x           2
          This diagram shows part of the curve with equation y = f(x).                                                 Before you start
          The curve crosses the x-axis at the points A and B, and has a
          minimum at the point C.                                                                                      You should know how to:                              Check in:
                                                                                                                                                                                                                 1
                                                 1                                                                     1 Substitute into formulae.                          1 Find the value of y and z when x = 4
          a   Show that the x-coordinate of C is 2 .
                                                                                                                          e.g. Find z = 3x − 1 when x = 3
                                                                                                                                                                                    a y = 22x + 1
                                                                                                                                                                                             2
                                                                                                                                            (x − 1)
                                                                                                                                              2                     4          if




                                                                                                                                                                                                                           C4
C3




          b   Find the y-coordinate of C in the form kln 2,                       O     A              B           x                                                                        x (1 − x)
                                                                                                                             9 −1
              where k is a constant.                                                                                      z= 4      = 5 × 16 = 20
                                                                                                                                                                                    b z = (2 − x)
                                                                                               C                                                                                                 2
                                                                                                                                                                                           2
                                                                                                                                 (      )
                                                                                                                                  2   4 1
                                                                                                                             3 −1
          c   Verify that the x-coordinate of B lies between 4.905 and 4.915                                                 4                                                              x (1 + 3x)

          d   Show that the equation 1 -1 + ln x = 0 can be rearranged into
                                              2x       2                                                               2 Factorise expressions.                             2 Factorise
                                  ⎛     1 ⎞
                                  ⎜ 1− 2x ⎟                                                                               e.g.   6x 2+ 11x - 10                               a 4x 3 - 9x
              the form x =      2e⎝ n ⎠
                                                                                                                                 = (2x + 5)(3x - 2)
                                                                                                                                                                               b x4 - 1
          The x-coordinate of B is to be found using the iterative formula
                         ⎛ 1− 1 ⎞
                         ⎜ 2x ⎟
              xn+1 = 2e⎝       n ⎠
                                       with x0 = 5                                                                     3 Create and use identities.                         3 Find A and B if
                                                                                                                          e.g. Find A and B if 3x + 8 º A(x + 2) + Bx         a x(5x + 3) + 6x º x(Ax + B)
          e   Calculate, to 4 decimal places, the values of x1, x2 and x3.            [(c) Edexcel Limited 2005]
                                                                                                                          Equate constants: 8 = 2A so A = 4
                                                                                                                                                                               b (Ax + 3)(2x + B) º 8x 2 + 10x + 3
                                                                                                                          Equate coefficients of x:
       39 f(x) = 3ex - 1 ln x - 2, x > 0                                                                                  3 = A + B so B = -1
                         2
          a   Differentiate to find f ¢(x).                                                                            4 Add and subtract algebraic fractions.              4 Work out
                                                                                                                                                                                      3 +    4
                                                                                                                          e.g. 2 + 4 2 = 2(x + 1) + 4 (x + 3)
                                                                                                                                                 2
          b   The curve with equation y = f(x) has a turning point                                                                                                             a
                                                                                                                              x + 3 (x + 1) (x + 3)(x + 1)2                         x + 1 (x + 1)2
              at P. The x-coordinate of P is a. Show that a = 1 e-a                                                                                       2x 2 + 8x + 14
                                                                     6                                                                                =                        b 1+       2 + 3
          The iterative formula xn+1 = 1 e −xn ,     x0 = 1, is used to find an                                                                           (x + 3)(x + 1)2           x   x +1 x −1
                                       6
          approximate value for a.
          c Calculate the values of x1, x2, x3 and x4, giving your                                                     5 Divide algebraic expressions.                      5 Divide
             answers to 4 decimal places.                                                                                 e.g. (x 2 + 4x + 7) ¸ (x + 3)                       a (x 3 - 3x 2 - x + 3) by (x + 1)
                                                                                                                                              4
                                                                                                                                 = x +1+                                       b (x 2 + 6x - 1) by (x - 2)
          d   By considering the change of sign of f ¢(x) in a suitable                                                                      x+3
              interval, prove that a = 0.1443 correct to 4 decimal places.            [(c) Edexcel Limited 2005]
 146                                                                                                                                                                                                                 147
6 Partial fractions

                                                                                                                                                                                                                                                                                                                                                               You can use the method of substitution to separate a fraction into
       6.1                              Separating fractions                                                                                                                                                                                                                                                                                                   partial fractions.




                                                                                                                                                                                                                                                                                                                                                   EXAMPLE 2
                    You can express a proper fraction of the type                                                                                                                                                                                                                                                 The initial fraction must be a                                                          5x − 1
                                                                                                                                                                                                                                                                                                                                                                 Express                                             in partial fractions.                                                                                                                                                                                                                    This is the same as Example 1,
                                           f(x)                                                                                                                                                                                                                                                                   proper fraction. That is, the                                                       (x − 2)(x + 1)                                                                                                                                                                                                                                          using a different method.
                                (ax + b)(cx + d )(ex + f )                                                                                                                                                                                                                                                        numerator must be of a lower                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                  degree than the denominator.
                    as partial fractions of the type                                                                                                             A + B + C                                                                                                                                                                                       Let                                      5x - 1    º A + B º A(x + 1) + B(x - 2)
                                                                                                                                                               ax + b cx + d ex + f                                                                                                                                                                                                                   (x - 2)(x + 1) x - 2 x + 1 (x - 2)(x + 1)
                    where A, B and C are constants.
                                                                                                                                                                                                                                                                                                                                                                 Equate the numerators:                                                                                                                   5x - 1 º A(x + 1) + B(x - 2)
                                                                                                                                                                                                                                                                                                                                                                 In particular, let x = -1 to eliminate A:                                                                                                                                                                                                                                                    An identity is true for all
                   You can use the method of equating coefficients to separate a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              values of x.
                                                                                                                                                                                                                                                                                                                                                                                                       -5 - 1 = 0 + B(-1 - 2)                                                                                       so                    B=2
                   fraction into partial fractions.
                                                                                                                                                                                                                                                                                                                                                                 Now let x = 2 to eliminate B:
                                                                                                                                                                                                                                                                                                                                                                                                      10 - 1 = 3A                                                     so                    A=3
       EXAMPLE 1




                     Express     5x − 1     in partial fractions.
                             (x − 2)(x + 1)                                                                                                                                                                                                                                                                                                                      So,                  5x − 1    ≡ 3 + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Check your answer by adding
                                                                                                                                                                                                                                                                                                                                                                                  (x − 2)(x + 1) x − 2 x + 1                                                                                                                                                                                                                                                   3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  and 2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              x−2    x −1
                     Form an identity (which is true for all values of x):
                     Let                   5x - 1      º A + B
                                                                                                                                                                                                                                                                                                                  See C 3 for revision of
                                                                                                                                                                                                                                                                                                                                                               You can use either of these methods or a mixture of the two
                                       (x - 2)(x + 1) x - 2 x + 1                                                                                                                                                                                                                                                 adding fractions.
                                                                                                                                                                                                                                                                                                                                                               to keep your working to a minimum.
                                                                                                                                               º A(x + 1) + B(x - 2)
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C4
                                                                                                                                                                     (x - 2)(x + 1)




                                                                                                                                                                                                                                                                                                                                                   EXAMPLE 3
                                                                                                                                               º (A + B)x + A - 2B                                                                                                                                                                                                                                                                                                                                x 2 − 11x − 6
                                                                                                                                                                                                                                                                                                                                                                 Express as partial fractions
                                                                                                                                                                     (x - 2)(x + 1)                                                                                                                                                                                                                                                                                                           (x + 2)(x − 2)(2x − 1)
                                                                                                                                                                                                                                                                                                                                                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                     Equate the numerators: 5x - 1 º (A + B)x + A - 2B
                                                                                                                                                                                                                                                                                                                                                                 Let                   x 2 − 11x − 6     ≡ A + B + C                                                                                                                                                                                                                                          A, B and C are numerical
                     The two sides of this identity must be identical.                                                                                                                                                                                                                                                                                                             (x + 2)(x − 2)(2x − 1) x + 2 x − 2 2x − 1                                                                                                                                                                                                                                  constants. The Core 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              specification does not extend
                     Equate the coefficients of x: 5 = A + B                                                                                                                                                                                                                                                      You now have two simultaneous                                A (x − 2)(2x − 1) + B (x + 2)(2x − 1) + C (x + 2)(x − 2)
                                                                                                                                                                                                                                                                                                                                                                                                             ≡                                                                                                                                                                                                                                                to algebraic numerators.
                     Equate the constants:         -1 = A - 2B                                                                                                                                                                                                                                                    equations in A and B.                                                         (x + 2)(x − 2)(2x − 1)
                                                                                                                                                                                                                                                                                                                                                                 Consider the numerators.
                     Subtract these two equations to eliminate A:
                                                                                                         5 - (-1) = B - (-2B)                                                                                                                                                                                                                                    Let x = 2 to eliminate A and C:                                                                                              4 - 22 - 6 = 0 + B ´ 4 ´ 3 + 0                                                                                                                                  x2 - 11x - 6 = 4 - 22 - 6
                                                                                                                6 = 3B                                                                                                                                                                                                                                                                                                                                                                          so -24 = 12B and B = -2
                                                                                                                B=2
                                                                                                                                                                                                                                                                                                                                                                 Let x = -2 to eliminate B and C:                                                                                               4 + 22 - 6 = A ´ (-4) ´ (-5) + 0 + 0
                     Substitute into 5 = A + B:                                                                                       A=3                                                                                                                                                                                                                                                                                                                                                         so 20 = 20A and A = 1
                                                                                                                                                                                                                                                                                                                  Check your answer by adding
                     So, in partial fractions,     5x − 1    ≡ 3 + 2
                                                                                                                                                                                                                                                                                                                   3 and 2                                       Equate coefficients of x2:                                                                                                           1 = 2A + 2B + C                                                                                                                                         To find the coefficients,
                                               (x − 2)(x + 1) x − 2 x + 1                                                                                                                                                                                                                                         x−2   x −1                                                                                                                                                                                                                                                                                                                                  expand the brackets:
                                                                                                                                                                                                                                                                                                                                                                 Substitute the values of A and B:                                                                                                   C=3                                                                                                                                                      A(x - 2)(2x - 1) = A(2x2 - 5x + 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              B(x + 2)(2x - 1) = B(2x2 - 2x - 2)
                                                                                                                                                                                                                                                                                                                                                                 So,                 x 2 − 11x − 6     ≡ 1 − 2 + 3                                                                                                                                                                                                                                             C(x + 2)(x - 2) = C(x2 - 4)
                                                                                                                                                                                                                                                                                                                                                                                 (x + 2)(x − 2)(2x − 1) x + 2 x − 2 2x − 1




 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               149
6 Partial fractions                                                                                                                                                                                                                                                                                                                                                                                                                 6 Partial fractions

                   You can use the cover-up rule when a fraction has only linear                                                                                                                                                                                                                                                                               Exercise 6.1
                   factors. It is a shortened form of the method of substitution.                                                                                                                                                                                                                                                                              1 Use the method of equating coefficients to express these in partial fractions.
                                                                                                                                                                                                                                                                                                                                                                  a      4x + 5                 b       x + 25                 c          2
                                                                                                                                                                                                                                                                                                                                                                      (x + 2)(x + 1)                (x − 3)(x + 4)                  (x − 3)(x + 5)
       EXAMPLE 4




                     Use the cover-up rule to express                                                                                                                        3x 2 + 16x − 10
                                                                                                                                                                          (x − 1)(x + 2)(2x − 1)                                                                                                                                                                       4x − 3                           7x + 2                         2x − 5
                     in partial fractions.                                                                                                                                                                                                                                                                                                                        d                             e                              f
                                                                                                                                                                                                                                                                                                                                                                       x(x − 1)                     (x + 5)(2x − 1)                 x 2 − 6x + 8
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Let                 3x 2 + 16x − 10    ≡ A + B + C                                                                                                                                                                                                                                                                                        2 Use the method of substitution to express these in partial fractions.
                                      (x − 1)(x + 2)(2x − 1) x − 1 x + 2 2x − 1
                                                                                                                                                                                                                                                                                                                                                                          4x − 7                       5x + 11                       x+4
                                                                                                                                                                                                                                                                                                                                                                  a                             b                              c
                     To find A, cover up (x - 1) and substitute x = 1 in the rest of the fraction:                                                                                                                                                                                                                           3x2 + 16x − 10                           (x − 3)(x − 2)                (x + 1)(x + 4)                  x(x + 1)
                                                                                                                                                                                                                                                                                                                         (x − 1) (x + 2) (2x − 1)
                                                                    A = 3 + 16 − 10 = 9 = 3                                                                                                                                                                                                                                                                               x − 11                              3x                       x2 − x + 1
                                                                                       (1 + 2) × (2 − 1)                                                          3×1                                                                                                                                                                                             d                             e                              f
                                                                                                                                                                                                                                                                                                                                                                       x − 7x + 6
                                                                                                                                                                                                                                                                                                                                                                        2                           (x − 1)(x − 2)(x − 3)           (x 2 − 1)(2 − x)
                     To find B, cover up (x + 2) and substitute x = -2 in the rest of the fraction:                                                                                                                                                                                                                   3x2 + 16x − 10
                                                                                                                                                                                                                                                                                                                  (x − 1) (    ) (2x − 1)                      3 Use the cover-up rule to express these in partial fractions.
                                                                    B = 3 × 4 + 16 × (−2) − 10 =                                                                                                          −30
                                                                                                                                                                                                                                         = −2                                                                                                                                                          3x + 7
                                                                                                 (−2 − 1) × (−4 − 1)                                                                         (−3) × (−5)                                                                                                                                                          a          9
                                                                                                                                                                                                                                                                                                                                                                                                b (x − 1)(x + 4)                c         1
                                                                                                                                                                                                                                                                                                                                                                       (x − 2)(x + 1)                                               (x − 5)(x − 3)
                     To find C, cover up (2x - 1) and substitute x = 1 in the rest of the fraction:                                                                                                                                                                                                                   3x2 + 16x − 10
                                                                                                                                                                                                      2                                                                                                           (x − 1) (x + 2) (     )                         d     x−3                     e       4−x                     f       1
                                                                                                                                                                                                                                                                                                                                                                       x(x − 2)                     x(x + 1)(x + 2)                 4x 3 − x

                                                                  C=                          4  ()
                                                                                            3 1 + 16 − 10
                                                                                                   2      =
                                                                                                               −1
                                                                                                                  1
                                                                                                                  4   = 5×4 =1
                                                                                        ( ) (                                                              ) ( ) ()                                                                                                                                                                                            4 Express these in partial fractions.
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C4
                                                                                            1 −1 × 1 + 2    −
                                                                                                              1 × 5     4 5
                                                                                            2        2        2     2                                                                                                                                                                                                                                                       2x                               3                             6x
                                                                                                                                                                                                                                                                                                                                                                  a                             b                              c
                                                                                                                                                                                                                                                                                                                                                                       x 2 − 6x + 8                 (x − 3)(x 2 + x − 2)            (2x − 1)(3x − 2)
                     Hence                                                  3x 2 + 16x − 10    ≡ 3 − 2 + 1
                                                                         (x − 1)(x + 2)(2x − 1) x − 1 x + 2 2x − 1
                                                                                                                                                                                                                                                                                                                                                                  d 3 − x2                      e   2x + 3                     f    2x + 5
                                                                                                                                                                                                                                                                                                                                                                      1− x                          4x 3 − x                        9 − 4x 2

                                                                                                                                                                                                                                                                                                                                                                          x2 + 4                           2x                             6
       EXAMPLE 5




                                                                                                                                                               x +1
                                                                                                                                                                                                                                                                                                                                                                  g                             h                              i
                     Express as partial fractions                                                                                                                                                                                                                                                                                                                      2x − x 2 − x 3               (1 + 2x)(4 − x 2)               x 4 − 5x 2 + 4
                                                                                                                                                           8x − 2x − 3
                                                                                                                                                             2

                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Factorise the denominator: 8x 2 - 2x - 3 º (2x + 1)(4x - 3)
                                                                                                                                                                                                                                                                                                                                                                 INVESTIGATION
                                                                                                                             x +1       ≡ A + B                                                                                                                                                                                                                                                                    5x − 1
                     Let
                                                                                                                        (2x + 1)(4x − 3) 2x + 1 4x − 3                                                                                                                                                                                                           5 a Examples 1 and 2 showed that                            ≡ 3 + 2
                                                                                                                                                                                                                                                                                                                                                                                                               (x − 2)(x + 1) x − 2 x + 1
                                                                                                                  1 +1               −                                                                                                                                                                                                                                   Use a graphical calculator or a graphical computer package
                     To find A, let x = - 1 :                                                                  A= 2     =−1                                                                                                                                                                                       Cover up (2x + 1) and substitute x = − 1               to draw the three graphs of
                                          2                                                                      −2 − 3   10                                                                                                                                                                                                                               2

                                                                                                                                                                                                                                                                                                                                                                          y=          5x − 1 , y = 3        y = 2
                                                                                                                    3 +1                                                                                                                                                                                                                                                          (x − 2)(x + 1)  x − 2 and    x +1
                     To find B, let x = 3 :                                                                      B= 4    = 7                                                                                                                                                                                      Cover up (4x - 3) and substitute x = 3
                                                                                      4                             3 + 1 10                                                                                                                                                                                                                           4
                                                                                                                                                                                                                                                                                                                                                                         See how the graphs of the two partial fractions add
                                                                                                                    2
                                                                                                                                                                                                                                                                                                                                                                         together to give the graph of the original fraction.
                                                                        x +1     ≡−      1     +    7                                                                                                                                                                                                                                                                    Pay particular attention to the asymptotes.
                     So
                                                                   8x 2 − 2x − 3    10 (2x + 1) 10(4x − 3)
                                                                                                                                                                                                                                                                                                                                                                      b Repeat this graphical investigation using a fraction which
                                                                                                                                                                                                                                                                                                                                                                      has a denominator with three factors,
                                                                                                                                                                                                                                                                                                                                                                                           3x
                                                                                                                                                                                                                                                                                                                                                                         such as (x − 1)(x − 2)(x − 3)
 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                         151
6 Partial fractions




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EXAMPLE 2
       6.2                               More partial fractions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Express as partial fractions 2x − 2x + 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (x + 4)(x − 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    A proper fraction of the type                                                                                                          f(x) , where f(x) is a                                                                                                                                                       (ax + b)2 is a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Let 2x − 2x + 14 ≡
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A + B + C
                                                                                                                                                        (ax + b)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1)
                                                                                                                                                                                                                                                                                                                                        repeated linear factor.                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (x + 4)(x − 2)                                                            x + 4 x − 2 (x − 2)2
                    polynomial in x, will produce two partial fractions of the type
                                 A +      B                                                                                                                                                                                                                                                                                                                                                                                                                                     Use the cover-up rule.
                               ax + b (ax + b)2                                                                                                                                                                                                                                                                                                                                                                                                                                 To find A, cover up (x + 4) and let x = -4:
                    where A and B are constants.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A = 2x − 2x + 14 = 2 × (− 4) − 2 × (2 4) + 14 = 54 = 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2                     2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                So                                                     2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (x − 2)                                                                                (− 4 − 2)                                                                      36                      2
                   A repeated factor (ax + b)3 will produce partial fractions
                             A       B         C                                                                                                                                                                                                                                                                                                                                                                                                                                To find C, cover up (x - 2) 2 and let x = 2:
                                +         +
                          ax + b (ax + b)2 (ax + b)3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C = 2x − 2x + 14 = 2 × 2 − 2 × 2 + 14 = 18 = 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2                 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                So
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (x + 4)                                                                             2+4                                                              6
       EXAMPLE 1




                     Express as partial fractions                                                                                                     4 − 7x                                                                                                                                                                                                                                                                                                                    To find B
                                                                                                                                                  (x + 3)(x − 2)2                                                                                                                                                                                                                                                                                                               either
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2x 2 − 2x + 14 ≡ A(x − 2) + B(x + 4)(x − 2) + C (x + 4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2
                             4 − 7x     ≡ A + B + C
                     Let                                                                                                                                                                                                                                                                                                                                                                                                                                                          (x + 4)(x − 2) 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (x + 4)(x − 2)2
                         (x + 3)(x − 2)2 x + 3 x − 2 (x − 2)2
                                                                                                                     A(x − 2)2 + B(x + 3)(x − 2) + C (x + 3)                                                                                                                                                                                                                                                                                                                    Equate coefficients of x²:
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4
                                                                                                          ≡                                                                                                                                                                                                                                                                                                                                                                        2=A+B
                                                                                                                                (x + 3)(x − 2)2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                so B = 2 − A = 2 − 3 = 1
                     Equate the numerators: 4 - 7x º A(x - 2)2 + B(x + 3)(x - 2) + C(x + 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2                  2
                     Let x = 2:             4 - 14 = 0 + 0 + C ´ (2 + 3)                                                                                                                                                                                                                                                                                                                                                                                                        or
                                                                                                                           C = -2                                                                                                                                                                                                                                                                                                                                               Let x = 0 and substitute in (1):                                                                                                                                                                                                                                                             Any x-value would do,
                     Let x = -3:                                                                                      4 + 21 = A ´ (-5)2 + 0 + 0                                                                                                                                                                                                                                                                                                                                  14 = 3 + B + 3                                                                                                                                                                                                                                                                             but x = 0 is the easiest.
                                                                                                                           A=1                                                                                                                                                                                                                                                                                                                                                   4 × 4 2 × 4 −2 4

                     No other choice of x-value reduces a bracket to zero.                                                                                                                                                                                                                                                                                                                                                                                                      Multiply by 8:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7 = 3 - 4B + 6
                     There are now two ways forward:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B= 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
                     either                                                                                                                                                                                                                                                 or
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                So                     2x 2 − 2x + 14 ≡  3    +   1    +   3
                     Use A = 1, C = -2 and                                                                                                                                                                                                                                  Equate the coefficients
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (x + 4)(x − 2)2 2(x + 4) 2(x − 2) (x − 2)2
                     let x = 1 in the numerators:                                                                                                                                                                                                                           of x2 in the numerators:
                       4 - 7 = 1 ´ (-1)2 + B ´ 4 ´ (-1) + (-2) ´ 4                                                                                                                                                                                                          0=A+B
                           -3 = 1 - 4B - 8                                                                                                                                                                                                                                  B = -A                                                                                                                                                                                            A fraction with a numerator of degree higher than (or equal to)                                                                                                                                                                                                                                x3 + 1
                            B = -1                                                                                                                                                                                                                                          B = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  is an example of an
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              the degree of the denominator is an improper fraction.                                                                                                                                                                                                                                         x2 − 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             improper fraction.
                     You could choose any value of x.                                                                                                                                                                                                                Equating coefficients is usually the most
                     x = 1 and x = 0 are generally simple to use.                                                                                                                                                                                                    efficient method at this point.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Before you can separate an improper fraction into
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              partial fractions, you must first change it to a mixed fraction,                                                                                                                                                                                                                               A numerical equivalent is
                     So     4 − 7x     ≡ 1 − 1 −       2                                                                                                                                                                                                                                                                                                                                                                                                                      consisting of a quotient and a remainder, by                                                                                                                                                                                                                                                   changing 9 to 2 1 .
                        (x + 3)(x − 2)2 x + 3 x − 2 (x − 2)2                                                                                                                                                                                                                                                                                                                                                                                                                     either algebraic long division
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4       4

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 or       rearranging the numerator and finding the quotient
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          and remainder by inspection.


 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             153
6 Partial fractions                                                                                                                                                                                                                                                                                                                                                                                                           6 Partial fractions

       EXAMPLE 3                                                                                                                                                                                                                                                                                                                                        Exercise 6.2
                     Express 2 x + 7 as partial fractions.
                             2 2                                                                                                                                                                                                                                                                                                                        1 These fractions have repeated factors in the denominators.
                            x −x−6                                                                                                                                                                                                                                                                                                                        Express the fractions as partial fractions.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••v•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Numerator and denominator are both of degree 2, so it is an improper                                                                                                                                                                                                                                                                  a        x +1             b          16            c        x2 − 7
                     fraction. You must change it to a mixed fraction.                                                                                                                                                                                                                                                                                         (x − 1)(x − 2)2            (x + 1)(x − 3)2          (2x − 1)(x + 1)2

                     either                                                                                                                                              or                                                                                                                                                                                d      x                  e     x − 10             f      x2 − 1
                     Use long division:                                                                                                                                  Rearrange the numerator:                                                                                                                                                              (x − 4)2                   x 2(x − 2)               x 3 − 2x 2
                                    2                                                                                                                                       2x 2 + 7
                     x 2 - x - 6 2x 2                            )                                          +7                                                             x -x-62
                                                                                                                                                                                                                                                                                                                  The numerator is now
                                                                                                                                                                                                                                                                                                                                                           g        1
                                                                                                                                                                                                                                                                                                                                                                x(3x − 1)2
                                                                                                                                                                                                                                                                                                                                                                                     h      x−4
                                                                                                                                                                                                                                                                                                                                                                                          x(x + 2)3
                                                                                                                                                                             º 2(x - x2 - 6) + 2x + 19
                                                                                                                                                                                   2
                                                                     2x 2 - 2x - 12                                                                                                                                                                                                                               2 ´ denominator
                                                                            2x + 19                                                                                                  x -x-6                                                                                                                         + compensating terms
                                                                                                                                                                                                                                                                                                                                                        2 Express these improper fractions as partial fractions.
                                         2x 2 + 7 ≡ 2 + 2x + 19                                                                                                                     º 2 + 2 x + 19
                                                                                                                                                                                          2                                                                                                                       The quotient is 2 and
                                                                                                                                                                                                                                                                                                                                                           a     x                   b     x2                 c        x2 − 2
                     So                                                                                                                                                                  x -x-6                                                                                                                   the remainder is 2 x + 19
                                                                                                                                                                                                                                                                                                                                     2                          x+2                       x −1
                                                                                                                                                                                                                                                                                                                                                                                           2                       (x − 1)(x + 3)
                                        x −x−6
                                         2
                                                       x2 − x − 6                                                                                                                                                                                                                                                                      x − x −6

                                                                                                                              2x + 19                                                                                                                                                                                                                            x2 + 1                    x2                       x3
                                                                                             Let 2 x + 19 º
                                                                                                 2
                                                                                                                                                                                                                                                                                                                  Factorise the denominator.
                                                                                                                                                                                                                                                                                                                                                           d
                                                                                                                                                                                                                                                                                                                                                                x(x + 1)
                                                                                                                                                                                                                                                                                                                                                                                     e
                                                                                                                                                                                                                                                                                                                                                                                          x −1
                                                                                                                                                                                                                                                                                                                                                                                                              f
                                                                                                                                                                                                                                                                                                                                                                                                                   x −12
                                                                                                                 x - x - 6 (x + 2)(x - 3)
                                                                                                                          º A + B
                                                                                                                                                                                                                                                                                                                                                           g x 2− 3x + 5
                                                                                                                                                                                                                                                                                                                                                              3     2
                                                                                                                                                                                                                                                                                                                                                                                     h 9 + x2                         x3
                                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                           x+2 x-3                                                                                                                                                                                                                                                                            i
                                                                                                                                                                                                                                                                                                                                                                 x + x−2                  9−x                      4x 2 − 1
                     Use the cover-up rule.
                                                                                                                                                      A = -4 + 19 = 15 = -3
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4
                                                                                                                                                                                                                                                                                                                                                        3 Express x + 2 2 in partial fractions of the form A + B + C
                                                                                                                                                                                                                                                                                                                                                                   3
                     Cover up (x + 2) and let x = -2:                                                                                                                                                                                                                                                                                                                                                                             +      D
                                                                                                                                                              -3     -5        -2
                                                                                                                                                                                                                                                                                                                                                                      x(x - 2)                                     x       x−2        (x − 2)2
                     Cover up (x - 3) and let x = 3:                                                                                                  B = 6 + 19 = 25 = 5
                                                                                                                                                          3+2       5
                                                                                                                                                                                                                                                                                                                                                        4 Express in partial fractions.
                     So                        2x 2 + 7 ≡ 2 − 3 + 5
                                              x −x−6
                                               2             x+2 x−3                                                                                                                                                                                                                                                                                       a           4             b           6            c       2x 2 + 1
                                                                                                                                                                                                                                                                                                                                                                (2x − 3)(x + 1)           (x − 2)(x + 1)2          (x + 1)(2x − 1)

                                                                                                                                                                                                                                                                                                                                                           d     2x 2                e      x2 + 5            f        2x + 1
       EXAMPLE 4




                                                                                                                                                                                                                                                                                                                                                                x2 − 1                    x + 2x − 3
                                                                                                                                                                                                                                                                                                                                                                                           2                       (2x − 1)(3x + 1)
                     Express as partial fractions x 2 − 2x − 1
                                                                                                                                                        3                        2

                                                                                                                                                    x − 3x + 2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                           g     x3 + 2              h       x3               i     x3 + 1
                                                                                                                                                                                                                                                                                                                                                                x(x + 1)                  x −x−2
                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                                                                                   x 2(x − 1)
                     This is an improper fraction.

                     Use long division:                                                                                                                                                                                                                                                                                                                    j        3                k      x3 + 1            l    (x 2 + 1)2
                                                                                                                                                                                                                                                                                                                                                                x (x + 1)2
                                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                          x (x + 1)2               x 2(x 2 − 1)
                     So x 2 − 2x − 1 ≡ x + 1 +                                                                                                      x−3
                         3      2
                                                                                                                                                                                                                                                                                                                                               x +1
                                            x − 3x + 2                                                                                            x − 3x + 2
                                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                              )
                                                                                                                                                                                                                                                                                                                  x 2 − 3x + 2 x 3 − 2x 2        −1
                                                 x−3           x−3                                                                                                                                                                                                                                                                x 2 − 3x 2 + 2x
                     Let                                 ≡               ≡ A + B                                                                                                                                                                                                                                                         x 2 − 2x − 1
                                                                                                                                                                                                                                                                                                                                                          INVESTIGATION
                                              x − 3x + 2
                                               2           (x − 1)(x − 2) x − 1 x − 2
                                                                                                                                                                                                                                                                                                                                         x 2 − 3x + 2     5 Explore the graph of y = f(x) if f(x) is
                                                                                                                                                                                                                                                                                                                                                x−3
                     Use the cover-up rule.                                                                                                                                                                                                                                                                                                                   a proper fraction with repeated linear factors in the denominator
                     Cover up (x - 1) and let x = 1:                                                                                             A = 1−3 = 2                                                                                                                                                                                                  an improper fraction.
                                                         1−2
                                                         2 − 3 = −1                                                                                                                                                                                                                                                                                            Consider some of the fractions in this exercise, draw their
                     Cover up (x - 2) and let x = 2: B =
                                                         2 −1                                                                                                                                                                                                                                                                                                  graphs, and take particular notice of any asymptotes, both
                                                                                                                                                                                                                                                                                                                                                               vertical and horizontal.
                     Hence x 2 − 2x − 1 ≡ x + 1 +
                            3      2
                                                                                                                                                              2 − 1
                                                            x − 3x + 2                                                                                      x −1 x − 2
 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                   155
6 Partial fractions


                                                                                                                       9a    Express f(x) =       3x + 2      in partial fractions.
       Review 6                                                                                                                                (x + 4)(x − 1)
                                                                                                                         b   Find f ¢(x) and deduce that the graph of y = f(x) has a
       1 Use the method of equating coefficients to express these in partial fractions.                                      negative gradient at all points on the curve.

         a           x+3                b     8−x                   c       6
                 (x − 2)(x − 1)              x(x + 4)                     x2 − 9                                      10 The function f is given by
                                                                                                                                         3(x + 1)
                                                                                                                             f(x) =                  , x ∈ R, x ≠ −2, x ≠ 1
       2 Use the method of substitution to express these in partial fractions.                                                        (x + 2)(x − 1)

         a           x +1               b       x2 - x + 5          c       x 2 − 2x − 2                                 a   Express f(x) in partial fractions.
                 (x − 1)(x + 3)              x (x - 1)(x - 5)             (x 2 − 1)(x + 2)
                                                                                                                         b   Hence, or otherwise, prove that f ¢(x) < 0 for all values of
       3 Use the cover-up rule to express these in partial fractions                                                         x in the domain.                                                    [(c) Edexcel Limited 2003]

         a             8                b        x2 + 1             c        x2 - x - 4      The fraction in part b
                 (x − 1)(x + 3)              (x − 2)(x + 1)               x (x + 1)(x - 2)   is improper.                                1 − 3x
                                                                                                                      11 a   Write (x − 2)(x + 3) in partial fractions.

       4 Express these in partial fractions.                                                                             b   Find the gradient at the point where x = 1 on the graph of
                        4x                          2                                                                                 1 − 3x
         a                              b                                                                                    y=
                 (2x + 1)(2x − 1)            (3x − 2)(3x − 1)                                                                     (x − 2)(x + 3)

                                                                                                                         c   Explain why the graph is a curve which is always rising.
         c            x +1              d       x+6
                 (x − 2)(x − 1)2             x 2(x − 3)
C4




                                                                                                                                                                                                                                C4
                                                                                                                                            1
                                                                                                                      12 a   Express              in partial fractions.
                     9                        x + 4x − 1
                                                2                                                                                       r (r + 1)
         e                              f
                 x(2x − 3)2                  (x 2 − 1)(x − 1)                                                                                 1 + 1 + 1 +                  +       1    = n
                                                                                                                         b   Deduce that
                                                                                                                                             1´ 2 2 ´ 3 3´ 4                   n (n + 1) n + 1

       5 Show that x 2 + 4 can be expressed as A +
                     2
                                                               B + C                                                                               r =∞
                         x −4                                 x−2 x+2                                                    c   Find the value of      ∑ r(r 1 1)
                                                                                                                                                          +
         Find the values of A, B and C.                                                                                                             r =1


                                                                                                                                              1
       6 Express these in partial fractions.                                                                          13 a   Express                   in partial fractions.
                                                                                                                                        (r + 1)(r + 2)
         a          3x 2 − 3            b    2x 2 − 3x − 24
                                                                                                                                                   r =n
                 (x − 1)(x + 2)                x2 − x − 6
                                                                                                                         b   Hence show that       ∑ (r + 1)(r + 2) = 1 − n + 2
                                                                                                                                                           1                1
                                                                                                                                                   r =0
         c        x3 − 2                d    x 3 + 2x 2 − 4
                                                                                                                                                           r =n
                 x 2(x + 1)                      x2 − 4
                                                                                                                         c   Show that, as n ® ¥,          ∑ (r + 1)(r + 2) converges.
                                                                                                                                                                   1
                                                                                                                                                           r =0
                         1                                                                                                   State the sum to infinity.
       7 Show that (x + 1)(x − k) can be expressed as partial fractions in the form
          1 1
             (   − 1              )
          a x − k x + 1 . Find a in terms of k.

       8a        Show that, if f(x) = x 3 - 2x 2 - x + 2, then f(2) = 0
                 Hence, factorise f(x) completely.
                              1
         b       Express f(x) in partial fractions.
                                                                              1
         c       The line x = a is a vertical asymptote to the curve y = f(x)
 156             State all possible values of a.                                                                                                                                                                              157
6Exit
                                                                                                      7Parametric equations
                                                                                                        This chapter will show you how to
                                                                                                          sketch curves using their parametric equations
                                                                                                          convert parametric equations to Cartesian equations
           Summary                                                                        Refer to
                                                        f(x)                                              find points of intersection of curves and lines using parametric equations
            For a proper fraction of the type (ax + b)(cx + d)(ex + f )                                   differentiate parametric equations to find equations of tangents and
            where the factors of the denominator are all different and f(x) is a                          stationary values
                                                                                                          integrate parametric equations to find areas under curves.
            polynomial in x, the partial fractions are of the type A + B + C
                                                                   ax + b cx + d ex + f
            where A, B and C are constants.                                                   6.1
            For a proper fraction which has a repeated linear factor (ax + b)2                       Before you start
            in its denominator, there will be two partial fractions of
                         A +      B                                                                  You should know how to:                                  Check in:
            the type                    where A and B are constants.
                                                                                                                                                              1 If m = 2(x + 1) and n = 3x − 2
                                                                                              6.2
                       ax + b (ax + b)2                                                              1 Substitute into formulae.
                                                                                                                                                                                          4
            You can find the constants A, B, C, ¼ in the partial fractions by using                     e.g. If a = 2x + 3 and b = 1 - 4x,                      find y when
               the method of equating coefficients                                                      find y when y = a2 - b
                                                                                                                                                                 a y = 1 m + 2n
               the method of substitution                                                               Substitute for a and b:                                            4
C4




                                                                                                                                                                                                            C4
            The cover-up rule is a shorter version of the method of substitution.             6.2
                                                                                                        y = (2x + 3)2 - (1 - 4x)
                                                                                                          = 4x2 + 12x + 9 - 1 + 4x                               b y = 2m2 + 16n2
            You must change an improper fraction to a mixed fraction, consisting                          = 4x2 + 16x + 8
            of a quotient and a remainder, before you can create partial fractions by
               either algebraic long division                                                        2 Solve simultaneous equations.                          2 Solve these simultaneous equations.
               or      rearranging the numerator and finding the quotient and
                                                                                                        e.g. Solve y = x + 1 and y + 5 = x2                      a 2x + 3y = 1, y + 3x = 5
                       remainder by inspection.                                               6.2
                                                                                                        Eliminate y:        (x + 1) + 5 = x2
                                                                                                                             x2 - x - 6 = 0                      b x2 + y2 = 3, x + 2y = 1
                                                                                                                         (x + 2)(x - 3) = 0
            Links                                                                                       So, x = -2 or 3 and y = -1 or 4
            Partial fractions allow you to express complicated                                          The solutions are (-2, -1) and (3, 4).
            fractions as the sum of simpler fractions.                                                                                                                dy
            These simplified expressions can be applied to find                                      3 Differentiate and integrate functions.                 3 Find dx and y dx when
            antiderivatives as well as inverses of transforms,                                                      dy                                    2
                                                                                                        e.g. Find      and     y dx if y = ⎛1 + 12 ⎞
                                                                                                                                           ⎜       ⎟
            such as the Laplace transform.                                                                          dx                        ⎝     x ⎠          a y = x 2 + 1 + 12
                                                                                                                                                                                       x
                                                                                                        Expand the brackets:
                                                                                                                                                                                   (           )
            Engineers use Laplace Transforms to simplify
            problems by converting relationships that are                                               y = 1 + 22 + 14 = 1 + 2x −2 + x − 4                      b y = x(1 + x) 1 + 1
                                                                                                                    x     x                                                                x
            dependent on time t to a set of equations expressed
                                                                                                                                                                 c y = x +1
                                                                                                                                                                        2
                                                                                                                         dy                       −
            in terms of the Laplace operator s. They can then                                           Hence               = 2(−2) x −3 + (− 4) x 5                      2
                                                                                                                         dx                                                    x
            use Inverse Laplace Transforms to return to the
                                                                                                                              = − 43 − 45
            time domain.                                                                                                          x    x
                                                                                                                                 −1
                                                                                                                                          x −3
            Laplace Transforms are particularly useful in                                               and     y dx = x + 2 x        +        +c
                                                                                                                               −1         −3
            analyzing electronic circuits.
                                                                                                                        = x − − 13 + c
                                                                                                                             2
                                                                                                                             x 3x

     158                                                                                                                                                                                              159
7 Parametric equations




                                                                                                                                                                                                                                                                                                                                                     EXAMPLE 2
       7.1                               Parametric equations and curve sketching                                                                                                                                                                                                                                                                                  Sketch the curve given parametrically by the equations                                                                                                                                                                                                                                       q is the parameter.
                                                                                                                                                                                                                                                                                                                                                                   x = sin q, y = sin 2q for 0 q 2p
                                                                                                                                                                                                                                                                                                                                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                   A Cartesian equation has the form y = f(x)                                                                                                                                                                                                                                                     e.g. y = x2 + 2x + 1
                                                                                                                                                                                                                                                                                                                                                                   Construct a table of values for 0                                                                                                   q                  2p:

                   Some relationships between x and y involve a third variable.                                                                                                                                                                                                                                                                                                                                                   p                           p                         3p                                                      5p                            3p                            7p
                                                                                                                                                                                                                                                                                                                                                                             q                         0                                                                                                              p                                                                                                                   2p                    q is in radians.
                   This third variable is called a parameter.                                                                                                                                                                                                                                                                                                                                                                     4                           2                          4                                                       4                             2                             4
                                                                                                                                                                                                                                                                                                                                                                             x                         0                 0.707                                1                 0.707                                0                 -0.707                                 -1                   -0.707                                    0
                   The equations x = f(t), y = g(t) are called parametric equations.                                                                                                                                                                                                                              t is the parameter.                                        y                         0                           1                          0                         -1                           0                             1                            0                           -1                               0

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    y
                   You can sketch a curve described by parametric equations by
                   finding points on the graph for a range of values of t.
                   Each point on the graph has a value of t associated with it.                                                                                                                                                                                                                                                                                                                                                                                                5p                                                                  p
                                                                                                                                                                                                                                                                                                                                                                                                                                                               i=                                                                    i=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4                                                                  4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                 3p
                                                                                                                                                                                                                                                                                                                                                                                                                                 i=                                                i = 0, p , 2p
       EXAMPLE 1




                     Sketch the graph of the curve with the parametric equations                                                                                                                                                                                                                                                                                                                                                                  2                                                                                                                                                                                                             As q increases from 0, the
                                                                                                                                                                                                                                                                                                                                                                                                                                                 –1                                    O         1 i=p                                                                                     x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                curve traces the two
                     x = 2t - 1, y = t2 for -4 t 4                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                loops of a figure-of-eight.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           –1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7p                                                       3p
                     Construct a table of values:                                                                                                                                                                                                                                                                                                                                                                                                             i=                                                        i=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4                                                        4
                               t                     -4                      -3                       -2                      -1                        0                        1                       2                        3                     4
                               x                     -9                      -7                       -5                      -3                       -1                        1                       3                        5                     7
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C4
                                                                                                                                                                                                                                                                                                                                                                 When a curve is expressed using parametric equations, you can
                               y                    16                        9                        4                       1                        0                        1                       4                        9                     16
                                                                                                                                                                                                                                                                                                                                                                 find the Cartesian equation by eliminating the parameter t (or q).
                                                                                                                                                                       y




                                                                                                                                                                                                                                                                                                                                                     EXAMPLE 3
                                                  t = –4                                                                                                                                                                                                  t=4                                                                                                      Find the Cartesian equation of the curves which have these
                                                                                                                                                              16
                                                                                                                                                                                                                                                                                                                                                                   parametric equations.
                                                                                                                                                                                                                                                                                                                  It is useful to label each point                 a x = 2t - 1, y = 8t2 + 3   b x = 2sin q + 3, y = 2cos q – 5
                                                                                                                                                                                                                                                                                                                  with its value of t. You can                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                  then see how the curve
                                                                                                                                                                                                                                                                                                                                                                   a Substitute t from x = 2t - 1 into the equation for y:
                                                                                                                                                                                                                                                                                                                  takes shape as t varies.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (                          )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                                                                                                                 From x = 2t - 1, t = x + 1 , so y = 8 x + 1 − 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2                                                                      2
                                                                                                                                                                                                                             t=3                                                                                                                                                                                                                                                                                                  = 2(x + 1)2 - 1
                                                                                 t = –3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = 2x2 + 4x + 1                                                                                                                2x2 + 4x + 1 is a quadratic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                expression, which indicates
                                                                                                                                                                                                                                                                                                                                                                                 The Cartesian equation is y = 2x2 + 4x + 1                                                                                                                                                                                                                                     that the curve is a parabola.
                                                                                                                                                                                                                                                                                                                                                                   b Find sin q and cos q in terms of x and y:
                                                                                                          t = –2                                                                                 t=2                                                                                                                                                                             From x = 2sin q + 3,                                                                                                     sin q = x − 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 y+5
                                                                                                                                                                                                                                                                                                                                                                                 From y = 2cos q - 5,                                                                                                    cos q =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                      t = –1                                                                                     t=1
                                                                                                                                                     t=0                                                                                                                                                                                                                         Substitute into sin2 q + cos2 q = 1:

                                                                                                                                                                                                                                                                                                                                                                                                ( x 2 3) + ( y 2 5)
                                                                                                                                                                                                                                                                                          x                                                                                                                                     2                                              2
                                      –9                                                                                                              –1 O                                                                                                                     7                                                                                                                    −          +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       =1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                This equation represents a circle,
                     The curve is a parabola.                                                                                                                                                                                                                                                                                                                                                       (x - 3)2 + (y + 5)2 = 4                                                                                                                                                                                                                                     centre (3, -5) and radius 4 = 2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                See C2 for revision.
                                                                                                                                                                                                                                                                                                                                                                                 The Cartesian equation is (x - 3)2 + (y + 5)2 = 4
 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 161
7 Parametric equations                                                                                                                                                                                                                                                                                                                                                                                                  7 Parametric equations

                   You can also find parametric equations of a curve represented                                                                                                                                                                                                                                                                               4 Find the Cartesian equation for each of the curves given
                   by a Cartesian equation.                                                                                                                                                                                                                                                                                                                      parametrically by these equations.
                                                                                                                                                                                                                                                                                                                                                                  a x=t+4          y = 1 - 2t            b x=3              y = 4t
                                                                                                                                                                                                                                                                                                                                                                                                                 t
       EXAMPLE 4




                     Find parametric equations for the curve with the Cartesian                                                                                                                                                                                                                                                                                   c x=t+1          y = t2 - 2            d x = t2           y = t3
                     equation y = 6x 1 − x 2                                                                                                                                                                                                                                                                                                                      e x = t2 - 1     y = t3 + 2            f x = t2           y= 2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                t
                     •
                                                                                                                                                                                                                                                                                                                                                                  g x= 1−t         y= 1+t                h x = 3cos q       y = 4sin q
                                                                                                                                                                                                                                                                                                                                                                            t              t
                     You need to find a parameter which will simplify 1 − x 2
                                                                                                                                                                                                                                                                                                                                                                  i   x = sin q    y = cos 2q            j   x = 3cos q     y = 5cos 2q
                     Recall that 1 - sin2 q = cos2 q                                                                                                                                                                                                                                                                   The parameter is q.
                                                                                                                                                                                                                                                                                                                                                                  k x = 2sec q     y = 3tan q            l   x=1+t          y=2+t
                     Let x = sin q:                                                                                                                                                                                                                                                                                                                                                                              1−t            1−t
                                                                                                                                                                                                                                                                                                                       Letting x = cos q will also give
                     So y = 6 sin q 1 − sin q = 6sin q cos q
                                                                                                                               2
                                                                                                                                                                                                                                                                                                                       y = 3sin 2q. Try this yourself.
                                              = 3(2sin q cos q)                                                                                                                                                                                                                                                                                                5 Point P lies on the curve x = 2t - 4, y = t + 1
                                              = 3sin 2q                                                                                                                                                                                                                                                                                                          If the y-coordinate of P is 6, find its x-coordinate.

                     Hence, parametric equations for the curve are                                                                                                                                                                                                                                                     There may be more than one
                     x = sin q, y = 3sin 2q                                                                                                                                                                                                                                                                            possible pair of parametric             6 Point Q lies on the curve x = 2 + t , y = 3 − 2t
                                                                                                                                                                                                                                                                                                                       equations for a given curve.                                              2−t         2−t
                                                                                                                                                                                                                                                                                                                                                                  If the x-coordinate of Q is 4, find its y-coordinate.
                   Exercise 7.1
                                                                                                                                                                                                                                                                                                                                                               7 The point (4, k) lies on the curve x = t2 - 5, y = t - 1
                    1 A curve has the parametric equations x = 3t, y = t2 - 3
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C4
                                                                                                                                                                                                                                                                                                                   t     -3    -2     -1     0   1    2   3      Find the possible values of k.
                      Copy and complete this table.                                                                                                                                                                                                                                                                x
                      Hence sketch the graph of the curve for -3 t 3                                                                                                                                                                                                                                               y                                           8 The variable point P (at, t2 - 1) meets the line y = 8 at the point (6, 8).
                                                                                                                                                                                                                                                                                                                                                                 Find the possible values of a and the Cartesian equation of the
                    2 The parametric equations of a curve are x = 3t2, y = t3                                                                                                                                                                                                                                      t     -2    -1    0     1     2
                                                                                                                                                                                                                                                                                                                                                                 curve along which P moves.
                      Copy and complete this table.                                                                                                                                                                                                                                                                x
                      Hence sketch the graph of the curve for -2 t 2                                                                                                                                                                                                                                                                                           9 Find the coordinates of the points where these curves meet the x-axis.
                                                                                                                                                                                                                                                                                                                   y
                                                                                                                                                                                                                                                                                                                                                                  a x = t2 + 1     y=t-3                 b x = 1 + t3       y=2-t
                                                                                                                                                                                                                                                                                                                                                                  c x = 5t + 3     y = t2 - 4            d x = 3cos q       y = sin q
                    3 Construct your own tables of values to sketch the graphs of
                      the curves with these parametric equations for the range of
                                                                                                                                                                                                                                                                                                                                                              10 Find the coordinates of the points where these curves meet the y-axis.
                      values given in each case.
                                                                                                                                                                                                                                                                                                                                                                  a x=t-5         y = t2 - 2             b x = t 2 - 3t + 2    y=t+4
                               a x = t 2 - 4,                                                             y = 1t3                                                                          for -3                                   t                 3
                                                                                                                              2                                                                                                                                                                                                                                   c x = t3 - t    y = t2                 d x = tan q           y = sec q
                               b x=                             t3         - 2t + 4, y = t - 1                                                                                             for -2                                   t                 2
                                                                                                                                                                                                                                                                                                                                                              11 The curve x = at 2 - 3, y = a(t - 2) contains the point (17, 0).
                               c x = t 2,                                               y=1                                                                                                for -3                                   t                 3
                                                                                                            t                                                                                                                                                                                                                                                    Find the value of a.
                               d x = 4sin q, y = 4cos q                                                                                                                                    for 0                               q                   2p
                                                                                                                                                                                                                                                                                                                                                              12 The point (20, 40) lies on the curve x = at 2, y = 4at
                               e x = 5cos q, y = 3sin q                                                                                                                                    for 0                               q                   2p                                                                                                            Find the value of a.
                               f               x = sec q, y = tan q                                                                                                                        for 0                               q                   2p




 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                163
7 Parametric equations                                                                                                                                                       7 Parametric equations

       13 The curve x = 2asin q, y = 1 + acos 2q intersects the y-axis at                                  21 A curve has parametric equations
          the point (0, 4).                                                                                   x = t - 2sin t, y = 1 - 2cos t, 0 t    2p
          Find the value of a.                                                                                 a Find the values of t, in terms of p, at the two points where
                                                                                                                 the curve crosses the x-axis.
       14 Points A and B lie on the curve x = t 2 - 3, y = 2t + 3
          where t = 2 and t = 3 respectively.                                                                  b The curve crosses the y-axis at two points where t = a and t = b
          Find                                                                                                   Show that one of these points has a = 0. Find, by trial-and-improvement,
                                                                                                                 the value of b to 1 decimal place. Find the coordinates of these
           a the distance between A and B
                                                                                                                 two points on the y-axis.
           b the gradient of the chord AB
                                                                                                           22 By substituting y = tx, find parametric equations for the
           c the equation of the chord AB.
                                                                                                              curves with these Cartesian equations.
       15 Show that these two pairs of parametric equations represent                                          a y3 = x2
          the same straight line. Find the Cartesian equation of the line.                                     b y = x2 - 2x
           a x=1-t           y = 3 - 2t
                                                                                                               c x3 - y3 = x2
           b x= 1            y=t +3
               t +1            t +1                                                                            d x - y = xy

       16 Find parametric equations of the curve with the Cartesian equation                               23 A curve has the Cartesian equation x 3 + y 3 = 3xy
                y = x 4 − x2                                                                                   a Show, by substituting y = tx, that the curve can be represented
C4




                                                                                                                                                                                                                  C4
                                                                                                                 by the parametric equations
           if q is the parameter such that x = 2cos q
                                                                                                                      x=     3t , y = 3t 2
       17 Use the identity 1 + tan2 q = sec2 q to find parametric equations                                                1 + t3    1 + t3
          for the curve with the Cartesian equation y =      x
                                                                                                               b i Find the points where t = 0 and t = ¥
                                                                 1 + x2
                                                                                                                 ii Investigate the curve when t is close to -1.
                                                                                                               c Hence, sketch the curve and find the equation of any asymptote.
       18 The Cartesian equation of a curve is y = 3 1 − x
                                                           2

                                                            x
           Find parametric equations for this curve if
                                                                                                             INVESTIGATION
           a x = sin q                    b x=1
                                                   t
                                                                                                             24 a Use a computer’s graphical package to check your
                                                                                                                  answers to questions 1, 2 and 3.
       19 The equation of a circle is x 2 + y 2 - 6x - 4y + 12 = 0                   Refer to Example 3.
                                                                                                                  You can also check answers to other questions by
           a The equation is written in the form (x -      a)2   + (y -   b)2   =1                                drawing appropriate graphs.
             Find the values of a and b.
                                                                                                                 b Investigate how changing the values of constants A,             Your computer software may
           b Hence, find parametric equations for the circle in terms                                              B, m and n in these parametric equations alters the             need to have q in degrees,
             of the parameter q.                                                                                   graphs of the curves.                                           that is, 0° q 360°
                                                                                                                         x = Asin mq, y = Bcos nq for 0       q    2p
       20 A hyperbola has the equation 9x 2 - 4y 2 - 18x + 16y - 43 = 0
                                                       (x − a)2 (y − c)2
           a The equation is written in the form               −         =1
                                                          b2       d2
               Find the values of a, b, c and d.
           b Hence, find parametric equations for the hyperbola in terms of q.

 164                                                                                                                                                                                                            165
7 Parametric equations

                                                                                                                                                                                                                                                                                                                                                           2 Find the points of intersection of each curve and the given line.
       7.2                                Points of intersection
                                                                                                                                                                                                                                                                                                                                                              a x = t 2 - 1, y = 2t + 1    y=x+2                    b x = t 3, y = t 2 + 2t y = 2x + 1

                   You can use simultaneous equations to find the points of                                                                                                                                                                                                                                                                                   c x = t 2 - 1, y = t 2 + t + 1   2y - x - 3 = 0
                   intersection when a curve is expressed in parametric equations.
                                                                                                                                                                                                                                                                                                                                                           3 Find the points of intersection of the curve with parametric
                                                                                                                                                                                                                                                                                                                                                             equations x = 2t 2, y = 3t and the circle x 2 + y 2 - 6x - 1 = 0
       EXAMPLE 1




                     Find the points of intersection of the curve with
                     parametric equations x = 2t - 1, y = t 2                                                                                                                                                                                                                                                                                              4 Find the points of intersection of the parabola           x + y2 = 9
                     and the straight line y = 3x - 2                                                                                                                                                                                                                                                                                                        and the curve x = (t - 3)2, y = 2t
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Solve the equations x = 2t - 1, y = t 2 ⎫ simultaneously.                                                                                                                                                                                                                                    There are three unknowns,                5 Find the points where these curves cross the coordinate axes.
                                                             ⎬
                                         y = 3x - 2          ⎭                                                                                                                                                                                                                                                    x, y and t.
                                                                                                                                                                                                                                                                                                                                                              a x=t-1         y=t-4               b x=t-2            y = t2 - 9         c x = t2 + 1 y = t - 3
                     Substitute x = 2t - 1, y = t2 into y = 3x - 2 to eliminate x and y:
                                                                                                       t 2 = 3(2t - 1) - 2                                                                                                                                                                                                                                    d x = t3 - 1 y = t2 - 4             e x =1 − 1         y = t2 + 1         f x = p - 2t y = 1 - sin t
                                                                                                                                                                                                                                                                                                                                                                                                                t        t −4
                                                                                             t 2 - 6t + 5 = 0
                                                                                          (t - 1)(t - 5) = 0 so t = 1 or 5                                                                                                                                                                                                                                 6 The variable point P(t 2, 2t) moves along a locus.
                                                                                                                                                                                                                                                                                                                                                             Find the points where the locus crosses the straight line y = 2x - 4
                     When t = 1, x = 2(1) - 1 = 1 and y = 12 = 1
                     When t = 5, x = 2(5) - 1 = 9 and y = 52 = 25
                                                                                                                                                                                                                                                                                                                                                           7 The point P(t 2, 4t) moves as t varies. Q is the midpoint of OP
                     The points of intersection are (1, 1) and (9, 25).                                                                                                                                                                                                                                                                                      where O is the origin. Write down the coordinates of Q. Find the
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C4
                                                                                                                                                                                                                                                                                                                                                             Cartesian equation of the locus of Q.
       EXAMPLE 2




                     Find the points A, B and C where the curve given parametrically                                                                                                                                                                                                                                                                       8 The point P(2t 2, 6t) lies on a curve. The foot of the perpendicular
                     by x = t 2 - 4, y = t - 1 intersects the two coordinate axes.                                                                                                                                                                                                                                                                           from P to the x-axis is Q. The midpoint of PQ is M. Find
                     Hence, find the area of triangle ABC.                                                                                                                                                                                                                                                                                                    a the coordinates of Q and M in terms of t
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     When y = 0, t - 1 = 0 giving t = 1                                                                                                                                                                                                                                                           The curve meets the x-axis when y = 0       b the Cartesian equation of the locus of M as P moves.
                     When t = 1, x = 12 - 4 = -3,
                     giving the point of intersection A(-3, 0).                                                                                                                                                                                                                                                                                            9 Find the points of intersection of the curve
                                                                                                                                                                                                                                                                                                                                                                 x = 1 - 5t, y = t 3 + t 2 and the line x + y + 2 = 0
                     When x = 0, t 2 - 4 = 0 giving t = ±2                                                                                                                                                                                                                                                        The curve meets the y-axis when x = 0
                     When t = 2, y = 2 - 1 = 1                                                                                                                                                                                                                                                                                      y                     10 The curve x = t + 1, y = t 2 - k intersects the x- and y-axes at
                     and, when t = -2, y = -2 - 1 = -3,                                                                                                                                                                                                                                                                                                      points P and Q respectively.
                     giving the points of intersection B(0, 1) and C(0, -3).                                                                                                                                                                                                                                                            B                    Find the value of k (k ¹ 1) such that OP = 2OQ where O is
                                                                                                                                                                                                                                                                                                                                   1
                     The area of triangle ABC is                                                                                                                                                                                                                                                                        A                                    the origin.
                     1 BC × OA = 1 × 4 × 3 = 6 square units                                                                                                                                                                                                                                                             –3         O               x
                     2           2
                                                                                                                                                                                                                                                                                                                                                            INVESTIGATION
                                                                                                                                                                                                                                                                                                                                        C
                                                                                                                                                                                                                                                                                                                                 –3
                                                                                                                                                                                                                                                                                                                                                            11 Use a computer’s graphical software to draw graphs
                                                                                                                                                                                                                                                                                                                                                               using their parametric equations.
                   Exercise 7.2                                                                                                                                                                                                                                                                                                                                Check your answers to the problems in this exercise
                    1 Find the points of intersection of the parabola x = t 2 y = 2t                                                                                                                                                                                                                                                                           where you have found points of intersection.
                      and the straight lines
                               a x+y=3                                                                                                                         b 4x + 2y = 15
 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                  167
7 Parametric equations




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EXAMPLE 2
       7.3                                Differentiation                                                                                                                                                                                                                                                                                                                                                                                                                     A curve is defined parametrically by x = 3 - t, y = 4 - t - t 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A normal is drawn to the curve at the point A where t = 1
                                                                                                                                                                                                                                                             dy                                                                                                                                                                                                               Find another point B at which this normal intersects the curve.
                   You can differentiate parametric equations to obtain                                                                                                                                                                                         .
                                                                                                                                                                                                                                                             dx                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Let t = 1:x = 3 - 1 = 2 and y = 4 - 1 - 12 = 2
                    If x = f(t) and y = g(t)                                                                                                                                                                    dy
                                                                                                             dy                       dy                     dx                                            dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              So, the normal is drawn at the point A (2, 2).
                                                                                                                                                                                                                dt
                    the chain rule gives dt = dx × dt                                                                                                                                or                    dx
                                                                                                                                                                                                              =
                                                                                                                                                                                                                dx                                                                                                                                                                                                                                                            Find
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   and substitute t = 1:
                                                                                                                                                                                                                dt                                                                                                                                                                                                                                                                              dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dy       −1 − 2t
                                 dy
                   Once you know dx , you can use it to find equations of tangents                                                                                                                                                                                                                                                                                                                                                                                                              = dt = −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dx   dx     1
                   and normals to a curve and to find stationary values.                                                                                                                                                                                                                                                                                                                                                                                                                          dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = 1 + 2t
       EXAMPLE 1




                     A curve has parametric equations x = t3 + 2t + 4, y = t2 - 1                                                                                                                                                                                                                                                                                                                                                                                             When t = 1,
                     Find a the equation of the tangent at the point where t = 2                                                                                                                                                                                                                                                                                                                                                                                              the gradient of the tangent at the point A(2, 2) is 1 + 2(1) = 3                                                                                                                                                                                                                             If the gradients of tangent
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           and normal are m and m¢,
                           b the nature of any stationary values and the points at which they occur.                                                                                                                                                                                                                                                                                                                                                                          The gradient of the normal at the same point is - 1 .                                                                                                                                                                                                                                                     1
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3                                                            then m¢ = - m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              So, the equation of the normal at the point A(2, 2)
                                                                                                                                                                                                            dx
                     a Differentiate x wrt t:                                                                                                                                                                  = 3t 2 + 2                                                                                                                                                                                                                                                                                                                                                        y−2
                                                                                                                                                                                                            dt                                                                                                                                                                                                                                                                is                                                                                                     = −1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 x−2    3
                                                                                                                                                                                                            dy
                                   Differentiate y wrt t:                                                                                                                                                      = 2t                                                                                                                                                                                                                                                                                                                                                          3y + x = 8
                                                                                                                                                                                                            dt
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4
                                                                                                                                                                                                                 dy
                                                                                                                                                                                                                          2t                                                                                                                                                                                                                                                  To find the intersections of the normal and curve, substitute the parametric
                                                                                                                                                                                                            dy
                                   So                                                                                                                                                                          = dt =                                                                                                                                                                                                                                                         equations into 3y + x = 8:
                                                                                                                                                                                                            dx dx 3t 2 + 2
                                                                                                                                                                                                                 dt                                                                                                                                                                                                                                                                                       3(4 - t - t 2) + (3 - t) = 8
                                   Substitute t = 2:                                                                                                                                                                                                 =             2×2 = 2                                                                          2
                                                                                                                                                                                                                                                                                                                                                      is the gradient of the                                                                                                                                         3t 2 + 4t - 7 = 0                                                                                                                                                                                                                                     You know that the curve and
                                                                                                                                                                                                                                                                3 × 22 + 2 7                                                                        7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (t - 1)(3t + 7) = 0                                                                                                                                                                                                                                       normal intersect when t = 1
                                                                                                                                                                                                                                                                                                                                                    tangent when t = 2                                                                                                                                                                      7
                                   When t = 2 x = 23 + 2 ´ 2 + 4 = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                            t = 1 or - 3
                                            and y = 22 - 1 = 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              t = 1 gives the initial point A on the normal,                                                                                                                                                                                                                                                 y
                                   So, the tangent passes through the point (16, 3) with a gradient of 2 .
                                                                                                                                                                                                                                                                                                                                                 7                                                                                                                            Hence at B, t = - 7
                                                                                                                                                                                 y−3                                                                                                                                                     y − y1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3
                                   The equation of the tangent is                                                                                                                     =2                                                                                                                                                        =m
                                                                                                                                                                                x − 16 7                                                                                                                                                 x − x1                                                                                                                                                                                                                                                                                                                                                                                                                                      A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Substitute t = − 7 into the parametric equations:                                                                                                                                                                                                                                             2
                                   Rearrange:                                                                                                                                                    7y = 2x - 11                                                                                                                           See                  C1             for revision.                                                                                                                                                 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   B

                                                                                                                                                 dy     2t                                                                                                                                                                                                                                                                                                                    x = 3 + 7 = 51                                                                               y = 4 + 7 − 49 = 8
                     b For stationary values,                                                                                                       =        =0                                                                                                                                                                                                                                                                                                                                                    3                         3                                                                   3                    9                     9                                                                                                               O        2                   6   x
                                                                                                                                                 dx 3t 2 + 2
                                   So the only stationary value occurs when t = 0
                                   at the point where x = 03 + 2 ´ 0 + 4 = 4
                                                                                                                                                                                                                                                                                                                              The numerator 2t = 0 when t = 0                                                                                                                 The required point of intersection is 5 1 , 8 .                                                                                                                         ( 3 9)
                                   and                  y = 02 - 1 = -1                                                                                                                                                                                                                                                       Investigate the gradient on either
                                                                                                                                                                                                         y                                                                                                                    side of the point (4, -1):
                                            t                 -1                    0                  1
                                                                                                                                                                                                                                                                                                                              Choose values of t either side of
                                                                                                                                                                                                                                                                                                                              t = 0 and make sure that the
                                           x                    1                   4                  7
                                                                                                                                                                                                                                                                                                                              x-values are either side of x = 4
                                         dy                   −
                                                                2                                      2
                                         dx                     5                   0                  5                                                                                             3


                                   There is a minimum                                                                                                                                           –1 O                                                                                                                                                                       x
                                                                                                                                                                                                                                         4                                                                                   16
                                   value at the point (4, -1).
 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             169
7 Parametric equations                                                                                                                             7 Parametric equations

       Exercise 7.3                                                              6 The tangent at point P(1, 1) to the curve x = 1 , y = t 2 intersects
       1 Find the gradient of each curve with these parametric equations                                                         t
                                                                                   the curve at point Q.
         at the point with the given value of t (or q).
                                                                                    Find the equation of the tangent at P and the coordinates of Q.
          a x=t+1            y = 3t 2           when t = 2
          b x = t2 - 2       y = t3 + 1         when t = 4                       7 The point P lies on the curve x = 5cos q, y = 4sin q
                                                                                   A and B are the points (-3, 0) and (3, 0) respectively.
          c x = t 3 - t2     y = (t + 3)2       when t = 1
                                                                                    a Find the distances AP and BP in terms of q.
          d x = 3sin q       y = 5cos q         when q = p
                                                             4                      b     Show that the sum of the distances AP and BP is constant
          e x=1+       t2    y = 1+ 1           when t = -2                               for all points P.
                                    t
          f x = sin 2q       y = qcos q         when q = 0                                                                ( t)
                                                                                 8 The line from the variable point P t, 1 to the origin O
                                                                                    intersects the line x = 1 at the point Q.
       2 Find the equation of the tangent and the normal to the curves
         with these equations at the point where t (or q) has the given value.                      y

                                                                                                            x=1
          a x = 2t 2         y = 4t             when t = 1
                                                         2

          b x = t2 + 1       y = t3 - 1         when t = 1

                                                when q = p
                                                                                                             P
          c x = 2cos q       y = cos 2q                                                                 Q
                                                             4
C4




                                                                                                                                                                                         C4
                                                                                                    O 1               x
                             y = 1 − t2
                                      2
          d x = 2t                              when t = 2
                  1+t   2
                                  1+t

       3 Find the stationary points on these curves.
          a x=t                   y = t3 - t
          b x = t2                y =t +1
                                            t
          c x = q - cos q         y = sin q            for 0 < q < 2p                   Find

          d x = 3sin q + 2        y = 3cos q + 5       for 0     q   2p                 a the gradient and the equation of the line OP
                                                                                        b the coordinates of Q in terms of t
       4 The curve x = 2t 2, y = 4t has a normal at point P(8, 8).
         Find the equation of the normal.                                               c the Cartesian equation of the locus of the midpoint of PQ.
         Also find the point where the normal meets the curve a second time.

                                                                                   INVESTIGATION
       5 Find the equation of the normal to the curve x = 6t, y = 6 at
                                                                  t                9 Investigate how to draw tangents and normals to curves
         the point where t = 2
                                                                                     using a computer’s graphical package. Hence, check some
          Also find the point where the normal intersects the curve again.
                                                                                     of your answers to the problems in this exercise.




 170                                                                                                                                                                               171
7 Parametric equations




                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 2
       7.4                                Integration                                                                                                                                                                                                                                                                                                                                                                                                                             This diagram shows the curve with parametric                                                                                                                                                                                                                                                                   y

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  equations x = t 2 + 1, y = t 3 - 4t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              t = –1
                                                                                                                                                               b                                                                                                                                                                                  y                                                                                                                               Find the values of t at the points A(1, 0) and B(5, 0).
                                                                                                                                                                                                                                                                                                                                                                                                                                       t2
                   You can modify the expression                                                                                                                    f(x) dx for the area under a
                                                                                                                                                           a                                                                                                                                                                                                                                                                                                                      Find the area of the region enclosed by the loop of the curve.                                                                                                                                                                                                                                                                                                                            B
                   curve using the chain rule.                                                                                                                                                                                                                                                                                                                             t1                                                                                                                                                                                                                                                                                                                                                                                                                                    A                                                                  t = ±2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                O                                                                                                                   x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1 t=0                                                       5
                    For parametric equations x = f(t), y = g(t),
                    the area under the curve between the points where
                                                                                                                                                                                                                                                                                                                                              O                                                                                                                   x
                    t = t1 and t = t2 is given by                                                                                                                                                                                                                                                                                                                                 a                                                         b                                                                                                                                                                                                                                                                                                                                                                            t=1
                                       t2                                                                                                                                                                                                                                                                                                                                                                                                                                         •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                         ∫ y dx dt                                                                                                                                                                                                                                                                                      The limits of this integral are t = t1                                                                                                    Find t at A and B:
                                    t1       dt                                                                                                                                                                                                                                                                                         and t = t2, as the independent                                                                                                            At points A and B, y = 0
                                                                                                                                                                                                                                                                                                                                        variable is now t and not x.                                                                                                                            t 3 - 4t = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        t(t - 2)(t + 2) = 0
       EXAMPLE 1




                     This sketch shows the curve with parametric equation                                                                                                                                                                                                                                                          y                                                                                                                                                                   t = 0 or ±2
                                                                                                                                                                                                                                                                                                                            4                                                                                           t=3
                     x = t 2 + 1, y = t + 1                                                                                                                                                                                                                                                                                                         t=1                                                                                     B                                     Let t = 0: x = 02 + 1 = 1 and y = 0 - 0 = 0                                                                                                                                                                                                                                                                        Find x and y when t = 0
                                                                                                        t                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                                                   A                                                                                                                              So, t = 0 at the point A(1, 0).
                     Find the shaded area between the curve and the x-axis from
                                                                                                                                                                                                                                                                                                                                O                                                                                                                         x                       Let t = 2: x = 22 + 1 = 5 and y = 23 - 4 ´ 2 = 0                                                                                                                                                                                                                                                                   Find x and y when t = +2
                     x = 2 to x = 10                                                                                                                                                                                                                                                                                                                     2                                                                          10
                                                                                                                                                                                                                                                                                                                         –2                                                                                                                                                       Let t = -2: x = (-2)2 + 1 = 5 and y = (-2)3 - 4 ´ (-2) = 0                                                                                                                                                                                                                                                         and t = -2.
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C4
                                                                                                                                                                                                                                                                                                                         –4                                                                                                                                                       So, t = ±2 at the point B(5, 0).
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  You want the area under the curve from
                     Let x = 2: t 2 = 1, t = ±1                                                                                              so y = 2 or -2.                                                                                                                                                                                                                                                                                                                      A(1, 0) where t = 0 to B(5, 0) where t = ±2
                     So, point A is (2, 2).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  When t = 1, x = 2, y = 1 - 4 = -3, giving the point (2, -3) below the x-axis.
                     Let x = 10:                                            2
                                                                        t = 9, t = ±3                                                        so                   y = 3 1 or - 3 1 .                                                                                                                                                                                                                                                                                              So, integrating from t = 0 to t = 2 will give the area below the x-axis.
                                                                                                                                                                        3        3
                     So, point B is 10, 3 1 .                                       (                        3      )                                                                                                                                                                                                                                                                                                                                                             Similarly, t = -1 gives the point (2, 3) and integrating from t = 0 to t = -2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  gives the area above the x-axis.
                     You want the area under the curve from A(2, 2) where t = 1                                                                                                                                                                                                                                                               You are calculating the area
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  area of loop = 2 ´ area enclosed by the curve above the x-axis                                                                                                                                                                                                                                                     The curve is symmetrical

                                3       (
                     to B 10, 3 1 where t = 3                         )                                                                                                                                                                                                                                                                       above the x-axis only.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   =2´
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        y dx = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    −2

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dt where y = t3 - 4t and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 2t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     about the x-axis.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dt                          dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1                                             0
                     Integrate:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    −2
                                                                                                     10                                          3
                                                                                                                                                                                dx                                                                                                                                                                                                                                                                                                                                                                         =2                            (t3 - 4t)(2t)dt
                     Required area =                                                                        y dx =                                   y dx dt where y = t + 1 and = 2t                                                                                                                                                                                                                                                                                                                                                                                           0
                                                                                                                                                       dt                  t    dt
                                                                                                   2                                         1                                                                                                                                                                                                Notice the change in the limits
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    −2
                                                                                                      3                                                                                                                                                                                                                                       as the independent variable
                                                                                      =
                                                                                                   1
                                                                                                          ( t)
                                                                                                             t + 1 (2t) dt
                                                                                                                                                                                                                                                                                                                                              changes from x to t.                                                                                                                                                                                         =4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (t4 - 4t2)dt

                                                                                                            3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ⎡        5                         3⎤ 2                                                                                                                                                                        You could find the answer directly
                                                                                      = 2 (t 2 + 1) dt                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 4 ⎢ t − 4t ⎥                                                                                                                                                                                                                  by integrating the whole way from
                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ⎣5     3 ⎦0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           t = -2 to t = 2 using

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (                                                              )
                                                                                                                                         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         −2
                                                                                                       ⎡        3                    ⎤                                                                                                                                                                                                                                                                                                                                                                                                                     = 4 − 32 + 32 − 0
                                                                                      = 2 ⎢t + t ⎥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      5                       3                                                                                                                                                                                         2t4 - 8t2 dt
                                                                                          ⎣3     ⎦1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           = 17 1 square units                                                                                                                                                                                                             Try this yourself.
                                                                                                      (
                                                                                      = 2 9 + 3 − 1 − 1 = 21 1 square units
                                                                                                                                             3                     )                           3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                15
 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           173
7 Parametric equations                                                                                                                                                                  7 Parametric equations

       Exercise 7.4                                                                                               5 a     This diagram shows the curve x = t 2 + 1 , y = 2t
                                                                                                                                                                  2
                                                                                                                                                                                           y
       1 Find, in each case, the area between the x-axis and the curve                                                                                             t
         between the two points P and Q defined by the given values                                                       Find the coordinates of the points A, B and C on the                           C
         of t or x.                                                                                                       curve where t = 1 , 1 and 2 respectively.
                                                                             y                                                             2
          a   x = t + 2 y = 3t - 1          for t = 1 to t = 4
                                                                                                                     b    Calculate the shaded area of the diagram bounded by
                                                                                                                                                                                               B
          b   x = 2t     y = 4t 2 + 1       for t = 0 to t = 2                           Q                                the curve and the line AC.
          c   x = t2     y = 1 + 12t - 3t 2 for t = 0 to t = 4                                                                                                                                            A
                                                                                                                                                                                                                        x
                                                                                 P                                                                                                         O
          d   x = t - 1 y = 2t - 1          for x = 1 to x = 5
          e   x = 2t     y = t2 + 2         for x = 2 to x = 4               O                        x

          f   x = 4t     y=2                for x = 2 to x = 4
                           t

       2 A and B are the points on the curve x = t 3, y = t2                 y

         where t = 0 and t = 2
         Find the shaded area on the diagram.                                                B                    6 The curve x = t 2 - 3t + 2, y = 4t 2 + 1 is shown on                   y
                                                                                 R               t=2
         Also find the area of the region labelled R.                                                               this diagram.
                                                                         A                                           Find the points at which the curve cuts the y-axis.
                                                                             O t=0                x
                                                                                                                     Also find the area bounded by the curve and
                                                                                                                     the line y = 5
C4




                                                                                                                                                                                                                              C4
       3 a    The curve x = t 2 - 1, y = 2t(2 - t) cuts the                  y                                                                                                             O                            x
              coordinate axes at the points A, B, C and D.
              Find the positions of these points and their                       B
              associated t-values.                                                                                7 a     A curve is expressed parametrically by x = t 2 + 1, y = 2t
                                                                                     R
                                                                                             A
          b   Calculate the area of the region R in the                  C O                                  x           Another curve has the parametric equations x = 2s, y = 2
                                                                                                                                                                                       s
              first quadrant enclosed by the curve and the                                                                Find any points of intersection.
              two coordinate axes.
                                                                                                                     b    Find the area enclosed by the two curves and the line x = 5
          c   Calculate the total shaded area.

                                                                                                                  8 a     The straight line y = c - 2x touches the curve x = t, y = 1
                                                                                                                                                                                    t
                                                                             D                                            at point P.
                                                                                                                          Find the possible values of c and the coordinates of P.

                                                                                                                     b    Find the area enclosed by the curve x = t, y = 1 and the
                                                                                                                                                                         t
                                                                                                                          line y = 3 - 2x
       4 This diagram shows the curve x = t 2, y = t(4 - t 2)                y
         Find the values of t at the two points where the curve
         cuts the x-axis.                                                                                           INVESTIGATION
         Hence, find the area enclosed by the loop.
                                                                                                                    9 Show that, when finding the area under a curve, you
                                                                             O                            x           get the same answer whether you use the curve’s
                                                                                                                      Cartesian equation or its parametric equations.
                                                                                                                         Consider some of the curves in questions 1 and 2 of
                                                                                                                         this exercise.
 174                                                                                                                                                                                                                        175
7 Parametric equations

                                                                                                              8 A curve has parametric equations x = t 2, y = 2t
       Review 7                                                                                                 R is the point on the curve where t = r
                                                                                                                a Show that the normal to the curve at point R has a gradient of -r.
       1 Find the Cartesian equation for each of the curves given
         parametrically by these equations.                                                                     b If S is the point (s 2, 2s), find the gradient of the chord RS in terms of r and s.

         a   x = t - 1,     y = t2 + 1      b    x = t − 1,          y = t +1                                   c   If the chord RS is normal to the curve at R, show that r2 + rs + 2 = 0
                                                       t                   t
                                                                                                                d At what point does the normal at the point (9, 6) meet the curve again?
         c   x = 4cos q, y = 3sin q         d x = 2cos q, y = cos 2q
                                                                                                              9 The trajectory of a cricket ball is given parametrically by the equations
       2 Use the identity sin2 q + cos2 q º 1 to find parametric equations
         for the curves with the Cartesian equation                                                                 x = 10t,       y = 2 + 10t - 5t 2

                                                 y=        5x                                                   where x and y are the horizontal and vertical distances travelled
         a    y = 3 x 1 − x2                b
                                                       4−       x2                                              (in metres) after a time of t seconds from the ball being struck.
                                                                                                                a   Find the Cartesian equation of the trajectory.
       3 The point (5, a) lies on the curve x = t 2 + 1, y = 1 (t − 1)
                                                                      3                                         b   Find the time taken before the ball hits the ground.
         Find the possible values of a.
                                                                                                                c   What is the horizontal distance travelled by the ball before
       4 Find the points where the curve given by these parametric equations                                        it hits the ground?
         a   x = 3t + 1, y = t 2 - 1      intersects the straight line 2x + y = 6
                                                                                                             10 This diagram shows a sketch of part of the curve C with                y
C4




                                                                                                                                                                                                                            C4
         b   x = t3 - 4, y = t 2 - 4      intersects the x-axis                                                 parametric equations
         c   x = cos t,    y =   5sin t intersects the circle x 2 + y 2 = 2                                         x = 1 + 3 , y = t 2 sin t,      p   t   p
                                                                                                                                                                                                 C           P
                                                                                                                               t                    2
                                                                                                                                                                                                     R
                                                                                                                                ⎛     2⎞
       5 Find the equation of the tangent and the normal to the curves with                                     a   The point P ⎜ a, p ⎟ lies on C. Find the value of a.
                                                                                                                                ⎝ 4 ⎠
         these parametric equations at the point where t has the given value.                                                                                                         O                  a           x
                                                                                                                b   Region R is enclosed by C, the x-axis and the line
         a   x = 2t - 1,    y = t 3 + 1 when t = 1         b     x = t 3 - 1, y = t 2 + t + 1 when t = 2
                                                                                                                    x = a as shown in the diagram.               p
         c   x = 1 + t,    y= 1          when t = 2        d     x = 2sin t, y = sin 2t         when t = p
                                 1−t                                                                     6          Show that the area of region R is given by 3   p
                                                                                                                                                                       sin t dt
                                                                                                                                                                   2

       6 Find, in each case, the area between the x-axis and the curve                                          c   Find the exact value of the area of R.
         between the two points defined by the given values of t or x.
                                                                                                             11 A curve has parametric equations
         a   x = t + 2 from t = 1 to t = 4                 b     x = 2t + 1 from x = 3 to x = 9
                                                                                                                    x = 2cot q, y = 2sin2 q, 0 < q          p
             y = 3t - 1                                          y= t                                                                                       2
                                                                                                                                                  dy
         c   x = ln t      from t = 2 to t = 3             d     x = e-t     from x = 1 to x = 2                a   Find an expression for dx in terms of the parameter q.
             y = tsin t                                          y = e2t + 1
                                                                                                                b   Find an equation of the tangent to the curve at the point where q = p
                                                                                                                                                                                             4
       7 The curve C is defined parametrically, for 0            q        p, by the equations                   c   Find a Cartesian equation of the curve in the form y = f(x)
           x = 3cos q, y = 3cos 2q + 6                                                                              State the domain on which the curve is defined.                          [(c) Edexcel Limited 2005]
                    dy
         a   Find      in terms of q.
                    dx
             Explain why the gradient at any point on the curve C is never greater than 4.
         b   Find the Cartesian equation of C and sketch the graph of C.
 176                                                                                                                                                                                                                      177
7Exit
                                                                                                         8 The binomial series
                                                                                                            This chapter will show you how to
                                                                                                              find the binomial expansion of (a + b)n and (1 + x)n when n is a positive integer
           Summary                                                                            Refer to
                                                                                                              find the binomial expansion of (1 + x)n when n is a fraction or a negative number
            You can sketch the graph of a curve given by the parametric equations x = f(t),                   and write the condition for which the expansion is valid
            y = g(t) by using a table of values showing the values of x and y as t varies.        7.1
                                                                                                              use partial fractions to express certain kinds of algebraic fraction as a
            To convert the parametric equations x = f(t), y = g(t) of a curve into a                          binomial series
            Cartesian equation, eliminate the parameter t from the two equations.                 7.1
                                                                                                              find numerical and algebraic approximations using binomial expansions.
            You can find the points of intersection of two curves by solving
            the equations of the curves simultaneously.                                                  Before you start
            For example, you can substitute the parametric equations of one curve into
            the Cartesian equation of the other curve.                                            7.2    You should know how to:                                                  Check in:
                                                           dy
            To differentiate x = f(t), y = g(t) to find dx ,                                             1 Use the laws of indices.                                               1 Write in the form (1 + x)n
                                                                                                                                                                  −
                                                                                                                                                                    2
                                          dy                                                                             1                  1                                                                                1
                                                                                                            e.g.                     =                 = (1 +   x) 3                 a      (1 + x)5                b
                                  dy      dt    g ′(t)                                                             3
                                                                                                                       (1 +   x )2
                                                                                                                                                   2
                                                                                                                                                                                                                         (1 + x )3
            the chain rule gives: dx = dx = f ′(t)                                                7.3                                    (1 +   x )3
C4




                                                                                                                                                                                                                                                               C4
                                                       x =b
                                          dt                            t =t 2
            The area under a curve is given by
                                                     x =a
                                                         ∫   y dx =
                                                                      t = t1
                                                                                 y
                                                                                     dx
                                                                                     dt
                                                                                        dt               2 Manipulate surds.                                                      2 Write in terms of the root of an integer
                                                                                                            e.g. 0.99 = 9 × 11 = 3 11                                                a      1.21            b     4×3+ 4                   c       1
            where the parameter t has the value t1 at the point where x = a                                                           100          10                                                                      9                       1.2
            and the value t2 at the point where x = b                                             7.4
                                                                                                                                                                            ⎛n⎞
                                                                                                         3 Use Pascal’s triangle and calculate ⎜ ⎟ .                              3 a Use Pascal’s triangle to expand (2 + x)3
                                                                                                                                                r                           ⎝ ⎠
                                                                                                            e.g. ⎛
                                                                                                                    10 ⎞ 10     10 × 9 × 8
                                                                                                                 ⎜     ⎟ = C3 =            = 120                                     b Find the value of 8C3 and expand (2 + x)8
            Links                                                                                                  ⎝ 3⎠          1× 2× 3
            The path of any projectile is the result of two independent
            motions, horizontal and vertical, which can be expressed                                     4 Find terms when multiplying brackets.                                  4 In the expansion of
            in terms of a parameter time t.                                                                 e.g. Find the term in           x2   in the expansion of
                                                                                                                                                                                     (1 − 3x − 5x   2
                                                                                                                                                                                                        +       ) (1 + 1 x + 1 x   2
                                                                                                                                                                                                                                       −       )
            You can model the path of a projectile at any time t by the
                                                                                                                                2
                                                                                                                                   2    (
                                                                                                            (1 + 2x + 3x + ) 1 − 1 x − 1 x 2 −
                                                                                                                                        3                               )            find
                                                                                                                                                                                                                       2     4

            parametric equations
                                                     1
                                                                                                                             1 2
                                                                                                                                     ( )1
                                                                                                            The term is (1) − x + (2x) − x + (3x 2)(1)
                                                                                                                             3          2               ( )                          a the term in x
            x(t) = (n0 cos q)t, y(t) = (n0 sin q) t − gt2
                                                     2
            where q is the angle at which the projectile is launched at
                                                                                                                               1
                                                                                                                                      (      5
                                                                                                                            = − − 1 + 3 x2 = x2
                                                                                                                               3             3           )                           b the term in x2.

            time t = 0, n0 is the initial velocity of the projectile, and g is
            the acceleration due to gravity.                                                             5 Express a fraction in partial fractions.                               5 Express in partial fractions
                                                                                                                            7
                                                                                                            e.g. Let                ≡ A + B                                          a          3
            This model can be used to analyse the motion of a specific                                               (1 − x)(5 + 2x) 1 − x 5 + 2x                                        (1 − 2x)(1 + x)
            projectile, which is useful in areas such as sports science                                     The cover-up rule uses x = 1 to give A = 1
                                                                                                                                                                                     b          3
            to study, for example, the flight of a golf ball.                                               and uses x = −2 1 to give B = 2
                                                                                                                                2                                                        (1 − 2x)(1 + x)2
                                                                                                                        7
                                                                                                            So                  ≡ 1 + 2
                                                                                                                 (1 − x)(5 + 2x) 1 − x 5 + 2x

     178                                                                                                                                                                                                                                                 179
8 The binomial series

                                                                                                                                                                                                                                                                                                                                                                             When n is negative or fractional
       8.1                                 The binomial series                                                                                                                                                                                                                                                                                                                 the binomial series obtained is an infinite series – it does not
                                                                                                                                                                                                                                                                                                                                                                               terminate after n + 1 terms
                   For n a positive integer, the binomial series is                                                                                                                                                                                                                                                                                                            the series can be written as a series of ascending powers of x
                                                                                                                                                                                                                                                                                                                                                                               Pascal’s triangle and nCr have no meaning when n is negative or
                                                                    ænö                                   ænö                                                ænö                                                                          ænö                                                             ænö n                                                                fractional and cannot be used to find coefficients
                       (a + b)n = ç ÷ an + ç ÷ an -1b + ç ÷ an -2b2 +                                                                                                                                                            + ç ÷ an -rbr +                                                          ç ÷b                                                                 the condition -1 < x < 1 which restricts the range of values
                                  è0 ø     è1 ø         è2 ø                                                                                                                                                                        r     è ø                                                             ènø
                                                                                                                                                                                                                                                                                                                                                                               of x must always be stated
                                                                                                                                                                                                                                                                                                                                                                               to expand (a + x)n as a series when n is not a positive integer,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (                    a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               n
                   This is a finite series with n + 1 terms.                                                                                                                                                                                                                                                                                                                        you must first rearrange (a + x)n as an 1 + x
                                                                                                                                                  ænö ænö
                   You can find the coefficients ç ÷ , ç ÷ ,
                                                 è 0 ø è1 ø




                                                                                                                                                                                                                                                                                                                                                                 EXAMPLE 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1
                                                                                                                                                                                                                                                                                                                                                                               Find the first four terms in the expansion of
                   either                                                                                                                                                                                or                                                                                                                                                                                                                                                                                                                                                                                      1− x
                   from the nth row of                                                                                                                                                                                                                                                                                                                                         State the range of values of x for which the expansion is valid.
                                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                   Pascal’s triangle when n is small                                                                                                                                                     by using
                                                                                                                                                                                                                                                                                                                                                                                                  1             −1
                                                                                                                                                                                                                                                                                                                                                                               As                     = (1 − x ) 2 , let n = − 1 and replace x by -x in the expansion of (1 + x)n:
                                                           1                                                                        Row                                                                  ⎛n⎞ n =      n!                                                                                                                                                                         1− x                          2
                                                                                                                                                                                                         ⎜ ⎟ = Cr (n − r)!r !                                                                                                 n! means factorial n
                                                1                      1                                                            1st
                                                                                                                                                                                                         ⎝r ⎠                                                                                                                 = n ´ (n - 1) ´ (n - 2). . . ´ 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ( 1 )( 2 ) ( x ) + ( 1 )( 2 )( 2 ) ( x )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3                 −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3    5                                                       −                   −                    −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ( )
                                                                                                                                                                                                                                                                                                                                                                                                      1
                                    1                      2                       1                                                2nd                                                                                                                                                                                                                                               1             −                                                                                                                                                   2                  2
                                                                                                                                                                                                                                       n(n − 1)(n − 2) (n − r + 1)                                                            There are r terms in both the                               = (1 − x ) 2 = 1 + − 1 ( − x ) +                                                                                                                                                                            −               2                                                                                      −               3       +
                                                                                                                                                                                                                             =                                                                                                                                                       1− x                      2                                                                                                                                                1× 2                                                                                 1× 2 × 3
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C4
                         1                      3                      3                      1                                     3rd
                                                                                                                                                                                                                                             1× 2 × 3 × r                                                                     numerator and denominator.
                   1                4                      6                       4                      1                         4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Write out the expansion in full with
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = 1 + 1 x + 3 x2 + 5 x3 +                                                                                                                                                                               brackets to avoid errors with the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2                         8                            16
                                                                                                                                                                                                                                                                                                                          n                                                                                                                                                                                                                                                                                                                                                    fractions and negative signs.
                   The special case when a = 1 and b = x gives the binomial series for (1 + x)
                                                                                                                                                                                                                                                                                                                                                                               The expansion is valid for |-x| < 1 which gives |x| < 1

                       (1 + x)n = 1 + nx + n(n − 1) x 2 + n(n − 1)(n − 2) x 3 +                                                                                                                                                                           + n(n − 1)(n − 2) (n − r + 1) x r +                                               + xn
                                                                                                             1× 2                                                        1× 2 × 3                                                                                                           1× 2 × 3                 ×r
                       This is valid for all x when n is a positive integer.




                                                                                                                                                                                                                                                                                                                                                                 EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                                               Find the first four terms in the expansion of (8 + 3x)3
                                                                                                                                                                                                                                                                                                                                                                               Give the range of values of x for which the expansion is valid.
       EXAMPLE 1




                        Find the first four terms in the expansion of (1 + 2x)20
                                                                                                                                                                                                                                                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                             Rearrange so that the first term inside the bracket is 1.
                                                                                                                                                                                                                                                                                                                                        ⎛ n⎞
                       (1+ 2x )20 = 1 + 20(2x) + 20 × 2 (2x)2 + 20 × 19××318 ( 2x )3 +
                                                  1
                                                    × 19
                                                                 1× 2
                                                                                                                                                                                                                                                                                                                     n is large, so use ⎜ ⎟ to find
                                                                                                                                                                                                                                                                                                                                        ⎝r ⎠
                                                                                                                                                                                                                                                                                                                                                                               Then let n = 2 and replace x by 3 x in the expansion of (1 + x)n:
                                                                                                                                                                                                                                                                                                                                                                                                                                 3                                                                       8


                                                                                                                                                                                                                                                                                                                                                                                                                                               (                               )
                                                                                                                                                                                                                                                                                                                     the coefficients. Using                                                                                                                                       2
                                                                                = 1 + 40x + 760x2 + 9120x3 + …                                                                                                                                                                                                                                                                          2     2
                                                                                                                                                                                                                                                                                                                                                                                (8 + 3x)3 = 8 3 1 + 3x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3
                                                                                                                                                                                                                                                                                                                     Pascal¢s triangle is not an
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8
                        which are the first four terms of the series.                                                                                                                                                                                                                                                appropriate method in this case.
                                                                                                                                                                                                                                                                                                                                                                                    ⎡           2 2 −1
                                                                                                                                                                                                                                                                                                                                                                                = 4 ⎢1 + 2 3x + 3 3    3x                       ( ) ( ) + 2 ( 2 − 1)( 2 − 2) ( 3x ) +
                                                                                                                                                                                                                                                                                                                                                                                                                     ( 3 )( 8 ) 1 × 2 8 3 31 × 2 ×33 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2                                                                                                         3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ⎤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ⎥                                   83 = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2

                                                                                                                                                                                                                                                                                                                                                                                    ⎢            ⎣                                                                                                                                                                                                                                                              ⎥
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ⎦
                       The binomial expansion of (1 +       is also valid for all                                                                                         x)n                                                                                                                                        You can write -1 < x < 1 as                                    ⎡         2   3                                                                                                    ⎤           x2 x3
                       negative or fractional values of n provided that -1 < x < 1.                                                                                                                                                                                                                                  |x| < 1. This restriction on                               = 4 ⎢1 + x − x + x −                                                                                                   ⎥ = 4 + x − 16 + 96 −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  As a check, substitute a small
                                                                                                                                                                                                                                                                                                                                                                                    ⎣    4 64 384                                                                                                      ⎦                                                                                                                                                                                          value of x (such as x = 0.01)
                                                                                                                                                                                                                                                                                                                     the value of x ensures that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  into the series and compare
                                                                                                                                                                                                                                                                                                                     the series converges.                                     The expansion is valid for 3 x < 1                                                                                                                                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  with the value of 8.03 3 from
                                                                                                                                                                                                                                                                                                                                                                               which gives |x| < 8 or −2 2 < x < 2 2                                                                                                                                                                                                                                                                              your calculator.
                                                                                                                                                                                                                                                                                                                                                                                                                                                            3                              3                                            3
 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        181
8 The binomial series                                                                                                                                                                                                                                                                                                                                                                                                8 The binomial series

       EXAMPLE 4                                                                                                                                                                                                                                                                                                                                         4 Expand each expression as far as the term in x2.
                     Find the coefficient of x2 in the expansion of (1 +                                                                                                                                                                              x )4                                                                                                 Find the values of x for which each expansion is valid.
                                                                                                                                                                                                                                     31 − 3 x

                     For what values of x is the expansion valid?                                                                                                                                                                                                                                                                                           a (1 + x) 1 − x               b 1 − 2x
                                                                                                                                                                                                                                                                                                                                                                                               1+ x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     (1 + x )4                       −1
                                                                                                                                                                                                                                                                                                                                                            c    2+x                      d x+3
                               = (1 + x )4 (1 − 3 x ) 3
                                                                                                                                                                                                                                                                                                                                                                (          )                  x −1
                                                                                                                                                                                                                                                                                                                                                                               2
                      31 − 3 x                                                                                                                                                                                                                                                                                        You can find the coefficients of
                                                                                                                                                                                                                                                                                                                                                                1− 1x
                                                                                                                                                                                                                                                                                                                      (1 + x)4 from Pascal’s triangle.
                                                                                                                                                                                           ( )(                                                 )
                                                                                                                                                                                                                                                                                                                                                                   2
                                                                                                               ⎛                  1 −1 − 1                                                                                                                                                             ⎞
                                                                                                                                      ( )
                                                                                                                                −
                                                                                                               ⎜                                                                                                                                                                                       ⎟
                     = (1 + 4x + 6x +                                               2
                                                                                                             ) ⎜1 + − 3
                                                                                                                      1 (−3x) + 3     3    ( −3x )2 +                                                                                                                                                  ⎟                                                            1+ x
                                                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                               ⎝                   1× 2                                                                                                                                                                ⎠                                                    e                             f   (3 − x) (1 + 2x ) 3
                                                                                                                                                                                                                                                                                                                                                                    1− x
                     = (1 + 4x + 6x 2 +                                                                        ) (1 + x + 2x 2 + )                                                                                                                                                                                                                          g (2 + x)2 1 − 2x
                     The term in x2 is (1)(2x2) + (4x)(x) + (6x2)(1) = 12x2
                     The coefficient of the x2 term is 12.                                                                                                                                                                                                                                                                                               5 Find the coefficient of x2 in the expansion of 1 + x + x 2
                     The expansion of (1 + x)4 is valid for all values of x because
                     the index 4 is a positive integer.                                                                                                                                                                                                                                                                                                  6 Find the first four terms in the binomial expansion of 1 + 2
                                                                                                                                                                                                                                                                                                                                                                                                                      x
                     The expansion of (1 − 3x )− 3 is valid for |−3x| < 1 or − 1 < x < 1
                                                 1
                                                                                                                                                                                                                                                                                                                                                           in descending powers of x.
                                                                                                                                                                                                                                                           3                                     3
                                                                                                                                                                                                                                                                                                                                                           For what values of x is the expansion valid?
                     The whole expansion is thus valid for − 1 < x < 1
                                                                                                                                                                                                        3                                     3
                                                                                                                                                                                                                                                                                                                                                         7 The coefficient of x2 in the expansion of 1 + ax is -2.
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4
                                                                                                                                                                                                                                                                                                                                                           Find two possible values of a and the first four terms of each
                                                                                                                                                                                                                                                                                                                                                           possible expansion.
                   Exercise 8.1
                   1 Expand as a series of ascending powers of x up to and including x3.                                                                                                                                                                                                                                                                 8 The first three terms in the expansion of (1 + ax)n are 1, +2x, and -2x 2.
                     State the range of values for which each series is valid.                                                                                                                                                                                                                                                                             Find a, n and the coefficient of x3 in the expansion.
                                                  1                                                                                                                                                                                                                                                                        1
                         a 1 + 2x                                                                                 b                        1+ x                                                                           c                     1 + 2x                                                            d
                                                                                                                                                                                                                                                                                                                       (1 − x)3
                                                                                                                                                                                                                                                                                                                                                         9 The second and fourth terms in the expansion of (1 + kx)n
                         e               3
                                               1 + 3x                                                             f                           1                                                                           g                   1                                                                   h     4
                                                                                                                                                                                                                                                                                                                            1 + 2x                         are x and 5 x 3.
                                                                                                                                                                                                                                                                                                                                                                           3
                                                                                                                                             1− x                                                                                         (1 − 3x)2
                                                                                                                                                                                                                                                                                                                                                            Given that k, n > 0, find k and n. Also find the third term of the expansion.

                                                                                                                                                                                                                                                                                                                       (          )
                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                            For what values of x is the expansion valid?
                                                1                                                                                          1                                                                                                                                                                            1− 1x
                                                                                                                                                                                                                                                                                                                                      3
                         i                                                                                        j                                                                                                       k                     (1 + 2x)                          3
                                                                                                                                                                                                                                                                                                                  l
                                                                                                                                      (                                )
                                                                                                                                                                          2                                                                                                                                                2
                                              1 − 2x                                                                                     1− 1x
                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                            INVESTIGATION
                                                                                                   1                                                1
                   2 a Expand i                                                                                                      ii                                                                                                                                                                                                                     10 Express f(x) = 1 + 1 as a series of descending powers of x.
                                                                                                  1+ x                                             1− x                                                                                                                                                                                                                           x
                                                                                                                                                                                                                                                      4
                                       as a series of ascending powers of x as far as x
                                                                                                                                                                                                                                                                                                                                                                    Show that f(x) = 1    1 + x and so express f(x) as a series of
                         b                Identify each series as a geometric progression and so find the                                                                                                                                                                                                                                                                             x
                                          sum of each series using the formula for a geometric progression.                                                                                                                                                                                                                                                         ascending powers of x. Use computer software to draw the
                                                                                                                                                                                                                                                                                                                                                                    graphs of f(x) and these two series.
                   3 Find the first three terms in the binomial expansion of each expression.                                                                                                                                                                                                                                                                       Notice the importance on the graphs of the values of x for
                     Give the values of x for which each expansion is valid.                                                                                                                                                                                                                                                                                        which the two expansions are valid.
                                                                                                                                       1                                                                                                      1                                                                              1
                         a                     4+x                                                                b                                                                                                       c                                                                                       d
                                                                                                                                      2+x                                                                                                 (2 − 3x)2                                                                         9−x


 182                                                                                                                                                                                                                                                                                                                                                                                                                                                            183
8 The binomial series

                                                                                                                                                                                                                                                                                                                                                       Exercise 8.2
       8.2                               Using partial fractions
                                                                                                                                                                                                                                                                                                                                                       1 Write each expression in partial fractions and so expand each
                                                                                                                                                                                                                                                                                                                                                         expression as a series of ascending powers of x as far as x3.
                   You can express some fractions as a series of ascending powers                                                                                                                                                                                                                                                                        Find the range of values of x for which each series is valid.
                   of x by firstly expressing them as partial fractions.                                                                                                                                                                                                                                                                                             3                                4                                  5
                                                                                                                                                                                                                                                                                                                                                          a                                b                                  c
                                                                                                                                                                                                                                                                                                                                                              (1 − 2x)(1 − x)                  (1 + 3x)(1 − x)
                                                                                                                                                                                                                                                                                                                                                                                                                                   (
                                                                                                                                                                                                                                                                                                                                                                                                                                   1−      )
                                                                                                                                                                                                                                                                                                                                                                                                                                      1 x (1 + 2x)
                                                                                                                                                                                                                                                                                                                                                                                                                                      2
       EXAMPLE 1




                     Find the first four terms of the expansion of     1 + 5x
                                                                   (1 − x)(2 + x)                                                                                                                                                                                                                                                                                   3                                6                                    2
                                                                                                                                                                                                                                                                                                                                                          d                                e                                   f
                     as a series of ascending powers of x.                                                                                                                                                                                                                                                                                                    (2 − x)(1 + x)                   (3 + x)(2 + x)                      (3 − 2x)(1 − 2x)
                     Find the range of values of x for which the expansion is valid.                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                                          g
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                              (1 + x)(1 − x)2
                     Let                                                1 + 5x    ≡ A + B
                                                                    (1 − x)(2 + x) 1 − x 2 + x
                                                                                                                                                                                                                                                                                                                                                       2 a    Express 2x + 32 in the form        A +    B
                                                                                                                                                                                                                                                                                                                                                                                                              , where A and B are constants.
                                                                                                                               A(2 + x) + B(1 − x)                                                                                                                                                                                                                      (x − 4)                x − 4 (x − 4)2
                                                                                                                             ≡
                                                                                                                                 (1 − x)(2 + x)
                                                                                                                                                                                                                                                                                                                                                          b   Hence, or otherwise, express 2x + 32 as a binomial series up to and
                     Equate the numerators:                                                                                                                                                                                                                                                                                                                                                      (x − 4)
                                                                                               1 + 5x º A(2 + x) + B(1 - x)                                                                                                                                                                                       The cover-up rule gives                     including the term in   x4. Give    the range of values of x for which the
                     When x = -2,                                                              1 - 10 = 0 + 3B                                                                                                                                                                                                    the same results with                       series is valid.
                                                                                                    B = -3                                                                                                                                                                                                        less written working.
                     When x = 1,                                                                1 + 5 = 3A + 0                                                                                                                                                                                                                                            c   Compare the value of 2x + 32 with the value of the series up to
                                                                                                                                                                                                                                                                                                                                                                                       (x − 4)
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C4
                                                                                                    A=2                                                                                                                                                                                                                                                       and including the term in x 4 when
                                         1 + 5x                                                                                                                                                                                                                                                                                                               i x=1       ii x = 1.5              iii x = 2
                      So                           = 2 − 3 = 2 −          3
                                     (1 − x)(2 + x) 1 − x 2 + x 1 − x 2 1 + 1 x
                                                                            2                                                                                                                                            (                                )                                                                                                   What do you notice?


                                                                                                                                                              2(                                       )
                                                                                                                                                                                                           −1
                                                                                                = 2(1 − x)−1 − 3 1 + 1 x                                                                                                                                                                                                                               3 f(x) =       1 + 14x ,     x <1
                                                                                                                                                                                         2                                                                                                                                                                        (1 − x)(1 + 2x)      2
                                                                                                                                                                                                                                                                                                                                                          a   Express f(x) in partial fractions.
                                     = 2 ⎢1 + (−1)(−x) + (−1)(−2) (−x)2 + (−1)(−2)(−3) (−x)3 + . . .⎤
                                         ⎡
                                                                                                    ⎥                                                                                                                                                                                                                                                                                                 1
                                                     ⎣                                                                   1× 2                                                           1× 2 × 3                                                                            ⎦                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                                          b   Hence find the exact value of       1
                                                                                                                                                                                                                                                                                                                                                                                                          f(x) dx, giving your answer in the
                                                     3 ⎡1 + (−1) 1 x + (−1)(−2) 1 x
                                                                                              ( )                                                               ( ) + ( 11)( 22)(33) ( 1 x ) + . . .⎤⎥⎦
                                                                                                                                                                                     2                                                                                    3                                                                                                                       6
                                                                                                                                                                                                        −              −               −
                                              −                                                                                                                                                                                                                                                                                                               form ln p, where p is rational.
                                                     2⎢⎣         2      1× 2 2                                                                                            × ×          2
                                                                                                                                                                                                                                                                                                                                                          c   Use the binomial theorem to expand f(x) in ascending powers
                                     = 2 (1 + x + x 2 + x 3 +
                                                                                                                                                     2     2     4     (
                                                                                                                                                 ) − 3 1 − 1 x + 1 x2 − 1 x3 + . . .
                                                                                                                                                                        8                                                                                                                  )                                                                  of x, up to and including the term in x 3, simplifying each term.                   [(c) Edexcel Limited 2003]


                                     = 1 + 11 x + 13 x 2 + 35 x 3 +
                                               2                    4                            8                               16
                                                                                                                                                                                                                                                                                                                                                          INVESTIGATION
                     The expansion of (1 - x)-1 is valid for |x| < 1; that is -1 < x < 1
                                                                                                                                                                                                                                                                                                                                                          4 Use a computer’s graphical software to draw the graph of
                                                                                                      (                                 )
                                                                                                                                            −1
                     The expansion of 1 + 1 x                                                                                                        is valid for 1 x < 1; i.e. -2 < x < 2                                                                                                                        -1 < x < 1 is a stricter condition        y = f(x) where f(x) is one of the fractions in this exercise.
                                          2                                                                                                                       2                                                                                                                                                                                         Also draw the graph of the equivalent binomial expansion.
                                                                                                                                                                                                                                                                                                                  than -2 < x < 2.
                     Both these conditions must apply, so the whole expansion is                                                                                                                                                                                                                                                                            Explore the graphical significance of the range of valid
                     valid for -1< x < 1.                                                                                                                                                                                                                                                                                                                   values of x. Repeat for other functions f(x) selected
                                                                                                                                                                                                                                                                                                                                                            from this exercise, especially for Question 2.



 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                           185
8 The binomial series

                                                                                                                                                                                                                                                                                                                                                        You can compare the graph of y = f(x) with the graph of its
       8.3                                Approximations
                                                                                                                                                                                                                                                                                                                                                        binomial expansion.
                                                                                                                                                                                                                                                                                                                                                                                                      2   3
                   The terms of the binomial expansion of (1 + x)n have ascending                                                                                                                                                                                                                                                                       In example 2, you found that 1 + x = 1 + x − x + x − . . .
                                                                                                                                                                                                                                                                                                                                                                                                 2   8 16
                   powers of x.                                                                                                                                                                                                                                                                                                                         for |x| < 1
                   If the value of x is small, such as 0.01, then successive terms in the
                                                                                                                                                                                                                                                                                                                                                        The graph of y = 1 + x and the graph of this infinite series are
                   expansion have smaller and smaller values.
                                                                                                                                                                                                                                                                                                                                                        identical for |x| < 1.

                                                                                                                                                                                                                                                                                                                                                        However, you can also compare the graph of y = 1 + x with
       EXAMPLE 1




                     Find the value of 0.9998 correct to 6 significant figures by
                                                                                                                                                                                                                                                                                                                                                        the graphs of just parts of the series; for instance
                     letting x = 0.001 in the expansion of (1 - x)8.
                                                                                                                                                                                                                                                                                                                                                                                   2                                      2    3
                                                                                                                                                                                                                                                                                                                                                        y = 1+ x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                      y = 1+ x − x                and         y = 1+ x − x + x
                     (1 - x)8 = 1 + 8(-x) + 8 ´ 7 (-x)2 + 8 ´ 7 ´ 6 (-x)3 +
                                                                                                                                                                                                                                                                                                                                                                2               2        8                              2        8   16
                                                                                                                                                                                                                                                       + x8
                                                                                                                  1´ 2                                                 1´ 2 ´ 3
                                                                                                                                                                                                                                                                                                                                                        These are approximations to 1 + x and are valid when x is small
                                                        = 1 - 8x + 28x2 - 56x3 + … + x8
                                                                                                                                                                                                                                                                                                                                                        and high powers of x are negligible in size. That is, they are valid
                     Let x = 0.001                                                                                                                                                                                                                                                                                                                      when x is close to x = 0 and the graph is in the neighbourhood of
                     so (1 - x)8 = 0.9998                                                                                                                                                                                                                                                                                                               the point (0, 1).
                     Then 0.9998 = 1 - 0.008 + 0.000 028 - 0.000 000 056 + . . .                                                                                                                                                                                                                                   Keep your working to at least
                                 » 0.992 027 944                                                                                                                                                                                                                                                                   7 significant figures if you         The approximation y = 1 + x gives a straight line graph.                          The line y = 1 + 1 x is, in fact, the
                                                                                                                                                                                                                                                                                                                                                                                      2                                                                     2
                                 = 0.992 028 correct to 6 significant figures.                                                                                                                                                                                                                                     require accuracy to 6 s.f.           It is a linear approximation.                                                     tangent to the curve y = 1 + x
                                                                                                                                                                                                                                                                                                                                                                                                                                          at the point (0, 1).
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C4
                                                                                                                                                                                                                                                                                                                                                                                       2
                     You can check this value on a calculator.                                                                                                                                                                                                                                                                                          The approximation y = 1 + x − x is a quadratic approximation.
                     By including more terms of the series, the value could be calculated                                                                                                                                                                                                                                                                                                    2        8
                     beyond the accuracy of a calculator.
                                                                                                                                                                                                                                                                                                                                                                                       2   3
                                                                                                                                                                                                                                                                                                                                                        The approximation y = 1 + x − x + x is a cubic approximation.
                                                                                                                                                                                                                                                                                                                                                                                             2        8   16

                                                                                                                                                                                                                                                                                                                                                        This diagram shows that the more terms there are in the
       EXAMPLE 2




                     Find the value of 2 correct to 5 decimal places by letting                                                                                                                                                                                                                                                                         approximation, the closer the graph of the approximation
                     x = -0.02 in the expansion of 1 + x .                                                                                                                                                                                                                                                                                              is to the graph of y = 1 + x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                                                                  y


                                                                                                                            ( ) ( )( )                                                                                   ( )( )( )
                                           1
                                                         1 −1        1 −1 − 3
                           1 + x = (1 + x) 2 =1+ 1 x + 2      2 x2 + 2 2 2 x3 + . . .                                                                                                                                                                                                                                                                                                                                   linear
                                                   2      1× 2        1× 2 × 3                                                                                                                                                                                                                                    This expansion is valid for |x| < 1                                                                   approximation
                                                       2   3                                                                                                                                                                                                                                                      and is thus valid for x = -0.02                                                6
                                             = 1+ x − x + x −
                                                  2   8 16                                                                                                                                                                                                                                                                                                                                       4

                     Let x = -0.02,                                                              so 0.98 = 1 - 0.01 - 0.000 05 - 0.000 000 5                                                                                                                                                                                                                                                     2                          y=   √1+x
                                                                                                                                            = 0.989 949 5 to 7 decimal places                                                                                                                                                                                                                                                         x
                                                                                                                                                                                                                                                                                                                                                                      –8   –6       –4   –2 0             2    4    6       8
                                                                                                                                                                                                                                                                                                                                                                                           –2
                     Now 0.98 =                                                              49 × 2 = 7 × 2
                                                                                              100     10                                                                                                                                                                                                                                                                                         –4
                                                                                                                                                                                                                                                                                                                                                                                                                quadratic
                     So 2 = 10 ´ 0.989 949 5 = 1.41421                                                                                                                                                                                                                                                                                                                                                          approximation
                             7                                                                                                                                                                                                                                                                                                                                                       cubic –6
                     correct to five decimal places.                                                                                                                                                                                                                                                                                                                                 approximation




 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                              187
8 The binomial series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8 The binomial series

       EXAMPLE 3
                                                                                                                                                                                                                                       1                                                                                                                                                                                                                           7 a Find the first four terms in the binomial expansion of 1 − 1
                     Find linear and quadratic approximations to                                                                                                                                                                                                                                                                                                                                                                                                                                                                  x
                                                                                                                                                                                                                                   (1 + x)2                                                                                                                                                                                                                            in descending powers of x.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       For what range of x-values is the expansion valid?
                              = (1 + x)−2 = 1 + (−2) x + (−2) × ( 3) x 2 −
                         1                                       −                                                                                                                                                                                                                                                                                             y
                                                            1× 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      b By letting x = 100, find the value of 99 correct to 6 decimal places.
                     (1 + x)2
                                                                                                                                                                                                                                                                                                                                                           5
                                                                                                           = 1 − 2x + 3x 2 −                                                                          for |x| < 1                                                                                                                                                                                                                                                     c Choose a value of x and use the same series to find 101
                                                                                                                                                                                                                                                                                                                                                           4                                          quadratic                                                         correct to 6 decimal places.
                                                                                                                                                                              1    ≈ 1 − 2x                                                                                                                                                                                                           approximation
                     The linear approximation is                                                                                                                          (1 + x)2                                                                                                         linear        3
                                                                                                                                                                                                                                                                                           approximation                                                                                                                                                           8 Show, by using a binomial expansion, that
                                                                                                                                                                              1
                                                                                                                                                                                 2 ≈ 1 − 2x + 3x
                                                                                                                                                                                                 2                                                                                                       2
                     The quadratic approximation is                                                                                                                                                                                                                                                                                                                                                                                                                                                         1
                                                                                                                                                                          (1 + x)                                                                                                                                                                                                                                                                                     a the linear approximation to              is 1 - 3x
                                                                                                                                                                                                                                                                                                                                                           1                                    y=
                                                                                                                                                                                                                                                                                                                                                                                                      1                                                                                                 (1 + x)3
                                                                                                                                                                                                                                                                                                                                                                                                   (1 + x)2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      b its quadratic approximation is 1- 3x + 6x2
                                                                                                                                                                                                                                                                                                                        –2                   –1 0                                      1                    2                                             x
                                                                                                                                                                                                                                                                                                                                               –1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (1 + 2 )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9 Find the cubic approximation of the function                 x


                   Exercise 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                   10 Find
                    1 Substitute x = 0.03 in the expansion of (1 - x)10 to find the                                                                                                                                                                                                                                                     You can check many of the
                      value of 0.9710 correct to 5 decimal places.                                                                                                                                                                                                                                                                      answers in this exercise on                                                                                                   a a quadratic approximation to the function 1 + 2 x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1 − 2x
                                                                                                                                                                                                                                                                                                                                        a calculator. However, you
                                                                                                                                                                                                                                                                                                                                        should not use a calculator
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C4
                    2 Expand (3 + x)6 and show, by substituting x = 0.02, that                                                                                                                                                                                                                                                                                                                                                                                                                                             5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      b a cubic approximation to the function
                                                                                                                                                                                                                                                                                                                                        to work out the answers.                                                                                                                                                    (1 − 2x)(2 + x)
                      3.026 = 758.650 correct to 3 decimal places.

                    3 By expanding 1 + x as a binomial series, find                                                                                                                                                                                                                                                                                                                                                                                               11 A quadratic approximation to          1    is 1 − 3 x + Cx 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (A + Bx)3 8 4
                               a the value of 5 correct to 5 decimal places by letting x = 1                                                                                                                                                                                                                                                                                                                                                                          Find the values of A, B and C.
                                                                                                                                                                                                                                                                                                                     4

                               b the value of 3 correct to 5 decimal places by letting x = − 1
                                                                                                                                                                                                                                                                                                                           4                                                                                                                                        INVESTIGATION
                    4 Expand                                                  1   as a binomial series and, by substituting x = 0.1,                                                                                                                                                                                                                                                                                                                                12 Use a computer’s graphical package to explore the graph
                                                                             1− x                                                                                                                                                                                                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          See question 8 in this exercise.
                               find the value of 10 correct to six significant figures.                                                                                                                                                                                                                                                                                                                                                                                 of y =            and the linear, quadratic and cubic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (1 + x)3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        approximations found from its binomial expansion.
                    5 a Find the first four terms of the binomial series for 3 1 + 3x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Explore other functions and their approximations from
                               b By substituting x =                                                                                         1 find the value of                                                                                  3
                                                                                                                                                                                                                                                        1003                                                                                                                                                                                                            questions in this exercise.
                                                                                                                                           1000
                                               correct to eight significant figures.

                                                                         1
                    6 Expand                                                   as a series as far as the term in x3.
                                                                     (1 + 2x)3
                               Substitute x = 0.001 and so find the value of 1.002-3
                               correct to 8 decimal places.




 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         189
8 The binomial series


                                                                                                            7 Given that       3 + 5x     º A + B ,
       Review 8                                                                                                            (1 + 3x)(1 - x) 1 + 3x 1 - x
                                                                                                              a   find the values of the constants A and B.
       1 Expand as a series of ascending powers of x up to and including x3                                   b   Hence, or otherwise, find the series expansion in ascending
         State the range of values for which each expansion is valid.                                             powers of x, up to and including the term in x2, of       3 + 5x
                 1                                                                                                                                                      (1 + 3x)(1 − x)
         a                          b      1 + 2x
              1 − 3x                                                                                          c   State, with a reason, whether your series expansion in
                                                                                                                  part b is valid for x = 1                                               [(c) Edexcel Limited 2004]
             (         )
                           -
                               2
                                                                                                                                          2
              1- 1x
                               3
         c                          d      9 + 2x
                 2
                                                                                                            8 Expand (2 + x)5 and show, by substituting x = 0.03, that
         e    1                     f       1                                                                 2.035 = 34.473 correct to 3 decimal places.
             2−x                           4−x
                                                                                                            9 By expanding 1 + x as a binomial series, find the value of 10
         g   (1 − x) 1 + x          h      x+3
                                           x −1                                                               correct to 5 decimal places by letting x = 1
                                                                                                                                                            9

       2 Find the constants A, B and C where        1 − x = A + Bx + Cx 2 +
                                                    2−x                                                    10 Show, by using a binomal expansion, that
         Find the range of values of x for which the expansion is valid.                                      a   the linear approximation to       1 is 1 - 3x
                                                                                                                                                (1 + x)3
       3 Find the coefficient of x2 in the expansion of 1 − x − x 2                                           b   the quadratic approximation to        1    is 1 - 3x + 6x2
C4




                                                                                                                                                                                                                         C4
                                                                                                                                                    (1 + x)3

       4 Find the first four terms in the binomial expansion of 1 − 2                                                                               3
                                                                    x                                      11 The binomial expansion of (1 + 12x ) 4 in ascending powers of x up
         in descending powers of x.
                                                                                                              to and including the term in x3 is 1 + 9x + px 2 + qx 3, |12x| < 1
         For what values of x is the expansion valid?
                                                                                                              a   Find the value of p and the value of q.
       5 When (1 + ax)n is expanded as a series in ascending powers
                                                                                                              b   Use this expansion with your values of p and q together
         of x, the coefficients of x and x2 are -6 and 27 respectively.                                                                                                          3
                                                                                                                  with an appropriate value of x to obtain an estimate of (1.6 ) 4 .
         a   Find the value of a and the value of n.                                                                            3
                                                                                                              c   Obtain (1.6 ) 4 from your calculator and hence make a comment
         b   Find the coefficient of x3.                                                                          on the accuracy of the estimate you obtained in part b.                 [(c) Edexcel Limited 2003]
         c   State the set of values of x for which the expansion is valid.   [(c) Edexcel Limited 2004]
                                                                                                                           3x 2 + 16   = A + B + C ,                  |x| < 1
                                                                                                           12 f(x) =
       6 Write each expression in partial fractions and so expand it as a                                              (1 − 3x)(2 + x)2 (1 − 3x) (2 + x) (2 + x)2           3
         series of ascending powers of x as far as x3.
                                                                                                              a   Find the values of A and C and show that B = 0
         Find the range of values of x for which each expansion is valid.
                    3                                                                                         b   Hence, or otherwise, find the series expansion of f(x), in
         a
             (1 − x)(1 + 2x)                                                                                      ascending powers of x, up to and including the term in x3.
                                                                                                                  Simplify each term.                                                     [(c) Edexcel Limited 2006]
         b       3x + 1
             (1 − x)(1 + x)2




 190                                                                                                                                                                                                                   191
8Exit
                                                                                                                                 9 Differentiation
                                                                                                                                    This chapter will show you how to
                                                                                                                                      differentiate implicit functions and parametric functions
           Summary                                                                                                    Refer to        use implicit and parametric functions in problems of coordinate geometry
            When n is a positive integer, the binomial expansion of                                                                   apply exponential functions to problems involving growth and decay
            (a + b)n is a finite series, valid for all values of x, where                                                             find rates of change and explore how different rates of change
                                                                                                                                      relate to each other in practical situations.
                        ⎛n⎞         ⎛n⎞         ⎛n⎞                  ⎛n⎞                ⎛n⎞
            (a + b)n = ⎜ ⎟ an + ⎜ ⎟ an −1b + ⎜ ⎟ an −2b2 + . . . + ⎜ ⎟ an −rbr + . . . ⎜ ⎟ bn                              8.1
                       ⎝0 ⎠     ⎝1 ⎠         ⎝2 ⎠                  ⎝r ⎠                ⎝n⎠
                                              ⎛n⎞                                                                                Before you start
            You can find the coefficients ⎜ ⎟ either from Pascal's triangle
                                           r  ⎝ ⎠
            or by using       n!                                                                                           8.1
                                                                                                                                 You should know how to:                                   Check in:
                          (n − r)!r!                                                                                             1 Find the equation of a tangent and a                    1 a Find the equation of the tangent to
            When n is negative or fractional, the binomial expansion of                                                            normal to a curve.                                            the curve y = 2x 2 − 12 at the point
            (1 + x)n is an infinite series, valid only for |x| < 1, where                                                           e.g. Find the equation of the normal to the curve                                   x
                                                                                                                                                                                                 where x = 1.
            (1 + x)n = 1 + nx + n(n − 1) x 2 + n(n − 1)(n − 2) x 3 + . . . +
                                       1× 2         1× 2 × 3
                                                                             n(n − 1)(n − 2). . .(n − r + 1) r
                                                                                   1 × 2 × 3. . . × r
                                                                                                            x + ...        8.1
                                                                                                                                             x       (
                                                                                                                                     y = x + 1 at 2, 2 1 .
                                                                                                                                                       2         )                            b Find the equation of the normal
C4




                                                                                                                                                                                                                                                  C4
                                                                                                                                    dy     1
            When n is negative or fractional, you must rearrange (a +             x)n                                                  =1- 2                                                    to the curve y = sin x - cos x at the
                                                                                                                                    dx     x
                 (     a)
                                                                                                                                                                                                point where x = p .
                          n
            as an 1 + x   to obtain its binomial expansion.
            You can rewrite some algebraic fractions using partial fractions
                                                                                                                           8.1
                                                                                                                                                 (
                                                                                                                                    At the point 2, 2 1 ,
                                                                                                                                                         2   )
                                                                                                                                                             dy
                                                                                                                                                             dx
                                                                                                                                                                    1
                                                                                                                                                                 =1− =
                                                                                                                                                                    4 4
                                                                                                                                                                       3                                            4

                                                                                                                                                                4
            before expressing them as binomial series.                                                                     8.2      So, gradient of normal is −
                                                                                                                                                                3
            You can use binomial expansions to find numerical and algebraic                                                         The equation of the normal is
            approximations when x is small and terms containing high powers                                                         y − 21
                                                                                                                                         2 =−4
            of x are negligible in size and can be ignored.                                                                8.3
                                                                                                                                     x −2    3
                                                                                                                                    which gives 6y + 8x = 31
            Links
            The binomial series is useful for approximations. There are                                                          2 Use the chain rule and product rule.                    2 Differentiate each expression with
            many applications of this in physics.                                                                                   e.g. Differentiate y =       sin2 x   + sin x cos x      respect to x.
                                                                                                                                    dy
                                                                                                                                       = (2sin x cos x) + (sin x ´ -sin x + cos x cos x)     a y = tan3 x             b y = x3 + 1
            For example, in special relativity, which studies space and time,                                                       dx
            the parameter g is defined as                                                                                               = 2sin x cos x + cos2 x - sin2 x                      c y = ex sin x                d y = x3 ln x
                             1                                                                                                          = sin 2x + cos 2x
                 ⎛      2 ⎞− 2
            g = ⎜1 − v2 ⎟
                 ⎝     c ⎠
                                                                                                                                 3 Manipulate logarithmic expressions.                     3 Solve these equations,
            where v is the velocity of a particle and c is the speed of light.                                                      e.g. Solve the equation 3x = 2x+4                        giving answers to 2 s.f.
            This is of the form (1 + x)n and, with v very much smaller than c,                                                      Take natural logarithms:
            can be approximated by the first few terms of its series expansion                                                                                                                a ln 3x = xln 2 + 1
                                                                                                                                             xln 3 = (x + 4)ln 2
                                                                                                                                                                                              b e2x-3 = 20
                       ()           ()
                              2          4
            g =1+ 1 v             +3 v                                                                                              x(ln 3 - ln 2) = 4ln 2
                                                                                                                                                                                              c e1-0.02x = 1.5
                  2 c              8 c                                                                                                                  4 ln 2    ln16
                                                                                                                                                x=              =
            Using this approximation can make calculations easier and allow                                                                          ln 3 − ln 2 ln1.5
            related equations to be defined.
     192                                                                                                                                                                                                                                    193
9 Differentiation

                                                                                                                                                                                                                                                                                                                                                                    Implicit functions and coordinate geometry
       9.1                              Differentiating implicit functions
                                                                                                                                                                                                                                                                                                                                                                    You can use the approaches from the Core 1 and Core 2 units                                                                                                                                                                                                                                    Refer to   C1   and    C2   for revision.
                                                                                                                                                                                                                                                                                                                                                                    with curves expressed by implicit functions.
                   Equations such as y2 + xy + y = 8, which are not easily rearranged
                   into the form y = f(x), are known as implicit functions.




                                                                                                                                                                                                                                                                                                                                                        EXAMPLE 2
                                                                                                                                                                                                                                                                                                                                                                      Find the equation of the tangent to the curve x3 - y3ex + 8 = 0
                   You usually need to use the chain rule or the product rule                                                                                                                                                                                                                                     See Chapter 4 for revision.
                                                                                                                                                                                                                                                                                                                                                                      at the point (0, 2). Find the equation of the normal at this point.
                   (or both) to differentiate an implicit function.                                                                                                                                                                                                                                                                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                      Differentiate with respect to x:                                                                                                                                                                                                                                                             The gradient of a tangent is given
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   dy

                                                                                                                                                                                                                                                                                                                                                                                                                (                                                                                               )
                                                                                                                                                                  n                                    n                                                                                                                                                                                                                                                                                                                                                                                                                                                           by the value of at the point of
                                                      The chain rule gives d(y ) = d(y ) × dy = ny n −1 dy                                                                                                                                                                                                                                                                           3x 2 − y 3 × e x + e x × 3 y 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       +0 =0                                                                                                                                                                         dx
                                                                             dx     dy   dx       dx                                                                                                                                                                                                                                                                                                                                                                                                dx                                                                                                                                                             contact with the curve.
                                                                             d(xy)    dy    dx   dy
                    and                               the product rule gives       =x +y       =x +y                                                                                                                                                                                                                                                                                                                                                                                                                     dy 3x 2 − y 3e x
                                                                              dx      dx    dx   dx                                                                                                                                                                                                                                                                                                                                                                                                so                       =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dx    3y 2e x

                                                                                                                                                                                                                                                                                                                                                                      At the point (0, 2),                                                                                                                               dy   0 − 8×1    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            =         =−                                                                                                                           e0 = 1
       EXAMPLE 1




                         dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              dx   3× 4 ×1    3
                     Find when a 2x3 + 4y3 = 3                                                                                                                                               b              x2          + 3xy +                             y2         =6
                         dx
                                                                                              c x ln y = y2 + 1                                                                              d x3 y2 = sin(x - y)                                                                                                                                                     Find the equation of the tangent at (0, 2):                                                                                                                                                                                                                                                  Use y − y1 = m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        x − x1
                                                                                                                                                                                                                                                                                                                                                                       y −2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     a Differentiate wrt x:                                                                                        6x + 4 × 3y ×
                                                                                                                                              2  dy
                                                                                                                                                    =0                                   2
                                                                                                                                                                                                                                                                                                                  Use the chain rule for 4y3 to give                        = −2                                                    so the equation of the tangent is 3y + 2x = 6
                                                                                                                                                 dx                                                                                                                                                                                                                    x−0     3
                                                                                                                                                                                                                                                                                                                                                                      The gradient of the normal at (0, 2) = + 3
                                                                                                                                                                                                                                                                                                                       3                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                  d(4y ) dy
                                                                                                                                                                                                                                                                                                                        × = 4 × 3y 2 ×
                                                                                                                                                                                                                                                                                                                                       dy                                                                                                                                                                                                                                                                                                                          The gradient of the normal, m¢ =       -
                                                                                                  2 dy                                                                                       dy    x2                                                                                                                                                                                                                                                                                                                                                      2
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C4
                                                                                 12y                                   =         -6x             2
                                                                                                                                                                and                             =− 2                                                                                                                dy   dx            dx                                                                                                                                                                                                                                                                                                                                                                      m
                                                                                                        dx                                                                                   dx   2y                                                                                                                                                                  Find the equation of the normal at (0, 2):
                                                                                                                                                                                                                                                                                                                                                                       y −2 3
                     b Differentiate wrt x: 2x + 3 x                                                                                         (           dy
                                                                                                                                                         dx
                                                                                                                                                            + y × 1 + 2y
                                                                                                                                                                         dy
                                                                                                                                                                         dx
                                                                                                                                                                             =0                        )                                                                                                          Use the product rule for 3xy and
                                                                                                                                                                                                                                                                                                                  the chain rule for y2.
                                                                                                                                                                                                                                                                                                                                                                           =
                                                                                                                                                                                                                                                                                                                                                                       x−0 2
                                                                                                                                                                                                                                                                                                                                                                                                                              so the equation of the normal is 2y = 3x + 4

                                                                                                                                                                dy
                                                                                                                                                                   (3x + 2y) = −(2x + 3y)
                                                                                                                                                                dx




                                                                                                                                                                                                                                                                                                                                                        EXAMPLE 3
                                                                                                                                                                                                                                  dy    2x + 3y                                                                                                                       Find the stationary points on the curve x2 + y2 = 12x
                                                                                                                                                                                                                                     =−
                                                                                                                                                                                                                                  dx    3x + 2y                                                                                                                       ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                      Differentiate with respect to x:
                                                                                                                 x × ⎛ × ⎞ + ln y × 1 = 2y + 0
                                                                                                                       1 dy                   dy                                                                                                                                                                                                                                       dy
                     c Differentiate wrt x:                                                                          ⎜ y dx ⎟                 dx
                                                                                                                                                                                                                                                                                                                  Use the product rule to                                    2x + 2y        = 12
                                                                                                                     ⎝      ⎠                                                                                                                                                                                     differentiate x ln y wrt x. Within                                   dx
                                                                                                                                              dy x dy
                                                                                                                                    ln y = 2y −                                                                                                                                                                   the product rule, use the chain                                                                                 dy 12 − 2x 6 − x
                                                                                                                                              dx y dx                                                                                                                                                             rule to differentiate ln y wrt x.
                                                                                                                                                                                                                                                                                                                                                                                                                                     =        =
                                                                                                                                                                                                                                                                                                                                                                                                                                  dx     2y        y
                                                                                                                                y ln y     dy                                                                                                                                                                                                                                                                                     dy
                                                                                                                                         =                                                                                                                                                                                                                                                                                           = 0 when x = 6                                                                                                                                                                                                                The gradient is zero at
                                                                                                                              2 y 2 − x dx                                                                                                                                                                                                                                                                                        dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   stationary points.
                     d Differentiate with respect to x:                                                                                                                                                                                                                                                           Use the chain rule to differentiate                 When x = 6, y2 = 12 ´ 6 - 62 = 36 and y = ±6
                                   x3 ´ 2y
                                           dy
                                           dx           (
                                              + y2 ´ 3x2 = cos (x - y) ´ 1 −
                                                                             dy
                                                                             dx      )                                                                                                                      (                                )                                                                    sin(x - y) wrt x:
                                                                                                                                                                                                                                                                                                                     d(sin(x − y))                                    So, there are stationary points at (6, 6) and (6, -6).
                                   dy                                                                                                                                                                                                                                                                                     dx
                                                                                                                                                                                                                                                                                                                                     d( x − y )
                                      (cos (x - y) + 2x3y) = cos (x - y) - 3x2y2                                                                                                                                                                                                                                     = cos (x - y) ´
                                   dx                                                                                                                                                                                                                                                                                                    dx
                                                       dy    cos(x − y) − 3x 2 y 2                                                                                                                                                                                                                                                   ⎛ dy ⎞                          You can determine if a stationary point is a maximum or minimum by
                                                           =                                                                                                                                                                                                                                                         = cos (x - y) ´ ⎜ 1 − ⎟
                                                       dx     cos(x − y) + 2x 3 y                                                                                                                                                                                                                                                    ⎝      dx ⎠                                                                                                                                                                                                                      dy
                                                                                                                                                                                                                                                                                                                                                                     either                            investigating the change in sign of dx near to the stationary point
                                                                                                                                                                                                                                                                                                                                                                                                                        d2 y
                                                                                                                                                                                                                                                                                                                                                                     or                                finding whether 2 is negative or positive at the stationary point.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   dx

 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               195
9 Differentiation                                                                                                                                                                               9 Differentiation

       Exercise 9.1                                                                                                  8 Tangents to the curve y2 = 4x at the points (1, 2) and (4, 4) meet
                 dy                                                                                                    at the point P. Find the coordinates of P.
        1 Find      when
                 dx
           a x2 - 3y2 = 5                         b y3 - x3 = 2                    c x2 + y2 - 3x + 4 = 0            9 The gradients of two tangents to the curve y2 = 16x are 2 and 1 .
                                                                                                                                                                                     3
                                                                                                                       Find the point at which the two tangents intersect.
           d y3 + 3y2 = x                         e xy = 2                         f x + xy + y = 1
           g x2 + xy + y2 = 1                     h x2y2 + x2 + y2 = 2             i 3x2 + 2y2 = x2y2               10 The curve y(x + y)2 + 15 = 3x3 has a tangent at the point (2, 1).
                                                    2 2                                 3 + 4 =1                       Find the point where the tangent intersects the x-axis. Also find the
           j   x3 + 3x2y + 3xy2 + y3 = 1          k x − y =1                       l                                   angle that the tangent makes with the x-axis.
                                                                                        x2 y2
           m cos x sin y = 1                      n x + y = tan y
                                                                                                                    11 Find the two points of intersection of the curves y2 = x and         x2 = 8y
                 dy                                                                                                    Find the gradients of the curves at both points of intersection.
        2 Find      when                                                                                               Hence, find the angles at which the curves intersect.
                 dx
           a y2 = ln x                            b yln x = ln y                   c       x +       y =1
                                                                                                                    12 Find the equations of the tangents to the curve    y 2 = 3x + 12
                                                                                                                                                                                      2
                                                                                                                                                                                     x
           d sin (x + y) = sin x                  e cos 3x sin 2y = 1              f    ex+y = x                       which are parallel to the x-axis.
           g xe y + yex = 1                       h x = ex ln y
                                                                                                                    13 Find the x-coordinates of the turning points on the curve
                                                                                                                          x3 - y3 - 2x2 + 3y + x - 4 = 0
        3 Find the gradient of the tangent to each of these curves at the given point.
           a x2 - y2 = 7                (4, 3)      b x2y = 12                (2, 3)                                14 Find the points on each of these curves where the gradient of
C4




                                                                                                                                                                                                                             C4
           c x2 + 3xy + y2 = 1          (3, -1)     d cos x = sin y + 1        (0, 0)                                  the curve is zero.
                                                                                                                        a x2 + 3y2 - 8x - 4y + 17 = 0       b 2x2 + 2y2 - 4x + 5y + 4 = 0
           e cos (x − y) = x − p
                               2        ( )
                                          p ,0
                                          2
                                                              x
                                                    f xy + e y = 1            (0, 1)
                                                       2
                                                          y2                                                        15 Find the turning points on each of these curves and determine
           g y2 = 12x                 (3, 6)        h x +    = 1 (3, 0)                                                whether they are maximum or minimum points.
                                                        9    16
           i   x3 + xy2 + y3 = 11      (2, 1)       j   xey = 2           (2, 0)                                        a x2 - y2 + 10x - 5y + 19 = 0       b x2 - 2y2 + 6x - 3y + 18 = 0

        4 Find the equations of the tangent and the normal to these curves at the given point.                      16 Find the turning points on the curve x3 - 3xy2 - y3 + 3 = 0
           a x(y - 3) = y2          (-4, 2)         b 2sin x cos y = 1             ( p4 , p4 )
           c ln (xy) = 2y - 1       ( 2, 1 )
                                         2
                                                    d e2x + e2y = x + y + 2        (0, 0)
                                                                                                                    17 Find the maximum and minimum values of y when
                                                                                                                        a 3(x - 2)2 + 4(y - 1)2 = 16        b 3(y - 1)2 - 2(x + 1)2 = 12
        5 Find the equation of the normal to the curve             y2 =      8     at the point (1, 2).
                                                                          1 + x2                                    18 a Find the values of x which give stationary values of y on the curve x3 + y3 = 3xy

        6 The tangent to the curve y2 = x3 at the point (4, 8)                              y                           b Find the stationary values and determine whether they are maxima or minima.
          intersects the x-axis at the point P.
          The normal to the curve at the same point intersects                            8
                                                                                                                      INVESTIGATION
          the x-axis at point Q.
                                                                                                                      19 Show that the equation xy - x2 + 4y + x = 0 can also be written as y = x (x - 1)
                                                                                                 P          Q
          Find the length PQ.                                                               O    4              x                                                                                     x+4
                                                                                                                               dy
                                                                                                                          Find    in two ways: by using implicit differentiation of the first
        7 a Find the equation of the normal to the curve                                                                       dx
            y2 + 3xy - 2x2 + 1 = 0 at the point A(2, 1).                                                                  equation and by using the quotient rule in the second equation.
                                                                                                                          Show that your two answers are equivalent.
           b The normal intersects the y-axis at the point B.
 196         If O is the origin, find the area of triangle OAB.                                                                                                                                                            197
9 Differentiation

                                                                                                                                                                                                                                                                                                                                                   3 The strophoid in this diagram has parametric equations                                y
       9.2                               Differentiating parametric functions
                                                                                                                                                                                                                                                                                                                                                                            ⎛         ⎞
                                                                                                                                                                                                                                                                                                                                                         x = t 2 − 1, y = t ⎜ t 2 − 1 ⎟
                                                                                                                                                                                                                                                                                                                                                               2                   2

                                                                                                                                                                                                                                                                                                                                                             t +1           ⎝ t + 1⎠
                   You can find dy from the parametric equations x = f(t), y = g(t)                                                                                                                                                                                                                               The chain rule gives
                                                                       dx                                                                                                                                                                                                                                         dy  dy dx                           Find the positions of its stationary points.
                   by using the chain rule to give                                                                                                                                                                                                                                                                   = ×
                                                                                                                                                                                                                                                                                                                  dt  dx dt                                                                                                                O             x


                                                                                                                    dy dy dx g′(t)
                                                                                                                       =   ÷   =
                                                                                                                    dx   dt dt   f ′(t)

                                                                                                                                                                                                                                                                                                                                                                       (       )
                                                                                                                                                                                                                                                                                                                                                   4 The point P 4, 2 2 lies on the ellipse with parametric equations
                                                                                                                                                                                                                                                                                                                                                                           5
       EXAMPLE 1




                     The curve shown in the diagram                                                                                                                                                            y
                                                                                                                                                                                                                                                                                                                                                      x = 5cos q, y = 4sin q and S is the point (3, 0).
                     has parametric equations                                                                                                                                                                                                                                                                                                         The normal to the ellipse at P meets the x-axis at Q.
                     x = 3cos q + cos 3q and                                                                                                                                                                                                             p
                                                                                                                                                                                                                                                                                                                                                      Prove that the length QS = 3 PS
                                                                                                                                                                                                                                          i=
                     y = 3sin q + sin 3q                                                                                                                                                                                                                 6                                                                                                                                 5
                                                                                                                                                                                                                                   P
                     Find the gradient of the                                                                                                                                                                                                                                                                                                      5 A curve has parametric equations
                                                                                                                                                                                                              O                                                                                             x
                     tangent to the curve at the                                                                                                                                                                                                                                                                                                                                                                                           y
                                                                                                                                                                                                                                                                                                                                                                   2                   3
                     point P where q = p                                                                                                                                                                                                                                                                                                                 x=     t , y = t
                                                                                                             6                                                                                                                                                                                                                                                1 + t2   1 + t2
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                   P

                                                          dx                                                                                                                      dy
                                                                                                                                                                                                                                                                                                                                                      The parameter t = 1 at the point P.
                                                             = -3sin q - 3sin 3q                                                                                                     = 3cos q + 3cos 3q
                                                          dq                                                                                                                      dq                                                                                                                                                                  Show that the tangent to the curve at P has the equation y = 2x − 1
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4
                                                                                                                                                                                                                                                                                                                                                                                                                                     2     O                 x
                                    dy   dy dx    3 cos q + 3 cos 3q      cos q + cos 3q                                                                                                                                                                                                                                                              Find the point Q at which the tangent meets the curve again.                             Q
                                       =   ÷   =                       =−
                                    dx dq d q    −(3 sin q + 3 sin 3q)    sin q + sin 3q
                                                                                                                                                                                                        3
                                         cos p + cos p                                                                                                                                                    +0
                     When q = p , dy = −     6       2 =                                                                                                                                    −
                                                                                                                                                                                                       2     =                                 −
                                                                                                                                                                                                                                                          3
                                                                                                                                                                                                                                                            =                    −
                                                                                                                                                                                                                                                                                          1                                                          INVESTIGATION
                              6 dx       sin p + sin p                                                                                                                                                 1 +1                                              3                                 3
                                             6       2                                                                                                                                                 2                                                                                                                                             6 When a curve (such as a circle) rolls along a fixed curve,
                                                                                                                                                                                                                                                                                                                                                       a point on the rolling curve traces out a locus called a roulette.
                                                                                                                                                                                             1
                     The gradient of the tangent at P is −
                                                                                                                                                                                              3                                                                                                                                                         If a moveable circle rolls on the outside of a fixed circle,
                                                                                                                                                                                                                                                                                                                                                        a point on its circumference traces out a special roulette
                                                                                                                                                                                                                                                                                                                                                        called an epicycloid.
                   Exercise 9.2                                                                                                                                                                                                                                                                                                                         If the moveable circle rolls on the inside of a fixed circle, the
                   1 A hyperbola has parametric equations x = sec q, y = tan q                                                                                                                                                                                                                                                                          point traces out a hypocycloid.
                         Prove that dy = cos ec q                                                                                                                                                                                                                                                                 d(sec q )
                                                                                                                                                                                                                                                                                                                            = sec q tanq                Use a computer’s graphical software to investigate these
                                     dx                                                                                                                                                                                                                                                                             dq
                         Find the equations of the two tangents to the curve which                                                                                                                                                                                                                                                                      special roulettes for different values of k.
                         are parallel to the y-axis.                                                                                                                                                                                                                                                                                                    Their parametric equations are:
                                                                                                                                                                                                                                                                                                                                                               x = kcos q + cos kq,            y = ksin q - sin kq for hypocycloids
                   2 The astroid in this diagram has parametric equations                                                                                                                                                                                                                                                       y
                                                                                                                                                                                                                                                                                                                                                        and    x = kcos q - cos kq, y = ksin q - sin kq           for epicycloids.
                     x = 4cos3 q, y = 4sin3 q
                                                                                                                                                                                                                                                                                                                               4
                                                                           dy
                         Prove that                                           = − tan q and find the equations of the four
                                                                           dx
                         tangents to the astroid which are equally inclined at 45° to                                                                                                                                                                                                                                  –4       O          4   x
                         both axes. Also find the area of the square that they enclose.
                                                                                                                                                                                                                                                                                                                              –4
 198                                                                                                                                                                                                                                                                                                                                                                                                                                                             199
9 Differentiation




                                                                                                                                                                                                                                                                                                                                                          EXAMPLE 3
       9.3                                Growth and decay                                                                                                                                                                                                                                                                                                              Cells in a dish grow so that, at a time t (hours), the number
                                                                                                                                                                                                                                                                                                                                                                                                            t
                                                                                                                                                                                                                                                                                                                                                                        of cells, n, is given by n = 10 × 8 2
                   ax is an exponential function for all values of a.                                                                                                                                                                                                                                             When a = e, the function ex is
                                                                                                                                                                                                                                                                                                                                                                        Find
                                                                                                                                                                                                                                                                                                                  called the exponential function.
                   Consider y =                                        ax             where a > 0                                                                                                                                                                                                                                                                       a the number of cells when t = 1 and t = 5
                                                                                                                                                                                                                                                                                                                                                                        b the average rate of increase over the period t = 1 to t = 5
                    Take natural logarithms of both sides:                                                                                                                                                                                                                                                                                                              c the instantaneous rate of increase when t = 5.
                                                                                                                                             ln y = ln ax = x ln a                                                                                                                                                                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                    Differentiate with respect to x:                                                                                                                                                                                                                                                              Use the chain rule to
                                                                                                                                                                                                                                                                                                                                                                        a When t = 1, n = 10 ´ 80.5 = 28                                                                                                                                                                                                                                                             n is given to the nearest
                                                                                                                                        1 dy                                                                                                                                                                      differentiate ln y.                                     When t = 5, n = 10 ´ 82.5 = 1810                                                                                                                                                                                                                                                           whole number.
                                                                                                                                        y dx = 1 × ln a                                                                                                                                                           ln a is a constant.
                                                                                                                                                                                                                                                                                                                                                                        b The average rate of increase = 1810 − 28
                                                                                                                                                dy                                                                                                                                                                                                                                                                                                                                                                                         5 −1
                                                                                                                                                dx = ln a × y                                                                                                                                                                                                                                                                                                                                                         = 445.5 cells per hour
                                                                                                                                                                                                                                                                                                                                                                        c The instantaneous rate of increase is given by the gradient
                                                                               dy                                                                                                                                                                                                                                               dy                                        of the curve at the instant when t = 5.
                    When y = ax,                                                  = ln a ´ ax                                                                                                                                                                                                                     When a = e,      = ln e ´ ex = ex
                                                                               dx                                                                                                                                                                                                                                               dx                                                                                                                    t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        dn                  t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1
                                                                                                                                                                                                                                                                                                                                                                                     For n = 10 × 8 2 ,                                                                    = 10 × (ln 8 × 8 2) ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        dt                       2
       EXAMPLE 1




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         = (5ln 8) ´ 82.5 when t = 5
                     If y = 2x, find the value of dy when x = 3
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C4
                                                                                                                                            dx                                                                                                                                                                                                                                                                                                                                           = 1882
                     Hence, find the equation of the tangent to the curve at the
                     point P where x = 3.                                                                                                                                                                                                                                                                                                                                            The instantaneous rate of increase is 1882 cells per hour.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                              y                                                                                                                                              n
                                 dy                                                                                                                                                                                                                                                                                                        y = 2x
                     For y = 2 ,    = ln2 × 2 x              x
                                 dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  The gradient of the chord PQ gives
                                                                                      = ln 2 ´ 23 = 8ln 2                                                                        when x = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          the average rate of increase.
                                                                                                                                                                                                                                                                                                                                                                                                                                                          1810                                                                                    Q
                     When x = 3, y = 23 = 8
                                                                                                                                                                                                                                                                                                                                          P
                     Hence, the equation of the tangent at the point (3, 8) is
                                                                                                                                 y −8
                                                                                                                                      = 8 ln 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       The gradient of the tangent at the
                                                                                                                                 x−3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 point Q gives the rate of increase
                                                                                                                                                    y = (8ln 2)x - 24ln 2 + 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        at the instant when t = 5.
                     Substitute ln 2 = 0.693147… :                                                                                                y = 5.55x - 8.64                                                                               to 2 d.p.                                                                   O             3          x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     28                     P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      O                        1 2 3 4 5                                                                      t
       EXAMPLE 2




                     Find the value of f ¢(1) for the function f(x) = 32x+1 + 4 ´ 3x + 1
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Differentiate f(x) = 32x+1 + 4 ´ 3x + 1 with respect to x:                                                                                                                                                                                                                                                                                       Exponential functions of time of the type akt and a-kt are used in
                                                                                                                                                                                                                                                                                                                  Use the chain rule to                               real life to develop models of exponential growth and decay.
                                                         f ¢(x) = (ln 3 ´ 32x+1) ´ 2 + 4 ´ (ln 3 ´ 3x) + 0                                                                                                                                                                                                        differentiate 32x+1
                                                                = (2ln 3)32x+1 + (4ln 3)3x                                                                                                                                                                                                                                                                            When a = e, the models use functions involving ekt for
                     So                                 f ¢(1) = (2ln 3) ´ 33 + (4ln 3) ´ 3                                                                                                                                                                                                                                                                           exponential growth and e-kt for exponential decay, where k > 0
                                                               = 54ln 3 + 12ln 3
                                                               = 66ln 3
 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      201
9 Differentiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9 Differentiation

       EXAMPLE 4




                                                                                                                                                                                                                                                                                                                                                         EXAMPLE 5
                     Sri Lanka had a population N0 in 2006 of 21 million people.                                                                                                                                                                                                                                                                                      Radioactive fallout in the atmosphere contains the isotope
                     Its population N in another t years is predicted to be                                                                                                                                                                                                                                                                                           strontium-90.
                     N = N0ert where r = 0.013                                                                                                                                                                                                                                                                                                                        The mass m grams after a time t years is given by m = m0e-kt
                                                                                                                                                                                                                                                                                                                                                                      where k = 0.024 and m0 is the mass at time t = 0.
                     Find
                                                                                                                                                                                                                                                                                                                                                                      Find
                     a the predicted population of Sri Lanka in 2046
                                                                                                                                                                                                                                                                                                                                                                      a the mass after 10 years if m0 = 5
                     b how long it will take to double the 2006 population
                                                                                                                                                                                                                                                                                                                                                                      b the initial rate of decay and the rate of decay after 10 years
                     c the rate of growth of the population in 2026.                                                                                                                                                                                                                                                                                                    if m0 = 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    m (grams)
                                                                                                                                                                                                                                                                                                                                                                      c the time taken for m to reduce to a value of 1 m0
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     a In 2046, t = 40                                                                                                                                                                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      5
                       and the predicted population N = 21 ´ e0.013´40
                                                                                                                                                                                                                                                                                                                                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                      a When t = 10 and m0 = 5, m = 5 ´ e-0.024´10                                                                                                                                                                                                                                                 3.93
                                                      = 21 ´ e0.52
                                                      = 35.3 million                                                                                                                                                                                                                                                                                                                              = 5 ´ 0.786…                                                                                                                                                                                                                                                       2.5
                                                                                                                                                                                                                                                                                                                                                                                                  = 3.93 grams (to 3 s.f.)
                     b When N = 2N0                                                                                                                                                                                                                                                                                N (million)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dm d(m0e −kt)
                            ert = 2                                                                                                                                                                                                                                                                                                                                   b The rate of decay =                                                                                       =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dt    dt                                                                                                                                                                                 O    10 20 30 40 50              t (years)
                            rt = ln 2                                                                                                                                                                                                                                                                                                                                                                                                                                = m0 ´ (-k) ´ e-kt
                                                                                                                                                                                                                                                                                                                   42                                                                                                                                                                                                                                                                                                                                                             28.9
                                                                         t = ln 2
                                                                                                                                                                                                                                                                                                                  35.3                                                                                                                                               = -km0e-kt
                                                                                     r                                                                                                                                                                                                                                                                                                                                                            dm
                                                                                    0.6931..
                                                                                                                                                                                                                                                                                                                    21                                                                    When t = 0,                                                = −0.024 × 5 × e0
                                                                                  =                                                                                                                                                                                                                                                                                                                                                               dt
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C4
                                                                                     0.013                                                                                                                                                                                                                                                                                                                                                                           = -0.12                                                                                                                                                                                       This value of -0.12 is the gradient
                                                                                  = 53.3                                                                                                                                                                                                                              O    10 20 30 40 50 t (years)                                 The initial rate of decay is 0.12 grams per year.                                                                                                                                                                                                                              of the curve when t = 0.
                                                                                                                                                                                                                                                                                                                                       53.3                                                                                                                                                                                                                                                                                                                        In the final answer, the negative
                                   So, the population will have doubled in 53 years time;                                                                                                                                                                                                                                                                                           When t = 10, dm = −0.024 × 5 × e −0.024 × 10                                                                                                                                                                                                                                   sign is implied by the word ‘decay’.
                                   that is, by 2059.                                                                                                                                                                                                                                                                                                                                                                                                 dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = -0.094
                                                                                                                                       dN   d(N 0ert)
                     c The rate of growth                                                                                                 =                                                                                                                                                                                                                                         The rate of decay after 10 years is 0.094 grams per year.
                                                                                                                                       dt     dt
                                                                                                                                                         = N 0rert
                                                                                                                                                                                                                                                                                                                                                                      c When m = 1 m0                                                                                    1 = e −0.024 × t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Take the reciprocal of both sides.
                                                                                                                                                                                                                                                                                                                                                                                                                                         2                               2
                                   In 2026, t = 20 and
                                                                                                                                       dN
                                                                                                                                          = 21 × 0.013 × e0.013 × 20                                                                                                                                                                                                                                                                                               2 = e0.024 ´ t
                                                                                                                                       dt                                                                                                                                                                                                                                                                                                                       ln 2 = 0.024 ´ t
                                                                                                                                                          = 0.273 ´ e0.26                                                                                                                                         This value gives the gradient of the
                                                                                                                                                                                                                                                                                                                  curve when t = 20.                                                                                                                                       t = 0.6931... = 28.9
                                                                                                                                                          = 0.354                                                                                                                                                                                                                                                                                                                                  0.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   This time of 29 years is called the
                                                                                                                                                                                                                                                                                                                                                                                    It takes almost 29 years for half the initial mass to decay.                                                                                                                                                                                                                   half-life of strontium-90.
                                   So, according to this model, in 2026, the population of                                                                                                                                                                                                                        These calculations assume that
                                   Sri Lanka will be growing at a rate of 0.354 million                                                                                                                                                                                                                           the mathematical model N = N0ert
                                   = 354 000 people per year.                                                                                                                                                                                                                                                     will hold, but it is unlikely that r               Exercise 9.3
                                                                                                                                                                                                                                                                                                                  will stay constant over many years.
                                                                                                                                                                                                                                                                                                                                                                     1 Find dy when
                                                                                                                                                                                                                                                                                                                                                                                                         dx
                                                                                                                                                                                                                                                                                                                                                                                a y = 3x                                                                                                              b y = 32x-1                                                                                                           c y = 4 ´ 35x+2
                                                                                                                                                                                                                                                                                                                                                                                      1
                                                                                                                                                                                                                                                                                                                                                                                d y = 2x                                                                                                              e y = 102x+5                                                                                                          f y = 3 ´ 51-2x
                                                                                                                                                                                                                                                                                                                                                                                                                   3



 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            203
9 Differentiation                                                                                                                                       9 Differentiation

                                               1 x +2                              8 The number, N, of cells infected with a virus changes over t hours
        2 Find f ¢(x) and f ¢(2) when f(x) = 2 2        + 3 (2 x) − 4
                                                                                     according to N = 200 - 50e-2t
                                                                                                                    dN
        3 Find the equation of the tangent and the equation of the                    a Find the value of N and        when t = 0.
                                                                                                                    dt
          normal to the curve
          a y = 2 ´ 3x when x = 1                                                     b Find how many infected cells there are after 4 hours and
                                                                                      the rate of change in the number of infected cells at this time.
           b y = 3 ´ 2x + 1 when x = 0.
                                                                                   9 A mass m grams of a substance decays exponentially over a time
        4 A population P grows over a time t according to                            t hours where m = m0e-kt
           a P = 5 ´ 23t                           b P = 20.4t + 2                    a If m = 20 when t = 0, find m0.
                     1.5t                                     0.4t - 1
           c P = 3e                                d P=e                                 If m = 15 when t = 5, find k.
                                                   dP
           In each case find the value of P and       when t = 1.                     b Find the time taken for mass of the substance to decay to
                                                   dt
                                                                                         i half its original mass        ii 10% of its original mass.
        5 A population Q is in decline over time according to                         c Find the rate of decay when t = 0 and when t = 5.
           a Q = 4 ´ 3-0.2t                        b Q = 32 - 0.4t
                                                                                  10 A hot liquid cools such that the difference, q, between its temperature
           c Q = 2e-0.01t                          d Q = e6 - 2t                     and that of its surroundings at a time t minutes is given by q = ke-at
           In each case, find the value of Q and dQ when t = 1.                       a If the liquid’s temperature is 70 °C after 1 minute, find the
                                                     dt
                                                                                      values of k and a. Room temperature is constant at 10 °C and
C4




                                                                                                                                                                                     C4
        6 A number of cells, n, grows over a time t such that n = n0e0.2t             the liquid’s initial temperature is 80 °C.
          where n0 = 5.                                                               b Calculate the initial rate of cooling and the rate of cooling
          Find                                                                        after 5 minutes.
           a the number of cells when t = 0 and when t = 10                           c Write an expression for the temperature T of the liquid at time t.
           b the average rate of growth over the period t = 0 to t = 10               d Calculate the time taken for the temperature of the liquid
           c the instantaneous rate of growth when t = 5.                             to drop to 40 °C.

        7 The population, P, of Manchester was 126 000 in 1821 and
          236 000 in 1841.                                                          INVESTIGATION
           a If t is the number of years after 1821, model the population
                                                                                    11 The population of London was 1 950 000 in 1841 and
             as P = P0ekt and find the constants P0 and k.
                                                                                       2 800 000 in 1861.
                    dP                                                                 Model the population in two ways as:
           b Find      and evaluate the rate of growth in 1831.
                    dt
                                                                                            P = P0at
           c Estimate the population in 1851. Find the percentage error in this             P = P0ekt
           estimate compared to the actual population in 1851 of 303 000.               where P0, a and k are constants.
                                                                                        The actual population in 1871 was 3 250 000.
                                                                                        Do the two models give the same estimates?
                                                                                        Explain your answer.




 204                                                                                                                                                                               205
9 Differentiation




                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 2
       9.4                                Rates of change                                                                                                                                                                                                                                                                                                         A hot-air balloon is being blown up at a rate of
                                                                                                                                                                                                                                                                                                                                                                  2 m3 per minute.
                   The rate at which water is flowing out of a tap affects the                                                                                                                                                                                                                                                                                    Assuming the balloon is spherical, find                                                                                                                                                                                                                                                                            r

                   rate at which the depth of water in the bath increases.                                                                                                                                                                                                                                                                                        a the rate of increase in its radius r when r = 2.5 metres

                   This is an example of a rate of change in which a change in                                                                                                                                                                                                                                                                                    b the rate of increase in its surface area A when
                   one variable over a given time produces a change in the                                                                                                                                                                                                                                                                                          r = 2.5 metres.
                   other variable over that time.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2 m3 min–1
                                                                                                                                                                                                                                                                                                                                                                  ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                   If V is the volume of water running into the bath,
                                                                                                                                                        dV                                                                                                                                                                                                        a If the volume of the balloon is V m3, then dV = 2 m3 min-1
                   then the rate of change of V is                                                                                                         .                                                                                                                                                                                                                                                                                                                                                                                                                 dt
                                                                                                                                                        dt
                   Similarly, if h is the depth of water in the bath,                                                                                                                                                                                                                                                                                                           To find dr , use the chain rule dV = dV × dr
                                                                                                                                                                                                                                                                                                                                                                                                            dt                                                                                   dt                     dr                   dt
                                                                                                                                                     dh
                   then the rate of change of h is                                                                                                      .
                                                                                                                                                     dt                                                                                                                                                                                                                         To find dV , use the geometry of the sphere.
                                                                                                                                                                                                                                                                                                                                                                                                            dr
                   These two rates of change are linked by the chain rule
                                                                                                                                                                                                                                                                                                                                                                                     V = 4 p r3
                                                                                                                                                                                                                                                                                                                                                                                                             3
                           dV   dV dh
                              =   ×                                                                                                                                                                                                                                                                                                                                              dV  4
                           dt   dh dt                                                                                                                                                                                                                                                                                                                                               = p × 3r 2 = 4p r 2
                                                                                                                                                                                                                                                                                                                                                                                 dr  3
                                                                                     dV                                                                                                                                                                                                                                                                                         Substitute into the chain rule with r = 2.5:
                   The differential                                                     is independent of time t and can be derived
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4
                                                                                     dh
                                                                                                                                                                                                                                                                                                                                                                                dV   dV dr
                   from some physical or geometrical relationship between V and h.                                                                                                                                                                                                                                                                                                 =   ×
                                                                                                                                                                                                                                                                                                                                                                                dt   dr dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 dr
                                                                                                                                                                                                                                                                                                                                                                                          2 = 4p ´ 2.52 ´ dt
       EXAMPLE 1




                     A cylindrical water tank of radius 2 m holds water which                                                                                                                                                                                                                                                             2m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dr    2
                     is being pumped in from the top of the tank at a rate of                                                                                                                                                                                                                                                                                                   The rate of increase in the radius,                                                                                                                            =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dt   25p
                     3 m3 per hour.
                                                                                                                                                                                                                                                                                                                              3 m3 h–1                                          = 0.025 metres per minute to 2 s.f.
                     Find the rate at which the depth h of water is increasing.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                  b The surface area of the balloon A = 4pr2
                                                                                                                                                                                                                                                                                                                  h                 V
                     If the volume of water in the tank is V, then dV = 3 m3 h-1                                                                                                                                                                                                                                                                                                                                                                                                                                         dA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = 8p r
                                                                                                                                                                                                                                 dt                                                                                                                                                                                                                                                                                      dr
                                                                                                                   dV   dV dh                                                                                                                                                                                                       dh                                                                                                                                                                                                   = 8p ´ 2.5 = 20p
                     The chain rule gives                                                                             =   ×                                                                                                                                                                                       You have to find dt                                                                                                                                                                                                    when r = 2.5
                                                                                                                   dt   dh dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dA dA dr
                     From the geometry of the cylinder, V = pr2h                                                                                                                                                                                                                                                                                                                The chain rule gives                                                                              =   × where, from part a,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dt   dr dt
                                                                                                                                                                                                                                                                                                                                                                                  dr    2
                                                                                                                                                                                                          = 4ph                                 for r = 2                                                                                                                            =
                                                                                                                                                                                                                                                                                                                                                                                  dt   25p
                                                                                                                                                                                        dV                                                                                                                                                                                                                                                                             dA          2
                                                                                                                                                                                           = 4p                                                                                                                                                                                 Substitution gives                                                                        = 20p ×     = 1.6
                                                                                                                                                                                        dh                                                                                                                                                                                                                                                                             dt         25p
                                                                    dh
                     Substitute into the chain rule:                                                                                                                                             3 = 4p ×                                                                                                                                                                       When r = 2.5 m, the rate of increase in the surface area is
                                                                    dt
                                                                                                                                                                                                                                                                                                                                                                                1.6 m2 per minute.
                                                               dh    3
                     The rate of change of the depth of water,    =
                                                               dt   4p
                                                                                                                                                                                                                                                                                                                      Make sure you use the correct
                                                                                                                                                                                                                                 = 0.24 m h-1                                                                         units in your answer.

 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            207
9 Differentiation                                                                                                                                                          9 Differentiation

       Exercise 9.4                                                                             9 A spillage of coffee on to a horizontal table forms a circular
        1 A square sheet of molten glass is increasing in size such that                          stain with a radius increasing at a rate of 2 mm s-1.
          the rate of increase of the length, x, of its sides is given by                         Find the rate at which the area of the stain is increasing
           dx                                                                                     after 5 seconds.
              = 0.2 m per minute.
           dt
           Find the rate of increase of its area, A, when x = 0.5 metres.                      10 Sand falls onto horizontal ground at a constant rate of             You will need to use the formulae
                                                                                                  20 cm3 s-1 to form a pile in the shape of a circular-based          for volume and height of a cone.
        2 Oil is dripping onto a horizontal floor forming a circular pool                         cone with a semi-vertical angle of 45°.
          of radius r cm. If the rate of increase of the radius is 0.5 cm per                     Calculate the rate at which the vertical height of the conical
          second, find                                                                            pile is increasing after 5 seconds.
           a the rate of increase of the area of the pool when r = 15 cm
                                                                                               11 A boy 1.5 m tall runs directly away from a light which is fixed
           b the rate of increase of the circumference of the pool.                               2 m above a horizontal road. If he runs at a speed of 3 m s-1,
                                                                                                  find the rate at which his shadow is lengthening.
        3 A crystal forms in the shape of cube of edge length x mm.
          If the rate of increase of its edges is 0.3 mm per minute, find                      12 Robert Boyle (1627–1691) discovered that, for a fixed amount
           a the rate of increase of its volume when x = 6 mm                                     of gas at a constant temperature, its pressure varies inversely
           b the rate of increase of its surface area when x = 6 mm.                              as its volume varies.
                                                                                                  A quantity of gas has an initial volume of 0.25 m3 and an initial
        4 An ice cube melts uniformly on all its faces. When its edges are                        pressure of 2 N m-2. Its volume is allowed to increase at a
          2 cm long, the rate of decrease of its surface area is 4 cm2 per hour.                  constant rate of 0.05 m3 s-1. Find the rate at which its pressure
C4




                                                                                                                                                                                                            C4
          Find the rate of decrease in its volume at this instant.                                is changing at the instant when its volume is double its initial value.

        5 A spherical bubble under water is rising to the surface and its
                                                                                                 INVESTIGATION
          radius r is increasing at a rate of 0.2 mm per second.
           a When its radius is 4 mm, find the rate of increase in its volume.                   13 As a piston moves into the cylinder of an engine, the
                                                                                                    length L of the cylindrical space changes.                                               r
           b Find the rate of increase in its surface area when its volume is 36p mm3.              This change in length causes a change in the volume V
                                                                                                    of the gas in the cylinder, which causes the pressure P
        6 Molten plastic is extruded from a nozzle at a speed of 20 cm s-1                          of the gas to change.                                             L               V
          and forms a cylindrical shape. The nozzle has a circular
          cross-section of area 0.75 cm2.                                                             Find an expression for the rate of change of pressure
          Find the rate of change in the volume of the extruded plastic.                              in terms of radius r, length L and time t.
                                                                                                      Have you made any assumptions?
        7 Air is leaking from a spherical balloon at a rate of 2 cm3 per second.
          When its radius is 12 cm, find the rate of decrease of
           a its radius
           b its surface area.

        8 A hollow cone, with a semi-vertical angle of 60°, is held vertex
          downwards with its axis vertical. Water drips into the cone at
          a constant rate of 4 cm3 per minute. Find the rate at which the                60º
          depth of water is increasing when the water is 4 cm deep.



 208                                                                                                                                                                                                      209
9 Differentiation

                                                                                                                               10 The parametric equations of a curve are
       Review 9
                                                                                                                                  x = 2cos q + cos 2q    and y = 2sin q + sin 2q

              dy
                                                                                                                                  Show that stationary values occur on this curve when cos q = 1
       1 Find    when                                                                                                                                                                          2
              dx                                                                                                                  Find two stationary points for 0 q 2p.
                                                                                     2 − 3 =4
         a 3x2 + 4y2 = 9                b        x2 + 3xy + y2 = 2               c
                                                                                     x2 y2                                     11 A curve is given by the parametric equations x = t2, y = 1
                                                                                                                                                                                           t
         d cos 2x sin 3y = 1            e        y3 = ln x                       f   x2ey - y2ex = 2                              a   Find the equation of the tangent at the point A 9,( )
                                                                                                                                                                                         1 .
                                                                                                                                                                                         3
                                                                                                                                  b The tangent at A intersects the curve at point B.
                dy
       2 Find      for the curve x3 - 2x2y - 3xy2 + y3 = 9                                                                          Find the value of the parameter t at B.
                dx
         Find the gradient of the tangent to this curve at the point (2, -1).
                                                                                                                               12 The normal to the curve with parametric equations x = 1 , y = t2
                                                                                                                                                                                              t −1
       3 Find the equations to the tangent to these curves at the given points.                                                   at the point P (1, 4) meets the curve again at points Q and R.
         a   y3 = 2x2 (2, 2)           b     x3 - 2x2y - y3 = 8        (3, 1)          c   ye2x = 3    (0, 3)
                                                                                                                                  a Show that the gradient of the normal is 1 and find its equation.
                                                                                                                                                                                4
       4 The normal to the curve       x2              y2
                                       + 3xy + = 11 at the point (2, 1)                                                           b Prove that the values of t at points Q and R are given by t = − 1 ± 2
         meets the axes at the points P and Q. Given that O is the origin, show that                                                                                                                     2
         the area of triangle OPQ is 81 square units.
                                       112                                                                                     13 The curve C is given parametrically by x = t − 1 , y = t + 1 , t ¹ 0
                                                                                                                                                                                    t          t
       5 A curve has equation x3 - 2xy - 4x + y3 - 51 = 0
C4




                                                                                                                                                                                                                                            C4
                                                                                                                                  a Find the coordinates of the points on C at which the gradient is zero.
         Find the equation of the normal to the curve at the point (4, 3).
                                                                                                                                  b Find the equation of the normal to C at the point (0, 2).
         Give your answer in the form ax + by + c = 0,
         where a, b and c are integers.                                                           [(c) Edexcel Limited 2003]
                                                                                                                                             dy
                                                                                                                               14 a   Find      when    i       y = 4x + 4    ii y = 42x + 2 ´ 4x + 1
                                                                                                                                             dx
       6 a Show that, for the curve         x2   +   2y2   - 4x + 4y = 26
                                                                                                                                  b Find the equation of the tangent to the graphs of both these
              dy
                 = 2−x
              dx 2 (1 + y)                                                                                                        equations at the points where x = 0
         b Find all the stationary points on the curve.
                                                                                                                               15 Bacteria grow so that, at a time t, the number n of bacteria
                                                                                                                                                            t
         c Find the points on the curve where the tangents are parallel to the y-axis.
                                                                                                                                  is given by n = 5 × 4 3
       7 An ellipse is expressed by the parametric equations                x = 4sin q, y = 3cos q                                Find
                                                                                                                                  a the number of bacteria when t = 2 and t = 5
         Find the equation of the tangent to the ellipse at the point where q = p
                                                                                              6
                                                                                                                                  b the average rate of increase in the number of bacteria over the
       8 A curve is expressed parametrically by the equations                x = t2 + 1, y = t3                                   period from t = 2 to t = 5
         a Find the equation of the tangent at the point where t = 2                                                              c   the instantaneous increase in the number of bacteria when t = 2
         b Find the equation of the normal at the point (2, -1).                                                                  d the value of t at which the value of n is double its initial value.

       9 The curve C has parametric equation x = asec t, y = btan t, 0 < t < p ,                                               16 The value £V of a car t years after the 1st January 2001 is given
                                                                             2
         where a and b are positive constants.                                                                                    by the formula V = 10 000 ´ (1.5)-t
         Prove that dy = b cosec t                                                                                                a Find the value of the car on 1st January 2005
                     dx    a
         Find the equation in the form y = px + q of the tangent to                                                                                         dV
                                                                                                                                  b Find the value of          when t = 4
         C at the point where t = p                                                               [(c) Edexcel Limited 2003]                                dt
 210                               4                                                                                              c   Explain what the answer to part b represents.                          [(c) Edexcel Limited 2005]   211
Revision 3

       9Exit
                                                                                                                      1 Express these as partial fractions.
                                                                                                                        a       x+4                      b     x+3                        c          2x
                                                                                                                            (x − 2)(x + 1)                   x(x 2 − 1)                         x 2 − 5x + 6

                                                                                                                        d      x2 + 2                    e          2                     f           x+2
                                                                                                                             x ( x + 1)
                                                                                                                                       2
                                                                                                                                                             x 2 ( 2x − 1)                      (1 − 2x ) ( x − 3 )2
       Summary                                                                                             Refer to
        You use implicit differentiation when the relation between
                                                                                                                      2 Show that x 2+ 3 can be expressed as A + B + C + D
                                                                                                                                   3
        x and y cannot be expressed explicitly by y = f(x)                                                                            x ( x − 1)                             x    x −1   x +1
                                     d(y n)           dy
        The chain rule gives                = ny n −1                                                                   Find the values of A, B, C and D.
                                      dx              dx

        The product rule gives d ( xy ) = x dy + y dx = x dy + y                                              9.1     3 Express these as partial fractions.
                                     dx        dx          dx       dx                                                       x2 + 2                                                             x 3 − 2x 2 + 2
                                                                                                                        a                                b        x2 − 2                  c
        For parametric equations x = f(t), y = g(t),                                                                         x2 − 1                          ( x − 1) ( x + 2 )                   x ( x − 1)
                                                                                                                                                                                                            2
                                      dy dy dx
        the chain rule gives             =   ×                                                                9.2
                                      dt   dx dt
                                                                                                                        d     x3 + 1                     e    4x 3 + 1                    f          2x 3 − 1
                        dy
                x
        If y = a , then    = ln a × a x                                                                       9.3           x ( x − 2)                       x 2x − 1)
                                                                                                                                                              2(
                                                                                                                                                                                                ( x + 1)2 (2x − 1)
                        dx
                                  dy
        When a = e, y = ex gives        = ln e × e x = e x
C4




                                                                                                                      4 If x + 2x2 + 3x + 1 ≡ px 2 + qx + r + sx + t ,




                                                                                                                                                                                                                         C4
                                                                                                                            4     2
                                  dx
        You can model                                           y                                                                x −2                          2
                                                                                                                                                                   x −2
                                                                                        y                               find the values of the constants p, q, r, s and t.
          exponential growth by y = Aekt                                 y = Aekt
          exponential decay by y = Ae-kt
        where k > 0                                                                     A                     9.3     5a    Point P lies on the curve with parametric equations x = t2 - 4, y = t + 1
                                                                A                                –kt
                                                                                            y = Ae                          If the y-coordinate of P is 6, find its x-coordinate.

                                                                O                   t                  t                b The point (4, k) lies on the curve with parametric equations x = 1 − 5, y = t - 1
                                                                                        O                                                                                                  t2
                                                                                                                        Find the possible values of k.
        When changes in x effect changes in y over a period of time,
        their rates of change are connected by the chain rule where
           dy   dy dx                                                                                                 6 The variable point P ( l t , 3t − 1) meets the line y = 11 at the point (6, 11).
              =   ×                                                                                           9.4
           dt   dx dt                                                                                                   a Find the value of l.
                                                                                                                        b Find the Cartesian equation of the curve along which P moves in the form y = f(x)
        Links
        Differentiation is a versatile tool that can be                                                               7 Find the points where the curve expressed parametrically
        used in many fields, particularly within industry.                                                              by the equations x = 1 + t , y = 2t + 1 intersects
                                                                                                                                                   1−t
        Derivatives can be used to express the rate of decay                                                            a the x-axis                     b   the y-axis              c   the line y = x - 1
        of a radioactive substance in a chemical power plant.
        Engineers can use differentiation to calculate rates                                                          8 A curve is defined parametrically by x = 2t + 1, y = t2 - 4t + 1
        of change of variables when designing systems to                                                                A normal is drawn to the curve at the point where t = 4.
        ensure efficiency.                                                                                              Find
                                                                                                                        a the equation of the normal
        Managers can solve maximum and minimum problems to
        determine how to maximize profit or minimize waste.                                                             b   the point at which the normal intersects the curve a second time.
 212                                                                                                                                                                                                                   213
Revision 3                                                                                                                                                                                                                                 Revision 3

        9a    A curve has parametric equations x = t2 + 3, y = 1 + t                       y                       B                        13 Expand as a series of ascending powers of x up to and including x3
              Find the two points A and B on the curve at which                                                                                State the range of values of x for which each expansion is valid.
                                                                                                       A
              x = 7 and x = 12.                                                                                                                       1
                                                                                                                                               a                                 b        1 + 5x              c         9 + 2x
                                                                                                                                                   1 + 3x
          b Find the area between the curve, the x-axis and the
          ordinates x = 7 and x = 12.                                                                                                                  x                                   1                             1
                                                                                                                                               d                                 e                            f
                                                                                                                                                                                         4 + 3x                         4−x
                                                                                           O               7       12       x                       1− 1x
                                                                                                                                                       4


                                                                                                                                            14 Find the first three terms in the binominal expansion of each expression.
       10 The diagram shows the graph of the curve with parametric                                             y                               Give the values of x for which each expansion is valid.
          equations x = t2 - 12, y = t3 - 9t                                                                                                                                              1+ x
                                                                                                                                               a (1 − 2x) 1 + x                  b
          a Find the values of t at the points where the curve                                                                                                                            1 + 3x
          intersects the x-axis.
                                                                                                               O                x           15 Find the first four terms in the binomial expansion of             1− 3       in
          b Find the shaded area on the diagram.                                                                                                                                                                        x
                                                                                                                                               descending powers of x. For what values of x is the expansion valid?
          Hence, find the total area of the loop.
                                                                                                                                            16 The coefficient of x2 in the expansion of 4 + ax is -1. Find two possible
                                                                                                                                               values of a and the first three terms of each possible expansion.
       11 The curve expressed parametrically by                                        y

              x = 4 - 2t, y = t 2 + 1                                                                                                       17 Write each expression in partial fractions and so expand it
C4




                                                                                                                                                                                                                                                                     C4
                                     2
                                     t                                                                                                         as a series of ascending powers of x as far as x3.
          is shown on this diagram. The curve cuts the y-axis at                   P
                                                                                                                                               Find the range of values of x for which each expansion is valid.
                                                                                               R
          the point P and has a minimum value at the point Q.
                                                                                                                                               a        2−x                      b           3 − 2x
          a Find the coordinates of points P and Q.                                                Q                                               (1 − 2x)(1 + x)                       (2 + x)(1 − 3x)

          b Find the shaded area on the diagram.
                                                                                                                                            18 f(x) = 3x − 12 ,
                                                                                    O                                                   x
                                                                                                                                                                     x <1
          c   Find the area of the region labelled R.                                                                                                 (1 − 2x)             2
                                                                                   y
                                                                                                                                               Given that, for +x ≠ 1 ,          3x − 1 ≡    A +      B
                                                                                                   L                                                                   2       (1 − 2x)2 (1 − 2x) (1 − 2x)2
       12 This diagram shows the curve C with parametric equations                                                                             where A and B are constants,
                                                 p                                                     P
                                                                                                                                               a find the values of A and B.
          x = 8cos t, y = 4sin 2t,       0   t   2
                                                                                                                        C

          The point P lies on C and has coordinates ( 4, 2 3 ).                                                                                b Hence, or otherwise, find the series expansion of f(x), in
          a Find the value of t at the point P.                                                    R                                           ascending powers of x, up to and including the term in x3,
                                                                                                                                               simplifying each term.                                                                 [(c) Edexcel Limited 2006]
          The line L is a normal to C at P.                                       O                    4                            x
          b Show that an equation for L is y = −x 3 + 6 3
                                                                                                                                                      dy
                                                                                                                                            19 Find      when
          The finite region R is enclosed by the curve C,                                                                                             dx
          the x-axis and the line x = 4, as shown shaded                                                                                       a   x2 - 5xy + y2 = 1                 b     xey = y3 -1              c       xy = 1 + x sin y
          in the diagram.                                         p
                                                                  2
          c Show that the area of R is given by the integral          64 sin2 t cos t dt                                                       d   sin x cos y = 1                   e        y − x =2              f       x2y = tan(x + y)
                                                                  p
                                                                  3

          d Use this integral to find the area of R, giving your answer in                                                                  20 a   Find the equation of the tangent to the curve exy + 1 = x            at (2, 0).
          the form a + b 3, where a and b are constants to be determined.                      [(c) Edexcel Limited 2008]                      b   Find the equation of the normal to the curve ln (xy) = y2 - 1              at (1, 1).
 214                                                                                                                                                                                                                                                               215
Revision 3


       21 A curve is expressed parametrically by x = t + 1 , y = t2 - 1 (t ¹ 0)
                                                         2




                                                                                                                        10
                                                         t
          Show that there are tangents to the curve which are parallel to
          the y-axis and that they meet the curve at the points (2, 0) and (-2, 0).

       22 a
                    dy
               Find dx for an ellipse with parametric equations x = 3sin q, y = 2cos q, 0             q   p
                                                                                                                          Integration
                                                                                                                           This chapter will show you how to
          b Prove that the equation of the tangent to the ellipse at the point P                                             find the area under a curve to a specified accuracy using a
          where q = a is given by 3ycos a + 2xsin a = 6                                                                      numerical method
          c The tangent at P intersects the coordinate axes at the points A and B.                                           find the exact area under a curve by integration
          Find, in terms of a, the area of triangle OAB, where O is the origin.                                              integrate a variety of functions by using standard integral forms,
                                                                                                                             substitution, trigonometric identities and partial fractions, and
          d Find the value of a which gives the smallest possible value of the
                                                                                                                             integration by parts
          area of triangle OAB. State this area.
                                                                                                                             be systematic in your approach to integration
                                                                                                                             use integration to find volumes of revolution.
       23 The tangent and normal to the curve y = 5 ´ 2x, at the point where
          x = 1, intersect the y-axis at the points P and Q respectively.
          Find the distance PQ as a decimal, correct to 1 decimal place.
                                                                                                                        Before you start
       24 The population N0 of a town in 2008 is 56 000. A model of its growth                                          You should know how to:                           Check in:
          predicts that its population N in t years after 2008 will be N = N0e0.008t                                    1 Differentiate various functions using the       1 Differentiate
          Find                                                                                                            product, quotient and chain rules.                a x2 ln x                   b x3ex
C4




                                                                                                                                                                                                                             C4
          a its population in 2018                                                                                         e.g. Differentiate y = x2sin 3x                   c ex tan x                 d x x2 + 1
                                                                                                                           dy
          b the rate of growth of its population in 2018                                                                      = 2x sin 3x + (3 cos 3x) x 2
                                                                                                                           dx                                                e ln x                     f ln (sin x)
                                                                                                                                                                                  x
          c how long it takes for its population to be double the 2008 figure.                                                   = 2x sin 3x + 3x cos 3x
                                                                                                                                                 2



       25 A spherical balloon is being inflated at a constant rate of 0.2 m3 per minute.                                2 Manipulate trigonometric identities.            2 Prove these identities.
                                                                                                                           e.g. Prove that sin 2A ≡ cot A                   a tan A + cot A º 2cosec 2A
          Find                                                                                                                            1 − cos 2A
                                                                                                                           Use the double-angle formulae:                          2 tan A
          a the rate of increase in its radius r when r = 0.5 metres                                                                                                         b               º sin 2A
                                                                                                                             sin 2A       2 sin A cos A
                                                                                                                                                                                 1 + tan 2 A
          b the rate of increase in its surface area when r = 0.5 metres.                                                            ≡
                                                                                                                           1 − cos 2A 1 − (1 − 2 sin2 A)
                                                                                                                                                                             c cos 3A º 4cos3 A – 3cos A
                                                                                                                                       2 sin A cos A cos A
                                                                                                                                     ≡                ≡       ≡ cot A
       26 This diagram shows a right circular cylindrical metal rod which                                                                2 sin2 A       sin A
          is expanding as it is heated. After t seconds, the radius of the
          rod is x cm and the length of the rod is 5x cm.                              x                                3 Find partial fractions.                         3 Express these in partial fractions.
          The cross-sectional area of the rod is increasing at the constant                      5x
                                                                                                                                                                                   x
                                                                                                                           e.g. Express 2 in partial fractions.              a
          rate of 0.032 cm2 s-1                                                                                                        x(x − 2)                                x 2 − 25
                    dx                                                                                                     Let       2      A
                                                                                                                                          ≡ +
                                                                                                                                                     B                                 6
          a Find       when the radius of the rod is 2 cm, giving your                                                           x(x − 2)   x x−2                            b
                                                                                                                                                                               x (x − 1)(x + 2)
                    dt
          answer to 3 significant figures.                                                                                                  A (x − 2) + Bx
                                                                                                                                          ≡                                          1
                                                                                                                                                x (x − 2)                    c
          b Find the rate of increase of the volume of the rod when x = 2.                 [(c) Edexcel Limited 2008]                                                            x (x − 1)2
                                                                                                                           Hence 2 º A(x - 2) + Bx
                                                                                                                           Letting x = 0 gives A = -1                        d    x2 + 3
                                                                                                                           Equate coefficients of x: A + B = 0 so B = 1          x (x − 2)
                                                                                                                                  2         1     1
                                                                                                                           So           ≡       −
                                                                                                                                 x (x − 2)   x−2     x

 216                                                                                                                                                                                                                   217
10 Integration


       10.1




                                                                                                                                        EXAMPLE 1
                     The trapezium rule                                                                                                             a Estimate (to 3 significant figures) the area under the curve
                                                                                                                                                                  y = sec2 x                                          from x = 0 to x = p                                                                                by using the trapezium rule with
                                                                                                                                                                                                                                                                                                       3
         When the area enclosed by a graph, the x-axis and two ordinates                              For n equal intervals,                                      i 4 equal strips                                                                                                         ii 8 equal strips.
         x = a and x = b is split into n equal intervals of width h, then the                         use (n + 1) x-values.
                                                                                                                                                                                                                                                                                                         p
         trapezium rule gives                                                                         x-values are sometimes                                                                                                                                                                             3
                                                                                                      called ‘ordinates’.                           b Calculate the exact value of                                                                                                                             sec2 x dx                                       as a surd.
                                                                                                                                                                                                                                                                                                      0

              b                                                                                                                                                   Find the percentage error in each of the two estimated values of
                  f(x) dx ≈ 1 h [ y0 + yn + 2(y1 + y2 + ... + yn −1)]               where h = b − a                                                               area found using the trapezium rule.
           a
                            2                                                                   n                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                                 p −0
                                   y
                                                                                                                                                    a i                          With 4 strips, the width of each strip, h = 3                                                                                                                                                                                = p
                                                                                                                                                                                                                                                                                                                                                                                           4                            12
                                                                     y = f(x)                                                                                                    Record the values in a table:

                                                                                                                                                                                                     x                                        0
                                                                                                                                                                                                                                                                                  p                                      2p                                     3p                                    4p                                                                     Use radians on your calculator.
                                                                                                                                                                                                                                                                                  12                                     12                                     12                                    12
                                                                                                                                                                                     y = sec2 x                                               1                         1.0718 1.3333                                                                             2                                      4
                                                                       yn
                                                                                                                                                                                 Estimate of the area required = 1 × p × [1 + 4 + 2(1.0718 + 1.3333 + 2)]
                                                                                                                                                                                                                                                                                                                           2 12
                                                          y2
                                                     y1                                                                                                                                                                                                                                                                    1 × p × 1 + 4 + 8.8102
                                                y0                                                                                                                                                                                                                                                                       =
                                                                                                                                                                                                                                                                                                                           2 12
                                                                                                                                                                                                                                                                                                                                  [               ]
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4
                                                                                x
                                   O             a             h        b                                                                                                                                                                                                                                                = 1.8078 = 1.81 units2 (to 3 s.f.)
                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                 p −0
         Using more strips involves more calculation but gives a more                                                                                             ii With 8 strips, the width of each strip, h = 3    = p
                                                                                                                                                                                                                   8    24
         accurate approximation.
                                                                                                                                                                                                                                   p                                       2p                                     3p                                      4p                                      5p                                      6p                                     7p                              8p = p
                                                                                                                                                                                        x                0                         24                                      24                                     24                                      24                                      24                                      24                                     24                              24 3
                                                                                    convex                                                                                              y                1               1.0173                                  1.0718                                 1.1716                                  1.3333                                  1.5888                                              2                          2.6984                                              4

                       concave                                                                        See        for revision.
                                                                                                                                                                                 Estimate of the area required = 1 × p × [1 + 4 + 2 × 10.8812]
                                                                                                            C1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          All the ‘middle values’ add
                                                                                                                                                                                                                                                                                                                           2 24                                                                                                                                                           together to give 10.8812
                                                                                                                                                                                                                                                                                                                         = 1 × p × 26.7624
                                                                                                      The shaded areas are the errors                                                                                                                                                                                      2 24
                                                                                                      in each approximation.                                                                                                                                                                                             = 1.7516 = 1.75 units2 (to 3 s.f.)
                                                                                                                                                                                                                                                                                                                                                 t
         If the graph is a concave curve,                          If the graph is convex, the
         the trapezium rule overestimates                          trapezium rule underestimates                                                                          p
                                                                                                                                                                          3                                                                                      p
         the actual area.                                          the actual area.                                                                 b                          sec 2 x dx = ⎡tan x⎤0
                                                                                                                                                                                            ⎣     ⎦
                                                                                                                                                                                                    3                                                                                                                                                                                                                                                                  d (tan x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = sec² x
                                                                                                                                                                       0                                                                                                                                                                                                                                                                                                  dx
                                                                                                                                                                                          = 3 − 0=                                                                                           3

                                                                                                                                                                  i The percentage error with 4 strips = 1.8078 − 3 × 100
                                                                                                                                                                                                                                                                                                                                                                                   3
                                                                                                                                                                                                                                                                                                                                              = 4.4% (to 2 s.f.)

                                                                                                                                                                  ii The percentage error with 8 strips = 1.7516 − 3 × 100                                                                                                                                                                                                                                             The percentage error is smaller
                                                                                                                                                                                                                                                                                                                                                                                   3                                                                                   when more strips are used (but
                                                                                                                                                                                                                                                                                                                                              = 1.1% (to 2 s.f.)                                                                                                       more calculation is involved).

 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             219
10 Integration                                                                                                                                     10 Integration
                                                                                                                       1
       Exercise 10.1                                                          3 Find an approximate value for I =          ex sin x dx using the
       1 Use the trapezium rule to estimate the value of these integrals        trapezium rule with                    0
         correct to 3 significant figures using the number of strips given.
                                                                                 a six ordinates
               1
          a        2x dx              5 strips                                   b eleven ordinates.
               0
                                                                                 Give reasons why one of these values is more accurate than
                  5                                                              the other.
          b           ln(1 + x2) dx   4 strips
               1
                                                                              4 The semicircle y = + 36 − x 2 is split into twelve vertical strips.
                  p
                  2
          c           ( sinq ) dq     6 strips                                   Find an estimate of the area of the semicircle (to 3 s.f.) using
              0                                                                  the trapezium rule. Hence, obtain an approximate value of p.
                  2     2
          d        e −x dx            5 strips                                5 Use the trapezium rule with seven ordinates to estimate the
                                                                                                3
               1                                                                                         2
                                                                                 value of I =       1 − x dx to 2 decimal places.
                  p                                                                                     9
                  2                                                                             0                          2
          e           cos2 q dq       6 strips                                                                       x2 + y = 1
               −
                 p                                                               Sketch the graph of the ellipse     9    4
                 2
                                                                                 and use your value of I to estimate its area.
                  4
                                                                                                                                8
                   1 + e-x dx
          f                           6 strips
                                                                              6 a Estimate the value of the integral I =           (3 x   + 1) dx
                                                                                                                                             2
C4




                                                                                                                                                                             C4
               2
                                                                                                                               0
                                                                                    using the trapezium rule with 8 strips.
                                                        p
                                                        2                        b Calculate the exact value of I.
       2 a Estimate the value of the integral I =           cos x dx
                                                        0
                                                                          p      c Find the percentage error in the estimated value to 1 decimal place.
              using the trapezium rule by dividing the interval from 0 to 2
              into six strips.
          b Find the exact value of I by integration.                           INVESTIGATION

          c Calculate the percentage error in the estimated value of I.         7 Do some research to find a formula for the area of an ellipse.

          d Explain, using a suitable diagram, why the answer to part a            How does this formula also give you the area of a circle?
            is an underestimate of the exact value of I.                           Use your answer to question 5 to find another estimate for
                                                                                   the value of p.




 220                                                                                                                                                                       221
10 Integration

                                                                                                                                                                                                                                                                                                                                                                            Exercise 10.2
       10.2 Integration as summation                                                                                                                                                                                                                                                                                                                                        1 Find the values of these definite integrals.
                                                                                                                                                                                                                                                                                                                                                                                         p                                         p                       1                                       2
                   You can find the exact area under a curve by summing an                                                                                                                                                                                                                                                                                                               2                                         2                                                                   1 dx
                                                                                                                                                                                                                                                                                                                  See          C2   for revision.                              a             2cos x dx                  b      p
                                                                                                                                                                                                                                                                                                                                                                                                                                       5sin x dx   c            ex dx                      d           x
                   infinite number of infinitely thin rectangles.                                                                                                                                                                                                                                                      y                                                             0                                         4                           −1                                  1

                                                                             b                                     b
                                                                         ∑dA ≈ ∑ ydx
                                                                                                                                                                                                                                                                                                                                                                                         p                                         4                           4                                   p
                   Area PQRS =                                                                                                                                                                                                                                                                                                                                   y = f(x)                4
                                                                                                                                                                                                                                                                                                                                                                                                                                       x + 1 dx                    (x + 1)2 dx                     3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       cos x + sec x dx
                                                                             a                                     a                                                                                                                                                                                                                                                           e             sin x - cos x dx           f                          g                                       h
                                                                                                                                                                                                                                                                                                                                                             Q                       −p                                        1         x                 1          x                        0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           cos x
                                                                                                                                                                                                                                                                                                                                                                                         4
                   Each strip of area dA is approximated by a rectangle of height y and                                                                                                                                                                                                                                                     (x, y)
                   width dx, so its area dA » ydx                                                                                                                                                                                                                                                                                   P                                       2 Find these indefinite integrals.
                                                                                                                                                                                                                                                                                                                                                 y
                   The Greek letter sigma, å, indicates the sum of many of these rectangles.                                                                                                                                                                                                                                                                                             1 sec 2 q dq
                                                                                                                                                                                                                                                                                                                                    S                            R             a
                                                                                                                                                                                                                                                                                                                                                                                         2
                                                                                                                                                                                                                                                                                                                                                                                                                        b          x − 2 dx        c       5cos x - 3sin x dx
                   In the limit, as dx ® 0,                                                                                                                                                                                                                                                                        O                                                    x                                                                 x
                                                                                                                                                                                                                                                                                                                                        a            dx      b
                                                                                                                               b
                                          area PQRS = lim ∑ yd x                                                                                                                                                                                                                                                  As dx® 0, the number of                                   3 a Find the area bounded by the graph of y = ex, the two
                                                                                                       d x →0                                                                                                                                                                                                     rectangles ® ¥.
                                                                                                                               a
                                                                                                                                                                                                                                                                                                                                                                                coordinate axes and the line x = 2
                                                                                                              b                                                                                                                                                                                                   In the limit, the Greek letters dx
                                                                                             =                    y dx                                                                                                                                                                                            and å become the English letters                             b The region bounded by the graph of y = ex, the two coordinate axes
                                                                                                          a
                                                                                                                                                                                                                                                                                                                  dx and respectively.                                           and the line x = k has an area of 2 units2. Find the value of k.

                                                                                                                                                                                                                                                                                                                       is an elongated letter S (for Sum)                   4 a Find the point of intersection of the graphs                                                                   y
                                                                                                                                                                                                                                                                                                                  invented by Leibnitz in about 1680.                           y = cos x and y = sin x for 0 x p
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C4
                                                                                                                                                                                                                                                                                                                                                                                                                                              2
                   Integration is also the reverse of differentiation, so you should                                                                                                                                                                                                                                                                                                                                                                                                           1
                                                                                                                                                                                                                                                                                                                                                                               b Find the area, A, bounded by the graphs of y = cos x,                                           y = cos x                           y = sin x
                   already recognise these basic results:
                                                                                                                                                                                                                                                                                                                                                                                 y = sin x and the x-axis as shown in this diagram.                                                                     A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O              p                  x
                     d(sin x)                                                                                                                                                                                                                       d(e x) = e x                                                                                                               c Find the area bounded by the two graphs and the y-axis.
                              = cos x                                                                                            cos x dx = sin x + c                                                                                                                                                                      x
                                                                                                                                                                                                                                                                                                                       e dx = e + c          x                                                                                                                                                                2
                       dx                                                                                                                                                                                                                            dx
                    d(cos x) = − sin x
                                                                                                                                 sin x dx = -cos x + c                                                                                               d(ln x) = 1                                                       1 dx = ln x + c                                      5 Find the area between the graphs of y = ex and y = 1 from x = 1 to x = 2.
                      dx                                                                                                                                                                                                                               dx      x                                                       x                                                                                                                               x
                                                                                                                                                                                                                                                      c is the constant of integration.
                    d(tan x) = sec 2 x
                                                                                                                                 sec2 x dx = tan x + c                                                                                                                                                                                                                      6 If the region under the graph of y = 1 from x = 1 to x = a has
                       dx                                                                                                                                                                                                                                                                                                                                                                                                                 x
                                                                                                                                                                                                                                                                                                                                                                               an area of 4 units2, find the value of a.
                                                                                                                                                                                                                                                                                                                  A sketch graph will help you to
       EXAMPLE 1




                     Find the area enclosed by the graphs of y = cos x and y = ex                                                                                                                                                                                                                                 visualise the problem.
                                                                                                                                                                                                                                                                                                                                                                              INVESTIGATION
                     and the line x = 1                                                                                                                                                                                                                                                                                                     y
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                              7 If a temperature is measured discretely n times with the
                                                                                                                                                                                                                                                                                                                                                              y = ex
                     From the sketch, the area required is the area under y = cos x                                                                                                                                                                                                                                                                                             results q1, q2, . . . , qn , then the average (mean) temperature
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       i
                     subtracted from the area under y = ex                                                                                                                                                                                                                                                                                                                                   n
                                                             1                                           1                                                                                                                                                                                                                                                                         is 1 ∑q i
                                                                                                                                                                                                                                                                                                                                                                                     n
                     Area =                                     ex dx -                                     cos x dx                                                                                                                                                                                                                                                                         1
                                                         0                                           0                                                                                                                                                                                                                                  1
                                                                                                                                                                                                                                                                                                                                                                                   If the temperature varies with time t such that q = f(t) and
                                                                           1
                                             = ⎡e x ⎤ − [sin x ]0
                                                                1                                                                                                                                                                                                                                                                           O                        x                                                                                                             5
                                                                                                                                                                                                                                                                                                                               –1                         1                        it is measured continuously over a period T, then the
                                               ⎣ ⎦0                                                                                                                                                                                                                                                                                                         y = cos x                                                                                                                                         mean
                                                                                                                                                                                                                                                                                                                                                                                                                    T
                                             = (e − 1) − (sin 1 − 0) = 2.718 − 1 − 0.841 = 0.88                                                                                                                                                                                                                   You could write this as one integral                             mean temperature is 1                    f(q) dt
                                                                                                                                                                                                                                                                                                                       1                                                                                        T   0                                                                                                     t
                     The area required is 0.88 units2 to 2 d.p.                                                                                                                                                                                                                                                        (ex - cos x) dx                                                                                                                                              O                         p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   T
                                                                                                                                                                                                                                                                                                                   0                                                               Find the mean temperature if q = 5sin t from t = 0 to t = p
                                                                                                                                                                                                                                                                                                                   sin 1 means the sine of 1 radian
 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 223
                                                                                                                                                                                                                                                                                                                   (not 1°).
10 Integration

                                                                                                                                                                                                                                                                                                                                                              Exercise 10.3
       10.3 Integration using standard forms                                                                                                                                                                                                                                                                                                                  1 Integrate with respect to x.
                                                                                                                                                                                                                                                                                                                                                                 a cos 5x                   b sin 4x                 c sec2 3x
                   The Core 3 and 4 specifications list the derivatives and integrals
                   that you are expected to remember.                                                                                                                                                                                                                                                                                                            d cos 1 x                  e cosec2 4x              f e4x -3
                                                                                                                                                                                                                                                                                                                                                                              2
                   The formulae booklet lists derivatives and integrals that are
                                                                                                                                                                                                                                                                                                                                                                 g (3x + 2)4                h tan 3x                 i      1
                   provided for you in your examinations.
                                                                                                                                                                                                                                                                                                                                                                                                                          3x − 1
                                                                                                                                                                                                                                                                                                                                                                         1
                   Here is a list of standard integral forms where a, b, c and                                                                                                                                                                                                                                    Try to derive these results yourself.          j                          k cot 2x                 l cos (2x + 3)
                   n are constants:                                                                                                                                                                                                                                                                                                                                  (3x − 1)2                           5
                                                                                                                                                                                                                                                                                                                                                                 m sec2(4x + 1)             n sec 4x tan 4x          o sec 4x
                                                                1 x n +1 + c (n ≠ −1)
                         x n dx =
                                                              n +1
                                                                                                                                                                                                       (ax + b)n dx = 1 × 1 (ax + b)n +1 + c                                                                                                                     p cosec 4x                 q e-2x                   r cos 3x + sin 1 x
                                                                                                                                                                                                                                                                      a                n +1                                                                                                                                                  3
                                                                                                                                                                                                                                                                                                                                                                 s cosec 2x cot 2x          t (e x - e-x)2

                         cos x dx = sin x + c                                                                                                                                                          cos(ax + b) dx = 1 sin(ax + b) + c                                                                                                                     2 Evaluate these integrals.
                                                                                                                                                                                                                                                                                    a
                                                                                                                                                                                                                                                                                                                                                                          p                         p                         p
                                                                                                                                                                                                                                                                                                                                                                          3                         8
                         sin x dx = -cos x + c                                                                                                                                                           sin(ax + b) dx = − 1 cos(ax + b) + c                                                                                                                    a            cos 3x dx     b           sec2 2x dx    c           sin x dx
                                                                                                                                                                                                                            a                                                                                                                                                                                             p            2
                                                                                                                                                                                                                                                                                                                                                                      0                         0
                                                                                                                                                                                                                                                                                                                                                                                                                          2


                                                                                                                                                                                                       sec 2(ax + b) dx = 1 tan(ax + b) + c
                                                                                                                                                                                                                                                                                                                                                                          p                         1
                         sec2 x dx = tan x + c                                                                                                                                                                                                                                                                                                                            3
                                                                                                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                              sin 3x dx                                             1 dx
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C4
                                                                                                                                                                                                                          a                                                                                                                                      d                          e        e2x+1 dx         f
                                                                                                                                                                                                                                                                                                                                                                                  4             −1                        0
                                                                                                                                                                                                                                                                                                                                                                                                                                  3x + 1
                                                                                                                                                                                                                                                                                                                                                                      0



                         ex dx = ex + c                                                                                                                                                                eax +b dx = 1 eax +b + c
                                                                                                                                                                                                                   a
                                                                                                                                                                                                                                                                                                                                                              3 Integrate with respect to x.
                                                                                                                                                                                                                                                                                                                                                                      1 + 1
                                                                                                                                                                                                                                                                                                                                                                 a                          b 1+           1
                                                                                                                                                                                                                                                                                                                                                                      x 2 cos2 x                x        sin 2 x
                          1                                                                                                                                                                                                                                                                                                    You can always check
                                                                                                                                                                                                          1 dx = 1 ln |ax + b | + c
                          x dx = ln x + c                                                                                                                                                               ax + b   a                                                                                                             your integration by
                                                                                                                                                                                                                                                                                                                                                                 c e2x −1 + e1−2x           d
                                                                                                                                                                                                                                                                                                                                                                                                 sin 3x
                                                                                                                                                                                                                                                                                                                               differentiating your answer.                                     cos2 3x

                   See the formulae booklet for other standard integrals.                                                                                                                                                                                                                                                                                        e cos 3x cosec2 3x
       EXAMPLE 1




                                                                      p
                                                                      3
                     Evaluate                                              (cos 3x + 4sin x) dx                                                                                                                                                                                                                                                                 INVESTIGATION
                                                                  0
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                                                4 An AC current i varies with time t such that                                   AC means ‘alternating current’.
                             p
                                                                                                                                                                                                                    p                                                                                                                                                                                                                            ‘Rectified’ means that the current
                             3                                                                                                                                                                                                                                                                                                                                    i = 5sin wt where w = 3
                                 (cos 3x + 4sin x) dx = ⎡ 1 sin 3x − 4cos x                                                                                                                                        ⎤3                                                                                                                                                                                                                            always flows in the same direction;
                         0                                                                                                          ⎢
                                                                                                                                    ⎣3                                                                             ⎥
                                                                                                                                                                                                                   ⎦0                                                                                                                                             The current is rectified so that i = |5sin wt|                                 that is, i > 0 at all times.

                                                                                                                                    (3                                                                   3 ) (3                                                                                       )
                                                                                                                                                                                                                                                                                                                                                                  Draw the graph of the rectified current for 0       t   2p
                                                                                                                           = 1 sin p − 4cos p − 1 sin 0 − 4cos 0
                                                                                                                                                                                                                                                                                                                                                                     Use the ideas of the investigation in Section 10.2 to find
                                                                                                                           =0−4 × 1 −0+4=2                                                                                                                                                                                                                           the mean value of the rectified current for t = 0 to t = p
                                                                                                                                  2                                                                                                                                                                                                                                                                                                3




 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   225
10 Integration


       10.4 Further use of standard forms                                                                                                                                                                                                                                                                                                                                                                                             In general,                                                         f ′(x) dx = ln|f(x)| + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          f(x)

                   There are two special cases which use standard forms and the




                                                                                                                                                                                                                                                                                                                                                         EXAMPLE 3
                   chain rule in reverse.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                x dx                                                                                        cos x dx
                   Consider y = (3x2 + 2x + 1)5                                                                                                                                                                                                                                                                                                                        Integrate                                                        a                                                                                         b
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3 sin x − 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                              x2 + 1
                                                                                                   dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The derivative of x2 + 1 is 2x.
                   Apply the chain rule:                                                              = 5(3x2 + 2x + 1)4 ´ (6x + 2)                                                                                                                                                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                   dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Modify the integral so that you
                                                                                                                                                                                                                                                                                                                                                                                                x dx = 1  2x dx = 1 ln(x 2 + 1) + c
                                                                                                                 = 5(6x + 2)(3x2 + 2x + 1)4                                                                                                                                                                                                                            a
                                                                                                                                                                                                                                                                                                                                                                                              x2 + 1   2 x2 + 1   2                                                                                                                                                                                                                                                          have 2x ‘on the top’.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             The derivative of 3sin x - 4
                   In reverse, (6x + 2)(3x 2 + 2x + 1)4 dx = 1 (3x 2 + 2x + 1)5 + c                                                                                                                                                                                                                                                                                                             cos x dx = 1    3 cos x dx = 1 ln |3sin x - 4| + c                                                                                                                                                                                                                           is 3cos x. You need to have
                                                                                                                                                                                                 5                                                                                                                                                                     b
                                                                                                                                                                                                                                                                                                                                                                                             3 sin x − 4   3 3 sin x − 4     3                                                                                                                                                                                                                                               3cos x ‘on the top’.

                    In general, you can perform an integration of the form                                                                                                                                                                                                                                        Check your answers mentally
                                                                                                                                                                                                                                                                                                                  by differentiating them using                      Exercise 10.4
                                       f ¢(x) ´ g[f(x)] dx                                                                                 by sight.                                                                                                                                                              the chain rule.
                                                                                                                                                                                                                                                                                                                                                                     1 Integrate each expression with respect to x.
                                                                                                                                                                                                                                                                                                                                                                           a               3x 2                                                                                                                 b 3x2(x3 - 1)5                                                                                                                   c                     2x + 3
                                                                                                                                                                                                                                                                                                                                                                                          x3 − 1                                                                                                                                                                                                                                                                    x 2 + 3x − 1
       EXAMPLE 1




                     Integrate                                                   x cos(x2 + 1) dx                                                                                                                                                                                                                                                                          d (2x + 3)(x 2 + 3x - 1)4                                                                                                            e                   x−2                                                                                                          f (x - 2)(x2 - 4x + 1)3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                x 2 − 4x + 1
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                  The ‘inside’ function f(x) is x2 + 1
                                                                                                                                                                                                                                                                                                                                                                                            cos x
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C4
                                                                                                                                                                                                                                                                                                                  and its derivative is 2x.                                g                                                                                                                                    h xcos (x2 + 1)                                                                                                                  i                  x x2 − 1
                                                                                                                                                                                                                                                                                                                  Introduce 1 ´ 2 to make a                                               sin x + 1
                            x cos (x2                              + 1) dx = 1                                                 2xcos (x2                                  + 1) dx = 1 sin (x2 + 1) + c                                                                                                                       2
                                                                             2                                                                                                      2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                                                                                                  2x on the ‘outside’.
                                                                                                                                                                                                                                                                                                                                                                           j                             x                                                                                                      k                 x                                                                                                              l              xe x
                                                                                                                                                                                                                                                                                                                                                                                                  x2 − 1                                                                                                                        x2 − 1
                                                                                                                                                                                                                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                                           m xe
                                                                                                                                                                                                                                                                                                                                                                                −x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                n (x + 1) x 2 + 2x + 3                                                                                                           o                       x +1
       EXAMPLE 2




                                                                              1
                                                                                      x 2 dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        x + 2x + 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2
                     Evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                   (x − 2)2 3
                                                                                                                                                                                                                                                                                                                                                                           p cos xesin x                                                                                                                        q x 2e x                                                                                                                         r
                                                                           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        x ln x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                            1                                                                                  1                                                                                 1                                                                                                                                                                                                                                                                                                                                                                                                                                       p
                                     x 2 dx = 1                                                                         3x 2 dx = 1                                                                                                                                                                               The ‘inside’ function f(x) is x3 - 2
                                                                                                                                                                                                                                                                                                                                                                     2 By writing cot q º cos q , find cot q dq and show that
                                                                                                                                                                                                                                                       −2                                                                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                      3x (x − 2) dx
                                                                                                                                                                                                                 2            3
                                                                                                                                                                                                                                                                                                                  and its derivative is 3x2.                                                                                                                                                                                                                                                                                                  cot q dq = 1 ln 2
                                 (x 3 − 2)2   3                                                                     (x 3 − 2)2    3                                                                                                                                                                                                                                                       sin q                                                                                                                                                                                                                                       p                                       2
                                                                                                                                                                                                                                                                                                                  Introduce 1 ´ 3 to make a
                         0                                                                                  0                                                                                  0                                                                                                                                                                                                                                                                                                                                                                                                                                      4
                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                        1
                                                                                           ⎡ 3      −1
                                                                                                       ⎤                                                                                                                    1                                                                                     3x2 on the ‘outside’.
                                                                                       = 1 ⎢ (x − 2) ⎥ = − 1 ⎡ 3 1 ⎤
                                                                                                             ⎢       ⎥                                                                                                                                                                                                                                               3 By writing tanq ≡ sin q , prove that tan q dq = ln |sec q | + c
                                                                                         3⎣     −1     ⎦0  3 ⎣ x − 2 ⎦0                                                                                                                                                                                                                                                                                                                                           cosq

                                                                                                       3( 1 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   p
                                                                                       = −1 1 − 1 = −1 × −1 = 1                                                                                                                                                                                                                                                            Find the value of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        tan q dq
                                                                                                                   −                     −                                3                      2                  6
                                                                                                                                                                                                                                                                                                                                                                                                                                                               0



                   Now consider y = ln |3x2 + 2x + 1|                                                                                                                                                                                                                                                                                                                  INVESTIGATION
                                                                                                                     × (6x + 2) = 26x + 2
                                                                                                    dy       1                                                                                                                                                                                                                                                                                                                                                                                                                        x dx
                   Apply the chain rule:                                                               =                                                                                                                                                                                                                                                               4 By writing x º x - 1 + 1, find
                                                                                                    dx 3x 2 + 2x + 1             3x + 2x + 1                                                                                                                                                                                                                                                                                                                                                                                        x −1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2                                  3                                            n
                                                                         6x + 2 dx                                                                                                                                                                                                                                                                                                   Use long division to rewrite x , x ,..., x
                   In reverse,                                                     = ln |3x2 + 2x + 1| + c                                                                                                                                                                                                                                                                                                        x −1 x −1   x −1
                                                                     3x 2 + 2x + 1                                                                                                                                                                                                                                                                                                   and so integrate each of them.

 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           227
10 Integration


       10.5 Integration by substitution                                                                                                                                                                                                                                                                                                                         To evaluate a definite integral, you can
                                                                                                                                                                                                                                                                                                                                                                either change back to the variable x and use the original limits of x
                   You can simplify an indefinite integral using a substitution.                                                                                                                                                                                                                                                                                or     stay with the new variable u, provided you change the limits
                                                                                                                                                                                                                                                                                                                                                                       on the integral to the corresponding values of u.
       EXAMPLE 1




                     Consider the indefinite integral                                                                                                                                  (3x + 2)5 dx




                                                                                                                                                                                                                                                                                                                                                   EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                                                                           p
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                           2       cos x dx
                                                                                                                                                                                                                                                                                                                                                                 Evaluate
                     Change the variable x by substituting u = 3x + 2:                                                                                                                                                                                                                                                                                                                                                           4 + sin x
                                                                                                                                                                                                                                                                                                                                                                                                                       0
                                                                                                             5
                     You now have                                                                      u dx                                                                                                                                                                                                                                                      ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                                                                                                          du
                     You cannot integrate a function of u with respect to x.                                                                                                                                                                                                                                                                                     Let u = 4 + sin x, so dx = cos x and du = cos x dx
                     Find a substitution for the operator ‘dx’ in terms of u.                                                                                                                                                                                                                                                                                    Either                                                                                                                                                                                                                 or
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        When x = 0,                                                           u = 4 + sin 0 = 4
                     Differentiate u = 3x + 2 wrt x:                                                                                                                                                    du = 3                                                                                                                                                                         p                                                                              u2
                                                                                                                                                                                                        dx                                                                                                                                                                             2        cos x dx
                                                                                                                                                                                                                                                                                                                                                                                                         =                                                          ∫ 1 du                                                                                                              When x = p ,                                                          u = 4 + sin p = 5
                                                                                                                                                                                                                                                                                                                                                                                              4 + sin x                                                           u1 u                                                                                                                           2                                                                                                               2
                     Separate the operators du and dx:                                                                                                                                                  du = dx                                                                                                                                                                    0
                                                                                                                                                                                                         3                                                                                                                                                                                                                                                                                                                                                                                      p                                                                             5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2       cos x dx                                                                  1 du
                                                                                                                                                                                                                                                                                                                                                                 The actual values u1 and u2 are not needed.                                                                                                                                                                                                     =
                     You now have                                                                      (3x + 2) dx = u × du = 1            5                                         5
                                                                                                                                                                                                                                              u du  5                                                                                                                                                                                                                                                                                                                                                 4 + sin x                                                                   u
                                                                                                                          3   3                                                                                                                                                                                                                                                                                                                      = [ lnu ]u
                                                                                                                                                                                                                                                                                                                                                                                                                                                              u
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2                                                                                                  0                                                                             4

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = [ lnu ]5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1


                                                                                                                                                                                                                        = 1 × 1 u6 + c                                                                                                                           Change back to x and use the limits of x:                                                                                                                                                                                                                                                           4
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C4
                                                                                                                                                                                                                          3 6                                                                                                                                                                                                                                                                                                p
                                                                                                                                                                                                                                                                                                                                                                                                                                                     = ⎡ ln(4 + sin x)⎤0
                                                                                                                                                                                                                                                                                                                                                                                                                                                       ⎣              ⎦
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2                                                                                                               Stay with u and use the limits of u.
                                                                                                                                                                                                                        = 1 u6 + c                                                                                                                                                                                                                                                                                                                                                                                                                          = ln 5 - ln 4
                                                                                                                                                                                                                          18
                                                                                                                                                                                                                                                                                                                                                                                                                                                     = ln (4 + 1) - ln (4 + 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = ln (1.25)
                     Substitute u = 3x + 2:                                                                            (3x + 2)5 dx = 1 (3x + 2)6 + c                                                                                                                                                              You must give the final                                                                                                           = ln (1.25)
                                                                                                                                                                                       18
                                                                                                                                                                                                                                                                                                                   answer in terms of x.


                                                                                                                                                                                                                                                                                                                                                               Exercise 10.5
       EXAMPLE 2




                     Perform this integration                                                                                                          x dx                                                                                                                                                       This substitution is chosen                  1 Use the given substitutions to find these integrals.
                                                                                                                                                      x +1                                                                                                                                                        to simplify the denominator
                     using the substitution u = x + 1                                                                                                                                                                                                                                                             in the integral.                                   a                     x2(1 + x3)4 dx u = 1 + x3                                                                                                                                                       b                       x 2 1 + x 3 dx                                                                               u = 1 + x3
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Rearrange u = x + 1: u2 = x + 1                                                                                                                                                                                                                                                              You could also use the                             c                     cos x sin4 x dx u = sin x                                                                                                                                                       d                      sec2 x (1 + tan x) dx u = tan x
                                                                                                                                                                                                                                                                                                                  substitution u = x + 1. Show
                     Differentiate wrt x using the chain rule:                                                                                                                 2u du = 1                                                                                                                          that it gives the same answer.
                                                                                                                                                                                           dx                                                                                                                                                                                                  1                                                                                                                                                                                                     x dx
                                                                                                                                                                                                                                                                                                                                                                     e                               dx                                                           u = 3x - 1                                                                                               f                                                                                                                    u=x+5
                     Separate the operators:                                                                                                                                   2u du = dx                                                                                                                                                                                                  (3x − 1)4                                                                                                                                                                                              (x + 5)2


                                                                                                                                                                                                                                                                                                                                                                                           ( x x− 1) dx
                     Rewrite the integral in terms of u:                                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                     g                                                                                            u=x-1                                                                                                    h                           ex    dx                                                                                 u = ex + 2
                                      x dx
                                           =                                                  u − 1 × 2u du = 2 (u2 - 1) du
                                                                                                    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (e + 2)3 x

                                     x +1                                                       u

                                                                                                                                                                           (3
                                                                                                                                                           = 2 1 u3 − u + c = 2 u3 − 2u + c                       )                                  3
                     Substitute for u and return to x:
                                      x dx 2 (x + 1)3 − 2 x + 1 + c
                                          =
                                     x +1   3

 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          229
10 Integration                                                                                                                                                         10 Integration

       2 Evaluate each integral using the given substitution.                                          4 The x-axis is a tangent to the curve y = (x - 1)(x 2)4
                                                                                                         at the point P.
          a       e x 1 + e x dx            u = 1 + ex      b   sin x 1 − cos x dx     u = 1 - cos x
                                                                                                            y

                        x dx
          c                                 u2 = x - 1      d       x 3 1 + x 4 dx     u2 = 1 + x4
                       x −1

               (ln x)2 dx                                             1 dx                                                        A
          e                                 u = ln x        f                          u2 = x               O                          P       x
                  x                                                 2+ x

                             1                                            x
          g                        dx       u2 = x + 1      h                    dx    x = sin q
                  1+          x +1                                      1 − x2                            a Write down the coordinates of P.
                                                                                                          b Let u = x - 2 and find the area A enclosed between
                        1
          i                           dx    x = sin q       j   sec3 x tan x dx        u = sec x            the curve and the x-axis.
                      1 − x2

                      dx                                                   dx
                                                                                                       5 Find the points where each of these curves meets the x-axis.
          k                                 u = ex          l                          x = 2sin q        For each curve find the area enclosed between the curve
                  e x − e −x                                        x2 4 − x2
                                                                                                         and the x-axis.
          m        x + 4 dx                 u2 = x + 1                                                    a y= x 4− x
                  x x−2
                                                                                                          b y = x (x - 2)2
C4




                                                                                                                                                                                                 C4
       3 Calculate the values of these definite integrals using the given substitutions.                  c y = 5cos x sin3 x for 0        x       p
                  p
                  2                                                 3
          a           2cos x esin x dx        u = sin x     b       (x - 1)(x - 2)3 dx u = x - 2         INVESTIGATION
              0                                                 2

                                                                                                         6 All these integrations can be performed by choosing
                  1                                                 3                                      appropriate substitutions.
                         x
          c                            dx     u2 = 1 + x2   d           2x 2x + 3 dx   u2 = 2x + 3         Some of them, however, can be done immediately on
                       1 + x2                                   1
                                                                2
              0
                                                                                                            sight using f ¢(x) ´ g[f(x)] dx
                  p2                                                2                                       Decide which integrals can be written down on sight.
                  4     1 cos x dx                                        x dx
          e                                   u2 = x        f                          u = 2x - 1           Find all the integrals.
                         x                                      1
                                                                        (2x − 1)4
              0
                                                                                                            a    3x 2(x 3 + 1)4 dx                 b   2x3(x2 + 1)2 dx
               1                                                    5
          g           xe x
                             2
                                 −1
                                      dx      u = x2 - 1    h           x 2 − 1 dx     u2 = x - 1
              0                                                           x −1                              c     x x + 1dx                        d   sec 2 x 1 + tan x dx
                                                                1



                                                                                                                     x                                  x 2 dx
                                                                                                            e                         dx           f
                                                                                                                   x2 + 1                               x +1

                                                                                                                         2
                                                                                                                             +1
                                                                                                            g     xe x            dx               h   e x e x − 1 dx



 230                                                                                                                                                                                           231
10 Integration




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EXAMPLE 3
       10.6 Integration using trigonometric identities                                                                                                                                                                                                                                                                                                                                                                                                                          Integrate                                                 a                     cos4 x dx                                                                b                     cos5 x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                   You can integrate some trigonometric expressions after
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (                                                           )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2
                   rearranging them into one of the standard integral forms.                                                                                                                                                                                                                                                                                                                                                                                                    a                     cos4 x dx =                                                  1 (1 + cos 2 x) dx                                                                                                                                                                                        cos2 x = 1 (1 + cos 2x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = 4 (1 + 2cos 2x + cos2 2x) dx
       EXAMPLE 1




                                                                                                    cosec x dx
                     Integrate                                                a                                                                                                             b                     sec2 x sin x dx
                                                                                                     sec x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              =4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (1 + 2cos 2x + 1 (1 + cos 4x)) dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ( 2 + 2cos 2x + 1 cos 4x ) dx
                                          cosec x dx                                                        1 × cos x dx                                                                       cos x dx                                                                                                                                                                                                                                                                                                                                                 1
                     a                               =                                                                   =                                                                              = cot x dx                                                                                                                                                                                                                                                                                                                                                      3
                                           sec x                                                          sin x   1                                                                            sin x                                                                                                                                    The formula book gives                                                                                                                                                                                =4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                     = ln |sin x| + c                                                                                           cot x dx = ln|sin x|

                                                                                                                         sec x sin x dx
                                                                                                                                                                                                                                                                                                                                        and                                                                                                                                                                                                              4 2   (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = 1 3 x + sin 2x + 1 × 1 sin 4x + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2                4                                )
                     b                     sec2 x sin x dx =                                                               cos x
                                                                                                                                        = sec x tan x dx                                                                                                                                                                                 d ( sec x )
                                                                                                                                                                                                                                                                                                                                              dx
                                                                                                                                                                                                                                                                                                                                                     = sec x tan x                                                                                                                                                                            = 3 x + 1 sin 2x + 1 sin 4x + c
                                                                                                                                                                                 = sec x + c                                                                                                                                                                                                                                                                                                                                                            8                         4                                           32

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                b Write cos5 x as
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             You could use the substitution
                   You can integrate powers of sine and cosine by first changing the                                                                                                                                                                                                                                                                                                                                                                                              cos x(cos4 x) = cos x (cos2 x)2 = cos x (1 - sin2 x)2                                                                                                                                                                                                                                      method with u = sin x. Try this
                   powers to multiples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      method to show that it gives
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      cos5 x dx                                         = cos x (1 - sin2 x)2 dx
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             the same result.
       EXAMPLE 2




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = cos x (1 - 2sin2 x + sin4 x) dx
                     Integrate                                              a                     sin2 x dx                                                              b                     cos2 3x dx                                                                     c                     (1 + tan x)2 dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               cos x sin2 x dx = 1 sin3 x is of the form
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = (cos x - 2cos x sin2 x + cos x sin4 x) dx
                     a                     sin2 x dx = 1 (1 − cos 2x) dx = 1 x − 1 sin 2x + c = 1 x − 1 sin 2x + c
                                                       2                                                                                                                            2      (                      2                               )                                 2                         4
                                                                                                                                                                                                                                                                                                                                                                           sin2 x = 1 (1 - cos 2x)
                                                                                                                                                                                                                                                                                                                                                                                                          2                                                                                                                                             = sin x − 2 sin3 x + 1 sin5 x + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               f ¢(x) ´ g[f(x)] dx, as is

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3                                           5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               cos x sin4 x dx
                     b                     cos2 3x dx = 1 (1 + cos 6x) dx = 1 x + 1 sin 6x + c = 1 x + 1 sin 6x + c
                                                                                                  2                                                                                         2     (                      6                               )                                  2                        12                                                                                                                                                       The simplest examples of a product of sine and cosine involve the
                                                                                                                                                                                                                                                                                                                                                               cos          2 3x            = 1 (1 + cos 6x)                                                                  same multiple of the angle.
                                                                                                                                                                                                                                                                                                                                                                                              2

                                         (1 + tan x)2 dx = (1 + 2tan x + tan2 x) dx = (2tan x + sec2 x) dx




                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EXAMPLE 4
                     c                                                                                                                                                                                                                                                                                                                                          1 + tan2 x = sec2 x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Find                                        sin 3x cos 3x dx
                                                                                                                                                                                                                                                                                                                                                                         tan x dx and                                          sec2 x dx
                                                                                                                                                                                                                                    = 2ln |sec x| + tan x + c
                                                                                                                                                                                                                                                                                                                                                                are both standard forms.                                                                                        ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Use the double-angle formula sin 2A = 2sin Acos A:

                   For higher powers of sine and cosine, the method you use depends                                                                                                                                                                                                                                                                                                                                                                                                           sin 3x cos 3x = 1 × 2 sin 3x cos 3x = 1 sin 6x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2                                                                                        2
                   on whether the power is even or odd.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Hence,                                     sin 3x cos 3x dx = 1 sin 6x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                   For even powers, use the double-angle formulae as many times as is needed.
                   For odd powers, use sin2 A + cos2 A = 1 as shown in Example 3 part b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         =1×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2                (   −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 cos 6x + c = − 1 cos 6x + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      6               12               )

 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       233
10 Integration                                                                                                                                                                                                                                                                                                                                                                          10 Integration

                   If the product involves different multiples of the angle, you can                                                                                                                                                                                                                                                       Exercise 10.6
                   write the product as the sum or difference of sines and cosines                                                                                                                                                                                                                                                          1 Integrate with respect to x.
                   and then integrate.                                                                                                                                                                                                                                                                                                         a cos 3x                           b sin 4x

                                                                                                                                                                                                                                                                                                                                                      (2 )
                                                                                                                                                                                                                                                                                                                                               c cos 1 x                                (2)
                                                                                                                                                                                                                                                                                                                                                                                  d sin 3x
       EXAMPLE 5




                     Find                                    sin 5x cos 3x dx
                                                                                                                                                                                                                                                                                                                                               e cos (2x + 1)                     f sin (3x - 2)
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Consider the expansions of sin (A ± B) where                                                                                                                                                                                                                                                 Refer to Section 2.7         g sec2 4x                          h sec2 (2x - 3)
                     A = 5x and B = 3x :                                                                                                                                                                                                                                                                          on the CD-ROM        .
                                                                                                                                                                                                                                                                                                                                            2 Find these integrals by rearranging into standard forms.
                         sin (5x + 3x) = sin 5x cos 3x + cos 5x sin 3x
                                                                                                                                                                                                                                                                                                                                                      1 dx
                     and sin (5x - 3x) = sin 5x cos 3x - cos 5x sin 3x                                                                                                                                                                                                                                                                         a                                 b    tan 3x cos 3x dx
                                                                                                                                                                                                                                                                                                                                                    cos2 3x
                     Add the expressions together:
                                                                                                                                                                                                                                                                                                                                                       1 dx
                                           sin 8x + sin 2x = 2sin 5x cos 3x                                                                                                                                                                                                                                                                    c                                 d    tan2 x cosec2 x dx
                                                                                                                                                                                                                                                                                                                                                    sin 2 4x
                                                                                                                                             1
                     Hence, sin 5x cos 3x dx = 2 (sin 8x + sin 2x) dx                                                                                                                                                                                                                                                                                                                  sec 2 x dx
                                                                                                                                                                                                                                                                                                                                               e    cot 2x sec 2x dx             f
                                                                                                                                                                                                                                                                                                                                                                                      cosec x
                                                                                                                                    =1
                                                                                                                                             2     (    −
                                                                                                                                                              1 cos 8x − 1 cos 2x + c
                                                                                                                                                              8          2                                                                   )                                                                                                 g    tan x cosec x dx             h    (1 + sec x)2 dx
                                                                                                                                    = − 1 cos 8x − 1 cos 2x + c
C4




                                                                                                                                                                                                                                                                                                                                                                                                                              C4
                                                                                                                                                   16                                                 4
                                                                                                                                                                                                                                                                                                                                               i    sin 3x(1 + cot 3x) dx        j    (cosec x + 2)2 dx

                                                                                                                                                                                                                                                                                                                                                    (cos x + 1)2 dx
       EXAMPLE 6




                                                             p                                                                                                                                                                                                                                                                                 k                                 l    cot 2x dx
                     Find
                                                             8
                                                                  sin 6x sin 2x dx                                                                                                                                                                                                                                                                     sin 2 x                        sin 4x
                                                         0
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                                                                                                                                                                                                                                                                                                                            3 Find these integrals.
                     Consider the expansions of cos (A ± B) where
                     A = 6x and B = 2x :                                                                                                                                                                                                                                                                                                       a    cos2 x dx                    b    sin2 3x dx


                                                                                                                                                                                                                                                                                                                                                          (2)
                                                   cos (6x - 2x) = cos 6x cos 2x + sin 6x sin 2x
                     and                           cos (6x + 2x) = cos 6x cos 2x - sin 6x sin 2x                                                                                                                                                                                                                                               c   cos2 x dx                     d    sin2(3x + 1) dx

                     Subtract:
                                                                                                                                                                                                                                                                                                                                               e    (1 - tan x)2 dx              f    (1 + sin x)2 dx
                                   cos 4x - cos 8x = 2sin 6x sin 2x
                                                               p                                                                                                 p
                                                               8
                                                                                                                                                   1             8                                                                                                                                                                             g    sec2 x tan4 x dx             h    cos3 x dx
                     Hence,                                           sin 6x sin 2x dx = 2                                                                             (cos 4x - cos 8x)dx
                                                           0                                                                                                 0
                                                                                                                                                                                                                                        p                                                                                                      i    sin3 x dx                    j    sin4 x dx
                                                                                                                                = 1 ⎡ 1 sin 4x − 1 sin 8x ⎤
                                                                                                                                                            8
                                                                                                                                  2⎣⎢4           8        ⎥0
                                                                                                                                                          ⎦
                                                                                                                                                                                                                                                                                                                                               k    cos7 x dx                    l    tan3 x dx
                                                                                                                                                (
                                                                                                                                = 1 1 ×1 − 0 − 0 + 0 = 1
                                                                                                                                  2 4                  8                                                                      )

 234                                                                                                                                                                                                                                                                                                                                                                                                                        235
10 Integration                                                                                                                                                                                         10 Integration

        4 Integrate with respect to x.                                                                        11 Find the shaded areas in these diagrams where
           a sin x cos x                                   b sin 2x cos 2x                                        a y = 2sin x cos3 x                                    b y = 2cos3 x
           c tan x cos2 x                                  d sin2 3x cot 3x                                                 y
                        2        2                                                                                                                                                        y
                       2                                            2
           e tan 3x                                        f cot 3x

           g 1 − sin 2x
                    2
                                                                        1
                                                                            ( )
                  2
                                                           h
                 sin 2x                                          1 − sin 2 1 x
                                                                           2

                                                                                                                                                 p              x                        O                x
                                                                                                                                                                                  –p             p
                                                                                                                            O
        5 By expanding sin (A + B) and sin (A - B), show that                                                                                    2                                 2             2

               2sin Acos B = sin (A + B) + sin (A - B)
                                                                                                              12 Find the area enclosed by the graphs of y = 2cos2 x and
           Hence find sin 6x cos 2 x dx                                                                                 1
                                                                                                                  y = 2 cos 3x and the y-axis, as shown in this diagram.
                                                                                                                                             y
        6 Find

           a     sin 4x cos x dx                  b        cos 5x cos 4x dx       c    sin 3x sin 2x dx                                               y = 2cos2 x


        7 Evaluate these definite integrals.                                                                                                O                               x
                                                                                                                                                             y = 1 cos 3x
C4




                                                                                                                                                                                                                                 C4
                 p                                         p                           p                                                                         2
                 2                                         4                           4
           a           sin 3x cos 2x dx           b            sin 4x sin 6x dx   c        cos 2x cos 3x dx
               0                                       0                              0

                                                                                                                INVESTIGATION
        8 Evaluate                                                                                                                                         p
                 p                                         p
                                                                                       p                        13 Consider the integral                       sinn x dx where n is a positive integer.
                 2                                         4
                                2                                                             5                                                         −p
           a           1 + sin x dx               b            cosec x tan x dx   c        sin x dx
               −p                                      −p                             −p
                                                                                                                    Use computer software to explore the graph of y = sinn x
                   2                                       4
                                                                                                                    for different values of n.
           d Explain your answer to part c in terms of the graph of y = sin5 x
                                                                                                                    Give a reason why
                                                                                                                                p
                        p
                        2        2     2
                                                                                                                    a               sinn x dx = 0     when n is odd
        9 Find              cosec x cot x dx using the substitution u = cot x                                               −p
                       p
                       4
                                                                                                                                p                       p
                                                                                                                    b               sinn x dx = 2 ´         sinn x dx    when n is even.
       10 Prove that the area between the graph of y = tan x and the                                                        −p                         0

           x-axis from x = 0 to x = p is ln 2.
                                             3




 236                                                                                                                                                                                                                           237
10 Integration

                                                                                                                                                                                                                                                                                                                                                 Exercise 10.7
       10.7                              Integration using partial fractions                                                                                                                                                                                                                                                                     1 Find these integrals.
                                                                                                                                                                                                                                                                                                                                                    a           4     dx                b       x+5        dx                   c       4x + 1
                                                                                                                                                                                                                                                                                                                                                             x(x + 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                    dx
                   You can use partial fractions to help you to integrate certain algebraic fractions.                                                                                                                                                                                                                                                                                      (x + 1)(x − 3)                          (2x − 1)(x + 1)
       EXAMPLE 1




                                                                                                                                                                                                                                                                                                                                                                2x                              2 dx                                        8      dx
                                                                 x+5                                                                                                                                                                                                                                                                                d                    dx             e                                       f
                     Find                                                   dx                                                                                                                                                                                                                                                                            (x − 1)(x + 3)                    4x 2 − 1                                    x(x 2 − 1)
                                                             (x − 1)(x + 2)
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                  1                                 1                                      9
                                                          ≡ A + B ≡ A(x + 2) + B(x − 1)
                                                x+5                                                                                                                                                                                                                                                                                                 g                   dx              h                 dx                    i                   dx
                     Let
                                            (x − 1)(x + 2) x − 1 x + 2 (x + 2)(x − 1)                                                                                                                                                                                                                                                                        x 2(x − 1)                         x(x − 1)2                           (x − 2)(x + 1)2

                     Equate the numerators: x + 5 º A(x + 2) + B(x - 1)
                                                                                                                                                                                                                                                                                                                                                 2 Evaluate these integrals.
                     Let x = 1:              1 + 5 = A(1 + 2) + 0   so A = 2                                                                                                                                                                                                                                                                                 4                              3                                       4
                     Let x = -2:            -2 + 5 = 0 + B(-2 - 1) so B = -1                                                                                                                                                                                                                                                                        a                  3        dx      b        x + 2 dx                       c            1 + 2x     dx
                                                                                                                                                                                                                                                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                                                 (x − 2)(x + 1)             2   (x − 1)2                            3    (3 + x)(2 − x)
                                                 x+5       ≡ 2 − 1
                     So
                                             (x − 1)(x + 2) x − 1 x + 2
                                                                       x + 5 dx =                                                                         2 − 1 dx                                                                                                                                                                               3 Show that the area enclosed by the curve y =                4        , the
                     Hence,                                                                                                                                                                                                                                                                                                                                                                              (x + 3)(x − 1)
                                                                   (x − 1)(x + 2                                                                        x −1 x +2                                                                                                                                                 When you work with
                                                                                                                                       = 2ln |x - 1| - ln |x + 2| + c
                                                                                                                                                                                                                                                                                                                  partial fractions, you often      lines x = -4 and x = -5 and the x-axis is ln 5 square units.
                                                                                                                                                                                                                                                                                                                  get an answer involving                                                           3
                                                                                                                                                                                                                                                                                                                  logarithmic functions.
                                                                                                                                       = ln (x − 1) + c
                                                                                                                                                                                      2

                                                                                                                                                                 x+2                                                                                                                                                                             4 Find the area between the graph of y =                1
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C4
                                                                                                                                                                                                                                                                                                                                                                                                                  and the
                                                                                                                                                                                                                                                                                                                                                                                                  x 3 − 3x 2 + 2x
                                                                                                                                                                                                                                                                                                                                                    x-axis from the ordinates x = 3 to x = 4.
       EXAMPLE 2




                                                                               1
                                                                                    x + 1 dx                                                                                                                                                                                                                                                     5 Either rearrange the numerator or use long division before
                     Evaluate
                                                                           0      (x − 2)2                                                                                                                                                                                                                                                         integrating these expressions using partial fractions.
                                                                                                                                                                                                                                                                                                                                                               x 2 dx                           x 2 + 1 dx
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                    a                                   b
                     Let                     x +1 ≡ A +      B     ≡ A(x − 2) + B                                                                                                                                                                                                                                                                            x2 − 9                             x2 − 1
                                           (x − 2)2 x − 2 (x − 2)2     (x − 2)2
                     Equate numerators:        x + 1 º A(x - 2) + B                                                                                                                                                                                                                                                                                 c        (x + 2)(x − 1) dx          d       x 3 + x 2 + 1 dx
                     Let x = 2:                2 + 1 = 0 + B so B = 3                                                                                                                                                                                                                                                                                           x(x + 1)                        x2 − x − 6
                     Equate coefficients of x:    A=1

                     So                      x +1 ≡ 1 +      3
                                                                                                                                                                                                                                                                                                                                                   INVESTIGATION
                                           (x − 2)2 x − 2 (x − 2)2
                                                                                                                                                                                                                                                                                                                                                                                          x dx
                                                               1                                                                  1                                                                                                                                                                                                                6 You can evaluate the integral
                                                                    x + 1 dx =                                                          1 +    3 dx                                                                                                                                                                                                                                     x2 − 1
                     Hence,                                                                                                                                                                                                                                                                                                                             by several different methods.
                                                                  (x − 2)2                                                    0
                                                                                                                                      x − 2 (x − 2)2
                                                          0
                                                                                             1                                                                                                                                                                                                                                                          Integrate using
                                                                                                  1 + 3(x − 2)−2 dx
                                                                            =                    x−2                                                                                                                                                                                                                                                    a a logarithmic standard form on sight
                                                                                         0
                                                                                                                                                                                                1                                                                                                  1                                                    b partial fractions
                                                                            = ⎡ ln | x − 2| + − (x − 2)−1 ⎤ = ⎡ ln | x − 2| − 3 ⎤
                                                                              ⎢
                                                                                              3
                                                                                                          ⎥   ⎢                    ⎥
                                                                              ⎣                1          ⎦0 ⎣               x − 2 ⎦0                                                                                                                                                                                                                   c the substitution u = x2 - 1

                                                                            = ln1 − 3 − ln 2 + 3 = 3 − ln 2                                                                                                                                                                                                       ln 1 = 0                              d the substitution x = sec u
                                                                                                                −1                                                −2                      2
                                                                                                                                                                                                                                                                                                                                                        Show that your four answers are equivalent.

 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                239
10 Integration




                                                                                                                                                                                                                                                                                                                                                       EXAMPLE 2
       10.8 Integration by parts                                                                                                                                                                                                                                                                                                                                   Find                              a                     x4 ln x dx                                                                b                     ln x dx
                                                                                                                                                                                                                                                                                                                                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                   You can use integration by parts to integrate the product of
                                                                                                                                                                                                                                                                                                                                                                   a Let u = ln x and dv = x 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                dv               1
                   two functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = x 4 so v = x 5 and
                                                                                                                                                                                                                                                                                                                                                                                                                                                           dx                                                                                                                                                                                                   dx               5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            du 1
                   The method is based on reversing the product rule for differentiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       u = ln x so    =
                                                                                                                                                                                                                                                                                                                                                                                                                                 x4 ln x dx = 1 x 5 ln x − 1 x 5 × 1 dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dx    x
                                                                                                                                                                                                                                                                                                                                                                                 Then,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5                                                   5                            x
                   If u and v are both functions of x, then the product rule states:
                                                                  d(uv) = u dv + v du
                                                                   dx       dx     dx                                                                                                                                                                                                                                                                                                                                                                                     = 1 x 5 ln x − 1 x4 dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5                                              5

                   Rearrange:                                       u dv = d(uv) − v du                                                                                                                                                                                                                                                                                                                                                                                   = 1 x 5 ln x − 1 × 1 x 5 + c
                                                                           dx                             dx                                  dx                                                                                                                                                                                                                                                                                                                                    5                                              5                5

                   Integrate with respect to x:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = 1 x 5(5 ln x − 1) + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    25

                                                                                                                                                                                                                                                                                                                                                                   b Let u = 1 and dv = ln x
                                                                                                             u dv dx = uv −                                                                  v du dx                                                                                                                                                                                                                                            dx
                                                                                                               dx                                                                              dx
                                                                                                                                                                                                                                                                                                                                                                                 This example is important.
                                                                                                                                                                                                                                                                                                                                                                                 By thinking of ln x as the product 1 ´ ln x,                                                                                                                                                                                                                                    You can differentiate ln x
                                                         du                                                                                                                                                                                                                                                                                                                      you can use ‘integration by parts’.                                                                                                                                                                                                                                             by sight but you can not
                   The overall aim is to make sure that v is easier to integrate                                                                                                       dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                        integrate it by sight.
                   than the u dv that you started with.                                                                                                                                                                                                                                                                                                                          Then,                                         ln x dx = 1 ´ ln x dx
                              dx
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C4
                   Your first step in choosing which function is u and which is dv                                                                                                                                                                                                                                u must be simple to differentiate.                                                                                                                                                                                                                                                                                                            dv
                                                                                dx                                                                                                                                                                                                                                dv                                                                                                                                           = xln x - x × 1 dx                                                                                                                                                                                  = 1 so v = x and
                   is crucial for success.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      dx
                                                                                                                                                                                                                                                                                                                  dx
                                                                                                                                                                                                                                                                                                                     must be simple to integrate.                                                                                                                                                                                 x
                                                                              Keep u                                              Integrate                                                Integrate                                            Differentiate                                                                                                                                                                                                                                                                                                                                                                                                   u = ln x so du = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dx   x
                                                                              steady                                                  dv                                                       dv                                                  u wrt x                                                                                                                                                                                                     = xln x - 1 dx
                                                                                                                                      dx                                                       dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                               = xln x - x + c


                                                                                  Eu dx dx = u v –Ev du dx
                                                                                     dv
                                                                                                     dx




                                                                                                                                                                                                                                                                                                                                                       EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                   Use integration by parts to evaluate the definite integral
                                                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                                                              xex dx
       EXAMPLE 1




                     Find                                         x cos xdx                                                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                   Let u = x and dv = e x
                                                                                                                                                                                                                                                                                                                                                                                                                                  dx
                     Let u = x and dv = cos x                                                                                                                                                                                                                                                                                                                                                                   1                                                                                         1
                                                                                    dx                                                                                                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                                                                                                                                                   Then,                                            xex dx                       = ⎡ xe x ⎤ -
                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⎣      ⎦0                                                  ex ´ 1 dx
                     Then,                                                                                                                                                                                                                                                                                                                                                                                   0                                                                                         0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1                                  1
                                                            Keep                                            Integrate                                                 Integrate                                                      Differentiate                                                                Choosing u = x gives a simplified                                                                                              = ⎡ xe x ⎤ − ⎡e x ⎤
                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⎣      ⎦0 ⎣ ⎦0
                                                          x steady                                            cos x                                                     cos x                                                           x wrt x
                                                                                                                                                                                                                                                                                                                  final integral because du = 1
                                                                                                                                                                                                                                                                                                                                         dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                 = (1 ´ e1 – 0) – (e1 – 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 =1
                                                Excos x dx = xsin x –Esin x × 1 dx
                                                                                                      = xsin x + cos x + c


 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              241
10 Integration                                                                                                                                                                                                                                                                                                                                                                                               10 Integration

                   In some cases, integration by parts gives you an integral which is                                                                                                                                                                                                                                                                     Exercise 10.8
                   still not simple enough to integrate.                                                                                                                                                                                                                                                                                                   1 Find
                   However, if you integrate the new integral by parts again, you can
                                                                                                                                                                                                                                                                                                                                                              a     x sin x dx                 b       xex dx
                   sometimes solve the problem in two stages.

                                                                                                                                                                                                                                                                                                                                                              c     x ln x dx                  d       xe2x dx
       EXAMPLE 4




                     Find                                    x2 e3x dx
                                                                                                                                                                                                                                                                                                                                                              e     x sec2 x dx                f       xe-x dx
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Integrate by parts:                                                                                                                                                                                                                                                                                                                                                               ln x dx
                                                                                                                                                                                                                                                                                                                                                              g     x sin 2x dx                h
                     Let u = x and dv = e3x                 2                                                                                                                                                                                                                                                     dv
                                                                                                                                                                                                                                                                                                                  dx
                                                                                                                                                                                                                                                                                                                     = e3x so v = 1 e3x
                                                                                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                                                                                                                                                                                                        x3
                                   dx
                                                                                                                                                                                                                                                                                                                  and u = x 2 so du = 2x
                                                                                                                                                                                                                                                                                                                                 dx                           i     xe2x+1 dx                  j       x2 ln x dx
                                                  x2 e3x dx = x 2 × 1 e3x − 1 e3x × 2x dx
                                                                                                                        3                                     3

                                                                                         = 1 x 2e3x − 2 xe3x dx
                                                                                                  3                                         3
                                                                                                                                                                                                                                                                                                                                                              k           x ln x dx            l               (
                                                                                                                                                                                                                                                                                                                                                                                                       x cos x − p dx
                                                                                                                                                                                                                                                                                                                                                                                                                        4   )
                     Now integrate xe3x by parts:                                                                                                                                                                                                                                                                                                             m               (
                                                                                                                                                                                                                                                                                                                                                                      x sin x + p dx
                                                                                                                                                                                                                                                                                                                                                                                       6   )   n       x tan2 x dx
                                                                                         = 1 x 2e3x − 2 x × 1 e3x − 1 e3x × 1 dx
                                                                                                   3                                  ( 3 33                                                                                                                )                                                     Let u = x, so du = 1, and integrate
                                                                                                                                                                                                                                                                                                                                dx
                                                                                                                                                                                                                                                                                                                  e3x using a standard form.                  o     (ln x)2 dx
                                                                                         = 1 x 2e3x                               − 2 ( 1 xe − 1 × 1 e                  3x                                              3x
                                                                                                                                                                                                                                   +c            )
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                   C4
                                                                                                  3                                 3 3        3 3
                                                                                                                                                                                                                                                                                                                                                           2 Find
                                                                                         = 1 x 2e3x − 2 xe3x + 2 e3x + c
                                                                                                  3                                        9                                    27

                                                                                         =e
                                                                                                  3
                                                                                                       3x
                                                                                                                (   x2 − 2 x + 2 + c
                                                                                                                                           3                        9     )                                                                                                                                                                                   a     xcos nx dx                 b       xenx dx


                                                                                                                                                                                                                                                                                                                                                              c     xnln x dx                  d       sin nx ln (sec nx) dx
       EXAMPLE 5




                     Find                                    ex cos x dx                                                                                                                                                                                                                                                                                   3 Evaluate these definite integrals.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                      p                                2
                                                                                                                                                                                                                                                                                                                                                                      2
                     Let u = e and dv = cos x               x
                                                                                                                                                                                                                                                                                                                  You could also solve this problem
                                                                                                                                                                                                                                                                                                                                                              a           xcos x dx            b           x3 ln x dx
                                   dx                                                                                                                                                                                                                                                                                                                             0                                1
                                                                                                                                                                                                                                                                                                                  using u = cos x and dv = e x
                                                                                                                                                                                                                                                                                                                                       dx
                                                      ex cos x dx = ex sin x - ex sin x dx                                                                                                                                                                                                                        Try it for yourself.                                3                                2
                                                                                                                                                                                                                                                                                                                                                              c       ln x dx                  d           x log10 x dx
                                                                                                                                                                                                                                                                                                                                                                  2                                1
                     Integrate by parts a second time:                                                                                                                                                                                                                                                                                                                4                                p



                                                                                                                                                          {                                                                                                                             }
                                                                                                                                                                                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                              e           log10 x dx           f           xcot2 x dx
                                                                                                     = e x sin x − e x(− cos x) − (− cos x) e x dx                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                                                                                                                                   p
                                                                                                                                                                                                                                                                                                                                                                                                   4

                                                                                                                                                                                                                                                                                                                                                                      1                                p
                                                                                                     = ex sin x + ex cos x - ex cos x dx                                                                                                                                                                                                                                   3 x2                        2
                                                                                                                                                                                                                                                                                                                                                              g           x e dx               h           ex sin x dx
                                                                                                                                                                                                                                                                                                                                                                  0                                0
                     So, 2 ex cos x dx = ex sin x + ex cos x                                                                                                                                                                                                                                                      Rearrange with both integrals on LHS.

                                                                                                                    x
                                                      ex cos x dx = e (sin x + cos x) + c
                                                                                                              2
 242                                                                                                                                                                                                                                                                                                                                                                                                                                             243
10 Integration                                                                                                                                                     10 Integration


        4 The graph of y = x sin x for 0            x      2p is shown here.                      9 Evaluate these definite integrals.
                                                                                                              p
                                  y                                                                           2
                                                                                                     a             e2xcos x dx
                                                                                                           0
                                               y = xsin x
                                                                                                              1
                                      Q                                                              b            2x2e-2x dx
                                  O                         x
                                          p         2p                                                    0
                                                R
                                                                                                               2
                                                                                                     c            x(ln x)2 dx
                                                                                                          1


           Find area Q and area R.
                                                                                                 10 This diagram shows the graph of y = x2e2x
        5 This diagram shows the graph of y = xe-x                                                                                        y
           Find the position of the stationary value.                                                                                            y = x2e2x
           Find the area between the curve, the x-axis and the ordinates
           x = 0 and x = 5.
                                  y

                                              y = xe–x
                                                                                                                                          O             x
                                                                                                                      –2
C4




                                                                                                                                                                                             C4
                                                                   x
                                  O                 5
                                                                                                     Find
                                                                                                     a the y value of the maximum stationary point
        6 a Prove that the curve y = x ln x has a minimum and find this                              b the area enclosed by the curve, the x-axis and
            minimum value.                                                                             the ordinate x = -2.
           b Find the area enclosed by the curve and the x-axis.

        7 Integrate each of these functions either by parts or by                                  INVESTIGATION
          using a substitution of your choice.
                                                                                                   11 Let In = sinn x dx
           a     x(1 +   x)4 dx                 b        (x +   1)2ex dx       c   x x − 1 dx
                                                                                                         By writing sinn x as sin x sinn-1 x, use integration by parts
                                                                                                         to show that nIn = -cos xsinn-1 x + (n - 1)In -2
        8 Find
                                                                                                         Use this formula to find             sin3 x dx and   sin4 x dx
           a     x2ex dx                        b        x2sin x dx            c   x2e2x dx
                                                                                                                                 p
                                                                                                         Find the value of           sin6 x dx
           d     x2e-3x dx                      e        e2xcos 2x dx          f   x2cos 3x dx                                   0



           g     e3xsin 2x dx




 244                                                                                                                                                                                       245
10 Integration

                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9 2 sin2 3x                         10 4sec2 x                             11 5 cos 4x                           12 xsin 2x
       10.9 A systematic approach to integration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  13 x2 ln (2x)                        14     3x                              15 x(x + 1)4                          16 x(x2 + 2)5
                   When integrating a particular function, you should look to use:                                                                                                                                                                                                                                                                                                                                                                                                                          x2 + 7
                     standard integrals to see if the function can be integrated on sight
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    20 cot 2x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2
                         the two particular cases f ′(x) dx                                                                                                                             and                                 f ¢(x)g[f(x)] dx                                                                                                                                                                                                                      17 xe2x                              18 xe2x                                19 2 tan2 2x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            cosec 2x
                                                                                                                                                f(x)
                         the method of substitution
                         trigonometric identities
                         partial fractions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (2 ) (2 )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  21 tan 1 x cot2 1 x                  22 ln (2x)                             23 ln (x 2)                           24 x + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            x +1
                         the method of integration by parts.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  25 (x + 3)(x2 + 1)                   26 cos 2x + p (            2   )       27 tan(2x - p)                        28 e2xsin 2x
       EXAMPLE 1




                     Find                               a                     x(x3 + 1)2 dx                                                                                                                                            b                      x(x + 1)7 dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  29 sin 2x cos 2x                     30 sin 2x cos 4x                       31          5                         32          1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (x + 1)(x − 4)                           x 2 − 2x
                                                                                                                                                                                                                                                                                                                                                                                                            Let u = x + 1
                                                        c                     x2(x3 + 1)7 dx                                                                                                                                           d                       x x + 1 dx
                                                                                                                                                                                                                                                                                                                                                                                                            in part d.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  33        x                          34 e x e x + 1                         35    e2x                             36 cos x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   e +1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                                                                                                                           x−2                                                                                                              sin x

                                             x(x3 + 1)2 dx = x(x6 + 2x3 + 1) dx                                                                                                                                                                                                                                                                 (x + 1)8                                          (x + 1)8
                     a                                                                                                                                                                                                                  b                     x(x + 1)7 dx = x ´                                                                         -                                                 ´ 1 dx                                                 37 sin 5x cos 2x                     38 cos x sin7 x                        39 (x2 - 9)-1                         40 sin x cos x
                                                                                                                                                                                                                                                                                                                                                   8                                                 8
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C4
                                                                                                                                                                                                                                                                                                                        1             1 1
                                                                                                                                                                                                                                                                                                                      = 8 x (x + 1) − 8 × 9 (x + 1) + c
                                                                                                                                                                                                                                                                                                                                   8               9
                                                                                                        = (x7 + 2x4 + x) dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  41 Evaluate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       p                                    p
                                                                                                                                                                                                                                                                                                                      = 1 (x + 1)8(8x − 1) + c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   p
                                                                                                        = 1 x8 + 2 x5 + 1 x2 + c                                                                                                                                                                                        72
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4                            2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           tan x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            12
                                                                                                          8      5      2                                                                                                                                                                                                                                                                                                                                              a               sin2 2x dx      b                      dx              c                                    d        ∫ 3sin 3x cos 3x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0                            1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    x(2x − 1)                              sin x                        0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0

                     c                   x (x + 1) dx = 1 3x2(x3 + 1)7 dx
                                              2             3                        7
                                                                                                                                                                                                                                        d                         x x + 1 dx =                                                        (u2              - 1) ´ u ´ 2u du
                                                        3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  42 Find
                                                                                                        = 1 × 1 (x 3 + 1)8 + c                                                                                                                                                                                        = 2 (u4 - u2) du                                                                                                                                             sec 2 x dx                                                                      3
                                                                                                          3 8                                                                                                                                                                                                                                                                                                                                                          a                               b        tan4 x dx                     c        x 2e x dx                   d     cos5 x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   tan 3 x
                                                                                                                                                                                                                                                                                                                        2      2
                                                                                                        = 1 (x 3 + 1)8 + c                                                                                                                                                                                            = 5 u5 − 3 u3 + c
                                                                                                                  24                                                                                                                                                                                                                                                                                                                                                                                              1 dx                                 sec x tan x dx
                                                                                                                                                                                                                                                                                                                                 3                                                                                                                                     e           sin4 x dx           f                                      g                                    h     3x dx
                                                                                                                                                                                                                                                                                                                      = 2 (x + 1)2(3x − 2) + c                                                                                                                                                                  x ln x                                  3 + sec x
                                                                                                                                                                                                                                                                                                                               15


                                                                                                                                                                                                                                                                                                                                        You could also use integration                                                                                              INVESTIGATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               b
                                                                                                                                                                                                                                                                                                                                        by parts in d.
                                                                                                                                                                                                                                                                                                                                        Try it yourself to show that the two                                                                                        43 What is a geometrical interpretation of the integral                                        f(x) dx for b > a?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           a
                                                                                                                                                                                                                                                                                                                                        methods give the same answer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Without evaluating these integrals, find whether they are positive,
                   Exercise 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                           negative or zero.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1                                         p
                   Integrate these functions with respect to x.                                                                                                                                                                                                                                                                                                                                                                                                                            1                                                                       4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1 dx                          5           2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           a                   x−2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            b                x (1 - x ) dx         c                   sin3 x dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               −p
                    1 x2(x - 3)                                                                                                                     2 x(x - 3)2                                                                                                 3 (x - 6)6                                                                                                     4 3x2(x3 - 2)7                                                                                          0                             0                                             4



                                                                                                                                                                  x2
                    5 x2 x 3 + 1                                                                                                                    6                                                                                                           7 x2 cos (2x3)                                                                                                 8 3cos2 x
 246                                                                                                                                                             x +1 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  247
10 Integration




                                                                                                                                  EXAMPLE 1
       10.10 Volumes of revolution                                                                                                            The area enclosed by the curve y = x2 + 1, the x-axis and the
                                                                                                                                              ordinates x = 1 and x = 2 is rotated about the x-axis
         The area under a curve y = f(x) between the ordinates x = a                                                                          through 360°.
         and x = b is given by                                                                                                                Find the volume of the solid of revolution.
                                                                                                                                              ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                         2                                                         2                                                                                                                 y = x2 + 1
                                                   b       b                                                                                  The volume =                                                                   py2 dx                        =p                          (x2              +       1)2 dx                             y                                                                                       p is a constant. You can take it
                               Area A = lim ∑ yd x =           y dx                                                                                                                                                  1                                                         1                                                                                                                                                           outside the integral sign.
                                          d x →0           a
                                                   a
                                                                                                                                                                                                                                  2
                                                                                                                                                                                                        =p                            (x4 + 2x2 + 1) dx
                                                                                                                                                                                                                              1
         If you rotate a rectangular strip of width dx about the x-axis, the strip
                                                                                                                                                                                                                                                                                                    2
         generates a thin circular disc.                                                                                                                                                                = p ⎡ 1 x5 + 2 x3 + x ⎤
                                                                                                                                                                                                                         ⎢
                                                                                                                                                                                                                         ⎣5                                 3                                  ⎥
                                                                                                                                                                                                                                                                                               ⎦1
                                                                                                                                                                                                                                                                                                                                                  O                       1                  2                                     x
                                                                                               The disc is a cylinder, radius y
         The volume of this thin disc is dV = py2dx.
          y
                                                                                               and thickness d x.                                                                                          32 16
                                                                                                                                                                                                                         (
                                                                                                                                                                                                                       1 2
                                                                                                                                                                                                        =p 5 + 3 + 2 − 5 − 3 −1                                                                                                       )
                                                               y                                                                                                                                                                                                                                                                                                                                                                           You can leave your answer as a
                                                                                                                                                                                                                 178
                         y = f(x)                                                                                                                                                                       = 15 p cubic units                                                                                                                                                                                                                 multiple of p.
                                                                                    y = f(x)

              (x, y)                        dx                             (x, y)

                y                     y                                y




                                                                                                                                  EXAMPLE 2
         O                     x                       x       O                         x                                                    Show that the volume of a sphere of radius r is given by 4 p r 3.
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C4
              a dx       b                                                 a        b                                                                                                                                                                                                                                                                                                                         3
                                                                                                                                              ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                               dx                                                             The circle x2 + y2 = r2 has a radius r and a centre (0, 0).
                                                                                                                                                                                                                                                                                                                                                                                                                                                            y
                Area A                volume dV                        Volume V                                                               The shaded semicircle is rotated about the x-axis through
                                                                                                                                              360° to make a sphere of radius r.                                                                                                                                                                                                                                                                                     (x, y)
         If you rotate the whole of area A about the x-axis, you generate a                                                                   Imagine a thin disc of thickness dx and radius y.
         solid which is formed by summing an infinite number of thin discs.                                                                                                                                                                                                                                                                                                                                                                                      y
                                                                                                                                              The volume of the disc, dV = py2dx = p(r2 - x2)dx
         As the number of discs increases, dx ® 0 and, in the limit, the                                                                                                                                                                                                                           r                                                                                                                                       –r              O     x            r   x
         summation gives the exact value of the volume, V, of the solid.                                                                      So, the volume of the sphere =                                                                                                                           p(r2 - x2)dx
                                                                                                                                                                                                                                                                                              −r
         This is known as a volume of revolution.
                                                                                                                                                                                                                                                                                                                                                         r
                                                                                                                                                                                                                                                                                  = p ⎡r x − 3 x ⎤
                                                                                                                                                                                                                                                                                        2    1 3
                                                                                                                                                                                                                                                                                      ⎢          ⎥  ⎣                                               ⎦ −r                                                                                                             dx


                         Volume V = lim
                                          d x →0
                                                   b               b
                                                 ∑ p y 2d x = a py2 dx                                                                                                                                                                                                                             (
                                                                                                                                                                                                                                                                                  = p r 3 − 1 r 3 − r 2(−r) + 1 (−r)3
                                                                                                                                                                                                                                                                                                                             3                                                            3                        )
                                                   a
                                                                                                                                                                                                                                                                                  = 4 p r3
                                                                                                                                                                                                                                                                                            3




 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  249
10 Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     10 Integration




                                                                                                                                                                                                                                                                                                                                                          EXAMPLE 4
       EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            y
                     A hollow bowl is formed by a solid of revolution when the                                                                                                                                                                                                                                                                                        The curve with parametric equations x = t 2 + 1, y = t + 1
                     area between the parabola y2 = 4x and the straight line                                                                                                                                                                                                                                                                                                                                                   t                                                                                                                                                                                                                                                                                                                                t=2
                                                                                                                                                                                                                                                                                                                                                                      is shown in this diagram.                                                                                                                                                                                                                                                                                                                  t=1
                      y = 2 x is rotated 360° about the x-axis.
                                          3                                                                                                                                                                                                                                                                                                                           Find the volume of revolution when the shaded area
                     Find the volume of the bowl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          O                                                                                                              x
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                      bounded by the curve from t = 1 to t = 2 is rotated
                                                                                                                                                                                                                                                                                                                                                                      about the x-axis through an angle of 2p.
                                                                                                                                                                                   (3 )
                                                                                                                                                                                                        2
                     The curve and line intersect when 2 x = 4x                                                                                                                                                                                                                                                            y
                                                                                                                                                                                                                                                                                                                                      y = 2x
                                                                                                                                                                                                                                                                                                                                          3
                                                            4x2 = 9 ´ 4x                                                                                                                                                                                                                                                                                              ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ( t)
                                                                                                                                                                                                                                                                                                                   6                           y2 = 4x                                                                                                    2                                                                2                                       2
                                                     4x(x – 9) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dx
                                                                                                                                                                                                                                                                                                                                                                      The volume V =                                                                          py2 dx dt =                                                      p t + 1 × 2t dt                                                                                                                                                dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 2t
                                                               x = 0 or 9                                                                                                                                                                                                                                                                                                                                                                                                       dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                      1                                                               1                                                                                                                                                                      The limits are values of t
                                                               y = 0 or 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (not values of x).
                                                                                                                                                                                                                                                                                                                                                                                                                                                ( )                                                                                         (t                                                )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2                                                             2
                     The points of intersection are at (0, 0) and (9, 6).                                                                                                                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           + 2t + 1 dt
                                                                                                                                                                                                                                                                                                                                                x
                                                                                                                                                                                                                                                                                                                       O                  9                           Expand the bracket t + t :                                                                                                          = 2p                                      3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         t
                     A solid of revolution is formed from                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
                     thin discs (of radius y = 4x ) with the                                                                                                                                                                                                                                                                                                                                                                                                                                              = 2p ⎡ 1 t 4 + t 2 + ln t ⎤ = 27 p + p ln 4 cubic units
                     central parts of radius y = 2 x removed.                    (                                                                  3            )                                                                                                                                                                                                                                                                                                                                                              ⎢4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ⎣                                                                   ⎥1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ⎦                       2


                                                                                                                                                                      (3 )
                                                                                                                                                                                                                                                         2
                                                                                                                                                                     (                       )
                                                                                                                                                                                   2
                     The volume of the disc, dV = p                                                                                                                             4x d x − p 2 x d x




                                                                                                                                                                                                                                                                                                                                                          EXAMPLE 5
                                                                                                                                                    = (p × 4x − p × 4 x )d x
                                                                                                                                                                                                                                                                                                                                                                      A circle of radius r has parametric equations                                                                                                                                                                                                                                                                                                                   y
                                                                                                                                                                                                                                          2
                                                                                                                                                                    9
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (x, y)
                                                                                                                                                                                                                                                                                                                                                                      x = rcos q, y = rsin q
                     The volume of the solid of revolution
                                                                                                                                                                                                                     x =9                                                                                                                                             The shaded semicircle is rotated 360° about the x-axis.                                                                                                                                                                                                                                                                                                                                 y
                                                                                                                                                                                      = lim
                                                                                                                                                                                                d x →0
                                                                                                                                                                                                                     ∑dV                                                                                                                                              Show that the volume V of the sphere generated is 4 p r 3                                                                                                                                                                                                                                               B                                                                                                                  A
                                                                                                                                                                                                                     x =0                                                                                                                                                                                               3                                                                                                                                                                                                                                                     –r                                                    O                 x                                          r x


                                                                                                                                                                                                            (p × 4x − p × 4 x ) dx
                                                                                                                                                                                                      9
                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                      =                                                                                                                           A slightly quicker method is to
                                                                                                                                                                                                                          9
                                                                                                                                                                                                    0                                                                                                             realise that the ‘hollow’ in the bowl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dx
                                                                                                                                                                                                                                                                                                                  is a cone of base radius 6 units

                                                                                                                                                                                                                  (4x − 4 x ) dx
                                                                                                                                                                                                             9
                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                  and height 9 units.                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                      =p
                                                                                                                                                                                                         0
                                                                                                                                                                                                                        9                                                                                         The volume of the cone is thus                      At points A and B, y = 0, sin q = 0, so q = 0 and p respectively.
                                                                                                                                                                                                                                                                                                                  1
                                                                                                                                                                                                                                                                 9                                                 3
                                                                                                                                                                                                                                                                                                                     p ´ 36 ´ 9 = 108p and you                                                  p                                                                     p
                                                                                                                                                                                                                                                                                                                                                                                                         dx
                                                                                                                                                                                      = p ⎡2x 2 − 4 x 3 ⎤
                                                                                                                                                                                          ⎢
                                                                                                                                                                                                                                                                                                                  can subtract it immediately from                    V=                             py2             dq
                                                                                                                                                                                                                                                                                                                                                                                                                                   dq =                                    p(r sin q)2 ´ (-r sin q) dq                                                                                                                                                                              dx = -r sin q
                                                                                                                                                                                          ⎣       27 ⎥0 ⎦                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dq
                                                                                                                                                                                                                                                                                                                       9                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           p
                                                                                                                                                                                      = p (162 – 108 – 0)                                                                                                              p ´ 4x dx = 162p
                                                                                                                                                                                                                                                                                                                   0                                                                                                                                  = -pr 3                                  (1 - cos2q)sin q dq                                                                                                                                                                 Using sin2 q + cos2 q = 1
                                                                                                                                                                                      = 54 cubic units                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           p

                                                                                                                                                                                                                                                                                                                                                                                                                                                      =        -pr 3                        ∫ (sin q - sin q cos2 q) dq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0
                   Curves with parametric equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 p                                                                                                              Either recognise the integral
                   If a curve is specified by parametric equations x = f(t), y = g(t),                                                                                                                                                                                                                                                                                                                                                                = −p r 3 ⎡ − cosq + 1 cos3 q ⎤                                                                                                                                                                                               of -sin q cos2 q on sight or use
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⎢
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⎣                                            3                               ⎥0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ⎦
                   then the volume V of the solid of revolution is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        the substitution u = cos q


                                                                                                                             b                                                    t2                                                                                                                              The independent variable is t.
                                                                                                                                                                                                                                                                                                                                                                                                                                                      = −p r 3 ⎛ 1 − 1 −
                                                                                                                                                                                                                                                                                                                                                                                                                                                               ⎜
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ⎝
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ( 3 ) ( 1 + 1 ) ⎟⎠⎞ =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      −                                                 −
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4 pr 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   The negative sign indicates that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   you have integrated anticlockwise
                                                                                                                                                                        2 dx
                                                                                                                                                                 = ∫ p y dt dt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   around the circle from A (where
                                                                                                  V=                              py 2 dx                                                                                                                                                                         The limits of this integral are                     The volume of the sphere = 4 p r 3 cubic units                                                                                                                                                                                                                                                               t = 0) to B (where t = p).
                                                                                                                        a                                          t1                                                                                                                                             t = t1 and t = t2.                                                                                                                                                                    3

 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               251
10 Integration                                                                                                                                                                               10 Integration

       Exercise 10.10                                                                                                      5 The region R is defined as the area between the curve y = tan x,
        1 Each of these three shaded areas is rotated 360° about the x-axis.                                                  the x-axis and the line x = p . If R is rotated 180° about the
          Find the volumes of revolution.                                                                                                                 4
                                                                                                                              x-axis, find the volume of the solid which is generated.
           a                                       b   y                        c     y
                   y
                        y = 3x2
                                                                                              y = x(3 – x)                 6 a Find the volume generated when the area enclosed by the
                                                             y = √x – 1                                                        curve y = x2, the x-axis and the line x = 3 is rotated 360°
                                                                                                                               about the x-axis.

                                                                          x
                                                                                                                              b Find the points of intersection of the curve y = x2 and the
                                                       O 1 2     4
                                                                                      O         2       3    x                  line x + y = 12. Find the volume generated when the area
                   O            x                                                                                               in the first quadrant enclosed by the curve, the line and
                        1 2
                                                                                                                                the y-axis is rotated 360° about the x-axis.
        2 In each case, the region R is bounded by the curve y = f(x), the
                                                                                                                           7 a Find the points of intersection of the line y = 2x and the
          x-axis and the given ordinates. Find the volume generated
                                                                                                                               curve xy = 8
          when R is rotated through an angle of 2p about the x-axis.
                                                                                                                              b The area in the first quadrant bounded by this line and
           a f(x) = x2 - 1,         x = 1, x = 2       b f(x ) = 1 ,          x = 2, x = 3
                                                                     x                                                          curve, the x-axis and the ordinate x = 4 is rotated through
                                                                                                                                2p about the x-axis. Find the volume generated.
           c f(x) = x(x – 2),       x = 0, x = 1       d f(x) = sin x,        x = 0, x = p
                                                                                          2
                                                                                                                           8 The area between the two curves y = x3 and y2 = x is rotated
           e f(x) =       1 ,
                                    x = 0, x = p       f   f(x) = e x x ,     x = 1, x = 2
                                                                                                                             through 2p about the x-axis. Find the volume of the solid
                        cos x
C4




                                                                                                                                                                                                                          C4
                                                   4
                                                                                                                             which is generated.
           g f(x) = x − 1,          x = 2, x = 3       h f(x) = x ln x ,      x = 2, x = 3
                         x
                                                                                                                           9 The region R is defined as the area enclosed by the y-axis and     y
        3 The line y = mx passes through the point (h, r).                                y                                  the two curves y = sin x and y = cos x. If R is rotated through
                                                                                                             y = mx          2p about the x-axis, find the volume generated.                        y = sin x
           The area bounded by the line, the x-axis and the
           ordinate x = h is rotated 360° about the x-axis                                          (h, r)                                                                                      O                   x
                                                                                          r                                                                                                          y = cos x
           to generate a cone of height h.
           Find the value of m in terms of r and h.
           Prove that the volume of the cone is 1 p r 2h.                                                                 10 A metal washer has the shape of a solid of revolution.             y
                                                       3
                                                                                          O              h            x       The shaded area in this diagram, enclosed between the
                                                                                                                              curve y = x2 - x + 4 and the line y = 4, is rotated through       P      Q
        4 A solid of revolution is formed by rotating the curve                                                               an angle of 2p about the x-axis to form the washer.
           y = x 4 − x 2 , where x > 0, a full turn about the x-axis.                                                         a Write down the coordinates of the points of
           Sketch the graph of the curve and find the volume of the solid.                                                      intersection P and Q.
                                                                                                                                                                                                O               x
                                                                                                                              b Find the volume of revolution.




 252                                                                                                                                                                                                                    253
10 Integration                                                                                                                                                                                                10 Integration

       11 If the area between the curve y = ln x, the x-axis and the                                                        16 That part of the curve, defined parametrically by                         y
          ordinate x = 3 is rotated through 180° about the x-axis,                                                              x = y = 1 , which lies between the ordinates of
                                                                                                                                    t 2,
                                                                                                                                          1+t
          find the volume generated.
                                                                                                                                   ( )
                                                                                                                                R 1,
                                                                                                                                     2        ( )
                                                                                                                                     1 and S 4, 1 is rotated a full turn about the x-axis.
                                                                                                                                                3                                                                R       S
       12 A sphere of radius 13 cm is intersected by two parallel planes
                                                                                                                                                                                                         O                            x
          7 cm apart.                                                                                                           Find the volume of revolution.
           The larger intersection is 5 cm at its nearest point from the
           centre of the sphere.
           Find that volume of the sphere which lies between the two planes.                                                17 The shape of a rugby ball is called a spheroid. It is the solid
                                                                                                                               of revolution when an ellipse is rotated about one of its axes.
       13 Find the volumes of revolution when the shaded areas on                                                              Find the volume of the spheroid which is generated by
          these diagrams are rotated about the x-axis through 360°.                                                            rotating the ellipse with parametric equations x = acos q,
                                                                                                                               y = b sin q about the x-axis.
           a                                b   y                            c
                                                                                 y
                                                                   t=2                                                      18 This diagram shows the curve with parametric equations                        y

                        y                                    t=1                                                               x = sin q, y = sin 2q
                                                                                                                                                                                                        1
                                                                                                                               Find the volume of revolution when one of the loops is
                                  t=2                                                                                          rotated a full turn about the x-axis.
                            t=1                                                                                                                                                                          O                   x
                                                                                                                                                                                                   –1                1

                     O                  x                                x                                          x                                                                                   –1
                                                O                                O               2        4
C4




                                                                                                                                                                                                                                            C4
                                                                                                                            19 Find the volume of the solid of revolution when the area
           The parametric equations are                                                                                        bounded by the curve x = tan q, y = sin q, the x-axis and the
               x = t3                               x = t2 + 3                   x = 4t                                        ordinates x = 1 and x = 3 is rotated through an angle of 2p
               y=t 2
                                                    y = 3t + 1                   y=2                                           about the x-axis.
                                                                                         t


       14 A curve has parametric equations x = 1, y = t 2                                    y                                INVESTIGATION
                                                            t
           The area bounded by the curve, the x-axis and                                                   1    2
                                                                                                         x= ,y=t              20                         y
                                                                                                           t
           the ordinates x = 1 and x = 2 is rotated through an angle
                             2
           of 2p about the x-axis.
           Find the volume of the solid of revolution.                                                                                               2

                                                                                         O 1              2         x
                                                                                                     2
                                                                                                                                                     O          2           x


       15 The part of the curve, defined parametrically by x = t2 - 1,                       y                                     This circle, with centre (2, 2) and radius 1 unit, is rotated
          y = et, from the ordinate of P where t = 0 to the ordinate                                                               about the x-axis through an angle of 2p to generate a solid.
          of Q where t = -1 is rotated about the x-axis through 360°.
                                                                                     P                                             What name can be given to the solid?
                                                                                                 Q
           Find the volume of revolution.
                                                                                         O                              x          Can you find an expression for the volume of the solid?




 254                                                                                                                                                                                                                                      255
10 Integration

                                                                                                                                                   4 Use standard forms to integrate these expressions with respect to x.
       Review 10
                                                                                                                                                     a cos 3x                    b sec2 5x                         c sin x                                           d (6x + 1)4
                                                                                                                                                                                                                           4
       1 Use the trapezium rule to estimate the value of these integrals                                                                             e cot 2x                    f         1                       g        1                                        h e4x
                                                                                                                                                                                         4x + 3                         ( 4x + 3)2
         correct to 3 significant figures using the number of strips given.

         a
                 2
                     3x dx            5 strips       b
                                                                  1
                                                                      e dxx2
                                                                                       6 strips
                                                                                                                                                     i   (ex + 1)2               j
                                                                                                                                                                                                 2( )
                                                                                                                                                                                         cosec 2 x + 1             k sec 2x                                          l     sec 2x tan 2x
             0                                                0
                                                                                                                                                   5 Find
                 4                                                p
                                                                  4                                                                                                                          x dx
         c           ln(x2 - 1) dx 6 strips          d                    tan q dq     5 strips                                                      a      2x(x2 + 3)5 dx       b                                 c     x cos (x2 + 1) dx                           d       cos x sin6 x dx
             2                                                0                                                                                                                            x2 + 3

                                                                                                                                                                x − 1 dx                     sec 2 x dx                         2
                                                                                             p
                                                                                             4                                                       e                           f
                                                                                                                                                                                           1 + tan x
                                                                                                                                                                                                                   g     xe −x dx                                    h        x 2 1 + x 3 dx
       2a    Use the trapezium rule to estimate the value of I =                                 sec2 x dx                                                  x 2 − 2x − 1
                                                                                         0
             by dividing the interval from 0 to p into 5 strips.                                                                                   6 Use the given substitutions to find these integrals.
                                                          4
         b   Find the exact value of I by integration.                                                                                                           1
                                                                                                                                                     a                 dx      u=x+3                           b       (x - 1)(x - 4)3 dx u = x - 4
         c   Calculate the percentage error in the estimated value of I.                                                                                     ( x + 3)2
         d   Explain, using a suitable diagram, why the answer to                                                                                                                                                         x dx
                                                                                                                                                     c       e x e x + 3 dx    u = ex + 3                      d                                               u2 = x + 1
             part a is an overestimate of the exact value of I.                                                                                                                                                          x +1
C4




                                                                                                                                                                                                                                                                                                        C4
                                                                                                                                                                                 2

                                                                                                                                                                                     (        )
       3 This figure shows a sketch of the curve with equation                                        y                                                                                       2
                                                                                                                                                   7 Calculate the value of               x  dx using the substitution u = x + 2
         y = (x - 1)ln x, x > 0                                                                                       y = (x – 1) In x                                                   x+2
                                                                                                                                                                                1
         a Copy and complete the table with the values of                                                                                                                                                                           1
                                                                                                                                                                                                                                    2
         y corresponding to x = 1.5 and x = 2.5                                                                                                                                                                                              1
                                                                                                                                                   8 Use the substitution x = sin q to find the exact value of                                           3   dx          [(c) Edexcel Limited 2005]
                                                                                                                                                                                                                                0       (1 − x 2 ) 2
                      x      1        1.5    2      2.5               3
                      y      0              ln 2              2ln 3
                                                                                                                                                   9 Find these integrals, using appropriate trigonometric identities where necessary.
                                  3                                                                   O      1   3                       x
                                                                                                                                                                                                                                                             tan x         dx
         b Given that I =             (x - 1)ln x dx, use the trapezium rule                                                                         a      cos x cosec x dx              b       tan2 x cosec2 x dx                    c
                                  1                                                                                                                                                                                                                      1 − cos2 x
             i  with values of y at x = 1, 2 and 3 to find an approximate
                value for I to 4 significant figures                                                                                                 d      cos2 3x dx                    e       sin2 3x dx                            f        (2 + tan x)2 dx
             ii with values of y at x = 1, 1.5, 2, 2.5 and 3 to find another
                approximate value for I to 4 significant figures.
         c Explain, with reference to the figure shown, why an increase
                                                                                                                                                     g           (2)
                                                                                                                                                            cos4 x dx                     h           (2)
                                                                                                                                                                                                  cos3 x dx                             i        sin5 x dx

         in the number of values improves the accuracy of the approximation.
                                                                               3
                                                                                                                                                     j      sin4 2x dx                    k       (tan4 x - sec4 x) dx                  l            ⎜
                                                                                                                                                                                                                                                     ⎝          4 ⎠
                                                                                                                                                                                                                                                                    ⎟( )
                                                                                                                                                                                                                                                     ⎛1 − sin 2 1 x ⎞ dx

         d Show, by integration, that the exact value of                           (x - 1)ln x dx is 3 ln 3.         [(c) Edexcel Limited 2006]
                                                                               1
                                                                                                             2
                                                                                                                                                  10 a   By expanding cos (A + B) and cos (A - B), show that
                                                                                                                                                         2cos Acos B = cos (A - B) + cos (A + B)
                                                                                                                                                         Hence, find cos 6x cos 4 x dx
                                                                                                                                                                                                                                                     p
                                                                                                                                                                                                                                                     4
 256                                                                                                                                                 b   Use a similar method with sin (A ± B) to find the value of                                      sin 6x cos 4x dx                             257
                                                                                                                                                                                                                                                 0
10 Integration                                                                                                                                                                                                                                                                            10 Integration

       11 Integrate using partial fractions.                                                                                                                 18 Integrate

          a               x+3
                  ( x − 1) ( x − 3)
                                      dx                b                 5x
                                                                 (2x − 1) ( x + 2)
                                                                                        dx                   c               7
                                                                                                                     ( x + 1) ( x − 3)2
                                                                                                                                        dx                      a            1 − sin 2 x dx
                                                                                                                                                                             1 − cos2 x
                                                                                                                                                                                                    b            sec 2 x − 1 dx
                                                                                                                                                                                                                   sin x
                                                                                                                                                                                                                                               c       cos3 (4x) dx                   d            (2)
                                                                                                                                                                                                                                                                                              sin 4 x dx


       12 Find the value of                                                                                                                                     e        (2 - sin2 x) dx            f        sin 7x sin 3x dx                  g       exsin 3x dx                    h       x2 cos 4x dx
                  3                                                       2
          a                  1                                   b                  9      dx
                                          dx
              2
                      ( x − 1) (2x − 1)                               1
                                                                              x 2 (3 − x )
                                                                                                                                                             19 Evalute
                                                                                                                                                                                                                                                                              p
                                                                                                                                                                         2                                           3                                                        3
                                                                                                                                                                                                                                                                                      sin x
                           5x + 8                                                                                                                               a            x(x -   1)5 dx                 b           (x -   1)2ln (x    - 1) dx                    c                           dx
       13 g(x) =                                                                                                                                                                                                                                                                  1 + tan 2 x
                       (1 + 4x)(2 − x)                                                                                                                               1                                              2                                                         p
                                                                                                                                                                                                                                                                              4
          a Express g(x) in the form                    A + B , where A and B
                                                    (1 + 4x) (2 − x)
              are constants to be found.                                                                                                                     20 The region R is bounded by the curve y = f(x), the x-axis and
                                                                                                                                                                the given ordinates. In each case, find the volume generated
          b The finite region R is bounded by the curve with equation                                                                                           when R is rotated through an angle of 360° about the x-axis.
              y = g(x), the coordinate axes and the line x = 1
                                                                                       2                                                                        a   f(x) = 4 - x2             x = 1, x = 2               b f(x) = sin x x = p , x = p
                                                                                                                                                                                                                                                           4              2
              Find the area of R, giving your answer in the form
              a ln 2 + b ln 3                                                                                                 [(c) Edexcel Limited 2003]                          y                                            y
                                                                                                                                                                                        f(x) = 4 – x2
       14 Use integration by parts to find
C4




                                                                                                                                                                                                                                                                                                                     C4
                                                                                                                                                                                                                                                   f(x) = sin x
          a       x cos x dx                   b     x cos 3x dx                       c        xe3x dx                     d       x sin nx dx
                                                                                                                                                                                         R                                                 R

          e       x2e2x dx                     f     e2xsin x dx                       g        x3ln x dx                                                                        O      1 2             x                      O       p           p                      x
                                                                                                                                                                                                                                       4           2

       15 Evaluate these integrals using integration by parts.                                                                                               21 The area enclosed by the y-axis, the curve y = x2 + 4 and the straight
                   p                                                                                p
                                                                                                                                        2
                                                                                                                                                                line y = 5x is rotated about the x-axis through an angle of 2p.
                   4                                    1                                           3
          a            x sin x dx              b            x2ex dx                    c                excos x dx          d               x4ln x dx           Draw a sketch of the area and find the volume of the solid
               0                                    0                                           0                                   1                           which is generated.

       16 a   Use integration by parts to find x cos 2x dx                                                                                                   22 Part of a curve is defined by a range of values of the parameter t.
                                                                                                                                                                In each case, find the volume of revolution when the area between
                                                                                                                                                                the x-axis and the defined part of the curve is rotated about
          b   Hence, or otherwise, find x cos2 x dx                                                                           [(c) Edexcel Limited 2005]
                                                                                                                                                                the x-axis through 360°.
                                                                                                                                                                a   x = t2 + 1, y = t3 1                t    2           b x = et, y = t + 1              0    t          1
       17 Choose an appropriate method of integration to find each of these integrals.

          a       x3(x2 - 1) dx            b       (x - 2)(x2 - 1) dx                   c           (x - 5)6 dx                 d           2x(x2 - 2)5 dx   23 This diagram shows part of the curve with                                                         y
                                                                                                                                                                equation y = 1 + 1
                                                                                                                                                                                             2 x
          e       x x − 2 dx               f         x dx                               g             1 dx                      h             1 dx              The shaded region R, bounded by the curve, the
                                                   x2 − 1                                           x2 − 1                                  x2 − x              x-axis and the lines x = 1 and x = 4, is rotated through                                                          R
                                                                                                                                                                                                                                                               O          1               4              x
                    x2                                x                                                                                                         360° about the x-axis. Using integration, show that
          i       xe 2    dx               j       xe 2     dx                          k           x ln (3x) dx                l           x2 ln (3x) dx       the volume of the solid generated is p 5 + 1 ln 2         (        2       )                                          [(c) Edexcel Limited 2003]


 258                                                                                                                                                                                                                                                                                                               259
10
            Exit
                                                                                                                                  11
                                                                                                                                   Differential equations
                                                                                                                                    This chapter will show you how to
                                                                                                                                      solve first-order differential equations of the forms
                                                                                                                                         dy         dy             dy
           Summary                                                                                                    Refer to              = f(x),    = f( y) and    = f(x)g(y)
                                                                                                                                         dx         dx             dx
            The trapezium rule gives an estimate of the area between a curve and the x-axis.                             10.1            use the method of ‘separating the variables’
            The area A between a curve and the x-axis from x = a to x = b is given by                                                    use first-order differential equations to solve problems in practical contexts.
                                        b
            either   A=                     y dx     where the curve has the Cartesian equation y = f(x)
                                    a
                                        t2                                                                                       Before you start
            or       A=                      y dx dt    where the curve has parametric equations x = f(t), y = g(t)      10.2
                                    t1
                                               dt                                                                                You should know how to:                                              Check in:
            The volume of revolution when the area between a curve and the                                                       1 Solve simple problems involving                                    1 a The gradient function of the curve
            x-axis from x = a to x = b is rotated 360° about the x-axis is given by                                                gradients of curves.                                                   y = f(x) is f ¢(x) = x2 - 5
                                    b
            either V =                  p y2 dx where the curve has the Cartesian equation y = f(x)                                 e.g. A curve passes through the point (1, 5) such                     If the curve passes through the point
                                                                                                                                           dy
                                a                                                                                                   that      = 2x. Find the equation of the curve.                       (3, -4), find its Cartesian equation.
                                    t2                                                                                                     dx
            or       V=                 p y 2 dx dt where the curve has parametric equations x = f(t), y = g(t)        10.10        If
                                                                                                                                         dy
                                                                                                                                            = 2x , then y = x2 + c                                                                        dy
                                                                                                                                                                                                                                             = (x + 1)2
C4




                                                                                                                                                                                                                                                            C4
                                t1
                                                dt                                                                                       dx                                                              b The derivative of a curve is
                                                                                                                                    To pass through (1, 5), 5 = + c        12                                                             dx
            To integrate a function, you may need to use                                                                                                                                                     If the curve passes through the point
                                                                                                                                    so c = 4
               standard integrals which can be integrated on sight                                                       10.3                                                                                (2, 5), find its equation.
                                                                                                                                    The equation of the curve is y = x2 + 4
                 the two particular cases                   f¢(x) dx and f ¢(x) ´ g[f(x)]dx                              10.4
                                                            f(x)
                 the method of substitution                                                                              10.5    2 Integrate various functions.                                       2 Integrate
                 trigonometric identities                                                                                10.6                                                              1            a (2x + 1)3
                                                                                                                                    e.g. Find a            4e-3x dx             b                dx
                 partial fractions                                                                                       10.7                                                          x (x + 2)
                                                                                                                                                                                                         b cos 2x + sec2 3x
                 the method of integration by parts, where u dv dx = uv – v du dx                                        10.8       a       4e   −3x
                                                                                                                                                                 −3x
                                                                                                                                                       dx = 4 × e + c = − 4 e−3x + c
                                                                                 dx              dx                                                              −3       3                              c         1
                                                                                                                                                                                                             (x − 1)(x + 3)
            Links
                                                                                                                                    b             1
                                                                                                                                             x ( x + 2)
                                                                                                                                                        dx = 1
                                                                                                                                                             2         ( 1x − x + 2 ) dx
                                                                                                                                                                                1
                                                                                                                                                                                                         d x cos x
            Engineers use integration to determine the pressure exerted                                                                                      = 1 (ln x − ln ( x + 2)) + c                      x
            on the vertical gates of a dam by the water.                                                                                                        2                                        e
                                                                                                                                                                                                             x2 + 3
            Pressure is defined as the force per unit area. In a fluid, the                                                                                  = 1 ln
                                                                                                                                                                2     ( x +x 2 ) + c                     f     x
            force exerted on a submerged object increases if either the                                                                                                                                      x −1
            density of the fluid, the depth of the object, or the exposed
            area of the object increases. The force can also vary at                                                             3 Use exponentials and logarithms.                                   3 Find x in terms of k when
            different points on the object if its shape is not uniform,                                                             e.g. If ln (x + 1) - ln x = k, find x in terms of k.                a ln (x - 2) = ln x + ln 2 + k
            as is the case with many dam gates.                                                                                                                (x)
                                                                                                                                    ln(x + 1) − ln x = ln x + 1 = k                                      b 2ln x = ln (x2 + 1) + k
                                                                                                                                                  x +1
            The force exerted by the water on the gate can be modelled by                                                                   So         = ek                                              c k2 = 1 + ke-x
                                                                                                                                                    x
                            b
                 F=w            xy dy                                                                                                                   1=   x(ek   - 1)
                                                                                                                                                               1
                        a                                                                                                                               x=
                                                                                                                                                             ek − 1
            where w is the density of the water, (b - a) is the vertical length of the gate in the water and
            x is the horizontal length of the gate at a point at depth y below the surface of the water.
     260                                                                                                                                                                                                                                                  261
11 Differential equations




                                                                                                                                EXAMPLE 1
       11.1          First-order differential equations                                                                                     Find the particular solution of the differential equation
                                                                                                                                                       dy
                                                                                                                                            x2            − 3x = 1 if y = 4 when x = 1.
                                                                                                                                                       dx
         A differential equation is a relationship between two (or more)                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



         variables and one (or more) of their derivatives.
                                                                                                                                                                                                                                      dy
                                                                                                                                                                                                                           x2             − 3x = 1
                                                                                                                                                                                                                                      dx
         The order of a differential equation is given by the highest
                                                                                                                                                                                                                                            dy
         derivative in the equation.                                                                                                        Rearrange:                                                                                   x2    = 1 + 3x
                                                                                                                                                                                                                                            dx
         E.g.                                                                                                                                                                                                                               dy 1 + 3x     1  3
                                                                                                                                                                                                                                               =     2  = 2+
         dy                                                                                                                                                                                                                                 dx     x     x   x
            = x sin x is a first-order   differential equation in x and y.
         dx
         d2 y
                                                                                                                                            Integrate with respect to x:
              − 6 dy + 9 = 0 is a second-order      differential equation in x and y.
         dx 2     dx
                                                                                                                                                                                                                                                                    y=                      ( x1 + 3x )dx
                                                                                                                                                                                                                                                                                                       2
         This chapter considers only certain types of first-order
         differential equations.                                                                                                                                                                                                                                            = − 1 + 3 ln x + c                                                                                                                                           This is the general solution.
                                                                                                                                                                                                                                                                                            x
                                                                                                                                            When x = 1, y = 4, so                                                                                                   4 = -1 + 3ln1 + c
         Consider the differential equation dy = 2x                                                                                                                                                                                                                 c=4+1-3´0
                                                      dx
                                                                                                                                                                                                                                                                      =5
         You have y = 2x dx                                                             To find the solution of the equation,
                                                                                        integrate with respect to x.                        The particular solution is y = − 1 + 3 ln x + 5
         giving y =     x2   + c where c is an arbitrary constant.                                                                                                                                                                                                                          x
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C4
         This solution is called the general solution.

         Different values of c give different solutions but the graphs                                                                      If dy = f(y), then dx = 1                                                                                                                                                                                                                                                                    dx   1
                                                                                                       y                                            dx                                                                             dy                        f(y)                                                                                                                                                                           =
         of these different solutions all have the same basic shape.                                                                                                                                                                                                                                                                                                                                                                     dy   dy
                                                                                                                                            and integrating with respect to y gives the general solution
         The graphs form a family of curves, in which each curve                                                                                                                                                                                                                                                                                                                                                                              dx
         can be formed from any other by a simple translation parallel                                                                                                                                                                    x=                          1 dy = g(y) + c
                                                                                                                                                                                                                                                                     f(y)
         to the y-axis.
                                                                                                                  (3, 14)
         If you choose one member of the family, then that solution
         is called a particular solution.




                                                                                                                                EXAMPLE 2
                                                                                                   5                                        Find the particular solution of the differential equation
         For example, consider the graph which passes through the                                                                                                                    dy
                                                                                                                                                                                        = cos2 y
         point (3, 14).                                                                              O               x                                                               dx
         Substitute x = 3 and y = 14 into y = x2 + c                                                                                        given that y = 0 when x = 1.
                   14 = 32 + c
                                                                                                                                            ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

                                   giving c = 5
                                                                                                                                                                                                                                                                         dx     1
         The particular solution in this case is y = x2 + 5                                                                                 Rearrange dy = cos 2 y :                                                                                                        =        = sec 2 y
                                                                                                                                                                                     dx                                                                                  dy   cos2 y
                                                                                                                                            Integrate with respect to y:
          If dy = f(x), then the general solution is given by
                dx                                                                                                                          The general solution is                                                                                                             x = sec2 y dy = tan y + c
                 y = f(x) dx = g(x) + c
                                                                                                                                            Given y = 0 when x = 1,                                                                                                             1 = tan 0 + c, so c = 1
                                                                                                                                            The particular solution is                                                                                                          x = 1 + tan y


 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                      263
11 Differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        11 Differential equations




                                                                                                                                                                                                                                                                                                                                                    EXAMPLE 5
       EXAMPLE 3
                                                                                                                                                                                               dy                                                                                                                                                                                                                                                                                                   dy     y
                     Find the particular solution of (1 − y) + y 2 = 1, if y = 2                                                                                                                                                                                                                                                                                 Find the particular solution of                                                                                                       = 2   if y = 3 when x = 2.
                                                            dx                                                                                                                                                                                                                                                                                                                                                                                                                                      dx  x −1
                     when x = 0.                                                                                                                                                                                                                                                                                                                                 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••


                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                 •



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Factorise and use partial fractions:
                                                                                                                                             dy (1 + y)(1 − y)                                                                                                                                                                                                   Separate the variables and integrate:
                     Rearrange:                                                                                                                 =              = 1+ y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      =      1
                                                                                                                                             dx     1− y                                                                                                                                                                                                            dy
                                                                                                                                                                                                                                                                                                                                                                       = 2    dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               x 2 − 1 (x − 1)(x + 1)
                                                                                                                                             dx   1
                                                                                                                                                                                                                                                                                                                                                                     y      x −1
                     So                                                                                                                         =
                                                                                                                                             dy 1 + y

                                                                                                                                                                              1 dy = ln(1 + y) + c
                                                                                                                                                                                                                                                                                                                                                                                             =1
                                                                                                                                                                                                                                                                                                                                                                                                        2               ( x 1− 1 − x 1+ 1 ) dx
                     Integrate with respect to y:                                                                                                   x=                                                                                                                                                            This is the general solution.
                                                                                                                                                                             1+ y
                                                                                                                                                                                                                                                                                                                                                                         ln y = 1 ( ln(x − 1) − ln(x + 1)) + c
                                                                                                                                                                                                                                                                                                                                                                                                        2
                     When x = 0, y = 2 so                                                                                                           0 = ln (1 + 2) + c
                                                                                                                                                    c = -ln 3                                                                                                                                                                                                            ln y = ln x − 1 + ln A                                                                                                                                                                                                                                                                Define a new arbitrary constant A
                                                                                                                                                                                                                                                                                                                                                                                                                          x +1                                                                                                                                                                                                                                 so that c = ln A
                     The particular solution is x = ln (1 + y) - ln 3                                                                                                                                                                                                                                                                                                                             ⎛         ⎞
                                                                                                                                                                                                                                                                                                                                                                                             = ln ⎜ A x − 1 ⎟
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               You can now incorporate A within
                                                                                                                                                  = ln 1 + y
                                                                                                                                                          3                     ( )                                                                                                                                                                                                               ⎝   x +1⎠                                                                                                                                                                                                                                                    the logarithm, using the fact that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ln p + ln q = ln (pq)
                                                                                                                                                                                                                                                                                                                                                                 The general solution is y = A x − 1
                                                                                                                                               ex = 1 + y                                                                                                                                                                                                                                                                                                                                                        x +1
                                                                                                                                                      3
                                                                                                                                                    y = 3e x - 1                                                                                                                                                                                                 Substitute for x and y:

                                                                                                                                                                                                                                                                                                                                                                                    3=A 1
                                                                                                                                                                                                                                                                                                                                                                                                                        3
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C4
                                                                                                                                                                                                                                                                                                                  You could have used this method                      so A = 3
                           dy
                    If        = f(x) × g(y),                                                                  then the general solution is given by                                                                                                                                                                  dy
                           dx                                                                                                                                                                                                                                                                                     on    = 1 + y in Example 3.                    The particular solution is y = 3 x − 1
                                                                                                                                                                                                                                                                                                                     dx                                                                                                                                                                                                   x +1
                                           1 dy =                                                                                                                                                                                                                                                                 Try it yourself to show that it
                                                                                          f(x) dx
                                          g(y)                                                                                                                                                                                                                                                                    gives the same answer.
                                                                                                                                                                                                                                                                                                                                                                Exercise 11.1
                   This method is called separating the variables.                                                                                                                                                                                                                                                x and y (with the operators dx                 1 Find the general solutions of these differential equations.
                                                                                                                                                                                                                                                                                                                                                                                          dy                                                                                                                                                                 dy
                                                                                                                                                                                                                                                                                                                  and dy) are separated onto the                           a                 = 3x 4                                                                                                                                           b                 = cos 2x
                                                                                                                                                                                                                                                                                                                  two sides of the equation.                                              dx                                                                                                                                                                 dx
       EXAMPLE 4




                                                                                                                                                                               dy                                                                                                                                                                                                                                           dy                                                                                                                                                            dy
                     Find the general solution of                                                                                                              xy 2               = x2 + 1                                                                                                                                                                                 c (x 2 + 1)                                         =x                                                                                                             d (x + 1)                                      =x
                                                                                                                                                                               dx                                                                                                                                                                                                                                           dx                                                                                                                                                            dx
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                     Separate the variables and integrate:                                                                                                                                                                                                                                                                                                       2 Find the general solutions of these differential equations.
                                                                                                                                                                                                        x + 1 dx
                                                                                                                                                                                                             2                                                                                                                                                                            dy                                                                                                                                                                 dy
                                                                                                                                                            y 2 dy =                                                                                                                                                                                                       a                 = 4y 4                                                                                                                                           b                 = e −2y
                                                                                                                                                                                                          x                                                                                                                                                                               dx                                                                                                                                                                 dx

                                                                                                                                                                                    =                  ( x + 1x ) dx                                                                                                                                                       c
                                                                                                                                                                                                                                                                                                                                                                                          dy
                                                                                                                                                                                                                                                                                                                                                                                          dx
                                                                                                                                                                                                                                                                                                                                                                                             −y=3                                                                                                                                             d
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dy
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = cot y
                                                                                                                                                                1 y 3 = 1 x 2 + ln x + c
                                                                                                                                                                3       2                                                                                                                                                                                        3 Find the general solutions of these differential equations.
                                                                                                                                                                                                                                                                                                                  A new arbitrary constant c¢ has
                                                                                                                                                                  y 3 = 3 x 2 + 3 ln x + c ′                                                                                                                                                                                                dy   x                                                                                          dy   y                                                                                        dy
                                                                                                                                                                        2                                                                                                                                         been introduced where c¢ = 3c                            a                   =                                                                             b                 =                                                                          c                  = xy
                                                                                                                                                                                                                                                                                                                                                                                            dx   y                                                                                          dx   x                                                                                        dx
                                                                                                                                                                                                                                                                                                                                                                                                 dy                                                                                                 dy                                                                                        dy
                                                                                                                                                                                                                                                                                                                                                                           d x                      − y =1                                                                   e y                       = et                                                               f t                    = y + ty
                                                                                                                                                                                                                                                                                                                                                                                                 dx                                                                                                 dt                                                                                        dt
                                                                                                                                                                                                                                                                                                                                                                                                   dx                                                                                             dx
                                                                                                                                                                                                                                                                                                                                                                           g t2                       = x +1                                                                 h t                     = cot x
 264                                                                                                                                                                                                                                                                                                                                                                                               dt                                                                                             dt                                                                                                                                                                                                  265
11 Differential equations                                                                                                                                     11 Differential equations

        4 Find the particular solutions of these differential equations.                 8 The gradient at the point (x, y) on a curve is given by
               dy                                                                           dy      x
           a      = x 2 + x + 1, given y = 2 when x = 0                                        =
               dx                                                                           dx   y sec x
                                                                                            If the curve passes through the point (0, 2),
             dy     1
           b    =      , given y = 2 when x = 1                                             find its Cartesian equation.
             dx   y −1

               ( )
                     2                                                                                                                                  dx
           c
                dy
                         = x, given y = 4 when x = 1                                     9 Find the particular solution of the equation (1 + cos 2q )    =2
                                                                                           given that x = 1 when q = p
                dx                                                                                                                                    dq
                                                                                                                         4
                         2 dy
           d (1 + x)            = xy , given y =1 when x = 0
                                    2
                                                                                                                                                   dy
                          dx                                                            10 Find the general solution of the equation (y 3 + 1)        − xy = x
                                                                                                                                                   dx
                          , given that y = 0 when x = p
               dy   sec y
           e      =
               dx   sec x                             2                                                                      dy
                                                                                        11 The differential equation xy     = x 2 + y 2 can be solved
                     dy                                                                                                  dx
           f ex+ y      = 1, given y = ln 2 when x = 0                                     using the substitution y = xz
                     dx
                                                                                                                         dy
                                                                                            a Find an expression for        in terms of x and z.
                                                                                                                         dx
        5 Use a mixture of methods to find the general solutions of these
          differential equations.                                                                                     dy                              dz
                     dy
                                                                                            b Eliminate y from xy        = x 2 + y 2 and show that xz    =1
                                                       dy                                                             dx                              dx
           a (x + 1) dx = 1                          b    = e −3y
                                                       dx
                                                                                            c Hence, prove that y2 = 2x2ln (ax) where a is a constant.
               dy   x+2                                   dy
                                                             = tan y
           c      =                                  d
C4




                                                                                                                                                                                                   C4
               dx   y−2                                   dx                            12 Prove, by using the substitution y = tz, that the general solution
                                                                                                                                       y
                                                                                                              dy   y (t + y)
           e y
               dy
                  −x =1                              f   x cos y
                                                                 dy
                                                                    = sin y                 of the equation      =           is Aty = e t , where A is a constant.
               dx                                                dx                                           dt   t (y − t)

                  dy                                        dy
           g 3x      + x = x2                        h 2y      + y =1
                  dx                                        dx                            INVESTIGATION
               dy      y                                  dy  x +x 2
                                                                                          13 Oscillations and waves in, for example, simple
           i      =                                  j       = 2
               dx   x(x + 1)                              dx   y +y                          pendulums and electrical circuits, can be modelled
                         dy                                        dy                        using differential equations. Architects and structural
           k tan x          = cot y                  l   (x + 1)      − xy = 0
                         dx                                        dx                        engineers use differential equations when designing
                                                                                             buildings and bridges to take account of their natural
                         dy                                dy
           m cos2 x         = sin2 x                 n y      = sec y                        frequencies when these structures sway in the wind. If
                         dx                                dx
                                                                                             the oscillations induced by the wind match the natural
                  dy                                                     dy                  oscillations of the structure, then resonance occurs.
           o ex      + y2 = 4                        p (cos x − sin x)      = 2 sin x
                  dx                                                     dx                  Use the Internet to investigate
                                                                                                     the early discovery of resonance;
        6 Find the equation of the parabolic curve which passes through                              the conditions under which resonance leads to instability;
                                                         dy
           the point (-1, 2) and for which (y − 1)          =4                                       the structural collapse of the Tacoma Narrows Bridge
                                                         dx
                                                                                                     in the USA in 1940.
        7 Show that the curve, which contains the point (3, 7) and for
           which dy = 1 + y , has the equation y + 1 = k(x + 1)
                  dx 1 + x
           Find the value of k.

 266                                                                                                                                                                                             267
11 Differential equations




                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 3
       11.2                              Applications of differential equations                                                                                                                                                                                                                                                                                    The radioactive element strontium-90 has a half-life of                                                                                                                                                                                                                                      In radioactive material, atoms
                                                                                                                                                                                                                                                                                                                                                                   29 years. Find what percentage of the initial amount of                                                                                                                                                                                                                                      disintegrate spontaneously. The
                                                                                                                                                                                                                                                                                                                                                                   radioactive strontium is left after a hundred years.                                                                                                                                                                                                                                         rate of disintegration at a given
                   You can solve problems involving rates of change by forming a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                time t is proportional to the
                                                                                                                                                                                                                                                                                                                                                                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                   differential equation and then using integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            amount of radioactive material left
                                                                                                                                                                                                                                                                                                                                                                                                               dM             dM
                                                                                                                                                                                                                                                                                                                                                                   You have                                        ∝ M giving     = −kM where k is positive.                                                                                                                                                                                                    in the sample. The amount of
                                                                                                                                                                                                                                                                                                                                                                                                                dt             dt                                                                                                                                                                                                                               radioactive material M is
       EXAMPLE 1




                     The acceleration, a m s-2, of a moving particle depends on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             decreasing over time, so the rate
                     time, t seconds, which has elapsed since the start of the                                                                                                                                                                                                                                                                                     Separate the variables and integrate:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                of disintegration dM is negative.
                     motion. When a = 6cos 2t                                                                                                                                                                                                                                                                                                                                                                       dM                                                                                                                                                                                                                                                             dt
                                                                                                                                                                                                                                                                                                                                                                                                                       = -k dt
                     a find the velocity of the particle, v m s-1, in terms of the                                                                                                                                                                                                                                                                                                                                   M
                        time t, given that the velocity after p seconds is 7 m s-1                                                                                                                                                                                                                                                                                                                              ln M = -kt + c = -kt + ln A                                                                                                                                                                                                                     Let c = ln A, so that ln M - ln A
                                                              4
                     b find the initial velocity.
                     •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
                                                                                                                                                                                                                                                                                                                                                                                                                (A)
                                                                                                                                                                                                                                                                                                                                                                                                      ln M = −kt giving M = Ae-kt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                can be combined.

                                                                                                                                                                                     dv                                                                                                                           Acceleration is the rate of                      A half-life of 29 years means that, if the initial amount of
                     a Acceleration                                                                                                                              a=                     = 6 cos 2t                                                                                                                change of velocity.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M
                                                                                                                                                                                     dt
                                                                                                                                                                                                                                                                                                                                                                   strontium is M0, then 1 M0 remains after 29 years.                                                                                                                                                                                                                                                      M = MOe–kt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2
                                   Integrate with respect to t:                                                                                                   v = 6cos 2t dt = 3sin 2t + c                                                                                                                    This is the general solution.                                                                                                                                                                                                                                                                                                                     MO

                                   When t = p , v = 7, so
                                                                                    4
                                                                                                                                                                 7 = 3sin 2 × p + c                     (                    4       )                                                                                                                             When t = 0, M0 = Ae0 so                                                                                                           A = M0 and M = M0e kt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           e −29k = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1M
                                                                 c=7-3=4                                                                                                                                                                                                                                                                                           When t = 29, 1 M 0 = M 0e −29k                                                                                                               so                                                                                                                                                2 O
                                                                                                                                                                                                                                                                                                                                                                                                                                2                                                                                                                                                           2
                                   The velocity of the particle, v = 3sin 2t + 4                                                                                                                                                                                                                                  This is the particular solution.
                                                                                                                                                                                                                                                                                                                                                                                              e29k = 2                                     gives                            29k = ln 2                                              and                                 k = 1 ln 2                                                                                     O        29                        t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            29
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C4
                     b When t = 0, v = 3 ´ 0 + 4 = 4
                       The initial velocity = 4 m s-1                                                                                                                                                                                                                                                                                                              Hence                                                                     M = M 0e                                       29( )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         − ln 2 t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                This graph illustrates the half-life of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                strontium as 29 years.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         −100 ln 2                                                     −
                                                                                                                                                                                                                                                                                                                                                                   When t = 100, M = M 0e                                                                                                   29                            = M 0e 2.39
       EXAMPLE 2




                     At any given time t, the rate of increase of a population of                                                                                                                                                                                                                                                                                                                                                                                                                                         = 0.0916M0 (to 3 s.f.)
                     bacteria is proportional to the size of the population, N. The
                                                                                                                                                                                                                                                                                                                                                                   After 100 years, just over 9% of the strontium is radioactive.
                     initial population is 50. If the population has increased to 100
                     when t = 1, find the size of the population when t = 5.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                                  Exercise 11.2
                                                                                                                                                                                                              dN
                     The rate of increase of the population is                                                                                                                                                   .                                                                                                                                                 1 As a train enters a tunnel with a velocity of 6 m s-1, its acceleration, a m s-2,
                                                                                                                                                                                                              dt
                     So
                        dN
                             ∝ N giving
                                            dN
                                                 = kN where k > 0                                                                                                                                                                                                                                                                                                    is given by a = 1 t + 1 , where t is the time in seconds spent
                         dt                  dt                                                                                                                                                                                                                                                                                                                                      100    10
                                                                                                                                                                                                                                                                                                                                                                     in the tunnel.
                     Separate the variables and integrate:
                                  1 dN = k dt                                                                                                                                                                                                                                                                                                                                a Find an expression for the speed of the train in terms of t.
                                  N
                                                                                                                                                                                                                                                                                                                  Let c = ln A, so that ln N - ln A
                                                                                                                                                                                                                                                                                                                                                                             b If the train leaves the tunnel after 30 seconds, find its speed on exit.
                                                                      ln N = kt + c
                                                                                                                                                                                                                                                                                                                  can be combined.
                                                                           = kt + ln A
                                                                             (A)
                                                                       N = kt                                                                                                                                                                                                                                                                                      2 The population of a certain kind of insect is growing at a rate
                                                                   ln                                                                                                                                                                                                                                                                                                which is proportional to the number, N, of insects present at a
                                   N = Ae kt                                                                                                                                                                                                                                                                                                                         given time t (in days), where d N = 0.1N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dt
                     You have N = 50 at t = 0 and also N = 100 at t = 1                                                                                                                                                                                                                                           There are two unknown constants,
                                                                                                                                                                                                                                                                                                                                                                             The population is monitored over time and N = 200 when t = 0.
                                                                                                                                                                                                                                                                                                                  A and k. You need two items of
                     When t = 0, 50 = Ae0, so A = 50
                                                                                                                                                                                                                                                                                                                  information to find their values.                          a Find the size of the population one week after monitoring has begun.
                     When t = 1, 100 = 50e k, so e k = 2
                     Hence N = Aekt = A (e k)t = 50 ´ 2t                                                                                                                                                                                                                                                          This is the particular solution.                           b How long will it take for the initial population to increase tenfold?
                     When t = 5, N = 50 × = 1600                                                                        25
                     The size of the population when t = 5 is 1600.
 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          269
11 Differential equations                                                                                                                                     11 Differential equations

        3 Pine trees in a forest are dying due to a fungal disease. Initially there      8 Newton’s law of cooling states that, for an object at a temperature q °C,
          were 2000 trees, but, with a rate of infection proportional to the               the rate of decrease in its temperature is proportional to the difference
          number of trees still unaffected by the fungus, the number unaffected            between its temperature and the ambient temperature. An object is
          after 2 years is 1600.                                                           initially at 70 °C in a room at a constant temperature of 10 °C.
          Find how long it will take before half the trees are infected.                   During the first 10 minutes its temperature falls to 60 °C.

        4 A crystal suspended in a chemical solution is increasing in size
                                                                                            a Prove that q = 10 + 60e-kt where k = 1 ln 6
                                                                                                                                       10    (5)
          over time. The rate of increase of volume is inversely proportional to            b Find how much longer elapses before its temperature falls to 50 °C.
          the square of its volume. Initially, the crystal had a volume of 3 cm3
                                                                                            c What will its temperature be one hour after it initially started to cool?
          and, one day later, its volume was 4 cm3.
          How long will it take for its volume to increase to 10 cm3?
                                                                                         9 The growth of a leaf on a plant depends on the water absorbed
                                                                                           from the plant and the water lost by evaporation from its surface.
        5 When the power is switched off in an electrical circuit, it takes
                                                                                           If the width of a leaf is w cm, then the rate of increase of the width
          time for the current to stop flowing. At the moment of switching
                                                                                           is equal to 2w - w 2.
          off the time t = 0 and the current i = i0.                                                                               2t
          If the circuit has a resistance R and an inductance L, then                       a If w = 1 when t = 0, show that w = 2e 2t
                                                                                                                                   1+ e
          L di + Ri = 0 where L and R are constants.
             dt                                                                             b Find the maximum width of the leaf.
           a Find an expression for i as a function of t in terms of L and R.
                                                                        1
           b How long does it take the current to fall to a value of 100 th of          10 In a chemical reaction in a solution a new chemical is formed.
           its initial value?                                                              At a time t seconds, y grams of this chemical are present in the solution
                                                                                                                                                   dy
C4




                                                                                                                                                                                                   C4
               Give your answer in terms of R and L.                                        and the rate of increase of the chemical is given by      = 2(3 - y)(1 - y)
                                                                                                                                                   dt

        6 A oil-tank 4 metres tall has a leak. The depth of oil, h metres, in               a Given that y = 0 when t = 0, find an expression for y in terms of t.
          the tank is decreasing over time at a rate, in metres per hour,                   b Find the mass, y grams, which has formed 2 seconds after the
          which is proportional to the square root of the depth.                              start of the reaction.
           a Given that the tank is full initially and that the initial rate at which
                                                                                            c Find the limiting value of y as t increases.
             the depth is decreasing is 16 cm per hour, find the depth of
             oil in the tank after 10 hours.
                                                                                           INVESTIGATION
           b How long does it take for the tank to empty?
                                                                                           11 Shake 100 drawing pins on to a table.
        7 Radium is a radioactive element and it decays at a rate proportional                 Pins landing point down can be used to simulate radioactive
          to the mass M of radium which exists in a sample at a time t.                        atoms which have decayed in the first second. Remove them.
           a If the initial mass of radium in a sample is M0, show that the
                                                                                               Repeat over and over again, removing all the pins which land
             mass of radium remaining after a time t is given by M = M0e-kt,
                                                                                               point downwards, until you have only half of the original
             where k is a constant.
                                                                                               100 pins left.
           b If the half-life of radium is 1620 years, show that the value of k is
                                                                                               The number of shakes that you have made gives you the
             approximately 4.28 ´ 10-4
                                                                                               half-life in seconds.
           c How long will it take for the initial mass of radium to decay by 99% ?
                                                                                               Construct a mathematical model and check its validity for
                                                                                               predicting the number of shakes required to leave 10 pins.




 270                                                                                                                                                                                             271
11 Differential equations

                                                                                          7a    The acceleration, a m s-2, of a moving particle is inversely
       Review 11                                                                                proportional to the velocity, v m s-1, at which it is travelling
                                                                                                after a time of t seconds.
       1 Find the general solutions of these differential equations.                            i Find v in terms of t, given that its initial velocity is 10 m s-1
                 dy                                              dy                                 and, after 5 seconds, its velocity is 20 m s-1.
         a   x      = x3 + 2                       b (x 3 − 1)      = 3x 2                      ii Find its velocity after a further 5 seconds of motion.
                 dx                                              dx
                        dy                                                                  b   If the acceleration is directly proportional to the velocity,
         c   sin x         = cos x                 d dy = y 2
                        dx                             dx                                       find its velocity after 10 seconds of motion, given that v = 10
             dy                                        dy                                       when t = 0 and v = 20 when t = 5.
         e      = e −3y                            f      + y =1
             dx                                        dx
                                                                                          8 Liquid is stored in a cylindrical tank of radius 5 metres. Algae
       2 Find the particular solutions of these differential equations.                     on the surface of the liquid is growing at a rate proportional to
             dy
                                                                                            the surface area, A, which is covered with algae. The algae was
         a      = 1 − 2x + 2x 2         given y = 4 when x = 3                              first noticed when it covered 10% of the surface and, after a
             dx
                                                                                            further 10 days, it covered 20% of the surface.
                 dy
         b   y      = y2 − 1            given y = 2 when x = 1                              a Write down a differential equation involving dA .
                 dx                                                2                                                                             dt

       3 Separate the variables to find the general solutions of these                          Solve the equation to find the area of the surface covered with
         differential equations.                                                                algae after another 10 days.
                  dy
                                                   b (x 2 + 1)
                                                                 dy
                                                                    = xy                    b How many days in total does it take for 75% of the surface
         a   y2      = 1 + ex
C4




                                                                                                                                                                                                    C4
                  dx                                             dx                         to be covered with algae?
                        dy                                  dy
         c   sec x         = cos2 y                d 3y        − y =1                     9 Newton’s law of cooling states that an object at a temperature q °C
                        dx                                  dx
                                                                                            cools in such a way that the rate of decrease in its temperature is
             dy      y                                     dy
         e      = 2                                f   y      = 2x sec y                    proportional to the difference between its temperature and room
             dx  x − 3x + 2                                dx
                                                                                            temperature. An object is initially at 70 °C in a room at a constant
                                                                                            temperature of 20 °C. During the first 5 minutes, its temperature
       4 Find the particular solutions of these different equations, given                  falls to 60 °C.
         that y = 2 when x = 1.
                                                                                            a Show that q = 20 + 50e-kt and find the value of the constant k.
                 3 dy
         a   y           =x   2
                  dx                                                                        b How many more minutes elapse before its temperature falls to 50 °C?
                 dy
         b   x      = y +1                                                               10 Chemical A is converted into chemical B during a reaction. At any
                 dx
                                                                                            time during the reaction, the rate at which A is converted into B
                                  dy     y
         c   cosec(x − 1)            = 2                                                    is proportional to the quantity of A that remains at that time.
                                  dx   y −1
                                                                                            a The quantity of A at time t is x and, when t = 0, x = x0.
                                                                  dy
       5 A curve contains the point (0, p). Show that, if            = x sec 2 y, then        Write down a differential equation involving t, x and x0.
                                                                  dx
         the curve has the equation y + sin ycos y - x2 = k                                 b In a particular experiment, the initial quantity of A is reduced by
         Find the value of k.                                                                 a half in 5 minutes. Find how many more minutes it takes for A
                                                                                              to reduce to only 10% of its initial quantity.
       6 Given that y = 1 when x = p, solve the differential equation
                                  2
         dy
            = y 2x cos x
         dx
 272                                                                                                                                                                                              273
11
        Exit
                                                                                                      12Vectors
                                                                                                         This chapter will show you how to
                                                                                                           express vectors in different ways and use the components of a vector to
                                                                                                           calculate its magnitude
       Summary                                                                             Refer to
                                                                                                           investigate properties of vectors, including how to add and subtract them
        dy
           = f(x) has the general solution y = f(x)dx = g(x) + c                              11.1         calculate the distance between two points and find their midpoint in
        dx
        dy                                        1                                                        3-dimensional space
           = f(y) has the general solution x = f(y) dy = g(y) + c                             11.1         find the scalar product (or dot product) of two vectors
        dx
        dy                                                        1                                        calculate the angle between two vectors and the intersection of two lines
           = f(x) ´ g(y) has the general solution found from         dy = f(x)dx              11.1
                                                                                                           find the vector equation of a straight line.
        dx                                                      g(y)
        This method is known as separating the variables.                                     11.1
        The general solution of a first-order differential equation has just                          Before you start
        one arbitrary constant.                                                               11.1
        You can represent the general solution graphically by a family of curves.                     You should know how to:                               Check in:
        You can represent the particular solution of a first-order differential equation              1 Describe a translation using a vector.              1 a Find the vector which maps the point
        by just one curve selected from the family of curves.                                 11.1       e.g. The point (4, 1) maps onto the point (5, 3)         (3, 4) onto these points.
C4




                                                                                                                                                                                                                       C4
                                                                                                                                                  ⎛1 ⎞            i (4, 6)          ii (4, -1)      iii (2, 7)
                                                                                                         under a translation given by the vector ⎜ ⎟ .
                                                                                                                                                 ⎝ 2⎠         b Find the image of the square
                                                                                                                                                              (3, 3), (5, 5), (3, 5), (5, 3) under the
        Links
                                                                                                                                                                                ⎛ 6⎞
        An example of a differential equation with                                                                                                                 translation ⎜ −2 ⎟ .
                                                                                                                                                                                ⎝ ⎠
        many applications is the logistic equation
           dP                                                                                         2 Use Pythagoras’ theorem.                            2 a Find the distance from the point (0, 0)
              = P(1 - P)
           dt
        where P is a variable dependent on t.                                                            e.g. If the two shorter sides of a right-angled          to the point (4, 5).
                                                                                                         triangle are 8 cm and 6 cm, then the longest         b A right-angled triangle has two sides
        This differential equation is often used to                                                      side is given by 64 + 36 = 10 cm                     of length 5 cm and 7 cm. Calculate
        model population growth, where the rate                                                                                                               two possible values of the length of
        of reproduction is proportional to both                                                                                                               its third side.
        the existing population and the
        supportability of that population.                                                            3 Solve simultaneous equations in                     3 Solve these simultaneous equations.
                                                                                                        three unknowns.                                       a 3x + 4y - z = 3
        In this setting, the equation now takes the form
                                                                                                         e.g. 2x + 3y + z = 8            (1)                     2x - 2y + z = 7
           dt       (
           dP = rP 1 − P
                       K   )                                                                                   3x - y + z = 1
                                                                                                               x + 4y + z = 9
                                                                                                                                         (2)
                                                                                                                                         (3)
                                                                                                                                                                 x - 3y + 2z = 8
        where the constant r defines the growth rate of the                                                                                                    b     x + y + 2z = 4
        population, and K is the supportable population                                                  Subtract (2) from (1) to get
                                                                                                                                                                    2x - 3y + z = 7
        within the given environment.                                                                             -x + 4y = 7            (4)
                                                                                                                                                                   3x + 2y + 3z = 7
                                                                                                         Subtract (3) from (1) to get
                                                                                                                     x - y = -1          (5)
                                                                                                         Add (4) and (5): 3y = 6
                                                                                                                             y=2
                                                                                                         Substitute into (5) and (1):
                                                                                                                             x = 1, z = 0
 274                                                                                                                                                                                                             275
12 Vectors

                                                                                                                         Unit vectors parallel to the coordinate axes are denoted by                         ⎛4⎞
       12.1       Basic definitions and notations                                                                                                                                          The vector PQ = ⎜ ⎟ can be
                                                                                                                             ⎛ 1⎞       ⎛0⎞                                                                ⎝ 3⎠
                                                                                                                         i = ⎜ ⎟ , j = ⎜ ⎟ in two dimensions
                                                                                                                             ⎝0⎠       ⎝ 1⎠                                                written as PQ = 4i + 3j
         A vector is a quantity which has both a magnitude (size) and a
         direction. For example, velocity and force are both vectors.                                                               ⎛ 1⎞      ⎛0⎞         ⎛0⎞
                                                                                                                                    ⎜ ⎟,      ⎜ ⎟ and
                                                                                                                         and by i = ⎜ 0 ⎟ j = ⎜ 1 ⎟   k = ⎜ 0 ⎟ in three dimensions.
                                                                                                                                                          ⎜ ⎟
         A scalar is a quantity which needs only a magnitude to describe it                                                         ⎜0⎟       ⎜0⎟         ⎜ 1⎟
                                                                                                                                    ⎝ ⎠       ⎝ ⎠         ⎝ ⎠
         fully. For example, speed and mass are both scalar quantities.

         A displacement vector represents a movement from a point P to                                                                                                       xi + y j
                                                                                                                          The unit vector parallel to xi + y j is
         a point Q.                                                                                                                                                          x2 + y2
         The vector is represented by a directed line segment or an arrow.
         The length of the arrow represents the magnitude of the vector.
                                                                                                                                              ⎛4⎞
                                                                                                                         For the vector PQ = ⎜ ⎟ with |PQ | = 5, a unit vector in the      Check: its magnitude
         The vector in the diagram is printed as PQ , PQ or a.                                         Q                                     ⎝ 3⎠

                                                                                                                                                                                                  (4) + (5)
                                                                                                                                                                                                     2        2
         When handwritten, this vector can be written as PQ ,         or a .                                             same direction will have components one-fifth of those of PQ .      =           3
                                                                                                                                                                                                                  = 16 + 9 = 1
                                                                                           a                                                                                                       5                      25
                                                                                                                                                           ⎛4⎞
         The magnitude of the vector PQ (also called its modulus) can                                                                                      ⎜5⎟
                                                                                                                         The unit vector parallel to PQ is ⎜ ⎟ = 4 i + 3 j
                                                                                                                                                           ⎜3⎟   5     5
         be printed or handwritten as PQ, |PQ |, |a| or just a. It can also    P                                                                           ⎝5⎠
         be printed as a .
                                                                                                                         Two vectors are equal if they have the same magnitude and
         The components of a vector are the movements parallel to the
                                                                                                                         the same direction.
C4




                                                                                                                                                                                                                                     C4
         coordinate axes when the vector is drawn on a Cartesian grid.                                     Q
                                                                                                                         One vector is the negative of another vector if they have the
         The components of this vector are 4 and 3.                                                                      same magnitude but opposite directions.
                                                                                                           3
                                           ⎛4⎞
         The vector can be written as PQ = ⎜ ⎟                                                                           One vector is a scalar multiple of another vector if they have    If k is positive, ka and a have the
                                           ⎝3⎠                                         P                                 the same direction but different magnitudes.                      same direction.
         Pythagoras’ theorem gives you                                                             4                                                                                       If k is negative, ka and a have
              2
                                                                               j                                         In general, the vector ka is parallel to the vector a and has a
         |PQ |    = 42 + 32 = 25 and |PQ | = 5                                     i                                     magnitude k times that of a.                                      opposite directions.


                                                                                                                                           ⎛ 2⎞       ⎛ 4⎞            −2
          In general, in two dimensions                                                                                  e.g. Consider a = ⎜ ⎟ , b = ⎜ ⎟ and c = ⎛ ⎟
                                                                                                                                                                 ⎜
                                                                                                                                                                    ⎞
                                                                                               z                                           ⎝ −1 ⎠    ⎝ −2 ⎠      ⎝ 1⎠
                                       ⎛x⎞                                                                               You have b = 2a, c = -a and b = -2c                                                      b
          the magnitude of PQ = ⎜ ⎟ is           x2 + y2                                                   Q
                                 y     ⎝ ⎠                                                         P
          and, in three dimensions, the magnitude of
                                                                                                                                                                                              a                       c
               ⎛x⎞
          PQ = ⎜ y ⎟ is
               ⎜ ⎟             x2 + y2 + z 2                                                   O
               ⎜z ⎟
               ⎝ ⎠                                                                                                   y
                                                                                                                         Adding and subtracting vectors
                                                                               x                                         You can represent two successive displacements by two
         The zero vector O has zero magnitude and no direction.                                                                                                                                                                R
                         ~                                                     In three dimensions there are             vectors PQ and QR.
                                                                               three axes for x, y and z.
         A unit vector is a vector with a magnitude of 1.                                                                They are equivalent to one displacement given by the                                              b
                                                                                                                                                                                                  r=a+b
         The notation for a unit vector uses a ‘hat’ so that â or ~ is the
                                                                  â                                                      vector PR .
                                                                               The symbol ~ is known as ‘twiddle’.                                                                                                    Q
         unit vector in the direction of vector a.
                                                                                                                                                                                                         a
                                                                                                                          So PR = PQ + QR                                                    P

 276                                                                                                                      or   r=a+b                                                                                               277
12 Vectors                                                                                                                                                                                                                                                                                                                                                                                                                                               12 Vectors

                                                                                                                           R




                                                                                                                                   EXAMPLE 1
       PR (or r) is called the resultant vector or, simply, the resultant.                                                                     Find a unit vector which is parallel to 6i + 8j.
       Using the components of the vectors, the resultant of the                                                                               Find the angle between this vector and the direction
                                                                                                     (6 )
                                                                                                      5
                                                                                                                    (2 )                       of the x-axis.
                               ⎛6⎞                                                                                   3
       vectors PQ and QR is ⎜ ⎟ .                                                                                                              ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                             5 ⎝ ⎠                                                                             Q
                                                                                                                                               Sketch a diagram to help you to visualise the problem.
                                                         On diagrams, the resultant is
                                                         marked by a double arrow.                       ( )
                                                                                                         4
                                                                                                         2
                                                                                                                                               If p = 6i + 8j
                                                                                             P                                                 then the magnitude of p, p = 62 + 82 = 10                                                                                                                                                                                                                                                            p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                         p    6i + 8j 3
       You can change the order of displacements without affecting                                                                             and the unit vector p =
                                                                                                                                                                    ˆ       =         = i + 4j
                                                                                                                                                                         p      10     5    5
       the result.                                                                                                                                                                                                                                                                                                                                                                                                                              i
       So r = a + b = b + a                                                                                     b                              From the diagram,      tan q = 4
                                                                                                     r                                                                        3                                                                                                                                                                                                                                                                         6
       When the two vectors are drawn tip-to-tail to make a triangle,
       the addition process is called the triangle law of addition.
                                                                                                                                               and the required angle, q = tan −1 4 = 53.1°
                                                                                                                                                                                     3                                                                                                                            ()                                                                                                                                                x


                                                                                                 a




                                                                                                                                   EXAMPLE 2
                                                                                                                                                                                                                                                                                                                                                           ⎛3⎞                                                       ⎛n⎞
                                                                                                                                               Find the values of k and n if q = kp where p = ⎜ ⎟ and q = ⎜ ⎟ .
                                                                                                                                                                                              ⎝2⎠         ⎝8 ⎠
       When the two vectors start from the same point to make                                                                                  ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




       a parallelogram, the addition process is called the                                                                                                                                  ⎛n⎞                                ⎛3⎞
       parallelogram law of addition.                                                                                                          You have ⎜ ⎟ = k ⎜ ⎟
                                                                                                                                                        ⎝8 ⎠    ⎝2⎠
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C4
                                                                                                     r
       The triangle law and the parallelogram law give the                                                                                     The y-components give 8 = 2k, so k = 4
                                                                                             b
       same resultant.                                                                                                                         The x-components give n = 3k, so n = 12
                                                                                                 a




                                                                                                                                   EXAMPLE 3
                                                                                                                                               If p = 2i + j - 3k and q = 4i + 2k
                                                                                                                                               find     a |p + q|            b |2p - q|
       To add several vectors you need to apply the triangle law                                          b                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



       several times in succession.
       If the vectors are drawn tip-to-tail, you can find the
                                                                                                                           c                                                                       ⎛ 2⎞                            ⎛4⎞                          ⎛ 6⎞
       resultant vector from the total displacement.                                                                                           a p + q = ⎜ 1 ⎟ + ⎜ 0 ⎟ = ⎜ 1 ⎟ and |p + q| = 36 + 1 + 1 = 38
                                                                                                                                                         ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
                                                                                         a                                                                                                         ⎜ −3 ⎟                          ⎜2⎟                          ⎜ −1 ⎟
       This process is called the polygon law of addition.                                                                                                                                         ⎝ ⎠                             ⎝ ⎠                          ⎝ ⎠
       As before, the order of the addition does not matter.                                                                   d
                                                                                                                                                            ⎛ 2⎞ ⎛4⎞ ⎛ 0⎞
       In this diagram, r = a + b + c + d                                                                                                      b 2p − q = 2 ⎜ 1 ⎟ − ⎜ 0 ⎟ = ⎜ 2 ⎟ and |2p - q| =
                                                                                                                                                            ⎜ ⎟ ⎜ ⎟ ⎜ ⎟                                                                                                                                                                                                      0 + 4 + 64
                                                                                                          r
                                                                                                                                                            ⎜ −3 ⎟ ⎜ 2 ⎟ ⎜ −8 ⎟
                                                                                                                                                            ⎝ ⎠ ⎝ ⎠ ⎝ ⎠                        =                                                                                                                                                                             68 = 2 17
       Subtracting a vector is equivalent to adding the negative of
       that vector.
                                                                                                                                   EXAMPLE 4
                                                                                                                    b                          Find KL when LN = 2i - 3j + k and KM = 4i - 2j + 3k
        That is     a - b = a + (-b)                                                                                                           given that M is the midpoint of KN.
                                                                                                                                               ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                     a                                                                                                                                                                                                                                                                                                                                                                  N
                                                                                                                                                                                                                                                                                                                                                                                                                                                L
                                       ⎛4⎞   ⎛2⎞   ⎛4⎞    ⎛ −2 ⎞   ⎛ 2⎞                                                                                      KL = KN + NL = 2KM - LN
       In this diagram, r = a - b = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ + ⎜ ⎟ = ⎜ ⎟                                                –b
                                     2 ⎝ ⎠ 3 ⎝ ⎠ 2 ⎝ ⎠ −3 ⎝  −1⎠   ⎝   ⎠                                                                                                  = 2(4i - 2j + 3k) - (2i - 3j + k)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            M
                                                                                         r=a–b                                                                            = 6i - j + 5k

 278                                                                                                                                                                                                                                                                                                                                                                                                                                        K                                279
12 Vectors                                                                                                                                                             12 Vectors

       Exercise 12.1                                                                            10 If the vectors r and s are parallel, find l and m if
        1 Find the magnitude of                                                                     a u = 4i + 2j – 3k, v = li + 4j + mk
           a 5i + 12j           b 5i - 12j                c i + 2j + 4k        d 2i - 3j + k
                                                                                                    b u = li + j + 2k, v = 12i + mj – 6k
                                                                                                                                                                                    s
        2 If r = 2i - 3j + k, s = 4i - 2j + 2k   and    t = 2i + k
                                                                                                11 Use this diagram to write these vectors as column vectors.        –s
          find the magnitude of
                                                                                                    a r             b s
           a r+s                b r+s-t                   c 2s + t             d 2r - 3s + 4t                                                                             r
                                                                                                    c r+s           d r-s
        3 Find a unit vector in the direction of
           a 6i + 8j            b 10i - 24j               c i+j+k              d 2i - j + 2k

        4 Find a vector, writing it as a column vector, which
           a has a magnitude of 5 and makes an angle of 30° with the                            12 Using this diagram, write the resultants of these vector               q             r
             positive direction of the x-axis                                                      additions as column vectors.
           b has a magnitude of 2 and makes an angle of 120° with the                               a p+q                         b p+q+r
                                                                                                                                                                 p
             positive direction of the x-axis.                                                      c p+q+r+s                     d p+q+r+s+t
                                                                                                                                                                                            s

        5 a Find a vector which has a magnitude 20 and is parallel to 4i + 3j.
           b Find a vector which has a magnitude of 5 and is parallel to 2i - 2j - k.
C4




                                                                                                                                                                                                  C4
                                                                                                                                                                                t
        6 Find the value of n, given that
           a |3i - 3j + nk| = 22                 b |ni + nj + 2k| = 4                           13 AB = 5i + 7j, CB = 11j and CD = -4i + 6j

        7 The vectors p and q are given by p = 3i + 2j and q = 2i + 5j                              Prove that the vectors AC and BD are perpendicular.
          Find
          a the angle that p makes with the positive direction of the x-axis                    14 PQ = 6i + 3j - 4k and PR = 2i - j – 2k
           b the angle between the directions of p and q                                            M is the midpoint of QR. Find the vector PM .

           c a unit vector in the direction of p - q.
                                                                                                   INVESTIGATION
        8 a If LM = 5i + 2j and MN = 4i – j, find LN .
                                                                                                   15 Points A and B have position vectors a and b. M is the
                                                                                                      midpoint of AB. P is the midpoint of AM. Q is the
           b If PQ = 3i + 4j - 3k and RQ = i - 2j + k, find PR.
                                                                                                      midpoint of MB. P, M and Q are the points of
           c If GE = 2i - j - k and EF = 3i + 2j + 3k, find FG.                                       quadrisection of AB.
                                                                                                        a Find the position vectors for M, P and Q in terms of
        9 a Find the values of l and m if p = 3i + 2j - 4k, q = 9i + lj +mk                               a and b.
            and q = 3p
                                                                                                        b Find the position vectors for the two points of
           b Find the value of a if the vectors p = 2i + 5j and                                           trisection of AB.
             q = ai - 10j are parallel.
                                                                                                        c Can you write down the position vectors for the four
                                                                                                          points of quintisection of AB?


 280                                                                                                                                                                                            281
12 Vectors

                                                                                                                                          The midpoint of a line
       12.2      Applications in geometry
                                                                                                                                           Points A and B have position vectors a and b.
         Position vectors                                                                                                                  The midpoint M of the line AB has the position vector
         The position vector of point A is the fixed vector to the                  The lower-case notation a is                           m = 1 (a + b)
                                                                                                                                                                2
         point A from the origin O.                                                 potentially confusing as it can
                                                                                    be used either as a general
         It is printed as OA or a and is written as OA or a.                        vector or as the position vector                      You can prove this result in two ways.
                                                                                    for point A.
         E.g. In two dimensions, for the point A(3, 4),
                                        ⎛ 3⎞                                                                                               First method                                                                                                                                             Second method
              the position vector OA = ⎜ ⎟ = 3i + 4j
                                         ⎝4⎠
                                                                                                                                                                                                                A                                                                                                                                                    A                                                                   C
              In three dimensions, for the point B(2, 1, -3),
                                       ⎛ 2⎞                                                                                                                                                                                              M                                                                                                                                                         M
                                       ⎜ ⎟
              the position vector OB = ⎜ 1 ⎟ = 2i + j - 3k                                                                                                                  a                                                                                                                                                    a
                                       ⎜ −3 ⎟                                                                                                                                                 m                                                                                                                                                    m
                                       ⎝ ⎠
                                                                                                                                                                                                                                                                        B                                                                                                                                                    B
                                                                                                                                                                                                            b                                                                                                                                                     b
         The distance between two points                                                                                                   O                                                                                                                                                   O
         E.g. Points A(5, 8, 2) and B(8, 12, 14) have position vectors                        A (5, 8, 2)                                                                                                                                                                                      Let OACB be a parallelogram
              a = 5i + 8j + 2k and b = 8i + 12j + 14k
                                                                                                                                                                                                                                                                                               whose diagonals intersect at M,
              The displacement from A to B can be AB direct                          a                                                                                                                                                                                                         the midpoint of both diagonals.
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C4
              or in two stages via the origin AO + OB .
                                                                                                              B (8, 12, 14)                             OM = OA + AM                                                                                                                                 OM = 1 OC
                                                                                                                                                                                                                                                                                                          2
                                                                                              b
              You have       AB = AO + OB = -a + b                              O
                                          =b-a
                                                                                                                                                                              = OA + 1 AB                                                                                                                                   = 1 (OA + AC )
                                                                                                                                                                                                                  2                                                                                                           2
                                          = (8i + 12j + 14k) - (5i + 8j + 2k)
                                                                                                                                                                              = a + 1 (− a + b)                                                                                                                             = 1 (OA +
                                          = 3i + 4j + 12k                                                                                                                            2                                                                                                                                        2       OB )
                                                                                                                                                                              =a+    1b − 1a
              The distance from A to B = AB = 9 + 16 + 144                                                                                                                           2    2                                                                                                                                 = 1 (a + b)
                                                                                                                                                                                                                                                                                                                                      2
                                               = 169                                                                                                                          = 1 (a + b)
                                                                                                                                                                                2
                                               = 13




                                                                                                                              EXAMPLE 1
          In general,       AB = b - a                                                                                                      Prove that the points A(0, -1, 2), B(1, 1, 5) and C(3, 5, 11)                                                                                                                                                                                                                                    Collinear points lie on the same
                                                                                                                                            are collinear.                                                                                                                                                                                                                                                                                   straight line.
                                                                                                                                            ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




          Using coordinates in three dimensions, the distance from
                                                                                                                                            AB = b – a = (i + j + 5k) – (0i – j + 2k)                                                                                                                                                                                                                                                        From the coordinates of A, B and C,
          A(x1, y1, z1) to B(x2, y2, z2) is
                                                                                                                                                       = i + 2j + 3k                                                                                                                                                                                                                                                                         the position vectors are
               AB =      ( x2 − x1 )2 + (y2 − y1)2 + (z2 − z1)2                                                                                                                                                                                                                                                                                                                                                                              a = - j + 2k
                                                                                                                                            BC = c – b = (3i + 5j + 11k) – (i + j + 5k)                                                                                                                                                                                                                                                      b = i + j + 5k
                                                                                                                                                       = 2i + 4j + 6k                                                                                                                                                                                                                                                                        c = 3i + 5j + 11k
                                                                                                                                                       = 2(i + 2j + 3k)
                                                                                                                                            So, BC = 2AB
                                                                                                                                            Hence, BC and AB are parallel and have the point B in
                                                                                                                                            common. So the points A, B and C are in the same
                                                                                                                                            straight line.
 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                               283
12 Vectors                                                                                                                                  12 Vectors

       Exercise 12.2                                                           7 The parallelogram OACB has OA = a and OB = b
        1 a Find the distance between points A(2, 4, 1) and B(3, 5, 3).
                                                                                  Point R lies on OA and point S on AC such that OR : OA = 1 : 4
           b Given point C(4, 8, 1), find the length AC and show that             and CS : CA = 1 : 4. Find the vector RS in terms of a and b.
             triangle ABC is right-angled.
                                                                                  Deduce two facts relating RS and OC.
        2 In triangle P(1, 4, 5), Q(3, -2, 1), R(5, 0, 3), M and N are the
          midpoints of sides PQ and PR respectively.                           8 The parallelogram OACB has OA = a, OB = b and OC = c
          Find the lengths QR and MN.                                             Point P lies on OB such that OP : PB = 1 : 2
                                                                                  Point Q lies on AB such that AQ : QB = 2 : 1
        3 For each of the following sets of points A, P and B, show that
                                                                                  Prove that OC and PQ are parallel and find the ratio PQ : OC.
          the points A, P and B are collinear.
           Find the fraction such that AP = 1 AB
                                                   n                                                       (3       )
                                                                               9 L and M are the points 1 , − 1, 2 and (1, 5, 6) respectively.
           a A(2, 1, 4), P(3, 3, 5), B(5, 7, 7)                                   The position vector of point P relative to the origin O
           b A(-1, 1, -4), P(0, 1, -2), B(4, 1, 6)                                is i + 3j + 6k. Point R lies on OP such that OR : RP is k : 1
                                                                                  Find the value of k if R, L and M are collinear.
           c A(1, -3, 0), P(3, -2, -1), B(9, 1, -4)
           d A(3, 0, 1), P(7, 2, 5), B(9, 3, 7)                               10 The skew quadrilateral OABC has OA = a, OB = b and OC = c
                                                                                 The midpoints of its four sides in order are P, Q, R and S.
        4 M and N are the midpoints of sides OA and OB of triangle OAB.           Find the vectors PQ and SR in terms of a, b and c.
C4




                                                                                                                                                                  C4
                                  B                                               Prove that PQRS is a parallelogram.


                     N
                 n
                                                                                INVESTIGATION
                                                                                11 a The distance between points A(1, 2, t) and B(t, t, 0)
           O         m     M              A                                          is x, where t is a variable.
                                                                                     Find x2 as a function of t and hence find the
           Find the vectors MN and AB in terms of m and n.                           minimum distance between these two points.
           Make a deduction about the lines MN and AB.                               b Use a similar method to find the minimum
                                                                                       distance between P(2, 0, t) and Q(t, t, 3).
        5 In triangle OAB, point P lies on AB and points A, B and P
          have position vectors a, b and p.
          Find p in terms of a and b given that AP : PB is
           a 1:2           b 1:3                  c 2:3
           d 3:5           e m:n


        6 In triangle OPQ, OP = p and OQ = q. Point M lies on OP such that
           OM : MP = 1 : k and point N lies on OQ such that ON : NQ = 1 : k
           Find the vector MN in terms of p and q.
           Deduce two facts about MN and PQ.



 284                                                                                                                                                            285
12 Vectors


       12.3     The scalar (dot) product                                                                                                           In component form in three dimensions, you have
                                                                                                                                                        a · b = a1b1 + a2b2 + a3b3

         The scalar product (or dot product) of two vectors a and b is
                                                                                                                       a
                                                                                                                                                   For a = a1i + a2 j + a3k and b = b1i + b2 j + b3k
          a · b = |a| |b| cos q                                                                                                                                                                                                                                                                                                                                                                                                                                       i·j = i·k = j·k = 0
                                                                                                      i                                                a · b = (a1i + a2 j + a3k) · (b1i + b2 j + b3k)                                                                                                                                                                                                                                                                i · j = |i||j|cos 90° = 0
                                                                                                                                                             = a1b1i · i + a1b2i · j + a1b3i · k + a2b1j · i + a2b2j · j + a2b3j · k                                                                                                                                                                                                                                  because cos 90° = 0
         where q is the angle between the directions of vectors a and b.                                           b
                                                                                                                                                               + a3b1k · i + a3b2k · j + a3b3k · k
         The scalar product is a scalar quantity.                               |a|, |b| and cos q are all scalar.                                                                                                                                                                                                                                                                                                                                                    i·i = j·j = k·k = 1
         Angle q will lie between 0° and 180°. Therefore, the scalar product is                                                                                            = a1b1 + a2b2 + a3b3                                                                                                                                                                                                                                                                       i · i = |i||j|cos 0° = 1
         positive when q is acute, zero when q is 90°, and negative when q is obtuse.                                                                                                                                                                                                                                                                                                                                                                                 because cos 0°= 1

         Properties of the scalar product                                                                                                          You can calculate the angle between two vectors using
                                                                                                                                                     a · b = |a||b|cos q = a1b1 + a2b2 + a3b3
          If a and b are perpendicular, then a · b = 0




                                                                                                                                       EXAMPLE 1
                                                                                             b                                                     Find the angle between the vectors a = 3i + 2j + k and b = i + 3j - 4k
          When a and b are perpendicular,                                                                                                          ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




          q = 90°, cos 90° = 0 and a · b = |a||b|cos 90° = 0
                                                                                                                                                                               ⎛3⎞ ⎛ 1 ⎞
          In particular, i · j = j · k = k · i = 0                                                            a
                                                                                                                                                   a × b = ⎜ 2 ⎟ . ⎜ 3 ⎟ = (3 × 1) + (2 × 3) + (1 × −4) = 3 + 6 − 4 = 5
                                                                                                                                                           ⎜ ⎟ ⎜ ⎟
                                                                                                                                                                               ⎜ 1 ⎟ ⎜ −4 ⎟                                                                                                                                                                                                                                                                           a · b = a1b1 + a2b2 + a3b3
                                                                                                                                                                               ⎝ ⎠ ⎝ ⎠
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C4
                            a · a = a2                                          (la) · b = a · (lb) = l(a · b)                                        a ⋅ b = a b cosθ =                                                                                9 + 4 + 1 × 1 + 9 + 16 × cosθ
                                                                                                                                                                       = 14 × 26 × cos q
                                                                                                                                                   As |a||b|cos q = a1b1 + a2b2 + a3b3
          The angle between two equal vectors is 0°                       The length of la is l times the length of a.
                                                                                                                                                   cos q =                                      5    =                                                     5
          as they have the same direction.                                That is, |la| = l|a|.                                                                                                                                                                so q = 74.8° to nearest 0.1°
                                                                                                                                                                                             14 × 26                                                       364
          a · a = |a||a| cos 0° = a ´ a ´ 1 = a2                          So, l(a · b) = l|a||b| cos q = |la||b| cos q
          In particular, i · i = j · j = k · k = 1                                     = (la) · b




                                                                                                                                       EXAMPLE 2
                                                                          Similarly for the lengths of lb and b,
                                                                                                                                                   Given the four points P(2, 4, 1), Q(3, -2, 4), R(2, 0, 1) and S(-1, 2, 6), prove that
                                                                          |lb| = l|b| and l(a · b) = a · (lb)
                                                                                                                                                   the lines PQ and RS are perpendicular.
                            a·b = b·a                                                                                                              •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Q
                                                                                                                                                   PQ = q - p = (3i - 2j + 4k) - (2i + 4j + k) = i - 6j + 3k
          By definition,          a · b = |a||b| cos q = |b||a| cos q = b · a                                                                      RS = s - r = (-i + 2j + 6k) - (2i + k) = -3i + 2j + 5k
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 q                   R
                                                                                                                                                   So PQ · RS = (i - 6j + 3k) · (-3i + 2j + 5k) = -3 - 12 + 15 = 0                                                                                                                                                                                                                                                       P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   p                                     r
                     a · (b + c) = a · b + a · c                                                                                                   As the scalar product is zero, PQ and RS are perpendicular.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 O                                    s                            S

                                                                                                                               V

                                                                                                                                       EXAMPLE 3
          By definition, a · (b + c) = |a||b + c| cos q                                                       b    c
                                                                                                                                                   Prove the cosine rule c2 = a2 + b2 - 2abcos C for this triangle.
                              = OA ´ OV ´ cos q                          OV cos q = OU                B                        W                   ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••




                              = OA ´ OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A
                                                                                                  b
                                                                                                                  b+c
                                                                                                                                                   In this triangle, b = a + c and c = b - a.
                              = OA ´ (OT + BW)
                                                                                                                                                   Hence, c · c = (b - a) · (b - a) = b · b - b · a - a · b + a · a                                                                                                                                                                                                                                                                                                                              c
                              = OA ´ (OBcos a + BVcos b)                                         ai                                                                                                                                                                                                                                                                                                                                                                                      b
                                                                                             O            T                a   U   A
                                                                                                                                                                                     = a · a + b · b - 2a · b
                              = |a||b|cos a + |a||c|cos b
                                                                                                                                                   which gives                    c = a2 + b2 - 2abcos C
                                                                                                                                                                                   2
                              = a·b + a·c                                                    OA ´ OB cos a = |a||b|cos a                                                                                                                                                                                                                                                                                                                                                                                                                                             B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     a
 286                                                                                         OA ´ BV cos b = |a||c|cos b                                                                                                                                                                                                                                                                                                                                     C                                                                                                                                  287
12 Vectors                                                                                                                                                                                             12 Vectors

       Exercise 12.3                                                                                        9 Find the acute angle between LM and LN when L, M and N are the points
        1 Find p · q when                                                                                     L(2, 1, 4), M(4, -1, 2) and N(3, 0, 1).
           a p = 3i + 2j - 4k     q = 2i + 5j - 2k           b p = 2i + j - 3k q = 5i - 2j + 2k
                                                                                                           10 Find the size of angle EFG, given the three points E(1, -1, 3),
           c p=i-j-k             q = i + 3k                                                                   F(2, 1, 3) and G(-1, 0, 4).

        2 If p = 2i + 3j - k, q = 4i - j + 2k and r = i + j - k, find the values of                        11 Show that triangle PQR is right-angled when its vertices are
           a p·q                  b p·r                      c p · (q + r)                                     a P(3, -3, 7), Q(4, 0, 2), R(1, -2, 3)              b P(1, 0, -1), Q(2, 1, 0), R(3, -1, 1)
           d p·q + p·r            e p·q - p·r                f p · (q - r)
                                                                                                           12 Triangle PQR has vertices P(2, 5, 4), Q(1, 6, -2) and R(4, 6, 3). Find                          Do not round during
                                                                                                                                                                                                              your working.
        3 Find the acute angle between the vectors p and q when                                                a angles P, Q and R to the nearest 0.1°             b the lengths of the three sides
           a p = 3i + 4j - 3k     q = 2i - j - 2k            b p = 2i - j - 2k           q = 5i + 3j + k       c the area of triangle PQR.
           c p = i - j - 4k       q = i + j - 2k             d p = 4i - 3j + 3k          q = i + 2j - k    13 a Show that the vectors u = 3i + j - k and v = i - 2k + j are perpendicular.
           e p = 2i - j - k       q = i + 3k                 f p=i+k                     q = 2j - k            b Find a vector r that is perpendicular to both u and v.                                     Use ai + bj + ck
                 ⎛ 2⎞                  ⎛0⎞                            ⎛ −3 ⎞                 ⎛4⎞
                                                                                                           14 Simplify
           g p = ⎜ 5⎟
                 ⎜ ⎟              q = ⎜1 ⎟
                                      ⎜ ⎟                    h p = ⎜ 0⎟
                                                                   ⎜ ⎟
                                                                                         q = ⎜5⎟
                                                                                             ⎜ ⎟
                 ⎜ −2 ⎟                ⎜2⎟                            ⎜ 2⎟                   ⎜6⎟               a (p + q) · r + (p - q) · r              b p · (q + r) - p · (q - r)
                 ⎝ ⎠                   ⎝ ⎠                            ⎝ ⎠                    ⎝ ⎠
                                                                                                               c (p + r) · (p - r)                      d p · (p - r) - (p - r) · r
C4




                                                                                                                                                                                                                                      C4
        4 These pairs of vectors are perpendicular. Find the values of l.
                                                                                                           15 A semicircle, centre O, contains the vectors a and b as shown.                                        Y
           a 3i + j + 4k      and 3i - 5j + lk               b 4i - lj + lk        and     i + 3j - 5k
                                                                                                               Prove that the angle XYZ is a right angle.
        5 For which values of m are these vectors perpendicular?                                                                                                                                                b
             ⎛ 4⎞    ⎛2⎞                 ⎛ 3⎞    ⎛ −3 ⎞
             ⎜ ⎟ and ⎜ ⎟                 ⎜ ⎟ and ⎜ ⎟
                                       b ⎜ m⎟                                                                                                                                           X        a                  a      Z
                                                 ⎜ m⎟
           a ⎜ −2 ⎟                                                                                                                                                                                     O
                     ⎜1 ⎟
             ⎜ m⎟    ⎜2⎟                 ⎜ −1 ⎟  ⎜ 7⎟
             ⎝ ⎠     ⎝ ⎠                 ⎝ ⎠     ⎝ ⎠                                                       16 The rhombus PQRS has PQ = a and PS = b
                                                                                                               Prove that the diagonals of the rhombus are perpendicular.
        6 State whether these pairs of vectors are parallel, perpendicular or neither.
             ⎛ 2⎞ ⎛ 8⎞                   ⎛ ⎞                                                               17 Find a vector which is perpendicular to both
             ⎜ ⎟                         ⎜6 ⎟ ⎛ 3⎞                   ⎛ 2⎞ ⎛6⎞
                                       b ⎜ 2 ⎟ , ⎜ −4 ⎟
                                                                                                              i + 2j + 3k and 2i - 3j - 8k
           a ⎜ 1⎟, ⎜ 2⎟                                          c   ⎜− ⎟ ⎜ ⎟
                                                                     ⎜ 4 ⎟ , ⎜3⎟
             ⎜ 2⎟ ⎜ ⎟                    ⎜ ⎟ ⎜ ⎟
             ⎜ −1 ⎟ ⎜ −4 ⎟               ⎜1⎟ ⎜ 1⎟
                                         ⎜ ⎟ ⎝ ⎠
                                                                     ⎜ 5⎟ ⎜0⎟
             ⎝ ⎠ ⎝ ⎠                     ⎝2⎠
                                                                     ⎝ ⎠ ⎝ ⎠                               18 Find the angle between vectors a and b when
                                                                                                              |a| = 1, |b| = 2 and |a - b| = 3
        7 If p = 2i + 3j and q = li + 2j, find the value of l such that
                                                                                                           19 Triangle OAB has vertices A(1, 2, -2), B(6, 8, 0) and the origin O.
           a p and q are perpendicular                       b p and q are parallel
                                                                                                               Find the value of cos AOB and prove that the area of triangle OAB = 2 26
           c the angle between p and q is p .
                                               4

        8 a Find the angle between 2i + 3j + 12k and                                                          INVESTIGATION
            i the x-axis         ii the y-axis                 iii the z-axis.
                                                                                                              20 The tetrahedron ABCD has two pairs of opposite edges perpendicular.
           b Find the angle between i + j + k and each of the three coordinate axes.                             Prove that the third pair of opposite edges is also perpendicular.


 288                                                                                                                                                                                                                                289
12 Vectors




                                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 2
       12.4 The vector equation of a straight line                                                                                                                                                                                                                                                                                                                                  Find the vector equation of the line through the points
                                                                                                                                                                                                                                                                                                                                                                                    P(2, 3, 0) and Q(3, 5, 1).
                                                                                                                                                                                                                                                                                                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                   Consider a straight line through point A parallel to vector b                                                                                                                                                                                                                                                        b
                   as in this diagram.                                                                                                                                                                                                                                                                                                                R                             The direction of the line is
                                                                                                                                                                                                                                                                                                                              A                                                                                                                                                                                                                                                                                                                                                                                     Q
                                                                                                                                                                                                                                                                                                                                                                                    PQ = q - p = (3i + 5j + k) - (2i + 3j) = i + 2j + k
                   Point A has a position vector a with respect to the origin O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            P
                                                                                                                                                                                                                                                                                                                                                                                    The line passes through point P, so the vector equation of
                   Any other point R on the straight line has a position vector r.                                                                                                                                                                                                                                        a             r
                                                                                                                                                                                                                                                                                                                                                                                    the line is
                                                                                                                                                                                                                                                                                                                                                                                       r = p + t(q - p) = (2i + 3j) + t(i + 2j + k)                                                                                                                                                                                                                                                  p             q
                   Since the line AR is parallel to b, then the vector AR is a
                   multiple of b.                                                                                                                                                                                                                                                                                                                                                   Alternatively, as the line passes through Q, the vector
                                                                                                                                                                                                                                                                                                                          O
                   That is, AR = tb, where t is a scalar.                                                                                                                                                                                                                                                                                                                           equation could also be
                                                                                                                                                                                                                                                                                                                                                                                       r = q + s(q - p) = (3i + 5j + k) + s(i + 2j + k)                                                                                                                                                                                                                                          O
                                                                                                                                                                                                                                                                                                                    A can be any point on the line and
                    The vector equation of the straight line through point A in                                                                                                                                                                                                                                     b can be any parallel direction, so
                    the direction b is                                                                                                                                                                                                                                                                              the equation r = a + tb is not                                 In general, the vector equation of the line through points
                                r = OA + AR = a + tb                                                                                                                                                                                                                                                                unique. One line can have many
                                                                                                                                                                                                                                                                                                                    vector equations.
                                                                                                                                                                                                                                                                                                                                                                                   P and Q is r = p + t(q - p)

                   Compare this equation with the cartesian equation of a straight line, y = mx + c.




                                                                                                                                                                                                                                                                                                                                                                      EXAMPLE 3
                                                                                                                                                                                                                                                                                                                                                                                    Show that the two vector equations r = i + 2j + 3k + t(2i - j + 2k)
                    Given A(a1, a2, a3), R(x, y, z) and b = b1i + b2j + b3k, then the                                                                                                                                                                                                                                                                                               and r = 7i - j + 9k + s(4i - 2j + 4k) both describe the same
                    vector equation of the line in component form is
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C4
                                                                                                                                                                                                                                                                                                                                                                                    straight line.
                                                                                                                                                                                                                                                                                                                                                                                    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••



                        ⎛ x ⎞ ⎛ a1 ⎞       ⎛ b1 ⎞ ⎛ a1 + tb1 ⎞                                                                                                                                                                                                                                                                                                                      The two equations give lines with directions 2i - j + 2k and
                    r = ⎜ y ⎟ = ⎜ a2 ⎟ + t ⎜ b2 ⎟ = ⎜ a2 + tb2 ⎟
                        ⎜ ⎟ ⎜ ⎟            ⎜ ⎟ ⎜               ⎟                                                                                                                                                                                                                                                                                                                    4i - 2j + 4k.
                        ⎜z ⎟ ⎜a ⎟          ⎜ b ⎟ ⎜ a + tb ⎟
                        ⎝ ⎠ ⎝ 3⎠           ⎝ 3⎠ ⎝ 3          3⎠                                                                                                                                                                                                                                                                                                                                                            ⎛ 4⎞                                    ⎛ 2⎞
                    and any point R on the line has coordinates                                                                                                                                                                                                                                                                             b                   t=3
                                                                                                                                                                                                                                                                                                                                                                                    Because ⎜ −2 ⎟ = 2 ⎜ −1⎟ these two vectors are parallel
                                                                                                                                                                                                                                                                                                                                                                                            ⎜ ⎟        ⎜ ⎟
                                                                                                                                                                                                                                                                                                                                                t=1
                                                                                                                                                                                                                                                                                                                                                          t=2                                                              ⎜ 4⎟                                    ⎜ 2⎟
                    (a1 + tb1, a2 + tb2, a3 + tb3).                                                                                                                                                                                                                                                                                   t=0                                                                                  ⎝ ⎠                                     ⎝ ⎠
                                                                                                                                                                                                                                                                                                                         t = –1
                                                                                                                                                                                                                                                                                                                  t = –2                A                                           and so the lines have the same direction.
                   As t varies, R moves along the line.                                                                                                                                                                                                                                                                                                                             The second line passes through the point (7, -1, 9) when s = 0.
                                                                                                                                                                                                                                                                                                                                  a              r = a + tb
                   When t = 0, R and A coincide.                                                                                                                                                                                                                                                                                                                                    Points on the first line are given by (1 + 2t, 2 - t, 3 + 2t) and,
                   When t is positive, R is on one side of A and                                                                                                                                                                                                                                                                                                                    when t = 3, this gives the point (7, -1, 9).
                   when t is negative, R is on the other side of A.
                                                                                                                                                                                                                                                                                                                                  O                                                 Hence, the two lines pass through the same point in the same
                                                                                                                                                                                                                                                                                                                                                                                    direction. The two equations represent the same line.
       EXAMPLE 1




                     Find the vector equation of the straight line through the
                     point A(3, 2, -1) in the direction of 4i - j + 2k.
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••                                                                   Intersection of straight lines
                     The vector equation is r = 3i + 2j - k + t(4i - j + 2k)                                                                                                                                                                                                                                        r = a + tb                                                    In two dimensions, two straight lines can coincide (that is, they
                                                                                                                                                                                                                                                                                                                                                                                  are the same line), they can be parallel to each other, or they can
                     An alternative form of the equation is
                                                                                                                                                                                                                                                                                                                                                                                  intersect each other.
                     r = (3 + 4t)i + (2 - t)j + (-1 + 2t)k
                                                                                                                                                                                                                                                                                                                                                                                  In three dimensions, two straight lines can coincide, be parallel,
                     Using column vectors with R(x, y, z), you can also write
                                                                                                                                                                                                                                                                                                                                                                                  intersect or be skew.
                                     ⎛x⎞ ⎛ 3⎞          ⎛ 4⎞
                     the equation as ⎜ y ⎟ = ⎜ 2 ⎟ + t ⎜ −1 ⎟
                                     ⎜ ⎟ ⎜ ⎟
                                                       ⎜ ⎟
                                                                                                                                                                                                                                                                                                                                                                                  When two lines are skew, one passes above the other without                                                                                                                                                                                                                                            Skew lines in 3D
                                     ⎜ z ⎟ ⎜ −1 ⎟      ⎜ 2⎟                                                                                                                                                                                                                                                                                                                       intersecting it. There is still an angle between them.
                                     ⎝ ⎠ ⎝ ⎠           ⎝ ⎠
 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    291
12 Vectors                                                                                                                                                                                                                                                                                                                                                                                                                    12 Vectors

       EXAMPLE 4                                                                                                                                                                                                                                                                                                                                        2 Find a vector equation of the line through the points P and Q when
                     a Determine whether the lines given by
                                                                                                                                                                                                                                                                                                                                                           a P(2, 3, 1)      Q(3, 0, 4)          b P(2, -1, 1)       Q(5, 0, 1)
                       r = 2i - j + 4k + t(i + j - k) and r = i - 2j + 3k + s(2i + 2j - k)
                       intersect or are skew.                                                                                                                                                                                                                                                                                                              c P(1, 0, 0)      Q(4, 5, -2)         d P(0, 0, 0)        Q(1, 2, 3)
                       If they intersect, find the point of intersection.                                                                                                                                                                                                                                                                                  e P(1, -2, -3)    Q(2, -1, -2)        f   P(2, -3, -1)    Q(5, 0, -1)
                     b Find the angle between the two lines, giving your answer
                       in degrees to 1 d.p.                                                                                                                                                                                                                                                                                                             3 Find the vector equation of the line through the point A(2, 1, -2) which is
                     ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••


                                                                                                                                                                                                                                                                                                                                                           a parallel to the x-axis              b perpendicular to the xy-plane.
                     a The equations of the lines can be written as
                             r = (2 + t)i + (-1 + t)j + (4 - t)k                                                                                                                                                                                                                                                                                        4 Show that the given point lies on the given line and find the
                       and r = (1 + 2s)i + (-2 + 2s)j + (3 - s)k                                                                                                                                                                                                                                                                                          corresponding value of t.
                                   They will intersect if the coefficients of i, j and k are equal.                                                                                                                                                                                                                                                        a (4, 1, -1)     and   r = 2i - 3j + k + t(i + 2j - k)
                                   You need to find values of s and t to make                                                                                                                                                                                                                                                                              b (9, -4, 1)     and   r = -i + j + 6k + t(-2i + j + k)
                                                                 2 + t = 1 + 2s             (1)
                                                                -1 + t = -2 + 2s            (2)                                                                                                                                                                                                                                                            c (3, 2, 0)      and   r = (3 - t)i + (2 + 3t)j - tk
                                                                 4-t=3-s                    (3)
                                                                                                                                                                                                                                                                                                                                                        5 Determine whether these pairs of lines are parallel, intersect or are skew.
                                   Add (2) and (3):                                                                                                                                3=1+s                                             so                   s=2                                                                                             Find the acute angle between the lines. If they intersect, find their point of intersection.
                                   Substitute into (2):                                                                                                         -1 + t = -2 + 2 ´ 2                                                                         so                    t=3                             The values s = 2 and t = 3              a r = 3i + 5j + 7k + t(i + 2j - 3k) r = 4i + j + 2k + s(3j + k)
                                                                                                                                                                                                                                                                                                                  satisfy all three equations.             b r = 6i - 2j + 8k + t(i - 5j + 7k) r = i + 3j + 2k + s(3i + 5j - 8k)
                                   Substitute in (1): LHS = 2 + 3 = 5 and RHS = 1 + 2 ´ 2 = 5
                                                                                                                                                                                                                                                                                                                  The two lines do intersect.
                                                                                                                                                                                                                                                                                                                                                           c r = 2i - 4j + k + t(2i - j - k)     r = 3i + j - 6k + s(4i - 2j - 2k)
C4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C4
                                   Substitute into one of the vector equations:                                                                                                                                                                                                                                   If all three equations were not
                                   r = 2i - j + 4k + 3(i + j - k) = 5i + 2j + k                                                                                                                                                                                                                                   satisfied, then the lines would
                                                                                                                                                                                                                                                                                                                                                           d r = 2j - k + t(4i - 2j + 3k)        r = 4i + j - 2k + s(i + 4j + 4k)
                                                                                                                                                                                                                                                                                                                  not intersect.
                                   so the point of intersection is (5, 2, 1).
                                                                                                                                                                                                                                                                                                                                                           e r = 2i - k + t(6i + j + 8k)         r = 12i - 15j - 5k + s(9i + 3j + 4k)
                     b The directions of the two lines are given by
                                                                                                                                                                                                                                                                                                                                                        6 a Find the vector equations of the two lines PQ and RS where the
                       b1 = i + j - k and b2 = 2i + 2j - k
                                                                                                                                                                                                                                                                                                                                                            four points are P(-1, 1, 3), Q(8, 7, 6), R(0, 5, 2) and S(-2, 7, 0).
                     The angle q between the lines is found from b1 · b2 = | b1|| b2| cosq
                                                                                                                                                                                                                                                                                                                                                           b Show that the two lines intersect and find the point of intersection.
                                    1 × 2 + 1 × 2 + (−1) × (−1) = 1 + 1 + 1 × 4 + 4 + 1 × cos q
                                                                                                                                                                                                                                                                                                                  b1 = 12 + 12 + (−1)2 =        3          c Find angle PRS to the nearest 0.1°
                                                                                                                                           5=                         3 × 9 × cos q
                                                                                                                            cos q = 5                                                                                                                                                                             b2 =     22 + 22 + (−1)2 =        9   7 a Find the vector equation of the line through the points A(1, 2, 3) and B(2, -1, -1).
                                                                                                                                                                3 3                                                                                                                                                                                         Show that the point R(1 + t, 2 - 3t, 3 - 4t) lies on this line for all t.
                                   The acute angle between the two lines is 15.8°
                                                                                                                                                                                                                                                                                                                                                           b C is the point (5, -2, -6). Find the value of t that makes the vectors CR and AB perpendicular.
                                                                                                                                                                                                                                                                                                                                                           c Find the shortest distance from point C to line AB.
                   Exercise 12.4
                   1 Find the vector equation of the line through point A                                                                                                                                                                                                                                                                                  INVESTIGATION
                     which is parallel to vector b, when
                                                                                                                                                                                                                                                                                                                                                           8 Using the parameter l, find the general point R on the line joining
                         a A(1, 2, -3)                                                             b = 2i - 3j + k                                                                         b A(4, -1, 3)                                                            b = -2i + j + 2k
                                                                                                                                                                                                                                                                                                                                                             points A(1, 2, 3) and B(0, 1, 2).
                         c A(3, 0, 1)                                                              b = 4i + 2k                                                                             d A(1, -1, 0)                                                            b=i+j-k                                                                                   Repeat using the parameter m for the general point S on the line joining
                                                                                                                     ⎛1 ⎞                                                                                                                                               ⎛2⎞                                                                                   C(0, -2, 2) and D(1, 0, -1).
                                                                                                                                                                                                                                                                        ⎜ ⎟
                         e A(2, 1, 0)                                                              b = ⎜0⎟
                                                                                                       ⎜ ⎟                                                                                 f              A(0, 0, 1)                                                b = ⎜0⎟                                                                                   Find l and m so that the line RS is perpendicular to both AB and CD.
                                                                                                                     ⎜3⎟                                                                                                                                                ⎜0⎟
                                                                                                                     ⎝ ⎠                                                                                                                                                ⎝ ⎠                                                                                   Find the shortest distance between lines AB and CD.

 292                                                                                                                                                                                                                                                                                                                                                                                                                                                           293
12 Vectors

                                                                                                                    8a    Write down the vector equation of the line L1 which passes
       Review 12
                                                                                                                          through point P(1, -2, 4) and is parallel to the vector 2i + 3j -k.
                                                                                                                      b   Find the vector equation of the line L2 which contains point P
       1 Find    a the magnitude of the vector a = 3i + 12j + 4k                                                          and also point Q(0, 1, 3).
                 b the unit vector parallel to vector a                                                               c   Find the angle between the two lines L1 and L2.
                 c    a vector of magnitude 5 which is parallel to vector a                                               Hence, or otherwise, find the shortest distance from Q to L1.

                 d the angle between a and the direction of the x-axis.                                             9a    Show that the point A(7, 8, 1) lies on the line L with the vector equation
                                                                                                                               ⎛ 3⎞      ⎛2⎞
       2 The points A, B and C have coordinates (1, 4, 3), (3, 6, 6) and                                                       ⎜ ⎟
                                                                                                                           r = ⎜ 0 ⎟ + t ⎜ 4 ⎟ , but that the point B(1, -4, 0) does not lie on L.
                                                                                                                                         ⎜ ⎟
         (7, 10, 12) respectively. Find the vector AB and show that the                                                        ⎜ −1 ⎟    ⎜1⎟
                                                                                                                               ⎝ ⎠       ⎝ ⎠
         points A, B and C are collinear.
                                                                                                                      b   Find the acute angle between L and the line through A and B.
       3 A triangle has vertices L(3, 1, 0), M(1, -2, 5) and N(2, 5, 2).                                              c   Find the shortest distance from B to L.
         a   Prove that the triangle is right-angled and find its area.
                                                                                                                   10 a   Show that the two lines with these vector equations intersect.
         b   Find point K such that the quadrilateral KLMN is a parallelogram.
                                                                                                                              ⎛ 3⎞     ⎛ 2⎞        ⎛ 1⎞      ⎛ 1⎞
         c   Show that the midpoint of KM coincides with the midpoint of LN.                                                  ⎜− ⎟     ⎜ ⎟ and r = ⎜ 4 ⎟ + m ⎜ −1 ⎟
                                                                                                                          r = ⎜ 1⎟ + l ⎜ 1 ⎟       ⎜ ⎟       ⎜ ⎟
                                                                                                                              ⎜ 2⎟     ⎜ −1 ⎟      ⎜ −7 ⎟    ⎜ 2⎟
                                   ⎛ 1⎞      ⎛ 4⎞                                                                             ⎝ ⎠      ⎝ ⎠         ⎝ ⎠       ⎝ ⎠
C4




                                                                                                                                                                                                                      C4
       4a                          ⎜ ⎟
             Show that the vectors ⎜ 2 ⎟ and ⎜ −1⎟ are perpendicular.
                                             ⎜ ⎟
                                   ⎜ −2 ⎟    ⎜ 1⎟                                                                     b   Find their point of intersection.
                                   ⎝ ⎠       ⎝ ⎠
         b   Find the acute angle between the two vectors i + 2j - 2k and 3i - j - k.                                 c   Find the acute angle between the two lines.

       5a    Given points A(-1, 0, 2), B(2, 4, 1) and C(0, 5, -3), find the                                        11 Two straight lines have the vector equations r = i - 2k + t(-2i + j + 2k)
                                                                                                                      and r = 3i - 4j + k + s(i - j + k)
             vectors AB and BC . Hence, use the scalar product to find
             angle ABC to the nearest degree.                                                                         a   Find the acute angle between the directions of the two lines.

         b   D is the point (1, 1, k). Find the value of k such that the lines                                        b   Do the two lines intersect or are they skew?
             AB and BD are perpendicular.
                                                                                                                   12 a   Find the values of t and s which show that the point
       6 Find a unit vector ai + bj + ck which is perpendicular to the                                                    P(-2, 6, -1) lies on the line r = i - 4k + t(-i + 2j + k) and
         two vectors 2i + 2j - k and 4i + 2k.                                                                             that point Q(1, 7, 0) lies on the line r = 8j + 2k + s(-i + j + 2k)
                                                                                                                      b   Prove that PQ is perpendicular to both lines.
       7 Relative to a fixed origin O, the point A has position vector 3i + 2j - k,
         the point B has position vector 5i + j + k, and the point C has                                              c   Find the shortest distance between the two lines.
         position vector 7i - j.                                                                                      d   Find the angle between the two lines.
         a   Find the cosine of angle ABC.
         b   Find the exact value of the area of triangle ABC.
         c   The point D has position vector 7i + 3k.
             Show that AC is perpendicular to CD.
         d   Find the ratio AD : DB.                                                  [(c) Edexcel Limited 2003]

 294                                                                                                                                                                                                                295
Revision 4

       12
        Exit
                                                                                                    1 Express these as partial fractions.
                                                                                                               6                          3x − 1                 x3
                                                                                                        a                         b                         c
                                                                                                            x(x + 2)                  (x + 1)2(x − 3)           x −4
                                                                                                                                                                2




                                                                                                    2 f(x) = 11 + 2x + x 2 =
                                                                                                                        2
                                                                                                                                         A + B + C              x <1
       Summary                                                                           Refer to              (1 − 2x)(3 + x)        1 − 2x 3 + x (3 + x)2         2
        Equal vectors have the same magnitude and direction.                               12.1
                                                                                                        a Find the values of A and C. Show that B = 0
        The vector ka is parallel to vector a and has a magnitude k times that of a.       12.1
        The vector p = xi + yj + zk has a magnitude (or modulus) |p| = x 2 + y 2 + z 2     12.1         b Hence, find an expansion of f(x), in ascending powers of x up to
                                                                                                          and including the term in x3. Simplify your answer as far as possible.
                                               p         xi + y j + z k
        The unit vector parallel to p is p =
                                         ˆ       =                                         12.1
                                               p         x2 + y2 + z 2
                                                                                                    3                         y
        The position vector of point A(a1, a2, a3) relative to the origin O
        is given by OA = a = a1i + a2 j + a3k                                              12.2
        If points A and B have position vectors a and b, then AB = b - a                   12.2
        The midpoint M of AB has a position vector m = 1 (a + b)                           12.2
                                                       2
        The distance between points A(a1, a2, a3) and B(b1, b2, b3) is given by                                                         R
C4




                                                                                                                                                                                                                  C4
        AB = ( a1 − b1 ) + ( a2 − b2 ) + ( a3 − b3 )
                         2            2              2
                                                                                           12.2                              O                          x
                                                                                                                                                2
        The scalar (or dot) product a · b = |a||b| cos q = a1b1 + a2b2 + a3b3
        where q is the angle between a and b.                                              12.3         The diagram shows part of the curve with equation y = f(x), where
        The vector equation of the line through point A and parallel to
                                                                                                            f(x) =       x2 + 1 ,       0    x<3
        vector b is r = a + tb                                                             12.4                      (1 + x)(3 − x)
        The vector equation of the line through points P and Q is r = p + t(q - p)         12.4         a Given that f(x) = A + B + C , find the values of the
                                                                                                                               1+ x 3− x
                                                                                                        constants A, B and C.

        Links                                                                                           b The finite region R, shown in the diagram, is bounded by the curve
        To ensure safety during aircraft landing, the aviation industry                                 with equation y = f(x), the x-axis, the y-axis and the line x = 2
        uses vectors to guide the aircraft to the runway.                                               Find the area of R, giving your answer in the form p + qln r,
                                                                                                        where p, q and r are rational constants to be found.                       [(c) Edexcel Limited 2002]
        As an aircraft approaches an airport, the Instrument Landing
        System (ILS) uses a series of radars, which are sent up from
                                                                                                    4 A curve has parametric equations x = tan 2 t y = sin t, 0 < t < p
        the perimeter of the runway, to guide it to a safe landing.                                                                                                       2
                                                                                                                                 dy
        Vectors and the dot product are used to determine if the                                        a   Find an equation for     in terms of t. You do not need to simplify your answer.
                                                                                                                                 dx
        aircraft has intercepted the area covered by the beams.                                         b   Find an equation of the tangent to the curve at the point where t = p
                                                                                                                                                                                 4
        Suppose that the aircraft has position vector s and moves with                                      Give your answer in the form y = ax + b, where a and b are constants to be determined.
        velocity v, and that p is the position vector of a point P in the
        area covered by the radar beams. Then, if the dot product                                       c   Find the Cartesian equation of the curve in the form y2 = f(x)         [(c) Edexcel Limited 2007]
        v·(s - p) is positive, the aircraft is moving towards P.
        When this product is 0 the aircraft is passing P and when it is
        negative it is moving away from P.


 296                                                                                                                                                                                                            297
Revision 4                                                                                                                                                                                                       Revision 4

        5                                  y                                                                    7                         y
                                                                                                                                                                  P
                                                                                                                                                  C
                                           1
                                                                                                                                                          R
                                                                                                                                                                       Q
                             –1            O                1       x                                                                     O                                    x

                                         –1
                                                                                                                    The diagram shows a sketch of part of the curve C with parametric equations
                                                                                                                    x = t 2 + 1, y = 3(1 + t)
            The curve shown in the diagram has parametric equations
            x = cos t   y = sin 2 t 0          t < 2p                                                               The normal to C at the point P(5, 9) cuts the x-axis at the point Q,
                                                                                                                    as shown in the diagram.
                                           dy
            a   Find an expression for        in terms of the parameter t.
                                           dx                                                                       a   Find the x-coordinate of Q.
                                                                       dy
            b   Find the values of the parameter t at the points where    =0
                                                                       dx                                           b   Find the area of the finite region R bounded by C, the line
            c   Hence, give the exact values of the coordinates of the points                                           PQ and the x-axis.                                                                  [(c) Edexcel Limited 2005]
                on the curve where the tangents are parallel to the x-axis.
                                                                                                                8                     y
            d   Show that a Cartesian equation for the part of the curve
                where 0 t < p is y = 2x 1 − x 2
                                                                                                                                   1a A
            e   Write down a Cartesian equation for the part of the curve                                                          2
C4




                                                                                                                                                                                                                                           C4
                                                                                                                                                  B
                where p t < 2p                                                     [(c) Edexcel Limited 2003]                        O                    a                        x

        6                   y (metres)
                                                                                                                    The curve shown in the diagram has parametric equations
                                                                                                                    x = a cos 3t, y = a sin t,        0       t        p
                                C
                                                                                                                                                                       6
                                       R                                                                            The curve meets the axes at points A and B as shown.
                                A                                                                                   The straight line shown is part of the tangent to the curve at the point A.
                                                 B x (metres)
                                                                                                                    Find, in terms of a,
            This diagram shows a cross-section R of a dam. The line AC                                              a   an equation of the tangent at A
            is the vertical face of the dam, AB is the horizontal base and the
            curve BC is the profile.                                                                                b   an exact value for the area of the finite region between the curve,
            Taking x and y to be the horizontal and vertical axes, then A, B and                                        the tangent at A and the x-axis, shown shaded in the diagram.                       [(c) Edexcel Limited 2006]

            C have coordinates (0, 0), (3p 2, 0) and (0, 30) respectively.
            The area of the cross-section is to be calculated.                                                  9 Expand as a series of ascending powers of x up to and including x3.
            Initially the profile BC is approximated by a straight line.                                          State the range of values for which each expansion is valid.

            a   Find an estimate for the area of the cross-section R using                                          a      1                  b       31+         1x                   c   (1 − x ) 1 + x
                this approximation.                                                                                     1 − 3x                                    2

            The profile BC is actually described by the parametric equations                                             2+x                                      3
                                                                                                                    d                         e
                x = 16t − p ,
                        2   2
                                    y = 30 sin 2t,      p
                                                        4
                                                                t       p
                                                                        2
                                                                                                                         4−x                                      (
                                                                                                                                                      (1 − x) 1 + 1 x
                                                                                                                                                                  2        )
            b   Find the exact area of the cross-section R.
            c   Calculate the percentage error in the estimate of the area of
                the cross-section R that you found in part a.                      [(c) Edexcel Limited 2004]
 298                                                                                                                                                                                                                                     299
Revision 4                                                                                                                                                                                                          Revision 4

       10 a    Write down the first four terms of the binomial expansion,                                        15 The volume of a spherical balloon of radius r cm is V cm3,
                                                (        )
                                                         n
               in ascending powers of x, of 1 − 1 x , where n < 1.                                                  where V = 4 p r 3
                                                     3                                                                             3
               State the range of values of x for which the expansion is valid.
                                                                                                                    a Find dV
                                                                                                                                 dr
          b                                     x3
               Given that the coefficient of in this expansion is four times                                        The volume of the balloon increases with time t seconds according
               the coefficient of x2, find
               i the value of n                                                                                     to the formula dV = 1000 2 ,                          t   0
                                                                                                                                            dt         (2t + 1)
               ii the coefficient of x4 in the expansion.
                                                                                                                    b Using the chain rule, or otherwise, find an expression in terms
                                                                                                                    of r and t for dr
                                                                                                                                       dt
       11 a    Prove that, when x = 1 , the value of 1 − 3x is exactly equal
                                    12                                                                              c   Given that V = 0 when t = 0, solve the differential equation
               to cos 30°                                                                                           dV = 1000 , to obtain V in terms of t.
                                                                                                                    dt  (2t + 1)2
          b    i    Expand 1 − 3x ,        x < 1 , in ascending powers of x
                                               3
                  up to and including the term in x3, writing your answer                                           d Hence, at time of t = 5
                  in as simple a form as possible.                                                                    i find the radius of the balloon, giving your answer
               ii Use your expansion to find an approximation for cos 30°                                                to 3 significant figures
                                                                                                                      ii show that the rate of increase of the radius of the
          c    Find the percentage error in your approximation for the                                                   balloon is approximately 2.90 ´ 10-2 cm s-1                                         [(c) Edexcel Limited 2006]
               value of cos 30°
                                                                                                                 16 a   Copy and complete this table by finding the three missing values of y,
              dy                                                                                                        given that y = sec x
       12 Find , in terms of x and y, when
C4




                                                                                                                                                                                                                                            C4
              dx
                                                                                                                                                  p               p           3p     p
          a y2 = xy + 2                                                                                                      x    0               16              8           16     4

          b x3 - 3x2y + y 3 = 1                                                                                              y              1.01959         1.08239


          c    1 + 1 + 1 =1
                                                                                                                    b   By using the trapezium rule with all five y-values in the table,
               x 2 xy y 2                                                                                                                                   p
                                                                                                                                                            4
          d x ln y = y ln x                                                                                             find an estimate for                    sec x dx
                                                                                                                                                           0
                                                                                                                        Show all your working, giving your answer to 4 decimal places.
       13 A set of curves is given by the equation sin x + cos y = 0.5
                                                                         dy                                         c   Use a standard integral to show that the exact value of
          a Use implicit differentiation to find an expression for                                                        p
                                                                         dx
                                                                                                                                                       ln(1 + 2 )
                                                                                                                          4
                                                                                                                              sec x dx       is
          b For -p < x < p and -p < y < p, find the coordinates of the                                                   0
                           dy
          points where        =0                                                    [(c) Edexcel Limited 2007]
                           dx                                                                                       d   Find the percentage error in the estimate that you obtained
                                                                                                                        using the trapezium rule.
       14 a    Given that y = 2x, and using the result 2x = exln 2, or otherwise,
                           dy                                                                                    17 Evaluate using an appropriate method.
               show that      = 2 x ln 2
                           dx
                                                                          2
          b Find the gradient of the curve with the equation y = 2(x ) at the                                       a    e x e x − 2 dx                               b       (x − 1)(x + 2)7 dx   c   2 cos2 x dx
          point with the coordinates (2, 16).                                       [(c) Edexcel Limited 2007]
                                                                                                                    d    cos x sin 4 x dx                             e             9x 2      dx   f   (x + 3) e x dx
                                                                                                                                                                              (x − 1)(x + 2)2

                                                                                                                    g    ex cos 2x dx                                 h        x 2 dx              i   1 tan x sin 2x dx
                                                                                                                                                                              x +3
                                                                                                                                                                               3
                                                                                                                                                                                                       2
 300                                                                                                                                                                                                                                      301
Revision 4                                                                                                                                                                                                                                         Revision 4

                                                                                                       1
                                                                                                                                                                                              y
       18 Use the substitution u = 2x to find the exact value of                                              2 x dx            [(c) Edexcel Limited 2007]
                                                                                                                                                             23
                                                                                                       0
                                                                                                           (2 + 1)2
                                                                                                            x



       19 a   By using the formulae for sin(A ± B), with A = 5x and B = 2x,
              show that 2sin 2xcos 5x can be written as sin lx - sin mx,                                                                                                                      O                    x
              where l and m are positive integers. State the values of l and m.
          b   Hence, or otherwise, find                            sin 2x cos 5x dx
                                                                            3p
                                                                             4                                                                                    A table top, in the shape of a parallelogram, is made from two types
          c   Hence find the exact value of                                      sin 2x cos 5x dx
                                                                            p                                                                                     of wood. The design is shown in the diagram. The area inside the
                                                                            4
                                                                                                                                                                  ellipse is made from one type of wood, and the surrounding area
       20 a   Use the identity for cos (A + B) to prove that                                                                                                      is made from a second type of wood.
              cos 2A = 2cos2 A - 1                                                                                                                                The ellipse has parametric equations
          b   Use the substitution x = 2 2 sin q to prove that                                                                                                        x = 5cos q,   y = 4sin q,   0   q < 2p
                    6
                            ( 8 − x 2 ) dx = 1 (p + 3 3 − 6 )                                                                                                     The parallelogram consists of four line segments, which are tangents to
                2                            3                                                                                                                    the ellipse at the points where q = a, q = -a, q = p - a, q = -p + a
          c   A curve is given by the parametric equations                                                                                                        a Find an equation of the tangent to the ellipse at (5cos a, 4sin a),
              x = sec q, y = ln(1 + cos 2q), 0 < q < p                                                                                                              and show that it can be written in the form 5ysin a + 4xcos a = 20
                                                                                           2
C4




                                                                                                                                                                                                                                                                             C4
              Find an equation of the tangent to the curve at the point                                                                                           b Find by integration the area enclosed by the ellipse.
              where q = p                                                                                                       [(c) Edexcel Limited 2003]
                                                                                                                                                                  c   Hence show that the area enclosed between the ellipse and
                                        3
                                                                                                                                                                                         80
                                                                                                                                                                  the parallelogram is sin 2a − 20p
       21 a   Show, by using the substitution x = sin q, that, for |x| < 1,
                                                                                                                                                                  d Given that 0 < a < p , find the value of a for which the areas
                            1       dx =               x       + c, where c is an arbitrary constant.
                                3                          1
                (1 −        x 2)2               (1 −   x 2)2                                                                                                                             4
                                                                                                                                                                  of the two types of wood are equal.                                         [(c) Edexcel Limited 2002]

          b   Use integration by parts to show that the exact value of
                4                                                                                                                                                                             y
                                                                                                                                                             24
                    x2 ln x dx can be written as 8 (p ln 2 - q),
                2
                                                                        9
              where p and q are integers.                                                                                                                                                     2
              Find the values of p and q.                                                                                                                                                         R

                                                                                                                                                                                              O       2        x
       22 a   Use integration by parts to show that

                                    (           )                   (              )           (            )
                                                                                                                                                                  This diagram shows part of the curve with equation y = x2 + 2
                xcosec x + p dx = −x cot x + p + ln ⎡sin x + p ⎤ + c,
                                2
                                                    ⎢
                                                                                                                       −
                                                                                                                           p <x<p
                           6                 6      ⎣        6 ⎥
                                                               ⎦                                                           6    3                                 The finite region R is bounded by the curve, the x-axis and the
                                                                                                                                                                  lines x = 0 and x = 2.
          b   Solve the differential equation
                                                                                                                                                                  a Use the trapezium rule with four strips of equal width to estimate
                        (           6 ) dx
               sin2 x + p dy = 2xy (y + 1)                                                                                                                          the area of R.

              to show that 1 ln
                                            2
                                                      y
                                                    y +1              6     (⎢
                                                                             ⎣         )
                                                         = −x cot x + p + ln ⎡sin x + p ⎤ + c
                                                                                      6 ⎥
                                                                                        ⎦          (            )                                                 b State, with a reason, whether your answer in part a is an
                                                                                                                                                                    under-estimate or over-estimate of the area of R.
          c   Given that y = 1 when x = 0, find the exact value of y when x = p                                                 [(c) Edexcel Limited 2005]        c   Using integration, find the volume of the solid generated when R is rotated
                                                                                                                           12
                                                                                                                                                                      through 360° about the x-axis, giving your answer in terms of p.     [(c) Edexcel Limited 2002]
 302                                                                                                                                                                                                                                                                       303
Revision 4                                                                                                                                                                                                    Revision 4


       25                         y                                                                                 28 In an experiment a scientist considered the loss of mass of a
                                                                                                                       collection of picked leaves. The mass, M grams, of a single leaf
                                                                                                                       was measured at times t days after the leaf was picked.
                                  1
                                                                                                                       The scientist attempted to find a relationship between M and t.
                                  O    a     b     x
                                                                                                                       In a preliminary model she assumed that the rate of loss of mass
                                                                                                                       was proportional to the mass M grams of the leaf.
            The curve shown in the diagram has the equation y =            1
                                                                         2x + 1                                         a   Write down a differential equation for the rate of change
            The finite region bounded by the curve, the x-axis and the lines                                                of mass of the leaf, using this model.
            x = a and x = b is shown shaded. This region is rotated through                                             b   Show, by differentiation, that M = 10(0.98)t satisfies this
            360° about the x-axis to generate a solid of revolution.                                                        differential equation.
            Find the volume of the solid generated. Express your answer
            as a single simplified fraction, in terms of a and b.                      [(c) Edexcel Limited 2008]       Further studies implied that the mass, M grams, of a certain leaf
                                                                                                                        satisfied a modified differential equation
       26 a     The curve C1 in Figure 1 has parametric equations                 y                                         10 dM = −k (10M − 1)        (1)
                                                                                                                               dt
                x = 2 , y = 3t2                                                        C1
                                                                                                                        where k is a positive constant and t    0
                       t
                The area bounded by the curve, the x-axis and the
                                                                                                                        c   Given that the mass of this leaf at time t = 0 is 10 grams, and that
                ordinates x = 2 and x = 4 is rotated through an
                                                                                                                            its mass at time t = 10 is 8.5 grams, solve the modified differential
                angle of 360° about the x-axis.
                                                                                                                            equation (1) to find the mass of this leaf at time t = 15.                   [(c) Edexcel Limited 2003]
                Find       i the values of t when x = 2 and x = 4                 O         2      4          x
                           ii the volume of the solid of revolution.                        Figure 1
C4




                                                                                                                                                                                                                                        C4
                                                                                                                    29 Fluid flows out of a cylindrical tank with constant cross-section.
                                                                                                                       At time t minutes, t 0, the volume of fluid remaining in the
            b   The curve C2 in Figure 2 is defined parametrically by             y                                    tank is V m3. The rate at which the fluid flows, in m3 min-1, is
                x = t + 4t, y = 1
                     2                                                                                                 proportional to the square root of V.
                               2+t
                The region between the x-axis and that part of C2 from                C2
                                                                                                                        a Show that the depth, h metres, of fluid in the tank satisfies the

                                ( 3)               ( 4)
                the point P 5, 1 to the point Q 12, 1 is rotated                            P
                                                                                                       Q
                                                                                                                        differential equation dh = −k h, where k is a positive constant.
                                                                                                                                               dt
                a half-turn about the x-axis.                                                                           b Show that the general solution of the differential equation may
                                                                                  O                           x
                Show that the volume of the solid generated is p ln 4
                                                                                            5          12               be written as h = (A - Bt)2, where A and B are constants.
                                                                          3                     Figure 2
                                                                                                                        c Given that, at time t = 0, the depth of fluid in the tank is 1 m, and
       27 a     Find the general solutions of these differential equations.                                             that 5 minutes later the depth of fluid has reduced to 0.5 m, find
                    dy                                  dy                                                              the time, T minutes, which it takes for the tank to empty.
                i      = e 2y              ii (x + 1)      =y
                    dx                                  dx
                                                                                                                        d   Find the depth of water in the tank at time 0.5T minutes.                    [(c) Edexcel Limited 2003]
                    dy                              dy
                iii    + xy = x 2 y        iv cos y    = sec 2 x sin y
                    dx                              dx
                                                                                                                    30 Points P(2, 3, -1), Q(4, -1, 4) and R(2, -1, 3) are the vertices of a triangle.
            b   Find the particular solutions of these differential equations.
                            2
                                                                                                                        a Find the vectors PR and PQ and the angle between them, to
                      ⎛ dy ⎞
                      ⎜ dx ⎟ = yx , given that y = 4 when x = 2                                                         the nearest tenth of a degree.
                                 2
                i
                      ⎝ ⎠
                              dy                                                                                        b Find the lengths PR and PQ, giving your answers in surd form.
                ii   (x 2 + 1) − xy = 0, given that y = 10 when x = 1
                              dx                                                                                        c   Find the area of triangle PQR, correct to 3 significant figures.




 304                                                                                                                                                                                                                                  305
Revision 4

           31 Relative to a fixed origin O, the point A has position vector 4i + 8j - k
              and the point B has position vector 7i + 14j + 5k.
                                                                                                                        Answers
              a Find the vector AB .
                                                                                                                       Before you start Answers                                                                                  3x + 7                     2(2 y 2 − 2 y − 1)
              b Calculate the cosine of ÐOAB.                                                                                                                                                                       o   ( x + 1)( x + 2)( x + 3)
                                                                                                                                                                                                                                                    p   ( y − 1)( y − 2)( y + 2)
                                                                                                                       Chapter 1
              c Show that, for all values of l, the point P with position vector                                                                                                                                                                        2x3 − 8x − 2
                                                                                                                       1 a    11                  b    1
                                                                                                                                                                                                                    q          z
                                                                                                                                                                                                                                                    r
              li + 2lj + (2l - 9)k lies on the line through A and B.                                                           24                      4                                                                (z + 1)(z + 3)                   x ( x 2 − 4)
                                                                                                                       2 a          y
              d Find the value of l for which OP is perpendicular to AB.                                                                              y = x(x – 2)
                                                                                                                                                                                                                3 a
                                                                                                                                                                                                                -x b
              e Hence find the coordinates of the foot of the perpendicular                                                                                                                                        y
              from O to AB.                                                               [(c) Edexcel Limited 2002]                                                                                             y −1

                                                                                                                                                                                                                        c
           32 Referred to an origin O, the points A, B and C have position vectors                                                 O
                                                                                                                                                       2
                                                                                                                                                                   x                                            x2 − x + 1
              (9i - 2j + k), (6i + 2j + 6k) and (3i + pj + qk) respectively, where                                                                                                                                 x − 21
                                                                                                                                                                                                                d x + x +1
              p and q are constants.                                                                                      b                    y       y = x2 + x – 2                                                     x

                                                                                                                                                                                                              Exercise 1.2
              a Find, in vector form, an equation of the line l which passes
              through A and B.                                                                                                                                                                                  1 a                                     x2 - 6x + 8 b x2
                                                                                                                                   –2
                                                                                                                                              O                    x                                            - 2x - 24
              Given that C lies on l,                                                                                                                                                                             c                                     x2 - 10x + 25 d
                                                                                                                                          –2
              b find the value of p and the value of q                                                                                                                                                              2
                                                                                                                                                                                                                x - 8x + 15
              c calculate, in degrees, the acute angle between OC and AB.                                                 c                    y                                                                  e                                     x2 + 2x - 3 f 3x2 +
C4




                                                                                                                                                                                                                                                                                         C3
                                                                                                                                                                 1
                                                                                                                                                           y=x+2
              The point D lies on AB and is such that OD is perpendicular to AB.                                                                                                                                x+2
                                                                                                                                              2
              d Find the position vector of D.                                            [(c) Edexcel Limited 2002]                                                                                               g                                    n2 - 3n + 2 h n2
                                                                                                                                                                   x
                                                                                                                                                                                                                - 3n - 2
                                                                                                                                              1O
           33 The points A and B have position vectors 2i + 6j - k and 3i + 4j + k.                                                       –
                                                                                                                                              2                                                                    i                                    3y2 - 2y - 4 j 2a3 +
              The line L1 passes through the points A and B.                                                                                                                                                     2
                                                                                                                                                                                                                a + 3a - 1
                                                                                                                       3 a    y = -x2                                   b   y = x2 + x
              a Find the vector AB.                                                                                      c    y = x2 + 11x + 30                         d   y = 4x2                                     k                               4a3 - 16a2 + 24a - 6
                                                                                                                                                                                                                l       4z - 5
              b Find a vector equation for the line L1.                                                                Exercise 1.1
                                                                                                                                                                                                                        m                               3x - 4              n x2 - x
                                                                                                                              2x                           6a2
              A second line L2 passes through the origin and is parallel to the vector i + k.                          1 a                             b    bc
                                                                                                                                                                                   c   6pr                      +1
                                                                                                                               z
              The line L1 meets the line L2 at the point C.                                                                                                                                                                   4                      1                       4
                                                                                                                          d       1
                                                                                                                                                       e     a
                                                                                                                                                                                   f        1                 2 a       1+                 b   1−                  c   1−
              c Find the acute angle between L1 and L2.                                                                       ( x − 1)x                    a −1                        x2    −4                              x+2                    x+2                     x+2

                                                                                                                                                                                                                              1                      7                        1
              d Find the position vector of the point C.                                  [(c) Edexcel Limited 2008]      g    1                       h   1                                                        d   3+                 e   2+                  f   2+
                                                                                                                              x−3                          x                                                                 x+2                    x−3                     2x + 1

                                                                                                                                                                                                                               2                      4                         3
           34 Lines L1 and L2 are given by the equations                                                                      xz + y 2                                 a2 + b2                    b−a               g   1−                 h   3+                  i   −1 +
                                                                                                                       2 a       yz
                                                                                                                                                               b         ab
                                                                                                                                                                                            c     abx                        x2 + 1                 x2 − 1                    x +1
                  L1: r = i - 2k + l(2i + 4j - k)                                                                                                                                                                       j                                               1+ x +1
                                                                                                                              x+y                                       2x + 1                         2
                                                                                                                          d                                    e       x( x + 1)
                                                                                                                                                                                            f                                                                              2  x −2
                  L2: r = 8i + 5j - 10k + m(-i + j + 2k), where l and m are parameters.                                       x2 y2                                                               a2    −1
                                                                                                                               a+2                                                                3x + 1      3 a       3 − 52             b   3 + 211
                                                                                                                                                                       2x + 1                                                                     x −3
              a Show that L1 and L2 intersect and find the coordinates of the                                             g                                    h                            i      x +1
                                                                                                                                                                                                                            x
                                                                                                                              (a + 1)2                                   x
              point of intersection.                                                                                                                                                                                c   2+      3
                                                                                                                                                                                                                                           d   7−      2
                                                                                                                               2y + 8                                  2x + 3                      3x + 5                    2x2 − 1                2x2 + 3
                                                                                                                          j   3( y − 2)
                                                                                                                                                               k                            l
              b Show that L1 and L2 are mutually perpendicular.                                                                                                        x2 − 1                     x( x + 1)
                                                                                                                                                                                                                4 a                  x2 + 6x + 1              rem 2           b x2 +
                                                                                                                                z −4                                     1                                      5x - 2             rem 2
              c Show that the point P (3, 4, -3) lies on L1.                                                              m                                    n
                                                                                                                              z2 − z − 2                               y +1

              d P is reflected in L2. Find the coordinates of the image of P.
     306                                                                                                                                                                                                                                                                               307
Answers                                                                                                                                                                                                                                                              Answers

         b        y                                         g                   y                                c        y                                                                          10 a a = 1                 b i ±5                  ii 2, -1             iii 4
             21
                                                                                                                                                                                                         c −1, 1
                                                                                                                                                                                                            2
                                                                                                                       10
                                                                                                                                                                                                     11 a 2           b -1
                                                                                1                                                                                                                    12 p = ±1, q = ±2
                                                                                                                                                                                                     13 a i 4x + 9        ii 8x + 21        iii 16x + 45
                                                                                                                                                                                                        b 2nx + 3 (2n - 1)
                                                                          −2 O          2               x               1
                                                                                                                                                                                                     14 The range of g(x) is not a subset of the domain of
                                                                           −1
                                                                                                                          O                                            x                                f(x). Change domain of g(x) to 0 x          5
               1                                                                                                                              3
                O1                        x
                                  6                                                                                    Range y Î R, y               1                                                Exercise 1.4
                                                                Range y Î R, y ¹ 1                               d            y                                                                       1 a x+2                           b x −1                          x
                                                                                                                                                                                                                                                                          −1
             Range y Î R, 1 < y < 21                                                                                                                                                                           3                             2
                                                                                                                                                                                                                                                                c
                                                                                                                                                                                                                                                                        2
                                                            h    y                                                          2
                                                                                                                                                                                                         d 2x - 3                       e 2(x - 3)              f        x −1
         c       y                                                                                                          1
                                                                4                                                                                                                                        g    x −1                      h 6-x                   i       2
                                                                                                                                                                                                                                                                        x +3
             8                                                                                                                                          x
                                                                                                                              O    1
                                                                                                                                                                                                      2 a f −1 (x ) = x − 1
             5                                                                                                                                                                                                              2
                                                                                                                                                                                                                        y
                                                                                                                Range y Î R, y 2
              O                                   x              O          2                   6   x       5 a x = 2 maps onto two values of y
                          1           4
                                                            Range y Î R, 0 y 4                                b x = 2 does not map onto a value of y
             Range y Î R, 5 < y < 8                                                                         6               y
                                                            One-to-one mappings: a, b, c, e, g
                                                            Many-to-one mappings: d, h                                                                                                                              1       1
                                                                                                                                                                                                                   –2
                                                          2 a 3, 2                b 1, -2, 1
         d                    y                                                                                                                                                                                         O                                   x
                                                          3 a {0, 5, 10, 15, 20} one-to-one                                                                                                                                     1
C3




                                                                                                                                                                                                                                                                                        C3
                                                                                                                                                                                                                        1
                                                            b x Î R, -3 x 3 many-to-one                                                1
                                                                                                                                                                                                                       –2
                                                            c x Î R, 3 x 12 one-to-one
                                                            d x Î R, 3 x 6 one-to-one                                                                                           x
                                                                                                                              −4       O      2
                                                          4 a y                                                                                                                                                           1
                          2                                                                                                                                                                              b f −1 (x ) = 5 − x
                                                                                                                                                                                                                                    2
                                                                                                                                   −2
                              O                   x                                                                                                                                                                y
                                                                7
                                                                                                              Range y Î R, y ¹ 1                                                                              10
             Range y Î R, y               2                                                                                                                                                                             y = f (x)
                                                                3                                             x = 4 and -1 are unchanged
                                                                                                            7 a 10              b 19                                            c 2x2 + 1
                                                                                                              d 5               e 26                                            f 4x2 - 4x + 2                 5
         e X                                      Y              O                      x
                                                                      2                                       g 101             h x4 + 2x2 + 2                                  i 9
                     0                    0                                                                                                                                                                                               y = f –1(x)
                     1                    1                     Range y Î R, y          3                     j 4x - 3
                                                                                                            8                                                                                                      O                5        10         x
                     4                    2                                         y
                                                            b
                     9                    3                                                                          fg(x)                 gf(x)               f2(x)                  g2(x)
                                                                                13
             Range y = {0, 1, 2, 3}                                                                                                                                                                      c f -1(x) = 2x - 4
                                                                                                            a 9x2 + 24x + 14 3x2 - 2 x4 - 4x2 + 2                                   9x + 16                                     y
                                                                                                                   1                       3
                                                                                                            b                                 +2                 x              27x4 + 36x2 + 14
         f   X                                        Y                                                         3x2 + 2                    x2                                                                                                           y = f (x)
                      0                       0
                                                                                                                                                            1
                                                                                                            c 2x + 2                   2x + 10                ( x + 18)             16x - 10
                      1                   –1                                                                                                                4
                                                                                                                                                                                                                                2             y = f –1(x)
                                                                                                                 1                         2x − 3             x −1
                      4                   –2                                                                d   1− x                        x −1              2− x
                                                                                                                                                                                        x
                                                                                                                                                                                                                   –4           O        2                          x
                                                                       −4           O       x                                                                              1
                      9                   –3                                                                9 a 5− x                   b 5− 1                    c                    d 5− 1                                –4
                                                                                −3                                                                  x                       x                    x
             Range y = {0, -1, -2, -3}                          Range y Î R, y          -3                               1
                                                                                                                                                                           1
                                                                                                                 e                     f x                       g x4                  h x
                                                                                                                        5−x




 308                                                                                                                                                                                                                                                                                  309
Answers                                                                                                                                                                                                                                                                                                             Answers

                                                                                                             1                                                          b     y
         d f −1 (x ) =            x − 2, x              2                           i        f −1 (x ) =        , x >2                                                                                                                             11 x = 3 ± 10
                                                                                                           x −2                                                                      y = f (x)
               y                                                                                                                                                                                                                                                         y
                                  y = f (x)                                                        y


                                          y = f –1(x)                                                                                                                       5
                                                                                                                                                                            4
                                                                                                                            y = f (x)                                                                                                                                    3
             2                                                                                  2                                                                                                            y = f –1(x)

              O          2                                  x                                                                y = f –1(x)                                     O                                             x
                                                                                                                                                                                               45                                                                   1 O               3                            x
                                                                                                                                                                                                                                                                –
                                                                                                                                                                        Range of f(x) is y Î R, y                  5                                                3–1
                                                                                                   O        2                                  x                                                                                                                      3
         e f −1 (x ) =            x + 2, x              0                                                                                                               f -1(x) = 4 − x − 5
               y                                                                3 a          f -1(x)   = 8 - x, x Î R           self-inverse                            Domain of f -1(x) is x Î R, x 5
                                                                                                                                                                        Range of f -1(x) is y Î R, y 4                                             12 c = 2, x = 2 ± 5
                                                                                    b f −1 (x ) = 12 , x ∈ R, x ≠ 0                       self-inverse
                    y = f –1(x)                                                                    x                                                                    c               y                                                          13 x = a ± a 2 + b
                                                                                    c f −1 (x ) = 4 − x 2 , x ∈ R, 0                           x   2 self-inverse           y = f –1(x)                                                            14                             y
             2                        y = f (x)                                                                                                                                        4                                                                                          5
                                                                                    d No inverse function exists
              O                                         x
                         2                                                          e f -1(x) = 8 - x, x Î R, 0                       x        8   self-inverse                        2

         f   f -1(x)     =   x2   + 4, x           0                                f        f (x ) = x , x ∈ R, x ≠ 1
                                                                                              −1
                                                                                                                                              self-inverse                                                                                                                                                        y = f –1(x)
                                                                                                     x −1                                                                                                                                                –1
               y                                                                                                                                                                                                                                        f (x)                     1           y = f (x)
                                                                                                                                                                                        O            2            4 y = f (x) x
                                  y = f –1(x)                                   4 f -1(x) = 8 - x, x Î R, x 8
                                                                                  f(x) and f -1(x) do not have the same domain.                                         Range of f(x) is y Î R, y < 4                                                                                                                           x
                                                                                                                                                                                                                                                        –5                   –1 O         1                            5
                                                                                                                                                                        f -1(x) = 2 + 4 − x                                                                                   –1
                                                                                5 1± 2
                                                                                                                                                                        Domain of f -1(x) is x Î R, x < 4
C3




                                                                                                                                                                                                                                                                                                                                       C3
             4                                    y = f (x)
                                                                                6        y                                                                              Range of f -1(x) is y Î R, y > 2
                                                                                                                y = f (x)
                                                                                                                                                                        d                   y
              O                   4                               x
                                                                                                                                                                                                  y = f (x)                                                                      –5           y = f (x)
                                                                                                                    y = f –1(x)
                                                                                                                                                                                           4
                                                                                        5                                                                                                                                                                       x +1
         g f -1(x) = x2 - 3, x                     0                                                                                                                                                                                                    f -1(x) = x − 1
                                                                                        3
                       y
                                                                                                                                                                                           2                                                            Domain x Î R, x -1, x > 1
                                                   –1
                                            y = f (x)                                                                                                                                                            y = f –1(x)                            Range y Î R, y 0, y ¹ 1
                                                                                        O              3   5                      x
                                                                                                                                                                                                                                x
                                                                                                                                                                                                                                                   15 f3 has an inverse.
                                                                                                                                                                                –2          O            2          4
                                                  y = f (x)                                                                                                                                                                                           All the others are many-to-one functions.
                                                                                    Range of f(x) is y Î R, y                    5
                                                                                    f (x) = 3 + x − 5
                                                                                        -1                                                                                             –2                                                          Exercise 1.5
              –3 O                                                    x
                                                                                    Domain of f -1(x) is x Î R, x 5                                                                                                                                1    a       y
                                                                                                                                                                        Range of f(x) is y Î R, y > -2
                    –3                                                              Range of f -1(x) is y Î R, y 3
                                                                                                                                                                        f -1(x) = x + 2 − 2
                                                                                7 a            y                                                                        Domain of f -1(x) is x Î R, x > -2
                                                                                                                                                                        Range of f -1(x) is y Î R, y > -2                                                       3
         h   f (x ) = 2 − 1 , x < 0
               −1
                          x                                                                                         y = f (x)
                                                                                                                                                                     8 a f -1(x) = 2x - 8, x Î R, x = 8                         (8, 8)
                                       y                                                                                      y = f –1(x)                                                                                                                       O                                         x
                                                                                                                                                                                                                                                                              3
                                                                                                                                                                        b f (x ) =
                                                                                                                                                                             −1
                                                                                                                                                                                                x, x ∈ , x             0 x = 0, 1 (0, 0), (1, 1)
                      y = f –1(x)
                                                                                                                                                                                                                                                        b                    y
                                                                                              2                                                                         c f −1 (x ) = 2 +           x, x ∈ , x                 0 x = 4 (4, 4)
                                                                                              1                                                                         d f −1(x ) = x + 4 − 4, x ∈ , x                             −4
                                      2
                                                                                               O                                          x                                     x = −3, (−3, −3)
                                                                                                       1    2
                                                                                                                                                                     9 a a = -2, b = 0, c = 1                                                                                O                                x
                                       O      2                             x       Range of f(x) is y Î R, y 1                                                                                                                                                     –3                    3
                                                                y = f (x)                                                                                              b i 4          ii 48                             iii 3
                                                                                    f -1(x) = 2 + x − 1                                                                                                                                                                  –3
                                                                                                                                                                                      2
                                                                                    Domain of f -1(x) is x Î R, x 1                                                 10 g −1 (x ) = 2 + , x ∈ R, x ≠ 0 solutions are x = 1 ± 3
                                                                                                                                                                                            x
                                                                                    Range of f -1(x) is y Î R, y 2


 310                                                                                                                                                                                                                                                                                                                                 311
Answers                                                                                                                                                                                                                                                                            Answers

         c            y                                               j                               y                                       3   a            y                                                     4       y
                                                                                                  3                                                                                                                      10

                                                                                                                                                                                                                             6

                                                                                                                                                          –1 O                           4           x
                     1                                                                                                                    x
                                                                                  –3            –1 O              1           3
                                              x                                                                                                                                                                              O             3                8         x
                      O 1
                                                                                                                                                              –4
                        2                                             k       y
                                                                                                                                                                                                                         Range 0 y 10
                          y                                                                                                                                            y = f (x)
                                                                                                                                                                                                                         Solutions x = 1 or 5
         d
                                                                          3                                                                                                                                          5                                 y
                                                                                                                                                               y
                                                                          2                                                                                                                                                                        7

                                                                                                                                                              4                                                                                    5
                   1O             1           x                           O           1                       x
                 –
                   2              2                                                                                                                                                                                                                3
                                                                      l                           y
                   –1                                                                                                                                     –1 O                           4           x
                                                                                                                                                                      y = |f (x)|
                                                                                                 3
                                                                                                                                                                                 y
         e       y                                                                               2                                                                                                                                                     O          x
                                                                                                                                                                                                                                      1
                                                                                                                                                                                                                          –4 –2                            1
                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                         Range 0 y 7
                 4                                                                     –1        O                    1               x
                                                                                                                                                                                                                         Solutions x = -1 or -4
                                                                                                                                                      –4                        O                        4       x   6   a            y
                                                                      m                     y
                 O                4                       x                                                                                                                     –4
C3




                                                                                                                                                                                                                                                                                                      C3
         f                        y                                                                                                                                                                                                  –p            O             p        x
                                                                                                                                                                           y = f (|x|)
                                                                                                                                                                                                                         b                         y
                                  4                                                                                                               b       y
                                                                                            O                             x

                                                                      n               y                                                                                                                                              –p            O             p        x
                     –4           O                   4       x
                                                                                                                                                                                                                         c                     y
                                                                                  O                   x                                               O                              4           x

         g                    y
                                                                                                                                                                                                                                 –p            O                p x
                                                                      o   y
                                                                                                                                                                                                                         d                     y
                                                                                                                                                                    y = f (x)
                           3                                                                                                                          y

                                                                                                                                                                                                                                 –p            O                p x
                        1O                    x
                     –1                                                   O       1                               x
                        2                                                                                                                                                                                            7   (2, 3)
                                                                  2   a                                   y                                                                                                          8   (-2, 0), (6, 8)
         h                y                                                                                                                                                                                          9   4 solutions; (-6, 16), (0, 4), (2, 0), (4, 4)
                                                                                                                                                      O                              4       x
                         1
                 –1                                                                                    5                                                          y = |f (x)|                                        Exercise 1.6
                         2
                          O               x                                                                                                                                      y                                   1   a       i    -1, 9                ii    -1 < x < 9
                                                                                                                                                                                                                         b       i    1                    ii    x<1
                      –3                                                                                                                                                                                             2   a       i    -7, 3                ii    -7 < x < 3
                                                                                  –4                      O           1           x                                                                                      b       i    -5, 2                ii    x < -5, x > 2
                                                                      b       y                                                                                                                                          c i          −2
                                                                                                                                                                                                                                           1
                                                                                                                                                                                                                                             ,3            ii x           21, x       3
         i   y                                                                                                                                        –4                        O                        4   x                             3                                  3
                                                                                                                                                                                                                         d i 2, 4                          ii 2 x                 4
             3                                                            3                                                                                                                                              e i 1                             ii x > 1
                                                                                                                                                                           y = f (|x|)                                   f i          1 1
                                                                                                                                                                                                                                       ,1                  ii 1 < x < 1 1
                                                                                                                                                                                                                                      4 2                        4                2
                                                                          1

             O       1                3           x                       O        1        2                 x
 312                                                                                                                                                                                                                                                                                                313
Answers                                                                                                                                                                                                                                                                                                           Answers

                         1                       1                                                    b                       y                                         5                 y                                                                   b      y
       3       a    −2                 b    −1                c 5                    d -9, 1
                         2                       2                                                                                        y = |x + 2|                                                                                                                         y = x2 – 3x
                                                                                                                                                              y = |x|                 5
               e 11                    f 6, 2                 g 3, 6                 h -3, 0, 5                                                                                                   y = 5 – x2
                     2                           3                                                                                                        y = |x – 2|
                                                     2                                                                        2
       4       a x > 2, x < 0               b    −     <x<2              c 11 < x < 3
                                                     3                           2
               d xÎR                        e 2.56            x     4
                                                                                                                     –2       O                 2               x                                                                                                   O     1           3       4          x
               f -3 < x < -1 and 1 < x < 3                                                                                                                                                O                         x
                                                                                                    4 a     y
                                                                                                                              y = x2 – 3x
       5       a    −2       2, 1 − 5, 2, 4           b x < −4 2 , x > −2
                                                               3
       6       b2        4c                                                                                                                                                                                                                                                y = –x2 + 5x – 4
                                                                                                                                                                        6 a                             y
       Exercise 1.7                                                                                                                                                                                                     y = x2 – 4                            c      y
           1                       y                                                                                                                                                                   4                                                                                  y = |x – 4|
                                                                                                           O                  3                       x
                                                                                 y = √x + 3                                                                                                                                                    2
                                                                                                                                                                                                                                    y=      (2 ) – 4
                                                                                                                                                                                                                                             x



                                  3                                              y = √x + 3
                                                                                                                                                                                                                                                                    4                             y=   | x + 2 – 4|
                                                                                                                                                                                                                                                                                                           3
                                                                                 y = √x                                       y = –x2 + 3x
                                                                                 y = √x – 3                                                                                          –4       –2       O                2               4              x            O                                                    x
                                                                                                      b                           y                                                                                                                                               4               10
                                                                                                                2                                         2
                                                                                                          y = x + 3x                                y = x – 3x

                    –3            O                       3                                x                                                                                                                                                                  d               y
                                                                                                                                                                                                                                                                                          y = 1 – sin x
                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                    y=4–x                                     1
C3




                                                                                                                                                                                                                                                                                                                                     C3
                                 –3                                                                                                                                                                                                                                                                          y = sin x
                                                                                                                –3            O                       3             x
                                                                                                                                                                            b                 y                                                                     –p p O            p    p 3p 2p              x
                                                                                                                                                                                                                                                                      – −1
                                                                                                                                                                                              8                                                                        2              2       2
                                                                                 y = √x – 3
                                                                                                                                                                                                       y = 2(4 – x2)                                          e                           y       y = 3 – sin x– p  (    )
                                                                                                      c     y                                                                                                                                                                                                    2
           2                                          y                                                                                                                                                                                                                                               y = 3 + cos x
                                                                                                                              y = x2 – 3x                                                                                                                                                 4
               y = (x + 3)2            y = x2 + 3                       y = x2       y = (x – 3)2                                                                                                                                                                                         3
                                                                                                                                                                                              4
                                                                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                                          1                   y = sin x

                                                     3                                                      O                                                       x                                                                                                                                    p 3p 2p x
                                                                                                                          2       3             5                                                                                                                  –2p – 3p –p– p O                p
                                                                                                                                                                                                                                                                          2     2 −1               2        2
                                                                                                                                                                                     –2       O             2                       x
                                                                                                                                          y = x2 – 7x + 10                                                                                                 8 a First: Stretch parallel to y-axis with scale factor of 2
                                                                                                                                                                                                                                2
                                                                                                                                                                                                                y=4–x
                                  –3                  O                      3                x                 y                                                                                                                                                                                  ⎛0⎞
                                                                                                      d                                                                                                                                                           Second: Translation of ⎜ ⎟
                                                                                                                                      y = x2 – 3x                                                                                                                                        ⎝1⎠
                                                                                                                                                                        7 a      y
                                 y = x2 – 3                                                                                                                                           y = x2 – 4x + 3                                                                          ⎛ −p ⎞                   ⎛0⎞
                                                     –3                                                                                                                                                                                                       b Translation of ⎜ 4 ⎟ and translation of ⎜ ⎟ in
                                                                                                                                                                                                                                                                               ⎜ ⎟                       3                   ⎝ ⎠
                                                                                                                                                                                3                                                                                                     ⎝ 0 ⎠
                                                                                                                                                                                                                                                                  either order
           3 a                          y                                                                                                            x                                                                                                        c First: A stretch parallel to x-axis with scale factor
                                                                                                           –1 O                       3     4
                                            y = |2x| = 2|x|
                                                                                                                                                                                                                                                                  of 1
                                                                                                                                                                                                                                                                     2
                                                                                                                                                                                 O        1   2    3    4       5           x
                                                                  y = |x|                                                                                                                                                                                         Second: A reflection in the x-axis
                                                                                                                                                                                                                                                                                                   ⎛0⎞
                                                                                                            –4                                                                                                                                                    Third: A translation of ⎜ ⎟
                                                                                                                                                                                                                                                                                          ⎝ 3⎠
                                                                                                                                                                                                                                                              d A stretch parallel to the y-axis with scale factor of
                                       O                                 x                                                        y = x2 – 3x – 4
                                                                                                                                                                                                                                                                                                  ⎛p ⎞
                                                                                                                                                                                                                                                                  4 and a translation of ⎜ 2 ⎟ , in either order.
                                                                                                                                                                                                                        2
                                                                                                                                                                                                            y = –2x + 8x – 6                                                                      ⎜ ⎟
 314
                                                                                                                                                                                –6                                                                                                                ⎝0⎠                              315
Answers                                                                                                                                                                                                                                                                                                                Answers

            e A stretch parallel to the y-axis with scale factor 2                      11 a Two stretches, both with scale factor k, one parallel                     9 a       y                                                            c              y
              and a stretch parallel to the x-axis with scale factor                         to the x-axis and the other parallel
              1                                                                              to the y-axis
                , in either order.                                                                                                                                               O                        3                       x
                                                                                                                              (k)
                 3
                                                                                                y = f(x)             y = kf x                                                                                                                               4
            f A reflection in the y-axis and a stretch parallel to
                                                                                                                                                                               –2
                                                                1                           b Two reflections, one in the x-axis and the other in
                 the y-axis with a scale factor of , in either order.
                                                                2                             the y-axis                                                                                                                                                    O                    4                                  x
        9     y                    y = 1 + tan x – p
                                                   (        )                                   y = f(x)             y = -f(-x)
                                                                                                                                                                               Turning point (3, 0)
                      y = tan x                    2
                                                                                                                                                                           b         y                                                        d                              y

                                                                                        Review 1                                                                                                                                                                             4
             1                                                                                    4x + 1            2(2 − x 2 )                         6x
                                                                                         1 a                   b                               c                                    2
                                                                                             ( x − 1)(2 x + 3)   ( x + 1)( x + 2)                ( x − 4)( x 2 − 1)
                                                                                                                                                                                                                                                                –4           O               4                  x
                                                                                              4 a 3b                     3m3                            1
              O             p         p x                                                   d a−b                     e 2                      f
                                                                                                                        m −1                       2 x( x − 1)                       O                        3                   x
                            2
            –1                                                                                   2( x + 2)                   1                                                 Turning point (3, 2)                                           e
                                                                                         2 a                          b x = − or 1                                                                                                                      y
                                                                                             ( x + 1)( x − 3)                3
                                  y = tan x                                                                                                                                c                                  y
                                                                                         3 a i 2x2 + x - 3 rem 0                    ii x2 + 2x - 3 rem 2
                                                                                           b (x - 1)(2x2 - x - 1) + 3                                                                                      2                                        4
       10 a i A stretch parallel to the x-axis of scale factor 2                           c (x - 2)(x - 3)(x + 3)
                                                   ⎛0⎞
                      and a translation of ⎜ ⎟ .                                         4 a i 8                      ii 5          iii 24
                                           ⎝1⎠                                                                                                                                                    –3       O              3           x             O                                                       x
                                                                                                iv 15                 v 2           vi 2                                                                                                                         1                   4
                 ii                                y
                                                                                            b i 4x (x - 1) ii 2x2 - 3 iii                  x +1                                Turning points (±3, 2)
                                                                                                                                                                                                                                              f                          y
                                   y = f(x)                                                     iv 2 x + 1 − 1                                                        10         y
C3




                                                                                                                                                                                                                                                                                                                                          C3
                                                                                         5 a     y
                                                                                                                                                                                                                                                                     4
                                                  –1 O                              x                                                                                           2
                                                                                                2
                                                                                                                                                                                1
                           (–6, –3)                                                                                                                                                                                                                         –4       –1 1             4                 x
                                       (–3, –4)                         1                                                                                                        O                                            x
                                                                        2 ( )
                                                                     y=f x +1                   O              2          4    x                                                                  2
                                                                                                                                                                                                                                              g         y
                                                                                                                                                                           (1, 1), (3, 1)
                                             ⎛1⎞                                            b 11 , 2 2
            b i A translation of ⎜ ⎟ , a stretch parallel to the                                 3       5
                                  0                                                                                                                                   11 a       y
                                             ⎝ ⎠
                      y-axis with scale factor 3, a reflection in the                    6 a 1 x −9                            b 1.5
                                                                                             2
                                                   ⎛0⎞                                                                                                                          3
                      x-axis, and a translation of ⎜ ⎟ .                                             y
                                                   ⎝2⎠                                   8 a                                                                                                                                                            O                             x
                                                                                                                                                                                                                                                                         2
                      y = -3x3 + 18x2 - 33x + 20
                      image point (0, 20)                                                                                                                                                                                                     h                      y
                                                                                                 6
                                              y                                                                                                                                  O         1                          x
                 ii                                                                                                                                                                      1
                                                                                                                                                                                           2
                                  (–3, 14)
                                                                    y = 2 – 3f(x – 1)                                                                                                                                                                   –2           O               2           x
                                                                                                                                                                                                       y
                                                                                                    O                               x                                      b
                                                                                                                2     3


                                                                                            b                             y                                                                                                               12 a 0, 2                              b -1, 2                            c       −1,   21
                                                                                                                                                                                                                                                                                                                                   3
                                                   (1, 5)                                                                                                                                                                                     d   −7,   21                       e 1, 9                             f 1, 9
                                                                                                                                                                                                                                                            3
                                                                                                                          6
                                                                                                                                                                                              1       O               1           x       13 a x < −1, x > 2 1                           b       −7   < x < 21
                                                                                                                                                                                         –1                       1                                                      3                                              3
                                                                                                                                                                                              2                       2
                                           –1 O                                 x
                                                                                                                                                                                                                                              c 11 < x < 4                               d x < 1, x > 9
                                                                                                                                                                                                                                                 3
                                                                                                                                                                                                  –3
                                (–3, –4)                    y = f(x)
                                                                                                             –3 –2        O         2      3              x                                                                                   e −1 2 x 5                                 f -3           x               5
                                                                                                                                                                                                                                                   3

 316                                                                                                                                                                                                                                                                                                                                    317
Answers                                                                                                                                                                                                                                                                                                                       Answers

       14 a -2, 1, 3                              b x          1, x     3                    2   a -1                  b -2                     c -2                      b (30°, 2.2), (150°, -0.15), (-210°, -0.15), (-330°, 2.2)                                        j   tan 6q                   k cos 2p               l   cot 8q
                                                                                                                                                                          c (±52°, 1.6), (±310°, 1.6)                                                                                                             5
                                                                                                                                                                                                                                                                               2cos2 q
          c x -3, -1               x       1, x     3
                                                                                                                                                                                                                                   (                )(             )
                                                                                                 d    1                e       2                f -1                                                                                                                       m                            n 2cosec 2q            o 2cot 2q
                                                                                                       3                                                                  d (0, 0), (±180°, 0), (±360°, 0), 45°, 1 , 225°, 1 ,                                                           2
                                                                                                                                                                                                                                                2              2
                                                                                                                                                                              (             )(                    )
       15 a y          3               b i        6                   ii 16
                                                                                                                                                                                           1 ,        1                                                                                                      1                      1
                                                                                             3   a ±36.9°              b 21.8°, -158.2° c 19.5°, 160.5°                           −135°,       −315°,                                                                   2 a 1                           b                      c
           c       y                                                                                                                                                                       2          2                                                                        2                              2                      2
                                                                                                 d ±143.3°             e -15.9°, 164.1° f -30°, -150°
                               0<c         3                                                                                                                        Exercise 2.3                                                                                           d 2                          e   2− 3               f   1
               3                                                                                         17                    15                                                                                                                                                                                                    2
                                                                                             4   a   −                 b   −                                                                                                                                                                                   4                   4
                                                                                                         15                     8                                   1     a p                   b p                          c 0                         d −p
                                                                                                                                                                            4                     3                                                          4
                   O                   9                   x
                                                                                                                               9                                                                                                                                        3 a 24 , − 7 , − 24                      b ± 4 2 , 7, ±4 2
                                                                                             5   a − 41                b   −                                              e p                   f 0                          g 3p                        h − p                 25        25        7                       9   9     7
                                                                                                     40                        40                                           6                                                          4                     6
       16 a                y
                                                                                             6   a cot2 b              b sec3 b                                                                                                                                            c ± 120 , 119 , ± 120
                                                                                                                                                                    2     a 2 2                 b    7
                                                                                                                                                                                                                             c 0                         d 5                   169 169       119
                                                                                                 c cosec b             d cosec5 b                                             3                     3                                                          8
                                                                                                                                                                                                                                                                                                                7
                                                      y=
                                                           1
                                                             f(x + 1)                                2                                                                                                                                                                  4 a 1, ± 3 7                    b   −     , ±4 2
                                (1, 2)                                                                                                                                            1                      3                                                                                                      9     9
                         2                                 2                                 7   a   3                 b 4                      c 1                       e                     f                            g − 5                                             8          8
                                                                                                                                                                                   2                    2                        2
                                                                                                                                                    ± 3                                                                                                                 5 a 2 , 21 , 2                  b 2, 5 , 2                  1
                                                                                                                                                                                                                                                                                                                                      , 3 ,1
                                                                                                                                                                                                b 90° or p
                         1                                                                       d   ±3                e   3                    f                                                                                                                                                                              c
                                                                                                                                                                    3     a 0                                                                                                  5     5             21       3     3        5        10 10 3
                                                                                             8   a   1                 b   sin x                c   cot x                                                             2
                       –1 O    1       2              4    5     6              x                d   tan x             e   1                    f   1               4     a i          1 − x2                ii             x                       b 1                 6 a 2, 5 , 2                    b       1
                                                                                                                                                                                                                                                                                                                  , 3 ,1       c   1
                                                                                                                                                                                                                                                                                                                                      , 2 ,1
                        –1                                                                                                                                                                                                                               x                     3     3         5                10 10 3                  5 2
                                                                                                 g   1                 h   1                    i   1                                                                     1 − x2                                                                                                    5
                                                  (4, – 3 )
                                                        2                                                         ⎛ 90° ⎞
                                                                                                                                                                    5     a       1+ x          b p −q
                                                                                                                                                                                                    2                                                                   7 a 1 - 2x2                     b     6x               c 18 −2 x
                                                                                                                                                                                                                                                                                                                                         2

                                                                                             9   A translation of ⎜ ⎟                                                             1 + x2                                                                                                                    9 − x2                   x
           b       y                                                                                              ⎝ 0 ⎠                                                                                                                                                 8 a    22.5°, 67.5°, 202.5°, 247.5°
                                                                                                                     ⎛ 90° ⎞                                        Exercise 2.4                                                                                          b    15°, 165°, 195°, 345°
                                (4, 5)                                                           A translation of ⎜ ⎟ followed by a reflection                               1                       3                                  3
                                                                                                                   ⎝ 0 ⎠                                                1 a                     b                            c                                            c    45°, 135°
                                                  1                                              in the y-axis                                                                2                     2                                  2
                                                  2   ( )
                                               y=f x +1
                                                                                                 sec (x - 90°) = cosec x
                                                                                                                                                                          d −1                  e 1                          f -1
                                                                                                                                                                                                                                                                          d
                                                                                                                                                                                                                                                                          e
                                                                                                                                                                                                                                                                               30°, 150°, 270°
                                                                                                                                                                                                                                                                               210°, 330°
                                                                                                 cot (90° - x) = tan x                                                        2
                   O
                                                                                                                                                                                                                                                                          f    30°, 150°, 90°, 270°
                                       6                     14             x                                                                                           2 a sin 3A      b cos 5a        c tan 3x      d cot 2x
                                                                                             Exercise 2.2                                                                                                                                                                 g    60°, 90°, 270°, 300°
C3




                                                                                                                                                                                                                                                                                                                                                   C3
                                                      (10, –2)                                                                                                          3 a sin (45° - x) or cos (45° + x)
                                                                                             1   a   80.5°, -60.5°                      b -34.5°, 174.5°                                                                                                                  h    0°, 30°, 150°, 210°, 330°, 360°
                                                                                                                                                                          b sin (60° + x) or cos (30° - x)
       17 a A stretch (scale factor 2) parallel to the y-axis                                    c   -56.6°, 123.4°                                                                                                                                                       i    60°, 109.5°, 250.5°, 300°
                                                                                                                                                                          c tan (60° + x)               d tan (45° + x)
                                                               ⎛ 0⎞                              d   31.7°, -58.3°, 121.7°, -148.3°                                                                                                                                       j    90°, 270°, 45°, 255°
                                                                                                                                                                          e 1                           f cos 2x
               followed by a translation of ⎜ −5 ⎟                                               e   40°, -80°, 100°, -140°             f       -63.6°                                                                                                                    k    0°, 180°, 60°, 300°
                                            ⎝ ⎠                                                                                                                                    3 −1                                                3 +1
                                                                                                 g   ±54.7°, ±125.3°                    h       ±49.1°, ±130.9°         5 a                     b        3 −1                c                                            l    0°, 165.6°, 360°
                              ⎛2⎞                                                                i   ±90°, 19.5°, 160.5°                j       0°, ±180°, ±41.4°                 2 2                   2 2                            3 −1                               m    0°, 78.5°, 281.5°, 360°
           b A translation of ⎜ 0 ⎟ followed by a stretch
                              ⎝ ⎠                                                                k   ±60°                               l       ±45°, ±135°                                                                                                               n    0°, 120°
                                                                                                                                                                                   3 −1         e − 3 +1                               2 2
               (                       )
                          1                                                                                                                                               d                                                  f                                            o    90°, 180°, 270°
              scale factor parallel to the y-axis                                            2   a ± p , ± 3p                  b ± p , ± 5p                                        3 +1                      3 −1                       3 −1
                          2                                                                         4    4                          6    6                                                                                                                                p    No solutions in range
           c A stretch (scale factor 2) parallel to the y-axis                                      p
                                                                                                 c ± ,± 2p                               p , 2p
                                                                                                                               d 0, ±p, ± ±                             6 a 63                  b   −
                                                                                                                                                                                                        63                   c     −
                                                                                                                                                                                                                                       65                                 q    19.1°, 70.9°, 199.1°, 250.9°
                                                                                                    3    3                               3    3                               65                        16                             16                                 r    112.8°, 247.2°
             followed by a reflection in the x-axis, and then a
                                                                                                   45°, 225°, 71.6°, 251.6°                                             7 a       13            b       84                   c         13                                 s    35.3°, 144.7°, 215.3°, 324.7°
                                       ⎛0⎞                                                   3   a                                                                            −                     −                              −
               translation of ⎜ ⎟                                                                                                                                                 85                    85                             84                                 t    23.6°, 156.4°, 90°, 270°
                              ⎝1⎠                                                                b 45°, 225°, 116.6°, 296.6°
                                                                                    ⎛ −2 ⎞       c 90°, 221.8°, 318.2°                                                  8 a 12 + 5 5            b 2+ 5                                                                    u    90°, 323.1°
       18 a 2 x + 3                          c T1: A translation of ⎜ ⎟                          d 60°, 300°                                                                                                 30
                                                                                                                                                                                                                                                                       11 tan 3 A = 3 tan A − tan A
                                                                                                                                                                                                                                                                                                 3
                   x+2                                               ⎝ 0⎠
                                                                                                 e 0°, 360°, 138.6°, 221.4°                                                                                                         5 + tan b                                                 1 − 3 tan A
                                                                                                                                                                                                                                                                                               2
                                               T2: A reflection in the x-axis                                                                                           9 a 1                   b 1                          c
                                                                                                 f 26.6°, 206.6°                                                              13                    2                              1 − 5 tan b                         Exercise 2.6
                                                                                    ⎛0⎞          g 0°, 360°                                                         11 a      17.1°, 197.1°      b 113.8°, 293.8°
                                                  T3 : A translation of ⎜ ⎟                                                                                                                                                                                             1 a    5, 36.9°                 b   13, 67.4°      c 5, 63.4°
                                                                        ⎝2⎠                      h 45°, 225°                                                           c      160.9°, 340.9°     d 77.9°, 147.1°, 257.9°, 327.1°                                          d    2 5, 26.6°               e   5, -53.1°      f 17, -61.9°
                                                                                                 i 30°, 150°                                                           e      106.1°, 286.1°     f 38.2°, 141.8°                                                        2 a    4.9°, 129.9°             b   17.6°, 229.8°
       Before you start Answers
                                                                                             4   a x2 = 4y2 + 16          b 4x2 = 9y2 + 36                             g      52.5°, 142.5°, 232.5°, 322.5°                                                               c    82.1°, 334.1°            d   102.3°, 195.7°
       Chapter 2                                                                                 c x2y2 = 144 - 9x2       d (x - 1)2 + (y - 1)2 = 1                    h      114.3°, 335.7°
       1   a       3           b       3 +1                    c 1              d 0                                             2     2                             13 a      i +1, 50°       ii -1, 230°                                                               5 a p                           b 7p , − p
                                                                                                 e x2(y2 - 8y + 17) = 9 f x2 + b 2 = 1                                                                                                                                       3                              12        12
                                                                                                                              a     y                                  b      i +1, 340° ii -1, 160°
       2   a 15                                b       8                                                                                                                                                                                                                   c p , -0.927                 d p , 0.643
               17                                     15                                     5   a A stretch parallel to the x-axis of scale factor 2                         1                              33                                                              2                              2
       3   a 17.5°, 162.5°                     b 116.6°, 296.6°                                                                                                     16 a 3                          b 65                                    c p
           c 75.5°, 284.5°                                                                       b An enlargement, centre (0, 0) and scale factor 1                                                                                                 2                   6 a 63.4°, -116.6°, 0°, 180°, 360°
                                                                                                                                                     2                                                                                                                    b -11.3°, -131.3°, 108.7°, -36.5°, 83.5°, -156.5°
               − 21                                                                                                 ⎛ −90° ⎞                                        Exercise 2.5
       4   a                                                                                     c A translation of ⎜      ⎟ and a stretch parallel to                                                                                                                    c -38.8°          d 180°
                   5                                                                                                ⎝ 0 ⎠                                               1 a sin 46°                 b cos 84°                               c tan 140°                                                                              1
                                                                                                                                                                          d cos 100°                e sin 6q                                f cos 8q                    7 a        5, 50.8°             b       5, 50.8°       c       , 50.8°
                                                                                                   the y-axis of scale factor 2                                                                                                                                                                                                      5
       Exercise 2.1                                                                                                                                                                                                                                 1
                                                                                                 d A rotation of 180° about the origin                                    g cos2 20°                h 2cos2 q                               i         sin 2q            8 a 10, 36.9°                   b -10, 71.6°           c 10, 161.6°
       1   a -1.06                     b -0.839                       c -2.92
                                                                                                                 (             )(           )
                                                                                                                                                                                                                                                    2
           d -3.24                     e -1.73                        f 1.56                 6   a (±180°, 0), ±60°, 1 , ±300°, 3
 318                                                                                                                 2          2                                                                                                                                                                                                                319
Answers                                                                                                                                                                                                                                                                                                                  Answers

        9 a 13, 67.4°           b Max 13, 157.4°; Min -13, 337.4°                6 a i           p                ii p                       iii p                            5 a Q(x) = 2x + 5, R(x) = 2x - 4                      b l = -11, m = 10    15 a                       y
          c 33, 157.4°          d 10, 53.1°                                                      6                     3
                                                                                                                                                                              6 a 5sin (q + 36.9°)                                  b 113°, 353°                                            f(x) = |2x + 1|
          e -2, 233.1°          f 1, 157.4°                                          b i         1                ii       1                 iii      3                                                                                                                             4
                                                                                                 2                          2                                                 7 a R = 17, a = 76°
       10 a     13 sin (q − 33.7° )
                                                                                 7 b 0°, 228.2°, 131.8°                                                                          b 119° (2.08 rad), 33° (0.576 rad)                                                                 2
          b                                  y
                                                                                 8                                                                                            8 a R = 13                             b q = 157°                                                                          g(x) = |x – 1|
                                     √13                                                                                       y
                                                                                                                                                                              9 a f(x)             9                 b Does not exist       c -40
                                                                                                      y = sec x             3
                                                                                                                                                                             10 a (x - 2)2 - 3                                                                                 –1 O          1                          5 x
                                           O                                x                                               2
         –326.3          –146.3              33.7        213.7        360                                                                          y = sec (x – 90º)                                                                                        b x = 0, -2
                                         –2                                                                                                                                      b i       f(x)            -3        ii f −1 (x ) = 2 + x + 3 , x   -3
                                                                                                                            1
                                  – √13
                                                                                                                                                             y = cos x                                                                                   16 a i    3, − 7                            ii 3             iii 3
                                                                                                                                                                                 c                         y                                                               3
                                                                                                                            O                                            x
          c A stretch parallel to the y-axis of scale factor 13                                  –180º     –90º
                                                                                                                           −1
                                                                                                                                           90º        180º
                                                                                                                                                                                                                                                            b i    x < −7, x > 3                     ii x Î R         iii x > 0
                                                                                                                                                                                                                                                                        3
                                          ⎛ 33.7° ⎞                                                                                                                                                        4
              and a translation of ⎜   ⎟                                                                                   −2                                                                                                                            17 a        y
                                   ⎝ 0 ⎠
       11 2 5, t = 1.29
       12 r1 = r2 = r3 = r4 = 5                                                                                                                                                                            2                                                               y = |f(x)|
                                                                                                                  ⎛ 90° ⎞                                                                                                                                          3
          a1 = 36.9° a2 = -36.9 a3 = 233.1°                  a4 = 126.9°                 A translation of ⎜             ⎟
                                                                                                                  ⎝ 0 ⎠                                                                                             y = f(x)
       Review 2                                                                  9 a 84                                    13                    c 36                                –3                    O    1 2 3 4 5 x
                                                                                                              b        −
                   1                                          5                          85                                85                         77
        1 a i                   ii       5             iii
                     2                                        2                                                                                                                                        −2
                                                                                10 a 1 2 ( 3 − 1)             b 17 − 7 3                                                                                                                                               O                         3                  x
          b i     13
                                ii − 12                iii − 13                          4                                 26 2
                   5                  5                      12
        2 a   14.5°, 165.5°        b 174°              c 24.2°, 114.2°          11 a     19.1°, 199.1°            b 90°, 270°, 120°, 240°                                    11 a Stretch parallel to the y-axis by scale factor 2,
          d   3.2°, 50.2°, 123.2°, 170.2°                                          c     30°, 150°, 270°          d 60°, 300°                                                     reflection in the x-axis then translation by 1 unit                                                   y
                                                                                                                                                                                                                                                            b
          e   22.5°, 67.5°, 112.5°, 157.5°             f 120°                      e     60°, 300° f 0°, 180°, 30°, 150°, 210°, 330°, 360°                                        parallel to the y-axis
C3




                                                                                                                                                                                                                                                                                                                                            C3
        4 a   45°, 63.4°, -116.6°, -135°                                           g     0°, 360°, 124.8°, 235.2° h 90°, 199.5°, 340.5°
                                                                                   i     0, 90°, 360°                                                                            b y = x2 + 4x + 8                                                                                          y = f(|x|)
          b   30°, 150°, -19.5°, -160.5°                                                                                                                                                                                                                                            3
          c   ±90°, 19.5°, 160.5°                                               13 a     0°            b 0°, ±180°, 76.0°, -104°                                             12 a -2.25                f(x)     4    b k=1
          d   ±75.5°, ±120°                                                        c     ±18.4°, ±161.6°
                                                                                14 a     y = 1 - 2x2 b 2x2(y + 1) = 1 c x(1 - y2) = 2y                                       13 a f −1 (x ) = x , x ∈
          e   ±90°, 56.3°, -123.7°                                                                                                                                                                     5
          f   45°, -135°, 63.4°, -116.6°                                        15 a 3 4                                                                                         b gf (x ) = 3 x 2 − 2, gf −1 (x )
                                                                                                                                                                                          −1
                                                                                                                                                                                                                               −2                                 –3                    O                   3                   x
                                                                                             7                                                                                                             25
                                   ⎛−p ⎞
        5 a i     A translation of ⎜ 2 ⎟ and a stretch                          16 a p                     b 2p                       c     2                d   2
                                   ⎜   ⎟                                                 3                        3                         13                    5          14 a i            y
                                   ⎝ 0⎠
                  (scale factor 2) parallel to the y-axis                                                                                                                                                                                                   c              y
                                                                                17 3 + 8 2
                            (                    )
              ii A stretch scale factor 1 parallel to the x-axis,
                                        2                                       18 60°
                                                                                        15
                                                                                                                                                                                                                                                                                y = f(x – 3)
                  followed by a reflection in the x-axis, and                                                                                                                                  a
                                                                                19 b 24°                   c 99.7°, 170.3°, 279.7°, 350.3°
                                         ⎛0⎞
                  a translation of ⎜ ⎟
                                   ⎝ 3⎠                                         20 b 0°, 180°, 360°, 26.6°, 206.6°
                                         ⎛p ⎞                                   22 a 13, 22.6°                b 17, 61.9°
              iii A translation of ⎜ 4 ⎟ , followed by a stretch                                                                                                                                                                            x                              O                         6                  x
                                         ⎜ ⎟                                       c 5, 26.6°                 d 2, 45°
                                                                                                                                                                                               O                                      b
                                         ⎝0⎠
                  (scale factor 2) parallel to the y-axis, and a                23 a 5, 53.1°                 b 5                                c 103.3°, 330.5°
                                 ⎛0⎞                                            24 a i           ± 10, 71.6°, 251.6°                      ii ± 5, 296.6°, 116.6°                     ii        y
                  translation of ⎜ ⎟                                                                                                                                                                                                                     18 a                   y
                                 ⎝1⎠                                                 b i 20.8°, 122.4°                     ii 0°, 233.1°
          b                                                                                                                                                                                4b
                                     y
                                                                                25 a 4 10, 18.4°                           b 38.0°, 285.2°                                                                                                                                                           y = |3x – 2|
                                     4                                               c i         −4   10                   ii 161.57°
                                                                                                                                                                                                                                                                               2
                                     3
                                                                                                                                                                                                                                                                                                                            1
                                     2                                          Revision 1                                                                                                                                                                                                                            y=
                                                                                                                                                                                                                                                                                                                            x
                                     1                                           1        x+4                                                                                                                                                                                   O                                                x
                                                                                                                                                                                                                                                                                                                  5
                                                                                     (1 + x )(2 + x )2                                                                                         O                                 x
                                                                                                                                                                                                                    2a
              –180º      –90º      O             90º   180º x                            x ( x + 2)                                  x2 + 4 x + 2                                                                                                                              −2
                                  −1                                             2 a                                       b
                                                                                           x +1                                    ( x + 1)( x + 2)                              b a = 3, b = 9, 0              f(x)     9                                  b There is only one intersection.
              (-90°, 0), (90°, 0)                                                3 Q(x) = x2 + 3x - 2, R(x) = -3                                                                 c gf(x) = 4 - x                                                            c x=1
 320          (0, 1), (0, 2)                                                     4 Q(x) = x2 - x + 4, R(x) = x + 1                                                                                                                                                                                                                        321
Answers                                                                                                                                                                                                                                                                                         Answers

       19 a             y                                                                   Exercise 3.1                                                                                                                   ⎛2⎞             b                            y
                                                                                                                                                    ⎛0⎞          c Reflection in y-axis; translation of ⎜ ⎟ ;
                             y = |f(x)|                                                     1   a Reflection in y-axis; translation of ⎜ ⎟                                                              ⎝0⎠                                                                    y = f –1(x)
                                            P                                                                                          ⎝1 ⎠                                         ⎛ 0⎞
                    2                                                                           b Reflection in y-axis; reflection in x-axis;                        translation of ⎜ ⎟
                                                                                                                                                                                    ⎝ −3 ⎠                                                                     In 4                        y = f(x)
                                                                                                                     ⎛0⎞
                                                                                                   translation of ⎜ ⎟                                        Exercise 3.2
                                                                                                                  ⎝1 ⎠
                       O                                                 x                                                                                   1   a i      4.48               ii     0.223                iii   0.223
                                            3                                                   c Stretch (scale factor 3) parallel to y-axis;                     iv     0.405              v      -0.405               vi    2.47             –4 –3                  O         In 4              x
                                                                                                                  ⎛0⎞                                            b i      5                  ii     x                    iii   5
           b                                       y                                               translation of ⎜ ⎟
                                                                                                                  ⎝2⎠                                              iv     x                  v      5 + ln 2             vi    25
                                                            y = f(|x|)                                                                                                                                                                                             –3
                                                                                                d Stretch (scale factor 3) parallel to y-axis; reflection                                    ⎛0⎞
                                                                                                                                                             2   a Translation of ⎜ ⎟ ; x > 0, x Î R
                                               2                                                                                      ⎛0⎞                                          2         ⎝ ⎠                                                                   –4
                                                                                                   in x-axis; translation of ⎜ ⎟                                                                                           ⎛0⎞
                                                                                                                             ⎝2⎠                                 b Reflection in x-axis; translation of ⎜ ⎟ ;
                                                                                                             (                2)
                                                                                                                                                                   x > 0, x Î R                         ⎝3⎠                                    f -1(x) = e x - 4
                                                                                        x       e Stretch scale factor 1 parallel to x-axis; stretch
                            –3                  O                       3                                                                                                                                                                      Domain x Î R
                                                                                                   (scale factor 3) parallel to y-axis                                                       ⎛ −2 ⎞                                            Range y > -4
           c                              y                                                                                                                      c Translation of ⎜               ⎟ ; x > -2, y Î R
                                                                                                                     ⎛ −1 ⎞                                                                  ⎝ 0⎠
                                                    y = f(x + 3)                                f Translation of ⎜ 0 ⎟                                                                                                                     c               y
                                                                                                                 ⎝ ⎠                                                              ⎛2⎞
                                      2                                                                                                                          d Translation of ⎜ ⎟ ; x > 2, y Î R
                                                                                                                     ⎛2⎞                                                          ⎝0⎠
                                                                                                g Translation of ⎜ ⎟
                                                                                                                 ⎝0⎠                                                                                                                                      4                                 y = f(x)
                                                                                                                                                                 e Stretch (scale factor 3) parallel to y-axis;
                                                                                                                                       ⎛2⎞                                                                                                                3
                                          O                              x                      h Reflection in y-axis; translation of ⎜ ⎟                                          ⎛0⎞
                       –3                                                                                                              ⎝0⎠                           translation of ⎜ ⎟ ; x > 0, y Î R
                                                                                                                                                                                    ⎝1 ⎠
                                                                                            2   A = 100
       20 a                       y
                                            y = f(x + 1)                                           t       0         5        10        15         20                            (                        )
                                                                                                                                                                 f Stretch scale factor 1 parallel to x-axis;
                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                           O                                           x
                                                                                                                                                                                                                                                                                 3   4
                                                                                                   P       100   128          165       212        272                                       ⎛0⎞
C3




                                                                                                                                                                                                                                                                                                                   C3
                                                                                                                                                                     translation of ⎜ ⎟ ; x > 0, y Î R
                                                                                                                                                                                     1       ⎝ ⎠
                                                                                                13.9 weeks                                                                                                                 ⎛0⎞
                        –2        O                     2           x                                                                                            g Reflection in x-axis; translation of ⎜ ⎟ ;                                                                     y = f –1(x)
                                                                                                                                                                                                        ⎝1 ⎠
                                                                                            3   M0 = 6                                                             x > 0, y Î R
                                                                                                                                                                                                                                               f -1(x) = -ln (x - 3)
                                      (0, –a)                                                      t        0            5        10        15          20                                                                                     Domain x > 3
                                                                                                                                                                                                                           ⎛1 ⎞
           b                              y                                                        M        6     3.64         2.21         1.34     0.81
                                                                                                                                                                 h Reflection in y-axis; translation of ⎜ ⎟ ; stretch                          Range y Î R
                                                                                                                                                                                                          ⎝0⎠
                                                       y = f(|x|)                                                                                                  (scale factor 2) parallel to y-axis; x < 1, y Î R
                                                                                                Half-life = 6.93 sec                                                                                                                       d                       y
                                                                                            4   a 0.1733        b 113        c 7 weeks
                                                                                                d There is a limit to the number of organisms                                                ⎛ −3 ⎞
                        –3             O                            3 x                           possible in a unit volume of water.                        3   a Translation of ⎜ ⎟ ; stretch (scale factor 3) parallel
                                      –b                                                                                                                                          ⎝ 0⎠                                                                             2
                                                                                            5   b 332.2 hours                                                                                                                                                          2In 2
                                                                                                                                                                                               ⎛0⎞
                             (–1, –a)           (1, –a)                                     6   a     N                                                              to y-axis; translation of ⎜ ⎟                                                                 1
                                                                                                                                                                                               ⎝1 ⎠                                                                          2In 2
                                                            1                                      200                                                           b (-2.4, 0), (0, 3.2)                                                                             O                         x
           c i         a = 2, b = 1                    ii − 6                                                                                                                                                                                                               1 2
                                                                                                                                                             4   a           y
       22 a    0°, 60°               b 45°, 71.6°
                                                                                                                                                                                                  y = f –1(x)                                                                           y = f(x)
          c    70.9°                 d 90°, 120°
                                                                                                   150
       23 b    59.0°, 63.4°, 239.0°, 243.4°                                                                                                                                                                   y = f(x)                                                      y=   f –1(x)
       24 b    22.5°, 67.5°                                                                                                                                                                                                                     -1
                                                                                                                                                                                                                                               f (x) = 2ln (2 - x)
       25 a    i p        ii 3       b − 1        c                            −
                                                                                   36                  O         2            4             t
                       4              2                         2                  85                                                                                     11
                                                                                                                                                                                                                                               Domain x < 2
       26 a i 13cos (q + 22.6°)                             ii 49.5°         b 53.1°            b 150         c 200                                                   e
                                                                                                                                                                        –2
                                                                                                                                                                                                                                               Range y Î R
                                                                                                d A stretch (scale factor 50) parallel to y-axis;                            O       1                              x
                                                                                                                                                                                 –2      1
       Before you start Answers                                                                                                              ⎛ 0⎞                                e
                                                                                                  a reflection in x-axis; a translation of ⎜ ⎟                                                                                         5   a f −1 (x ) = 3 − 1 e x             g-1(x) = 2ln x
                                                                                                                                                                                                                                                               2
                                                                                                                                             ⎝ 200 ⎠                                 x −1
       Chapter 3                                                                                                                                                     f −1 (x ) = e                                                             Domain x Î R                    Domain x > 0
                                                                                                             (                    )
                                                                                                                                                                                      2
       1   a 1                   b 1                            c 2                         7   a Stretch scale factor     1 parallel to x-axis;
                                                                                                                                                                     Domain x Î R                                                              Range y < 3                     Range y Î R
               9                        3                                                                                  2
       2   x = 9, y = 10 − 1, z = 4                                                                               ⎛ −1.5 ⎞                  ⎛0⎞                      Range y > 0
                                                                                                  translation of ⎜       ⎟ ; translation of ⎜ ⎟
       3   a x − 5 , x Î R, y Î R                               b 2x + 3, x Î R, y Î R                            ⎝  0 ⎠                    ⎝4⎠

                                                                                                             (                    )
                   3
           c   x2    + 1, x      0, y           1                                               b Stretch scale factor 1 parallel to x-axis;
                    2                           2                                                                           2
                                          x2                                                                      ⎛ 0.5 ⎞                  ⎛ 0⎞
 322   4   a 3x2 + 6             b              −3                                                 translation of ⎜ ⎟     ; translation of ⎜ ⎟                                                                                                                                                                   323
                                          4                                                                       ⎝0 ⎠                     ⎝ −4 ⎠
Answers                                                                                                                                                                                                                                                                                             Answers

            b                             y                                                                                     y                                     b y = ex + 2                                                       Before you start Answers
                                                                                                                                         d
                                                                                                                                                                                     y
                            y = f –1(x)                                                                                                                                                                                                  Chapter 4
                                          3                                                                                                                                                           y = f –1(x)                        1     Gradient of chords will approach 2.
                                                                                                                                                                                                                                         2     a 4                      b 2                                c -3
                                                                                                                                                                                                                                         3     a y = 4x - 10            b y = 2x - 5
                                                                                                                                                                                    3                                                    4     (-1, 6) maximum
                                          O                               3                x                                                                                        2                                                          (3, -26) minimum
                                                                                                                                                                                                                     y = f(x)
                                                                                                                            1                                                                                                            Exercise 4.1
                                                                              y = f(x)                                                                                                                                                       1 a 2x + cos x                b 6 + sin x
                                                                                                                                O                         x                         O           2    3                   x                     c cos x + sec2 x            d cos x + 1

                                                      (
                  f(x) passes through 2 1 , 0 and (0, ln 6)
                                                              2       )                            3    y
                                                                                                            a
                                                                                                                                                                                                                                               e -3sin x - 4sec2 x         f 6 x + 2 + 1 sin x
                                                                                                                                                                                                                                                                                               2
                  f (x) passes through (ln 6, 0) and 0, 2 1
                   -1
                                                          2                            (       )                                                                         Domain x Î R
                                                                                                                                                                         Range y > 2
                                                                                                                                                                                                                                             2 a 4
                                                                                                                                                                                                                                               d -1
                                                                                                                                                                                                                                                                           b p
                                                                                                                                                                                                                                                                           e 3
                                                                                                                                                                                                                                                                                                           c 6

            c gf (x ) = 6 − 2 x                                                                                                      y = ln x                                                                                                3 x + y 2 =1+ p
                                                                                                                                                                      c y = -ln (x - 2)                                                                         4

                                                                                                                                                                                                                                                                                    (                  )
              gf (-5) = 4                                                                                                                                                                                                                                   p
                                                                                                                                                                                     y                                                       4 y 2 − x = 1 − , (−0.214, 0) i.e p − 1, 0
                                                                                                                                                                                                                                                               4                   4
                                                                                                                                                                                                    y = f –1(x)
       Exercise 3.3
        1 a       2.20                    b       2.00                             c       2.14
                                                                                                       O        1               e2                x                                                                                          5 y            p
                                                                                                                                                                                                                                                   = x + 1 − , (0.571, 0) i.e
                                                                                                                                                                                                                                                            2                (p
                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                 − 1, 0    )
                                                                                                                                                                                                                                                    2
          d       0.882                   e       -2.14                            f       -2.00                                                                                                                                             6 a      p                    b 5p
                                                                                                                                                                                                                                                    3                         6
          g       -0.405                  h       0.996                            i       0.870        y                                                                           3
                                                                                                             c                                                                                               y = f(x)
                                                                                                                                                                                                                                             7 a    p                      b 0.464
          j       0.0767                  k       3                                l       0.232                                                                                    2                                                               2
                                                                                                                                         b
        2 a       403                     b       6.39                             c       1                                                                                                                                              8 a       p                      b 3p
          d       0.859                   e       -4.39                            f       -5.56                                                                                                                                                                               4
                                                                                                                                                                                                                                          9 5, -5
        3 a       0, ln 2                 b       ln 3, ln 4                       c       ln 2                                                                                      O                                    x              10 a Acos t
                                                                                                                                                                                                2     3
C3




                                                                                                                                                                                                                                                                                                                       C3
          d       ln 2.5                  e       -ln 2, ln 1.5                    f       ln 4                                                                                                                                          11 a i q0                ii q0
                                                                                                       1
        4 a (0.434, 20)                   b       (   −
                                                          1
                                                          3
                                                            ,2    )                c (-0.564, 1)                                                                                                                                            b i q0                ii -q0

            (                  )
                                                                                                                                                                         Domain x > 2                                                    12 a 5 metres b 0.54, 3.68 s c -5.23 m s-2, t = 6.37 s
                           1
                − ln 2 , −                                                                                                                                               Range y Î R
                                                                                                       O            1                             x
        5                    and (0, 1)                                                                          –2     1       1
                                                                                                                                                                                                                                         13 a i x 0.78 radians
                           2                                                                                    e           e   2

        6 a 2.5                           b 2.68                                                                                                                            1                                                                   ii x 0.51 radians
                                                                                                                                                                      d y = 2 ln (1 − x )
        7 a y=5
                                                       5 40
                                          b (0, 8), ln 3 , 3      (                )                    y
                                                                                                                                                                                            y
                                                                                                                                                                                                                                               b k=1
                                                                                                                                                                                                                                                         2
        8 (ln 2, 3)                                                                                                                                                                                                                      Exercise 4.2
        9 1 ln 4 = 0.0575                                                                                                                                                    y=   f –1(x)
                                                                                                                                                                                                                                             1 a                 y
                                                                                                                                                                                                                                                                                 y = 3x
            5        3
                                              2                                                                                                                                             1                                                                  20                 y = ex
            a 15 million                  b 26 million                                                                                        d
                                                          3
       10 1 ln 10 = 0.0105, t = 65.8 years                                                                                                                                                  O        1               x                                                                  y = 2x
            10          9
       11 193 years                                                                                                                               x
                                                                                                       O                1
       12 36.4° C
                                                                                                   4 a ln 2                                  b ±ln 2
       Review 3                                                                                    5 a 1 (ln 6 − 3)                          b 1 (e4 − 2)                                                 y = f(x)
        1 a 1.2                      b 0.85                                                            2                                          3
                                                                                                   6 a 7.39, 0.69, 1.79                      b ln x, ln 2(x + 1)                                                                                                1
          c 11                       d 0.95                                                                                                                              Domain x < 1
                                                                                                   7 a y = e x-3                                                                                                                                    –3          O             3                    x
        2                                                                                                           y                                                    Range y Î R
                                      y       b
                         a                            y = ex                                                                                                                                                                                   b i 1                       ii e = 2.718…
                                                                                                                                        y = f –1(x)                 8 A=5                                                                      c i y=x+1                   ii y = ex
                                    5
                                    4                                                                                                   y = f(x)                         t              0       5          10             15    20           2 a 6x + e x                  b 4e x + 6
                                    3                                                                                                                                    P              5   6.42          8.24           10.59 13.59           c 5cos x + 2e x             d 3 sec 2 x − 1 e x
                                                                                                                                                                                                                                                                                               2
                                    2                                                                        e–3                                                                                                                               e 1 - ex                    f -e x
                                                                                                                                                                      t = 13.9 days
                                                                                                                                                                                                                                             3 a i e2 - 1                  ii 6.39
                                    1                                                                            O e–3                                x             9 a T0 = 100                         b 332 °C                              b i 6 - 4e                  ii -4.87
                                                                                                                                                                                                                                                          p
                                     O                                         x                           Domain x Î R                                            10 a 180                              b 20                   c 200          c i e2 + 1                  ii 5.81
                                                      c                                                    Range y > 0                                             11 a 1.46                             b 1                    c 45 °         d i       −
                                                                                                                                                                                                                                                           1
                                                                                                                                                                                                                                                                           ii -0.368                       e 3
                                                                                                                                                                                                            2                                              e
 324                                                                                                                                                                                                                                                                                                                 325
Answers                                                                                                                                                                                                                                                                                                                    Answers

           4 a y = 5x + 2                              b y = 2x + 8                                                                   tan x + 2 x sec 2 x                        2(2 x + 3)                                                       3
                                                                                                                                                                                                                                                                          n 4cos 4x cos x - sin 4x sin x o cos x (1 - 3sin2 x)
                                                                                                       3x2ln x + x − 1
                                                                                                                  3                                                                                                                           −
                                                                                                 i                                j                                          s − 2                                       t   −3(2 x      + 1)     2
                                                                                                                         x                                                            (x + 3 x          − 1)2                                                             p e x(3cos 3x + sin 3x)        q -e-2x (sin x + 2cos x)
           5 y = −2 x + 1                                                                                                                   2 x
                                   2                                                                                                                                                                    −
                                                                                                                                                                                                            3
                                                                                                                                                                                                                                                                               e3 x (3 x − 1)                         esin x ( x cos x − 1)
                                                                                                                                                                                  − x ( x2      + 1)
                                                                                                            4        3       2             4            3       2                                                                   1
                                                                                                 k 5x - 4x - 3x + 4x l 5x - 8x + 12x + 2x - 2                                u                              2            v −                                              r                                       s
           8 a minimum at point (0, 2)                                                                                                                                                                                           x(ln x )2                                           x2                                          x2
                                                                                           2     p
             b maximum at point (0, 0)                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                               e -x(2cos 2x - sin 2x)
                                                                                                                       b y = -27e-3                                                       2e x                                        −                                 t
             c maximum at point (ln 2, 4ln 2 - 3)
                                                                                           3     a y=0                                                                       w    −                                      x 2 (2 x − 1) 3
                                                                                           4     x=1                                                                                  (e x + 1)2                             3                                        2 a      2xcot (x2)              b 2xsec (x2) cot (x2)
           9                               y                                               5     b 0.6 to 1 d.p.                                                         2 a 2q cos (q 2)                                b 2sin q cos q                                 c      6sin 3x cos 3x          d -12cos2 4x sin 4x
                                                                                           6     (0, 0) minimum                                                                                                                                                         e      4tan 2x sec2 2x         f 3tan2 (x + 4)sec2 (x + 4)
                                                                                                                                                                                   cosq
                                        O              x                                         (-0.2, 0.007) maximum                                                       c                                           d 3q 2 sec2 (q 3)                              g      sin 2x e sin2 x
                                                                                                                                                                                                                                                                                                       h 2x
                                                                                                                                                                                  2 sinq
                                       –1                                                        (-1, 0) minimum
                                                                                                                                                                             e 3tan2 q sec2 q                            f   −
                                                                                                                                                                                                                                  sec 2 q                             3 a      4x ln 4           b 5x ln 5           c c x ln c
                                                                                                                                                                                                                                                                                2x                    2x
                                                                                           7     minimum value of − 1 when x = 3 1                                                                                                 tan 3 q                              d      2 ln 4            e 5 ln 25           f x x(1 + ln x)
                                                                                                                    3e         e                                                       cos x                                              x
                                                                                                                                                                                  −                                      b e x × ee                                           1(
                                                                                                                                                                                                                                                                                1 + 5)
                                                                                                                         ( )                        (       )
                                                                                                                               3p − 1
                                                                                                                                                                         3 a                                                                                          4   −
                                                                                           8
                                                                                                            p 1
                                                                                                 maximum at 4 , 2 ; minimum at 4 , 2                                                  sin 2 x                                                                                 2
                                                                                                                                                                                                                                    1
                                                                                                                                                                                           8( x + 2)                             4e x                                 5 4
                                                                                                                                                                             c    −                                      d   −
                                                                                           Exercise 4.5                                                                               ( x 2 + 4 x − 1)2                          x2                                   6 -1
               maximum at (0, -1)                                                                                                                                                                                                                                         ln 2
                                                                                                 a sin x − 2x cos x               b 2 x tan x −2x sec x
                                                                                                                                                 2   2                                    1
               asymptote y = x                                                             1                                                                                 e 2( x − 1)                                 f -cosec x                                   7        = 0.431
                                                                                                                sin x                               tan x                                                                                                                 ln 5
       10 a (0, 0), (ln 2, 0)                          b minimum when x = ln 3       (2)         c 1 − 12                         d
                                                                                                                                      1 − ln x                           4 a k cos kx                                    b -k sin kx                  c k sec2 kx     8 a 1       3
                                                                                                                                                                                                                                                                               6 x+4
                                                                                                                                                                                                                                                                                                          b      x                     c        1
                                                                                                        x                                x2                                       1                                                                                                                           x2 − 3                           2 x
       11                      y                                                                                                                                             d                                           e k e kx
                                                                                                   e x (sin x − cos x )                                                           x                                                                                             1                                   1
                                                                                                 e                                f − x                                  5 y = 24x - 164                                                                              9 a                                 b
                                                                                                          sin 2 x                     ex                                                                                                                                    12 y 2 + 1                      12 sin 3 y cos y

                                                                                                 g
                                                                                                   sin x − 2 x cos x
                                                                                                                                  h −
                                                                                                                                      x sin x + 2 cos x
                                                                                                                                             x3
                                                                                                                                                                         6   ( 4 , 16 )
                                                                                                                                                                               3 1
                                                                                                                                                                                                                                                                          c 1 cot2 (2 y )cos2 (2 y )
                                                                                                                                                                                                                                                                            30
                                                                                                                                                                                                                                                                                                          d          1
                                                                                                                                                                                                                                                                                                                  1 + ln y
                                                                                                       2 x sin 2 x
                                                                                                            −2                             4x                            7 1 ( 2 − 1)                                                                                     e         ey
                                                                                                                                                                                                                                                                                                          f                 1
                               1                                                                 i                                j   − 2                                    2                                                                                                 cos y − sin y                      12 cos 4 y − 8 sin 2 y
                                                                                                       (1 + x )2                       ( x − 1)2                                 y = 3 x + 16
                                                                                                                                                                         8                                                                                                     2 y ( y − 2)
                                                                                                                                                                                                                                                                          g
C3




                                                                                                                                                                                                                                                                                                                                                       C3
                               O               x                                                   6 x( x 3 − x + 1)                  x(2 ln x − 1)                                        b2 x                                        − ax                                      5y − 8
                                                                                                 k                                l                                      9 a                                             b
                                                                                                      (3 x 2 − 1)2                      (ln x )2                                      a2 + b2 x 2                                                                    10 6y = x + 4
               minimum at (-0.35, 0.83)                                                                                                                                                                                          ( ax 2 + b )3
                                                                                           2     a 7                              b 1                                                                1
                                                                                                                                                                                                                                                                     11 8y = ± (x + 4)
                                                                                                                                                                                                   −
       Exercise 4.3                                                                        3     (3, 0)                                                                      c 4 a2 x(a2 x 2 − b2 ) 3                                                                13 maxima at (1.02, 2.47) and (4.16, 57.2)
                                                                                                                                                                                  3
                                                                                                                                                                                                                                                                        minima at (2.59, -11.9) and (5.73, -275.3)
       1       a 2                         b 2             c 3              d 1            4     x + 2y = 0                                                             10 x = 0
                   x                           x               x                 x                2                                                                                                                                                                                 y
                                                                                                                                                                        11 b a = 4
                                                                                                                                                                                                                                   (          )
                                                                                           5
               e −1                        f    3          g − 1            h 2                   x3                                                                    13 minima at (np, 0), maxima at ⎛ n + 1 p , 1⎞ ,
                                                                                                                                                                                                        ⎜            ⎟
                   x                           2x             2x                                                                                                                                        ⎝     2      ⎠
                                                                                                 a x 2 ( x cos x − x sin x − sin x cos x )
                                                                                                    1         2         2
                                                                                           7                                                                               n = 0, ±1, ±2,¼
               i 1 +1                      j   2
                                                  +2
                 x                             x
                                                                                                 b tan x + x sec2 x                                                     14 minimum at (0, 0)
                                                                                                                                                                                                        y
       2       a 21                        b 1             c e+1                                       ex   ⎡(1 + x ) ln x − 1⎤
                  2                                            2                                 c          ⎣                 ⎦   d   ex   (1 - ln x + x ln x)
                                                                                                                (ln x )2              x2
                                                                                                                                                                                                                                                                                 O              p    2p       x
               d   2                       e 2
                   3                                                                                    x (1 + 2ln x - x ln x) f      ( x cos x + sin x )ln x − sin x                                                                                                                                         (not to scale)
       3       a minimum at (1, 1)                                                               e
                                                                                                       ex                                         (ln x )2
               b minimum at (1, 1) and (-1, 1)                                                                                                                                                          O                          x
                                                                                           Exercise 4.6
       4       y = 1 x + 1 − ln 2, (ln 4 - 2, 0)
                       2                                                                       1 a 2x cos(x2 + 1)                 b -3x2 sin (x3 - 1)                                                                                                                14 a (1, 2), (-1, -2)
                                                                                                                                                                        Exercise 4.7
       5       x + 6y = 1, 1 37
                           6                                                                     c 2x sec (x )   2   2
                                                                                                                                  d 22( x + 1)                                        2            2
                                                                                                                                                                         1 a (x - 1) [6xsin x + (x - 1)cos x]            2
                                                                                                                                                                                                                                                                                                     y                    1
                                                                                                                                    x + 2x + 3                                                                                                                                                                y=x+
                   1                                                                                                                                                       b (x3 + 1) [6x2tan x + (x3 + 1) sec2 x]                                                                                                        x
       6                                                                                                3x2
               4(2e + 1)                                                                         e                                f 3                                      c e x (3x + 2)3 (3x + 14)                                                                                                 4
                                                                                                       x3 + 1                       x
               d ( log 10 x )                                                                                                                                                     e x (2 x + 3)                                          2                                                           2                             1
       7                      = 1                                                                g cot x
                                                                                                                                    1
                                                                                                                                  h x cos (ln x)                             d                                                    e         (x cos 2 x − sin 2 x )                                                        x=y+
                     dx        x ln10                                                                                                                                               2 x +1                                               x3                                                                                        y
                                                                                                          1                           cos x esin x                                                                                                                                                   O                                     x
                                                                                                 i                                j                                               x 2 (1 + ln x ) − 1                                                                         –10     –5                              5           10
       Exercise 4.4                                                                                    x ln x                                                                f                                                    g sin (x2) + 2x2cos (x2)                             1            –2
                                                                                                 k e x+4                                       x2                                      x      x2       −1                                                                        x=y+
       1       a 1 + ln x                                  b 2xsin x + x2cos x                                                    l 2xe                                                                                                                                                y            –4
               c e x(sec2 x + tan x)                       d (x2 - x - 2)e x                     m 10x(x2 + 1)4                   n 14(2x + 6)6                              h sin2 x + 2x sin x cos x                            i cos 3x - 3x sin 3x                                               1
                                                                                                                                                                                                                                                                                                y=x+
                                                                                                                                                                             j 2x (tan 2x + x sec2 2x)                            k (2x + 1)e2x+1
                           (               )                                                                                               x                                                                                                                                                         x
               e e x ln x + 1                              f sin x + cos xln x                   o -6x2(x3 - 1)-3                 p                                                                              2x3
                                       x                        x                                                                       x2 − 1                               l    2xln(x2 - 1) +                                                                          c x = y + 1 is the inverse of y = x + 1
                                                             e x ( x − 1)                                3x2                                                                                                    x2 − 1                                                                    y                                   x
               g − 13 (2 cos x + x sin x )                 h                                     q                                r   −
                                                                                                                                             1
                                                                                                                                                                             m cos x cos 2x - 2sin x sin 2x                                                                    Their graphs are reflections in the line y = x
                   x                                              x2                                   2 x3 + 1                         ( x − 1)2

 326                                                                                                                                                                                                                                                                                                                                                 327
Answers                                                                                                                                                                                                                                                                                                           Answers

       Review 4                                                                                                                       2(cos x + x sin x )           Review 5                                                                          c                 y
                                                                                                 16 a 3x2e3x(1 + x)                 b
        1 a    x3sec2 x             +   3x2tan x      b       3tan2 x sec2 x                                                                  cos2 x
                                                                                                                                                                    1   a                      y                                                                                    g(x) = x2 – 2
                                                                                                                                             1
                                                      d x sec x − 3 tan x
                                                             2
           c   3x2 sec2(x3)                                                                              c 2tan x sec2x             d −
                                                                                                                                        2 y sin y 2                           y = f(x) 4
                                                               x4                                                                                                                                   y = g(x)
           e   ex(sin x             + cos x)          f       cos x esinx                                                                                                                                                                                                                                    f(x) = In(x)
                                                                                                                                    ii − 6 x sin 2 x 2+ cos 2 x
                                                                                                                                            3       3           3
                                                                                                                  3x+2
                                                                                                 17 a i xe               (2 + 3x)                                                          3
           g   −
                   cos x                              h 1 cos x − sin x ln x                                                                       3x
                   esin x                                     x                                                   1                                                                                                                                                     O                                                    x
                                                                                                         b                                                                                                                                                –2    –1                  1        2
           i 3cos 3x                                  j       6sec2 6x                                                                                                                     2
                                                                                                             2 (16 − x 2 )
               2
           k                                          l       3e3x - 1
               2x + 3                                                                            19 (0, -729) min, (3, 0) and (-3, 0) points of inflexion                                  1
           m cos x − sin x
                   x
                                                      n ex(x2 - x + 1)                                                                                                                                                                                                –2
                 e                                                                               Before you start Answers
               1 − 3x2                                                                                                                                                      –2      –1         O         1        2   x
           o                                                                                                                                                                                                                                              Two roots
             2 x ( x 2 + 1)2                                                                     Chapter 5
                                                                                                                                                                                                                                                      d                                 y
        2 a    ae ax                                  b       ae ax + b                          1       a x3 - 1                   b 2x4 - x2 + 1                          Two roots
                                                                                                 2       a -1.2, 3.2                b (1, 0)                                                                                                                                            4
          c    f ¢(x)ef(x)                            d       acos (ax)
                                                                                                 3       -2.1, 0.25, 1.9                                                b                                                                                 f(x) = |x + 2|
          e    acos (ax + b)                          f       f ¢(x)cos [f(x)]                                                                                                             y                                                                                            3
          g    asec2 ax                               h       asec2 (ax + b)                     4       1
                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                          4                                                                                                      g(x) = x2 + 1
               f ¢(x)sec2 [f(x)]                              1
           i                                          j                                          Exercise 5.1                                                                                                                                                                           1
                                                               x
                                                                                                  1 a 2             b 1            c 2         d 2                                        3
                 a                                            f ′( x )
           k                                          l                                             e 3             f 1            g 3         h 2                                                                                                                   –3 –2 –1 O                  1       2               x
               ax + b                                         f (x)                                                                                                                                               y = g(x)
                                                                                                  2 a 1             b 2            c 1                                                    2
        3 a e x(cos 3x - 3sin 3x) b e3x(3tan x + sec2 x)                                                                                                                                                                                                  Two roots
                                                                                                    d 1             e 2            f 0                                                             y = f(x)
                                                                                                                                                                                          1
           c e3x(3 cos 2x - 2sin 2x) d 2 sec 2 ⎛ x ⎞                                              3 b There is only one point of intersection.                                                                                                 3      a                         y
                                               ⎜ ⎟                                                                                                                                                                                                         g(x) = e–x
                                                                          ⎝2⎠                       c [1, 2]        d 1.9
           e 3sin x + x cos x                                  1                                  4 c 0.703                                                                               O                            3 x
                                                      f          + 1                                                                                                              –1                 1            2
                   x sin x                                     x 2( x + 1)                        5 b 3             c 2.13                                                                                                                                                    2
                                                                                                                                                                            One root
C3




                                                                                                                                                                                                                                                                                                                                         C3
               6(3 x + 1)( x + 2)                                                                 7 3.7                                                                                                                                                                       1              f(x) = 3 – x2
           g −                                        h 1                        i   5sec2 5x
                   (2 x − 1)4                                                                     8 a = 1, x = 1.28
                                                                                                                                                                                                                                                                  –2 –1 O
                                (            2)           (              2 )⎦
                                                                                                  9 c [-2, -1], [1, 2], [3, 4]     d 3.93                           2   a                                     y                                                                         1     2                  x
           j   2 x ⎡sin 2 x + p + x cos 2 x + p ⎤
                   ⎢                            ⎥                                                10 b [-1, 0], [0, 1], [4, 5] c -0.88
                        ⎣
                                                                                                 11 a [2, 3]                   b 2.19                                                                                                                 b   x = 1.68         c x = -0.83
           k 3e        3tan x
                                sec2 x                l       - 2                                12 b 2.67
                                                                                                                                                                                                             2
                                                                                                                                                                                                                                               4      a   1.36             b 1.31      c 2.35                                d -2.82
                                                               cos x                                                                                                                                                                   1
           m cot x - xcosec2 x                        n sec x                    o 1 − x tan x   13 a 2                        b 1.32
                                                                                                                                                                                 f(x) =   x3   +2
                                                                                                                                                                                                                              g(x) =
                                                                                                                                                                                                                                       x
                                                                                                                                                                                                                                               5      c   2.20             d divergent
                                                                                      sec x      14 b 3.29                                                                                                                                     6      b   1.395
        4 a 1(max)                                    b p (min), − 3p (max)                      15 a 1                        c 6.846                                                                                                         7      a           y
                                                        4           4                                                                                                             –3      –2        –1       O        1         2      3   x
                                                                                                 16 3, 2.478
          c 3p (min), − p (max)                                                                                                                                                                                                                                             f(x) = 2 – e–x
             4          4                                                                        17 0, (2n + 1)p, n Î Z                                                                                                                                          2
              −q +
                   p                                                                             18 1.9 radians
        5 y=                                                                                                                                                                                              –2                                                     1                  g(x) = √x
                   2
                   x                                  x                                 1        Exercise 5.2
        7 a 2 ln 2                                b a ln a                       c
                                                                                     x ln 10        c 4.56
                                                                                                     1
                                                                   4 (     4 )
                                                                                                                                                                                                                                                                 O                                                   x
        8 a y + x = 6+p
                                                                                                                                                                                                                                                           –1               1           2        3           4
                                                  b 4y + x = 4 + p , 4 + p , 0                      c 2.46
                                                                                                     2                              d Diverges                              Two roots
                                         4
                                                                                                    b 1.466
                                                                                                     3
        9 a y = sin p x         (180 )            b   y = p cos ( p x ) = p cos(x °)
                                                         180     180     180
                                                                                                    0.35
                                                                                                     4
                                                                                                    2.659
                                                                                                     5
                                                                                                                                                                        b                      y
                                                                                                                                                                                                                                               8
                                                                                                                                                                                                                                                      d 3.921
                                                                                                                                                                                                                                                      b 1.58, 1.68, 1.70
                                     1                                                                                                                                                     2              g(x) = x3 + 1                               d x = -1 because division by zero is impossible
       10 a f ′(x ) =                                                                               a l = 5, m = 7
                                                                                                     6                              c 5.25
                                sin x cos x                                                         a -0.856, +0.473
                                                                                                     7                              b 5, 6, 2             c 1.304
                                                                                                                                                                                           1                                                   Revision 2
           b f ′(x ) = cos x − sin x = 2 cot 2 x
                          2       2
                                                                                                    x3 - 6x + 3, 2.145
                                                                                                     8                                                                                                                f(x) = sin(x)
                                        sin x cos x                                                 a x3 - 5x + 7 = 0
                                                                                                     9                              b   x3
                                                                                                                                         - 5x - 1 = 0                                                                                              1 x −6
                                                                                                                                                                                                                                                      x−4
                                     30 x − 1                                                       c x3 - 8x + 2 = 0               d 3x4 = 100                                            O                                               x
           c f ′( x ) =                                       d (2x - 1)(3x + 2)2(30x - 1)
                                                                                                                                                                                                                                                                                            b 3x − 1
                                                                                                                                                                                   –1                 1           2       3      4
                                (2 x − 1)(3 x + 2)                                                  e x3 - 2x - 1 = 0               f x2 + 2e-x - 6 = 0                                                                                            2 a 3x − 7
                                                                                                                                                                                          –1                                                            x −2                                         x
       12 4                                                                                      10 a 30, 20                        b The second                                                                                                            2x − 9
            4                                                                                                                                                                                                                                      3 a                                      b x = 6, 4
       14                                                                                           c 2.114 74                                                                            –2                                                           ( x − 5)( x − 3)
          (1 − x )3
                                                                                                 11 c -1.3734                       d -53.9°                                                                                                       4 a = 2, b = 0, c = -1, d = 1, e = 0
                1                                                1                                                                                                          One root
       15 a                                           b                                          12 c 2.303                         d 1.2
              2 x                                              2 x −3




 328                                                                                                                                                                                                                                                                                                                                   329
Answers                                                                                                                                                                                                                                                                                                  Answers


        5 a 2x − 9
                                                                                                                                                                              y
                            b f −1 (x ) = 4 + 1         c x Î R, x ¹ 2    9 a                   y
                                                                                                           y = g(x)
                                                                                                                                                                  b i                                                                              24 a i      e3x(sin x + 7cos x) ii             5x3
                                                                                                                                                                                                                                                                                                        + 3 x 2 ln(5 x + 2)
               x−4                              2−x                                                                                                                                   g(x) = 3 – ln(x)                                                                                           5x + 2
                                                                                                                                                                             4
        6 b (0, 4)                                                                                                                                                                                                                                            −60
                                                                                                                                                                                                                                                       c             ; 1, -3
                                       y                                                                                                                                                                                                                   ( x + 1)4
                                                                                                                            y = f(x)

                                       4
                                                                                       (0, 2a)                                                                              2                                                                      25 a    (3, 1 ) , ( 3, 1 )
                                                                                                                                                                                                                                                               6
                                                                                                                                                                                                                                                                       −
                                                                                                                                                                                                                                                                          6
                                                                                                                                                                                                                                                                           −               b 18
                                                                                        (0, a)                                                                                                         f(x) = ln(x)                                26 a (1, e) min                                b (-1, e-1) min
                                                                                                     (a, a)
                                       3
                                                                                    a
                                                                                 (– 4 , a) O                                             x                                   O                                  5              x                       c   ( )2
                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                          2(
                                                                                                                                                                                                                                                           1, 1 max, −1, − min     )        d (0.464, 0.177) max
                                                                                                                                                                                                                                                                                                (-2.678, -94.74) min
                                       2

                                       1
                                                                             b   ( a , 95a )
                                                                                   5                     c fg (x) = 4|x| + a                 d x = ±a
                                                                                                                                                         2
                                                                                                                                                                                                                                                   27 a xex(x + 2)
                                                                                                                                                                                                                                                      c ex(x2 + 4x + 2)
                                                                                                                                                                                                                                                                                b (0, 0), (-2, 4e-2)

                                                                         11 b 9 3                                                                                                                                                  ⎛0⎞                d (0, 0) minimum, (-2, 4e-2) maximum
                                                                                  16                                                                                        Reflection in x-axis translation ⎜ 3 ⎟                                           1 + x2
                                       O                     x                                                                                                                                                                     ⎝ ⎠             28 a                         b 9y + 5x = 16, 15y - 27x = 44
                                                                                       1                                                                                                                                                                   ( x 2 − 1)2
                                                                         12 a    −                       b ii p , 5p , 3p                                             ii         y
          c y>0             d -0.418                                                  3 3                           6       6       2                                                                                                                 c (-0.49, 2.05)
                                                                                                                                                                                          g(x) = 1 + 2ln(x)
                                                                                                                                                                                                                                                   29 b y = x
        7 a                                                              13 c 135°                                                                                                                                                                                                              1
                     y                                                                                                                                                                                                                             30 a i x = ay                c y=                 (x − 10 + 10 ln10)
                                                                                                                                                                                                                                                                                            10 ln 10
                                                                         14 c p , 5p , 9p , 13p                                                                                                                                                        d B(10(1 - ln 10), 0)
                                                                                 8         8    8         8                                                                  2
                                                                         15 a R = 13, a = 1.176                             b x = 2.267, 0.085                                                                                                     31 a                    y
                  a                                                         c i 13                                          ii 1.176                                                                    f(x) = ln(x)
                                                                                                                                                                                                                                                                           6               f(x) = x3
                                                                         16 a i                                                 y                                            O             1                                   x
                                                                                                                                                                                          –2                     5
                                                                                                                                                                                       e
                                                                                                                            4
                   O      a                 x                                                                                                                                                                                                                              4
                                                                                                                            3                                               –2
                          2

              ( a , 0) , (0, a)
                                                                                                                            2                                                                                                                                                              g(x) = 6 – x2
                                                                                           g(x) = 1 + 2ex                                                                   Stretch parallel to y-axis by scale factor 2,                                                  2
                2                                                                                                                                                                       ⎛0⎞
                                                                                                    f(x) = ex                                                               translation ⎜ ⎟




                                                                                                                                                                                                                                                                                                                                C4
C3




          b        y                                                                                                                                                                    ⎝1⎠
                                                                                        –5                                      O             x
                                                                                                                                                                      iii                         y                                                             –2         O           2           4       x
                 a                                                                     Stretch parallel to y-axis by scale factor 2,
                                                                                                              ⎛0⎞
                                                                                       translation ⎜ ⎟                                                                                         2
                                                                                                    1         ⎝ ⎠                                                                                                                                     c [1, 2]      d 1.5
                                                                                 ii                                 y                                                                                                  g(x) = 0.5ln(x + 2)         32 a [1, 2]      b 1.32
                                                                                                                                                                                               O                                      x            33 c 2.754
                                                                                                                                                                                     –2                                       5
                  O       a                 x                                                                                                                                                                                                      34 a x3 + x - 3 = 0    b x3 - 5x + 10 = 0
                                                                                                                   3                                                                                  f(x) = ln(x)
                          4                                                                                                                                                                                                                           c x3 - 3x - 2 = 0
                                                                                                                                        g(x) = 2 + e–x
                                                                                                                   2                                                                                                                               35 a a = 12, b = 2     c 2.73
              ( a , 0) , (0, a)
                4
                                                                                                                                                                            Stretch parallel to y-axis by scale factor 0.5,
                                                                                                                                                                            translation ⎜
                                                                                                                                                                                                   ⎛ −2 ⎞
                                                                                                                                                                                                        ⎟
                                                                                                                                                                                                                                                   36 b 1.395
                                                                                           f(x) = ex                                                                                                                                               37 a 2y = x + 1      c 2.1530
                                                                                                                                                                                                   ⎝ 0⎠
          c a = 6, 10                                                                                              O                               5 x                                                                                             38 b -2 ln 2
                                                                                                                                                             17   a   7 days           b               i 105 cells                 ii 80 cells
                                           b f −1 (x ) = 1 + e , x ∈ R
                                                                 x
        8 a      2                                                                                                                                                                                                                                    e x1 = 4.9192, x2 = 4.9111, x3 = 4.9103
              −3 + ln 7                                   2                                                              ⎛0⎞                                 18   b   £670             c               15 years                    d 7.2%
                                                                                       Reflection in y-axis, translation ⎜ ⎟                                 19   b   14 years                                                                                 1
                                                                                                                         ⎝2⎠                                                                                                                       39 a 3e x −
          c          y                                                                                                                                       20   a   425 °C           b               7.49 mins       c 1.64 °C/min                               2x
                                                                                 iii                           y                                             21   a   0.405            b               4.39            c 0, 0.693                      c x1 = 0.0613, x2 = 0.1568, x3 = 0.1425, x4 = 0.1445
                                                                                                              4                     g(x) = 3ex–2             22   a   ex(sin x + cos x)                    b x2(1 + 3ln x)
                  2                                                                                                                                                                                             e x (sin x − cos x )
                                                                                                                                                                                                                                                   Before you start Answers
                                                                                                                                                                  c e-x(3 + 2x - x2)                        d
                                                                                                                                                                                                                        sin 2 x                    Chapter 6
                                                                                                              2
                                                                                                                                                                  e x − 1 2 2 x 2ln x
                                                                                                                                                                            − 2
                                                                                                                                                                      2                                             6x2                            1   a 24                            b 28
                                                                                                                                                                                                            f
                  O                3                     x                                                    1             3
                                                                                                                                                                        x( x − 1)                               ( x 3 + 1)2                        2   a x(2x - 3)(2x + 3)             b (x - 1)(x + 1)(x2 + 1)
                                                                                                     x
                                                                                           f(x) = e                                                                      1
                                                                                                                        e                                                       or 2
                                                                                                                            2                                                                                            3
                                                                                                                                                                  g                                         h 3x2 ex                               3   a A = 5, B = 9                  b A = 4, B = 1
                         (0, 2 )                                                                              O                                    x                sin x cos x   sin 2 x
              x=3                                                                                                                                                                                                                                           3x + 7                       (2 x + 1)(3 x − 1)
                             3                                                                                                                                            2x − 2                                      −9 x 2                       4   a                               b
                                                                                        Stretch parallel to y-axis by scale factor 3,                             i                           2
                                                                                                                                                                                                            j              3                               ( x + 1)2                         x( x 2 − 1)
                                                                                                                                                                    3( x 2 − 2 x +          5)3                 2( x 2 − 1)2
          d x = 7 , 11                                                                                        ⎛2⎞                                                                                                                                  5   a x2 - 4x + 3                   b x + 8 + 15
                      3 3                                                               translation ⎜ ⎟                                                                 −ex                                                                                                                         x−2
                                                                                                     0        ⎝ ⎠                                                 k    x − 1)2
                                                                                                                                                                                                            l   cos3 x - 2cos x sin2 x
                                                                                                                                                                    (e                                                                             Exercise 6.1
                                                                                                                                                                                                                 6 x 2 sin(2 x 3 ) + cos(2 x 3 )                                                 4
                                                                                                                                                             23 a i         (2 +      3x)xe3x + 2           ii −                                   1   a   3
                                                                                                                                                                                                                                                                + 1                          b     − 3
                                                                                                                                                                                                                              3x2                        x + 2 x +1                            x −3 x +4
                                                                                                                                                                             1
                                                                                                                                                                  b                                                                                    c     1
                                                                                                                                                                                                                                                                  − 1                        d 3+ 1
 330                                                                                                                                                                  2 16 − x 2                                                                         4( x − 3) 4( x + 5)                   x x −1                         331
Answers                                                                                                                                                                                                                                                                                                            Answers

                   3         1                                3              1                                                                                                       Exercise 7.1                                                            d                               y
           e x + 5 + 2x − 1                         f 2( x − 4) + 2( x − 2)                      c 1− 1 +                   1                d 2+ 1 − 1                                                                                                                                     4
                                                                                                             x +1         2x − 1                        x −1       x +1
                                                                                                                                                                                      1                               y
                                                                                                                 7
       2
               5      1
           a x −3 − x −2                            b
                                                              2
                                                                + 3                              e 1−                 + 3        f                    4
                                                                                                                                                            −    1
                                                            x +1 x + 4                                       2( x + 3) 2( x − 1)                  5(2 x − 1) 5(3 x + 1)                   t = –3                      6                 t=3
                                                                                                                                                               8
               4
                 − 3                                          2
                                                                − 1                              g x −1+ 2 − 1                               h x +1+                + 1
           c
               x x +1
                                                    d
                                                            x −1 x − 6                                               x        x +1                         3( x − 2) 3( x + 1)                 t = –2                              t=2
                                                                                                                                                                                                       –9 t = –1 O                                   x               –4                     O                4 x
                 3         6         9
                                                                                                     1  1
                                                                                                 i 1− − 2 +
                                                                                                            2
                                                                                                                                             j    −
                                                                                                                                                      6
                                                                                                                                                        + 3 + 6 + 3                                             –3           t=1 9
           e 2( x − 1) − x − 2 + 2( x − 3)                                                                   x       x        x −1                    x x 2 x + 1 ( x + 1)2                                               t=0

                       1           1            1                                                k 1+ 1 − 3                                  l 1 − 12 + 2 − 2
           f 2( x − 1) − 2( x + 1) + 2 − x                                                            x x +1                                           x       x −1       x +1
                                                                                                                                                                                               y
                                                                                                                                                                                      2                                                                                                 –4
                                                                                                                                                                                                                                  t=2
               3      3                                       2                           Review 6                                                                                            8
       3   a x −2 − x +1                            b           + 1                                                                                                                                                                                          e                                   y
                                                            x −1 x + 4
                                                                                              1 a      5
                                                                                                          − 4                   b 2− 3                         c         1
                                                                                                                                                                           − 1
                                                                                                     x − 2 x −1                          x       x+4                   x −3 x +3                                                                                                                 3
                       1           1                   3        1
           c 2( x − 5) − 2( x − 3)                  d 2 x − 2( x − 2)
                                                                                              2 a
                                                                                                   1 1
                                                                                                         (  + 1
                                                                                                   2 x −1 x + 3                 )
                                                                                                                        b 1− 5 + 5
                                                                                                                             x 4( x − 1) 4( x − 5)                                        t=0
                                                                                                                                                                                                        t=1
             2     5      3                                  1   1
           e x − x +1 + x + 2                       f       − +      + 1                         c − 1 − 1 + 2
                                                                                                                                                                                            O                                 12           x
                                                             x 2x + 1 2x − 1                                                                                                                           t = –1
                                                                                                    2( x + 1) 2( x − 1) x + 2                                                                                                                                        –5                          O                  5 x
                   −2                                 3           1           1
       4   a    + 4                            b 10( x − 3) + 5( x + 2) − 2( x − 1)
             x−2 x−4                                                                          3 a      2
                                                                                                         − 2              b 1+ 5 − 2
                                                                                                     x −1 x + 3               3( x − 2) 3( x + 1)                                                                                                                                            –3
                     6
           c   −         + 12                     1      2
                                               d 1− x + 1+ x                                         2
                                                                                                                                                                                              –8
                                                                                                                                                                                                                                  t = –2
                   2x − 1 3x − 2                                                                 c     − 2 − 1                                                                                                                                                                          y
                                                                                                     x 3( x + 1) 3( x − 2)                                                                                                                                   f
              3   4      2
           e − +      +                                                                                 1
              x 2x − 1 2x + 1                                                                 4 a           + 1                                   b    2
                                                                                                                                                           − 2                        3 a                         y
                                                                                                     2x + 1 2x − 1                                  3x − 2 3x − 1
                                                                                                                                                                                                                15
                        1              4                                                               3
           f 3(3 − 2 x ) + 3(3 + 2 x )                                                           c         − 3 − 2                                d − 1 − 22 + 1
                                                                                                     x − 2 x − 1 ( x − 1)2                            x x     x−3

                                                                                                 e 1−            2
                                                                                                                     +     6                            1
                                                                                                                                                           +  2
                                                                                                                                                                 + 2
C4




                                                                                                                                                                                                                                                                                                                                      C4
             2      4           5
           g x − 3(2 + x ) + 3(1 − x )                                                                                                            f −                                                                                                                              –1 O          1          x
                                                                                                     x        2 x − 3 (2 x − 3)2                      x + 1 x − 1 ( x − 1)2

                    4            1           1                                                5 A = 1, B = 2, C = -2
           h − 15(1 + 2 x ) + 5(2 − x ) + 3(2 + x )                                                                                                 2      3                                  –4                 O                    5        x
                                                                                              6 a 3−     3                                   b 2+ x +2 − x −3
                                                                                                       x+2
                     1     1       1         1
           i   −        +     +         −
                   x − 1 x + 1 2( x − 2) 2( x + 2)                                               c 1 + 2 − 22 − 3                            d x+2+ 3 + 1
                                                                                                       x x     x +1                                            x −2      x+2
                                                                                                                                                                                                                                                          4 a y + 2x = 9                             b xy = 12
                                                                                              7 a=k+1                                                                                                       –15                                                                                                 3
       Exercise 6.2                                                                           8 a (x - 2)(x - 1)(x + 1)
                                                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                             c y = x – 2x - 1                        d y = x2
                   2         2             3                  1          1         4                                                                                                                                                                                                3
       1   a x −1 − x − 2 +                             b x +1 − x −3 +                          b    1
                                                                                                           − 1 + 1                          c -1, 1 or 2                                           y                                                         e y = (x + 1)2 + 2                      f xy2 = 4
                            ( x − 2)2                                   ( x − 3)2                 3( x − 2) 2( x − 1) 6( x + 1)                                                           b
               2        2
                             − 3
                                         1        4                                                                                                                                                                                                                                                      x2 y2
           c x +1 +                   d x−4 +                                                        2
                                                                                                         + 1
                                                                                                                                ⎡ 2
                                                                                                                  b f ′(x ) = − ⎢           + 1 2⎤                                             1                                                             g y=x+2                                 h      +     =1
                    ( x + 1)2 2 x − 1         ( x − 4 )2                                      9 a
                                                                                                                                             ( x − 1) ⎥                                                                                                                                                  9    16
                                                                                                                                ⎣ ( x + 4)
                                                                                                                                          2
                                                                                                  x + 4 x −1                                          ⎦
                                                              1                                                                                                                                O                      3                        8 x           i       y = 1 – 2x2                     j   y = 10 x 2 − 5
             2   5     2
           e x + 2 − x −2                               f       + 1 +     3
                                                                                          10 a         1
                                                                                                          + 2                                                                                                                                                                                                 9
                x                                            2x2 4 x 4 ( x − 2)                      x + 2 x −1                                                                                                                                                               y2
                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                             k x −                 =1                        3x + 1
                                                                                                                                                                                                                                                                                                     l   y=
                                                                                                                                                                                                                                                                      4       9                                 2
           g
               1
                 − 3 +        3                                                           11 a − 1 − 2                b 9                                                                     –3
               x 3 x − 1 (3 x − 1)2                                                             x −2 x +3                 8                                                                                                                               5 6
                 1           1           3        1                                          c y′ =     1
                                                                                                             +    2
                                                                                                                        > 0 for all x ∈ R                                                                                                                 6 3
           h 2( x + 2) + ( x + 2)2 + ( x + 2)3 − 2 x                                                ( x − 2)2 ( x + 3)2                                                                   c    y
                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                          7 2, -4
                  2                                               1           1           12 a 1 − 1                                         c 1
       2   a 1− x + 2                                   b 1 + 2( x − 1) − 2( x + 1)                  r       r +1                                                                                                                                         8 ± 2, y = 1 x 2 − 1
                                                                                                                                                                                                                                                                              4
                                                                                          13 a 1 − 1                                         c 1                                                                                                          9 a        (10, 0)                         b   (9, 0)
                                                                                               r +1 r + 2
           c 1−            1
                                − 7                     d 1+ 1 − 2
                       4( x − 1) 4( x + 3)                        x     x +1                                                                                                                                                                                c        (13, 0), (-7, 0)                d   (±3, 0)
                                                                                                                                                                                               O                              x                          10 a        (0, 23)                         b   (0, 5), (0, 6)
                                                                        1
           e x +1+ 1                                    f    x+              + 1          Before you start Answers
                                                                                                                                                                                                                          9
                                                                                                                                                                                                                                                            c        (0, 0), (0, 1)                  d   (0, ±1)
                            x −1                                    2( x − 1) 2( x + 1)
                                                                                                                                                                                                                                                         11 5
                                                                        3                 Chapter 7
           g x −4+            5
                                 + 1                    h    −1 +         + 3                                                                                                                                                                            12 5
                            x + 2 x −1                                x +3 x −3           1      a 1 (4 x − 1)                               b 17x2 + 4x + 12
                                                                                                     2                                                                                                                                                   13 3
               1         1           1
           i     x+            +
               4    16(2 x − 1) 16(2 x + 1)                                               2      a x = 2, y = -1                             b x = 2 ± 14
                                                                                                                                                           5
                                                                                                 a 2 x − 23 ;            x3
       3
                      1       7
           A = 1, B = 2 , C = 2 , D = 5                                                   3                                   +x− 1 +c
                                                                                                                 x       3               x
                                                                                                                                    x3                                 2
 332   4   a
                    8
                         − 4              2
                                               − 2 − 2                                           b 2 + 2x; x + x2 + 3 + c                                  c       −      ;x− 1 +c                                                                                                                                                  333
               5(2 x − 3) 5( x + 1) b 3( x − 2) 3( x + 1) ( x + 1)2                                                                                                    x3     x
Answers                                                                                                                                                                                                                                                                                                                                                Answers

       14 a            29                        b
                                                       2
                                                       5
                                                                     c 5y = 2x + 33         c   ( p2 , 1) , ( 32p , 1)
                                                                                                                   −                  d (2, 8), (2, 2)                                10 a a = 1 + 6
                                                                                                                                                                                                               p
                                                                                                                                                                                                                                       c 3                                      d -3 - 4x - 4x2, |x| < 1
       15 y = 2x + 1                                                                  4     y + 2x = 24          (18, -12)                                                            11 a -2sin3 q cos q                              b 2y + x = 4                             e 1 + x + 1 x 2, |x| < 1
                                                                                                                                                                                                                                                                                                   2
       16 x = 2cos q, y = 2sin 2q
       17 x = tan q, y = sin q                                                        5      y = 4 x − 45       (   3
                                                                                                                   − , − 48
                                                                                                                    4             )                                                          c y=           8
                                                                                                                                                                                                          x2 + 4
                                                                                                                                                                                                                 ,x            0                                                f 3 + 3x − 8 x2 , x < 1
                                                                                                                                                                                                                                                                                                       3                       2
                                                 b x = 1, y = 3 t2 − 1
                                                                                                               Q(            )
       18 a x = sin q, y = 3cot q
                                                       t                              6      y + 2x = 3              1
                                                                                                                    − ,4                                                                                                                                                        g 4−         5x2 ,         x <1
                                                                                                                     2                                                                Before you start Answers                                                                                                2
       19 a a = 3, b = 2             b x = 3 + cos q, y = 2 + sin q                                                                                                                                                                                                             3
       20 a a = 1, b = 2, c = 2, d = 3                                                7     a AP = 3cos q + 5                                                                         Chapter 8                                                                             5
                                                                                                                                                                                                           5                                             3
                                                                                                                                                                                                                                                                                8
          b x = 1 + 2sec q, y = 2 + 3tan q                                                    BP = 5 - 3cos q                                                                                a (1 + x )                                b (1 + x )
                                                                                                                                                                                                                                                       −
                                                                                                                                                                                      1                                                                                     6 1 + 1 − 1 2 + 1 3 , |x| > 2
                                                                                                                                                                                                           2                                             2

       21 a p , 5p                          b b = 1.9; (0, -1) and (0, 1.6)           8     a        1
                                                                                                       ,y = x                ⎛     ⎞
                                                                                                                           b ⎜1, 1 ⎟                         c y(2x – 1)2 = x                      121                                           112             30
                                                                                                                                                                                                                                                                                         x    2x           2x
               3   3                                                                                t2      t2                ⎝  2    t ⎠                                             2      a                                         b                     c              7 a = ±4, 1 + 2x - 2x2 + 4x3, 1 - 2x - 2x2 - 4x3
                1       1                                                                                                                                                                          10                                            3               6
       22 a x = 3 , y = 2                              b x = t + 2, y = t (t + 2)                                                                                                     3      a 8 + 12x + 6x2 + x3
               t       t
                                                                                      Exercise 7.4                                                                                                                                                                          8 4, 1 , 4
                                                                                                                                                                                             b 56; 256 + 1024x + 1792x2 + 1792x3 + 1120x4                                            2
          c x= 1 3,y= t 3                              d x = 1 − 1, y = 1 − t                    1                              1                                                              + 448x5 + 112x6 + 16x7 + x8
                1−t       1−t                                    t                    1     a 19
                                                                                                     2
                                                                                                                           b 25
                                                                                                                                      3
                                                                                                                                                             c 144                                                                                                          9 Either k = 3, n = 1 , − x 2, x < 1
                                                                                                                                                                                                 5                  25                                                                                               3                    3
                                                                                                                                                                                      4      a − x               b − x2
       23 c                         y                                                       d 28                           e 82                              f 8ln 2                             2                                      4
                                                                                                                                                                                                                                                                                or           k = − 3 , n = − 2 , 5 x 2, x < 2
                                                                                                                                  3                                                               2     1                                 4           2         1                           2        3 4                                          3
                                                                                                                                                                                      5      a       +                         b                 +         +
                                                                                      2     19 1 , 12 4                                                                                        1 − 2x 1 + x                           3(1 − 2 x ) 3(1 + x ) (1 + x )2           1      1      1
                                                                                                5        5                                                                                                                                                              10 1 +     −       +      + ... ,
                                                                                                                                                                                                                                                                               2 x 8 x 2 16 x 3
                                                                                      3     a t = -1, (0, -6) t = 0, (-1, 0)                                                          Exercise 8.1                                                                                 1       3       5
                                                                                              t = 1, (0, 2)   t = 2, (3, 0)                                                               1 a 1 - 2x + 4x2 - 8x3, |x| < 2
                                                                                                                                                                                                                                                1                          1 + 1 x 2 − 1 x 2 + 1 x 2 + ...
                                   O                   x                                                                                                                                                                                                                       2       8      16
                                                                                            b 32                           c 9                                                               b 1 + 1 x − 1 x 2 + 1 x 3 , |x| < 1
                                                                                                     3
                                                                                                                                                                                                      28   16                                                           Exercise 8.2
                                                                                      4     t = 0, ± 2 17 1                                                                                          1 2 1 3,
                                                                                                                                                                                             c 1+ x − x + x
                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                      |x| < 2                           1       a 3 + 9x + 21x2 + 45x3, |x| <
                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                 15                                                                                  2   2                                                                                                                                2

              Asymptote x + y = -1                                                    5     a   (4 1 , 1) , (2, 2), (4 1 , 4)
                                                                                                   4                   4
                                                                                                                                                             b 41
                                                                                                                                                                    2                        d 1 + 3x + 6x2 + 10x3, |x| < 1                                                     b 4 - 8x + 28x2 - 80x3,                             |x| <
                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                          3
C4




                                                                                                                                                                                                                                                                                                                                                                          C4
       Exercise 7.2                                                                   6     (0, 5), (0, 17), 16                                                                              e 1 + x − x2 + 5 x3 , x < 1                                                        c 5 − 15 x + 65 x 2 − 255 x 3,                            x <1
           1 a (9, -6), (1, 2)                   b    ( 9 , 3) , ( 25 , 5)
                                                        4          4
                                                                     −                7     a (2, 2)                                  b 5.67
                                                                                                                                                                                                 1 + x + 3 x 2 + 5 x 3,
                                                                                                                                                                                                                        3                   3                                       2
                                                                                                                                                                                                                                                                                  3 3
                                                                                                                                                                                                                                                                                         4    8
                                                                                                                                                                                                                                                                                       9 2 15 3
                                                                                                                                                                                                                                                                                                                                                  2

                                                                                            a ±2 2 , ⎛ 1 , 2 ⎞ , ⎛ − 1 , −2 ⎞
                                                                                                                                                                  3                          f                                         |x| < 1                                  d  − x+ x − x ,                                      |x| < 1
                                                      (1, 3), (-1, -1), ( , )
                                                                           1 5        8              ⎜       ⎟ ⎜            ⎟                                b      - ln 2                           2 8        16                                                                2 4  8   16
           2 a (-1, 1), (3, 5)                   b                                                           ⎝ 2       ⎠ ⎝            2         ⎠                 4
                                                                           8 4                                                                                                                                                                     1
             c (-1, 1), (3, 3)                                                                                                                                                               g 1 + 6x + 27x2 + 108x3,                        |x| < 3                            e 1 − 5 x + 19 x 2 − 65 x 3, |x| < 2
                                                                                      Review 7                                                                                                                                                                                          6  36     216
           3 (2, 3) and (2, -3)                                                           1 a y = x2 + 2x + 2                                                                                h 1 + x − 3 x 2 + 7 x 3,                   x <1
                        ( 25 5 )
                                                                                                                                      b y=2–x                                                                                                                                        2 16   104 2 640 3
           4 (3, 0),
                     81 12
                       ,−                                                                                                                                                                             28      16           2                                                    f      + x+     x +     x,                                    x <1
                                                                                                x2 y2                                        2
                                                                                                                                      d y = x −1                                                                                                                                     3   9   27      81                                               2
                                                                                            c      +   =1                                                                                              3 2 5 3           1
           5 a (0, -3), (3, 0)                       b (0, -5), (1, 0), (-5, 0)                 16   9                                                  2                                    i 1+ x + x + x , x <                                                                                          2
                                                                                                                                                                                                                                                                                g 4 + 4x + 8x + 8x , |x| < 1             3
                                                                                                                       3                                                                               2      2          2
             c (10, 0)                               d (0, -3), (7, 0), (-9, 0)           2 a x = sin q, y = sin 2q                                                                                    3 2 1 3                                                          2       a A = 2, B = 11
                                                                                                                       2                                                                     j 1 + x + x + x , |x| < 2
              e   (0, 2 ) , (2, 0)
                      3
                        −                            f (4pn, 0), n Î Z                      b x = 2sin q, y = 5tan q
                                                                                                                                                                                                       4     2
                                                                                                                                                                                                         3 2 1 3          1                                                          16       32
                                                                                                                                                                                                                                                                                                2     3      4
                                                                                                                                                                                                                                                                                b 3 + 7 x + 25 x + 9 x + 47 x ,
                                                                                                                                                                                                                                                                                                           256               256      4096
                                                                                                                                                                                                                                                                                                                                                  x <4
                                                                                                1                                                                                            k 1 + 3x + x − x , x <
           6 (1, -2), (4, 4)                                                              3 −1,                                                                                                          2     2          2                                                     c It converges more slowly to the correct answer as
                                                                                                3
               1
                  (2        )
           7 Q t 2 , 2t , y2 = 8x                                                         4 a   ( −8 + 3       14 , 22 − 6 14 ) , ( −8 − 3 14 , 22 + 6 14 )
                                                                                                                                                                                                   1
                                                                                                                                                                                             l 1− x − x −
                                                                                                                                                                                                   3
                                                                                                                                                                                                          1 2
                                                                                                                                                                                                         36
                                                                                                                                                                                                                  1 3
                                                                                                                                                                                                                 162
                                                                                                                                                                                                                     x , |x| < 2
                                                                                                                                                                                                                                                                        3       a
                                                                                                                                                                                                                                                                                  |x| increases.
                                                                                                                                                                                                                                                                                       5
                                                                                                                                                                                                                                                                                          − 4
                                                                                                                                                                                                                                                                                                                                   125
                                                                                                                                                                                                                                                                                                                              b ln 64  ( )
           8 a    Q(2t 2, 0), M(2t 2, 3t)                        b   2y2   = 9x             b (4, 0), (-12, 0)                                                                            2 a i 1 - x + x2 - x3 + x4                                                                 1 − x 1 + 2x
           9 (-4, 2), (16, -18)                                                               ⎛       ⎞ ⎛          ⎞ ⎛         ⎞ ⎛           ⎞                                                ii 1 + x + x2 + x3 + x4                                                           c 1 + 13x - 11x2 + 37x3
                                                                                            c ⎜ 3 , 5 ⎟, ⎜ 3 , − 5 ⎟, ⎜− 3 , 5 ⎟, ⎜− 3 , − 5 ⎟                                                    1                                              1
       10 1                                                                                     ⎝ 2          2 ⎠ ⎝ 2             2 ⎠ ⎝              2       2 ⎠ ⎝       2       2 ⎠          b i                                       ii                               Exercise 8.3
              4                                                                                                                                                                                  1+ x                                           1− x
                                                                                          5 a 2y – 3x = 1, 3y + 2x = 8                                                                                                                                                      1   0.737 42
       Exercise 7.3                                                                         b 12y = 5x + 49, 5y + 12x = 119                                                               3 a    2 + 1 x − 1 x2 ,                  |x| < 4                                  2   729 + 1458x + 1215x2 + 540x3 + 1354 + 18x5 + x6
       1      a 12              b 6                        c 8              d -5            c x – y = 4, y + x = 2
                                                                                                                                                                                                     4     64                                                               3   a 2.236 07       b 1.732 05
                                                                                  3
                    1                   1                                                                                                                                                      1 x x               2                                                        4   3.162 28
              e                 f                                                           d 2 3y = 2 x + 1, 2 y + 2 3 x = 3 3                                                              b 2 − 4 + 8 , |x| < 2                                                                          5
                   16                   2                                                                                                                                                                                                                                   5 a 1 + x - x2 + x 3                                   b 10.009 990
                                                                                                                                        28                                                                                                                                                                     3
       2      a y = 2 x + 1, 2 y + x = 4 1                                                6 a 19.5                                    b
                                         2                                                                                               3                                                   c 1 + 3 x + 27 x 2,                   x <2                                     6 1 - 6x +        24x2         -   80x3 ;        0.994 023 92
                                                                                                                                        3                                                      4 4       16                           3
              b 2y = 3x - 6, 3y + 2x = 4                                                    c 0.574 (3 s.f.)                          d
                                                                                                                                        2                                                                                                                                   7 a 1 − 1 − 12 − 1 3 ,                                  |x| > 1           b 9.949 874
                                                                                                                                                                                             d 1 ⎛1 + x + x ⎞ , |x| < 9
                                                                                                                                                                                                           2
                                                x                                                                                                                                                ⎜           ⎟                                                                      2x 8x   16 x
              c y = 2 x − 2, y =            −      +1                                     7 a 4cos q                                  b y = 2 x 2 + 3, −3                   x     3              3⎝        18          216 ⎠
                                                 2                                                                                                 3                                                                                                                            c x = -100, 10.049 876
              d 3y = 4x - 5, 4y + 3x = 0                                                  8 b    2
                                                                                                s+r
                                                                                                                                      d     (   121 22
                                                                                                                                                 9
                                                                                                                                                   ,−
                                                                                                                                                      3       )                           4 a 1 + 1 x − 5 x 2 , |x| < 1
                                                                                                                                                                                                   2   8                                                                    9 1 + 3 x + 3 x2 − 1 x3
                                                                                                                                                                                                                                                                                     4         32                  128
                     2 ⎞ ⎛ 1
              a ⎛− ,
                  1             2 ⎞
       3        ⎜      ⎟, ⎜  ,−   ⎟                                                                     2                                                                                          5   11 2 , |x| < 1
                ⎝ 3 3 3⎠ ⎝ 3 3 3⎠                                                         9 a y =2+x− x                               b t = 1 + 7 or 2.18 s (3 s.f.)                         b 1− x + x
                                                                                                                    20                                        5                                    2    8                                                               10 a 1 + 3 x + 7 x 2                                       b 5 + 15 x + 65 x 2 + 255 x 3
                                                                                                                                                                                                                                                                                       2                                              2       4           8     16
              b (1, 2), (1, -2)                                                             c 21.8 m (3 s.f.)                                                                                          5 2, |x| < 2
                                                                                                                                                                                             c 2 + 3x + x
 334                                                                                                                                                                                                                                                                                                                                                                    335
                                                                                                                                                                                                       2
Answers                                                                                                                                                                                                                                                                                                                             Answers

       11 2, 4, 3                                                                                                           cos x                                                                 6 a 5, 37                    b 3.19              c 2.72                   Revision 3
                                                                                                                     d                 − 1 e 3 tan 3x tan 2y f                e −( x + y ) − 1
              1                                                                                                           cos( x + y )       2                                                    7 a 126 000, 0.0314
                    = 1 - 3x + 6x2 - 10x3. . .                                                                                                                                                                                                                                      2        1                           3      2     1
       12                                                                      for |x| < 1                                                                                                                                                                                   1 a        −                b             −    +       +
          (1 + x )3                                                                                                    ye x + e y                                                                   b 3956e0.0314t, 5415 people/year                                              x − 2 x +1                             x x −1 x +1
                                                                                                                                                 h y (1 − e ln y )
                                                                                                                                                           x
                                                                                                                   g − y
                                                                                                                       xe + e x                          ex                                         c 323 200, 6.7%                                                                 6         4                        2      1       3
       Review 8                                                                                                                                                                                                                                                                 c       −                d                −       −
                                                                                                                     4                                                                  −
                                                                                                                                                                                            3     8 a 150, 100                 b 200, 0.03 cells/hour                             x−3 x−2                              x x + 1 ( x + 1)2
                                                                         1                                       3 a                                    b -3                       c
           1 a 1 + 3x + 9x2 + 27x 3, |x| <                                                                           3                                                                      7     9 a 20, 0.0575                                                                    4    2      8
                                                                         3                                                                                                                                                                                                      e − x − 2 + 2x − 1
                                                                                                                     d 0                                e 2                        f -2             b i 12 h                   ii 40 h                                                  x
               b 1 + x − 1 x 2 + 1 x 3,                       x <1                                                   g y=x+3                            h x=3                                       c 1.15 g h-1, 0.863 g h-1                                                         2           1                   1
                                  2          2                       2                                                                                                                                                                                                          f            +         −
                                                                                                                                                                                                                                                                                  5(1 − 2 x ) 5( x − 3) ( x           − 3)2
               c 1 + 1 x + 5 x 2 + 5 x 3, |x| < 2                                                                    i 7y = 33 - 13x                    j y = 1− x                               10 a 70, 0.154
                                                                                                                                                                      2                                                                                                      2 A = 1, B = -3, C = 2, D = 1
                             381      36                                                                                                                                                            b 10.8° C/min, 4.99° C/min
                                                                                                                 4 a 10y = 7x - 54, 7y = -10x - 8                                                                                                                                           3         3                                 1         2
                 1⎛       x2
                             + x ⎞,                                                                                                                                                                 c T = 10 + 70e-0.154t
                                3
                     1
               d ⎜3 + x −         ⎟                                 x <9                                                                                                                                                       d 5.5 min                                     3 a 1−              +                         b 1−              −
                                                                                                                     b y = x, y = p − x                                                                                                                                                 2( x + 1) 2( x − 1)                         3( x − 1) 3( x + 2)
                                                                                                                                                                          1
                 3⎝  3    54 486 ⎠                                     2                                                                                c x = 2, y = 2                           11 Both models give the same estimate of 3 360 000,
                                                                                                                                             2

                       2(                                      )
               e 1 1 + 1 x + 1 x 2 + 1 x 3 , |x| < 2                                                               d y = -x, y = x
                                                                                                                                                                                                    because P0at = P0ekt if k is defined by a = ek                              c 1+ 2 − 2 +                1              d x+2− 1 +                  9
                           2   4                      8                                                                                                                                                                                                                                 x     x −1      ( x − 1)2                        2x        2( x − 2)
                                                                                                                 5 y=x+1
                       2(                                                )
                       1                                                                                                                                                                         Exercise 9.4                                                                   e 2 − 2 − 12 +   6
               f         1+ x + 3 x
                           1                      2   + 5 x 3 , |x| < 4                                          6 26 2                                                                           1   0.2 m2 per min                                                                     x    2x − 1
                                                                                                                                                                                                                                                                                              x
                           8   128                        1024                                                            3
                                                                                                                 7 a 5y + 8x = 21                       b 41                                      2   a 47.1 cm2 per sec                       b 3.14 cm per sec                f 1− 4 + 1 2 −             1
               g 1 − 1 x − 3 x2 − 1 x3 ,                        |x| < 1                                                                                         5                                                                                                                   3( x + 1) ( x + 1) 3(2 x + 1)
                     2     8     16                                                                              8 (2, 3)                                                                         3   a 32.4 mm3 per min                       b 21.6 mm2 per min
                                                                                                                 9 (6, 14)                                                                        4   2 cm3 per hour                                                         4 p = 1, q = 0, r = 4, s = 3, t = 9
               h -(3 + 4x + 4x2 + 4x3), |x| < 1
                                                                                                                     (2 )
                                                                                                                                                                                                                                                                                                                          2 4
                                                                                                                                                                                                      a 40.2 mm3/sec                                       2
                                                                                                                                                                                                                                               b 15.1 mm /sec                5 a x = 21                             b k= − ,−
           2 A = 0.5, B = 0, C =                  −
                                                       1,          |x| < 1                                   10 1 1 , 0 , 63.4°                                                                   5                                                                                                                            3    3
                                                      16                                                                                                                                          6   15 cm3/sec                                                                                                           2
                   5                                                                                         11 (0, 0), (4, 2), 90°, 31°                                                                                                                                     6 a 3                                  b y = x −1
           3   −                                                                                                                                                                                  7   a 0.00 111 cm/sec                        b 0.333 cm2/sec                                                                 3
                   8
           4 1 − 1 − 1 2 − 1 3 , |x| > 2
                                                                                                             12 y = ±3
                                                                                                                                                                                                  8   0.0265 cm/min                                                          7 a   ( 1 , 0)
                                                                                                                                                                                                                                                                                     3
                                                                                                                                                                                                                                                                                              b (0, -1)             c (3, 2), (0, -1)
                       x     2x       2x
                                                                                                             13 1 , 1                                                                             9   126 mm2 per sec                                                        8 a 2y + x = 11                        b (-1, 6)
                                                                                                                     3
           5 a a = 3, n = -2                                  b -108                           c |x| <
                                                                                                         1
                                                                                                         3   14 a         ( ) 4, 1 , (4, 1)
                                                                                                                                 3
                                                                                                                                                        b   ( )
                                                                                                                                                            1, − 1 , (1, − 2)
                                                                                                                                                                 2
                                                                                                                                                                                                 10
                                                                                                                                                                                                 11
                                                                                                                                                                                                      0.305 cm/sec
                                                                                                                                                                                                      9 m/sec
                                                                                                                                                                                                                                                                             9 a (7, 3), (12, 4)
                                                                                                                                                                                                                                                                            10 a t = 0, 3, -3
                                                                                                                                                                                                                                                                                                                    b 17.7
                                                                                                                                                                                                                                                                                                                    b 64.8, 129.6
           6 a 1 + 2 , 3 − 3 x + 9 x 2 − 15 x 3, x < 1
C4




                                                                                                                                                                                                                                                                                                                                                                 C4
              1 − x 1 + 2x                           2                                                       15 a (-5, -2) min; (-5, -3) max                                                     12   -0.1 N m-2/sec                                                        11 a P(0, 4.25), Q(2, 2)                b 52                    c 41
                                                                                                                                                                                                                                                                                                                        3                            2
                                                                                                                          ( )
                                                                                                                                                                                                          −k dL
                                                                                                                                                                                                                                                                            12 a t = p
                   1     1       1                                                                                                  3                                                            13                                                                                                                   64
               b      +     −          , 1 + 2x - x2 + 4x3, |x| < 1                                                  b        −3,     min; (-3, -3) max                                             p r 2 L2 dt                                                                                                     d     −8 3
                 1 − x 1 + x (1 + x )2                                                                                              2                                                                                                                                                3                                 3
                                                                                                                                                                                                      where k is Boyle’s constant. Assumes temperature                                                                     1
           7 a A = 1, B = 2                                   b 3 - x + 11x2                                 16 (1, 1) and (1, -1)                                                                                                                                          13 a 1 - 3x + 9x2 - 27x3, |x| <
                                                                                                                                                                                                      remains constant.                                                                                                    3
                           1                  1                                                              17 a maximum of 3, minimum of -1
               c No as x = 2 is outside |x| < 3
                                                                                                                b maximum of -1, minimum of 3                                                    Review 9                                                                       b 1 + 5 x − 25 x 2 + 125 x 3,              x <1
        9 3.162 28 (5 d.p.)                                                                                               3                                 3                                                                                                                           2         8        16                  5
                                                                                                             18 a              2                        b       4 ,max                                  3x                        2x + 3y              2 y3
                                                                                                                                                                                                  1 a -                       b -                    c
       11 a p = -13.5, q = 67.5                               b 1.424 687 5
                                                                                                             19
                                                                                                                     dy
                                                                                                                        =
                                                                                                                               x2     + 8x − 4                                                          4y                        3x + 2 y             3x3                      c 3 + 1 x − 1 x 2 + 1 x 3,                 x <1
                                                                                                                                                                                                                                                                                      3     54     486                        2
       12 a A = 3, C = 4, B = 0                               b 4 + 8 x + 111 x 2 + 161 x 3                          dx             ( x + 4)2                                                                                                            y 2 e x − 2 xe y
                                                                                                                                                                                                            2                           1
                                                                                     4              2                                                                                                 d
                                                                                                                                                                                                            3
                                                                                                                                                                                                              tan 2x tan 3y       e
                                                                                                                                                                                                                                      3 xy 2
                                                                                                                                                                                                                                                     f
                                                                                                                                                                                                                                                         x 2 e y − 2 ye x       d x + 1 x 2 + 3 x 3 , |x| < 4
                                                                                                                                                                                                                                                                                         8        128
       Before you start Answers                                                                              Exercise 9.2
                                                                                                             1       x = ±1                                                                           3y2   + 4 xy − 3x2     17                                                 e 1 − 3 x + 9 x 2 − 27 x 3, x < 4
       Chapter 9                                                                                                                                                                                  2                        −                                                      4 16      64      256          3
                                                                                                             2       y = x + 2 2, y = x − 2 2,                                                        3 y 2 − 6 xy − 2 x 2    7
       1       a y = 6x - 5 b y = 2(x - 4)                                                                                                                                                                                                                                        1 1        3 2       5
                                                                                                                     y = − x + 2 2, y = − x − 2 2 , area = 16                                     3 a 3y - 2x = 2             b 7y - 5x = 8          c y + 6x = 3               f   + x+        x +       x 3, x <4
                                                                                              −
                                                                                                1                                                                                                                                                                                 2 16      256      2048
       2       a 3tan2 x sec2 x                                              b 3 x 2 (x 3 + 1) 2                                                                                                  5 x - 2y + 2 = 0
                                                                                 2                                   (-0.618, ±0.300)                                                                                                                                               3   9
                                                                                                             3
                                                                                                                                                                                                  6 b (2, 3), (2, 5)                  c (2 ± 4 2 , − 1)                     14 a 1 − x − x 2,             x <1
                                                                                                                     (              )
               c ex(sin x + cos x)                                           d x2(1 + 3ln x)                                                                                                                                                                                          2     8
                                                                                                                         1 −1
                                                                                                             5            ,
                         1                                                                                               5 10                                                                     7 4 y + 3x = 8 3                                                             b 1− x + x , x < 1
                                                                                                                                                                                                                                                                                      1     15 2
       3       a                           b 1 (3 + ln 20) c 50(1 - ln1.5)                                                                                                                                                                                                            2      8         3
                       ln 1.5                2                                                                                                                                                    8 a y = 3x - 7                      b 3y = 2x - 7
                                                                                                             Exercise 9.3                                                                                                                                                           3    9     27
                                                                                                                                                                                                                                                                                                    , x >3
       Exercise 9.1                                                                                                                                                                                                                                                         15 1 −    −      −
                                                                                                                 1 a ln 3 ´             3x              b 2ln 3 ´    32x - 1                      9 y = bx 2 −b                                                                    2 x 8 x 2 16 x 3
                                                                                 c 3 − 2x
                                                 2                                                                                                                                                         a
           1 a          x                     b x2                                                                 c 20ln 3 ´ 35x + 2                   d -2ln 3 ´ 3-2x                                                                                                     16 a = ±8, 2 + 2x - x2, 2 - 2x - x2
                                                                                             2y                                                                                                     ⎛         ⎞ ⎛            ⎞
                                                                                                                                                                                                 10 ⎜ 1 , 3 3 ⎟ , ⎜ 1 , −3 3 ⎟
                       3y                             y
                                                                                                                   e 2ln 10 ´ 102x + 5                  f -6ln 5 ´ 51 - 2x
                                                                                                                                                                                                    ⎝2 2 ⎠ ⎝2             2 ⎠
                                                                                             1+ y
                                                                                                                               (                   )
                                                                                                                                                                                                                                                                                      1     1
               d             1                e       −
                                                          y
                                                                                 f       −                           1        1
                                                                                                                                x +2                                                                                                                                        17 a         +      , 2 + x + 5 x 2 + 7 x 3,                 x <1
                       3 y ( y + 2)                       x                                  1+ x                2     ln 2 2 2 + 6 × 2 x , 16 ln 2                                              11 a      54y + x = 27               b t = -6                                     1 − 2x 1 + x                                                2
                                                                                                                     2
                        2x + y                            x(1 + y 2 )                    x (3 − y 2 )                                                                                            12 a      4y = x + 15                                                          b   1
                                                                                                                                                                                                                                                                                       +
                                                                                                                                                                                                                                                                                           1
                                                                                                                                                                                                                                                                                              ,
                                                                                                                                                                                                                                                                                                3 11
                                                                                                                                                                                                                                                                                                 + x+
                                                                                                                                                                                                                                                                                                      73 2 431 3
                                                                                                                                                                                                                                                                                                        x +    x,                                   x <1
               g -                            h       −                          i                               3 a y = 6.59x - 0.59                                                                                                                                             2 + x 8 − 3x 2 4    8     16                                           3
                        x + 2y                                                           y ( x 2 − 2)
                                                                                                                                                                                                 13 a      (0, 2), (0, -2)            b    x=0
                                                          y (1 + x 2 )                                               y = -0.15x + 6.15
                                                                                                                                                                                                 14 a      i 4xln 4                   ii   (24x + 22x +2)ln 2               18 a A = − 3 , B = 1         b -1 - x + 4x3
                                                      y2                                     3y3                   b y = 4.16x + 6                                                                                                                                                      2      2
               j       -1                     k                                  l       −                                                                                                          b      i y = 5 + 2xln 2           ii   y = 4 + 5xln 2
                                                      x2                                     4 x3                    y = -0.24x + 6
                                                                                                                                                                                                 15 a      13, 50                     b    12.3 per sec                          5y − 2x              ey          y − sin y
               m tan x tan y                  n cot2 y                                                           4 a 40, 83.2                           b   5.28, 1.46                                                                                                      19 a             b                c
                                                                                                                                                                                                    c      5.8 per sec                d    t = 1.5                               2 y − 5x        3 y 2 − xe y    x(cos y − 1)
                                                       y2                            y                             c 13.4, 20.1                         d   0.55, 0.22
                        1                     b −                                c − x                                                                                                           16 a      £1975                      b    -£801 per year
           2 a                                                                                                   5 a 3.21, -0.71                        b   5.80, -2.55                                                                                                                                   y                    2 xy − sec 2 ( x + y )
                       2xy                        x(1 − y ln x )                                                                                                                                    c      rate of depreciation                                                 d cot x cot y e                            f
 336                                                                                                               c 1.98, -0.020                       d   54.6, -109                                                                                                                                    x                    − x 2 + sec 2 ( x + y )         337
Answers                                                                                                                                                                                                                                                                                                                             Answers

       20 a y = 1 x - 1                                                                                                                                                                                                                                                                                          3
                                                                                                                                                                                                                                                                                                                   x − 2 cos x − 1 sin 2 x + c
                                                                                                                                     1                                             3                                             3
                                             b y+x=2                                   k 5 ln sin 2 x + c                        l     sin (2x + 3) + c          2   a 2 (1 + e x )2 + c                         b 2 (1 − cos x )2 + c                                  e tan x − 2 ln sec x + c f
                       2                                                                    2              5                         2                                   3                                               3                                                                                       2               4
       22 a      −
                     2
                       tanq                  c 6cosec 2a              d p,6            m − 1 tan (4x + 1) + c
                                                                                                                                     1                                                                                   1           3
                                                                                                                                                                                                                                                                        g 1 tan5 x + c                                    1
                                                                                                                                                                                                                                                                                                               h sin x − sin  3x +c
                     3                                                      4                   4
                                                                                                                                 n 4 sec 4x + c                      c 2 (x + 2) x − 1 + c                       d         (1 + x 4 )2 + c                                  5                                             3
       23   21.4                                                                                                                                                         3                                               6
                                                                                                                                                                                                                                                                                                                   3
       24   a 60 664                         b 485 per year           c 87 years       o
                                                                                            1
                                                                                              ln |sec 4x + tan 4x| + c                                               e
                                                                                                                                                                         1
                                                                                                                                                                           (ln x)3 + c                           f 2 x − 4 ln ( x + 2 ) + c                             i   1
                                                                                                                                                                                                                                                                              cos3 x − cos x + c               j     x − 1 sin 2 x + 1 sin 4 x + c
                                                                                            4                                                                            3                                                                                                  3                                      8     4           32
       25   a 0.0637 m/min                   b 0.8 m2/min
       26   a 0.002 55 cm/s,                 b 0.48 cm3/s                                       1
                                                                                       p - 4 ln |cosec 4x + cot 4x| + c                                              g 2 x + 1 − ln (1 + x + 1 ) + c                                                                    k sin x − sin3 x + 3 sin5 x − 1 sin7 x + c
                                                                                                                                                                                                                                                                                                        5          7
       Before you start Answers                                                            1 −2 x                                    1                                                                                                                                             sec x + 1 tan2 x + c
                                                                                       q −2e + c                                 r     sin 3 x − 3 cos 1 x + c       h   −    1−   x2   +c                       i           -1
                                                                                                                                                                                                                     sin (x) + c                                        l   − ln
                                                                                                                                                                                                                                                                                                   2
                                                                                                                                     3                 3
       Chapter 10
                                                                                                                                                                                                                 k 1 ln ⎛ e x − 1 ⎞ + c
                                                                                                                                                                                                                            x
                                                                                           1                                         1 2x           1 −2 x               1 sec3 x + c
       1    a 2x ln x + x                    b ex(3x2 + x3)                            s - 2 cosec 2x + c                        t     e − 2x − e + c                j
                                                                                                                                                                                                                   2 ⎜ e + 1⎟                                       4   a − 1 cos 2 x + c                      b   −
                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                         cos 4 x + c
                                                                                                                                     2              2                    3                                              ⎝         ⎠                                         4                                          8
                                                 2x2   +1                                                               1
            c ex(tan x + sec2 x)             d                                     2   a 0                          b                      c     2                                                                ⎛           ⎞                                                 1                                       1
                                                     x2 + 1                                                             2                                            l   −
                                                                                                                                                                              4 − x2 + c         m 2 x + 1 + 4 ln ⎜ x + 1 − 1 ⎟ + c                                     c   −
                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                  cos x + c                    d   −
                                                                                                                                                                                                                                                                                                                       12
                                                                                                                                                                                                                                                                                                                          cos 6 x + c
              1 − ln x                                                                                                                                                         4x                                                          ⎝ x + 1 + 1⎠
            e                                f cot x
                                                                                                    (           )   e e −1
                                                                                                                       4
                 x2                                                                    d 2 2             2 −1                              f    1 ln 7
                                                                                                                                                                                                                                                                                   1                                      1
                                                                                                3                           2e                  3                3   a 2(e - 1)              b
                                                                                                                                                                                                     9
                                                                                                                                                                                                                                       c        2 −1                    e   −x    + tan 3 x + c                f   −x    − cot 3 x + c
                                                                                                                                                                                                                                                                                       3                                   3
       3    a     1
                       +
                            1
                                             b −3 + 2 + 1                                                                                                                                            20
              2( x − 5) 2( x + 5)               x x −1 x + 2                       3   a - 1 + tan x + c                         b ln x - cot x + c                                                                                             31
                                                   3      7
                                                                                                x                                                                    d 23.2                  e 2                                       f
                                                                                                                                                                                                                                               162                      g − x − 1 cot 2 x + c                  h 2 tan ⎛ 1 x ⎞ + c
                                                                                                                                                                                                                                                                                                                       ⎜     ⎟
            c 1− 1 + 1 2                     d 1−    +                                                                                                                                                                                                                          2                                          ⎝2 ⎠
              x x − 1 ( x − 1)                    2 x 2( x − 2)                        c 1 ( e2 x −1 − e1−2 x ) + c              d 1 sec 3x + c                      g e −1                  h 352
                                                                                                                                                                                                                                                                           1
       (Arbitrary constants are omitted from answers.)                                      2                                        3                                       2e                          15                                                         5   −    cos 8 x − 1 cos 4 x + c
                                                                                                                                                                                                                         1                                                16           8
       Exercise 10.1                                                                   e − 1 cosec 3x                                                            4   a (2, 0)                                    b 30
                                                                                                                                                                                                                                                                                 1
                                                                                           3                                                                                                                                                                        6   a   −      cos 5 x − 1 cos 3 x + c             b 1 sin x + 1 sin 9 x + c
       1    a 1.45             b 8.72           c 1.17                                 10                                                                        5   a (0, 0), (4, 0), 128                       b (0, 0), (2, 0), 4                                            10           6                             2               18
                                                                                   4                                                                                                      15                                                   3
            d 0.137            e 1.57           f 2.12                                 p
                                                                                                                                                                                                                                                                        c 1 sin x − 1 sin 5 x + c
       2    a 0.9943
            d convex graph
                               b 1              c 0.57%
                                                                                   Exercise 10.4
                                                                                                                                                                                   (2 )
                                                                                                                                                                     c (0, 0), p , 0 , (p , 0); 5
                                                                                                                                                                                                             2
                                                                                                                                                                                                                                                                          2         10
                                                                                                                                                                                                                                                                            3                           1                                        2
                                                                                                                                                                 6   a, d, e, g, h on sight                                                                         7   a                          b                                   c
       3    a 0.9185           b 0.9116
                                                                                                                                       ( x − 1) + c                                                                                                                         5                           5
                                                                                                                                     1 3         6                                                                                                                                                                                              5
                                                                                   1   a    ln |x3      - 1| + c                 b                                                                                           ( x 2 + 1)4 ( x 2 + 1)2
                                                                                                                                     6                               a 1 ( x 3 + 1)5 + c                                                −            +c
C4




                                                                                                                                                                                                                                                                                                                                                              C4
       4    55.1, p » 3.06                                                                                                                                                                                                                                                  3p                          ⎛       ⎞
                                                                                                                                                                                                                                                                                                   b ln ⎜ 2 + 1 ⎟
                                                                                                                                                                                                                         b         4           2
                                                                                                                                                                         5                                                                                          8   a                                                              c 0
                                                                                                                                       ( x + 3x − 1) + c
                                                                                                                                     1 2            5
       5    I = 2.30, 18.4                                                             c ln |x2 + 3x - 1| + c                    d                                                                                                                   3                       2                              ⎝ 2 − 1⎠
                                                                                                                                     5                                                           3
                                                                                                                                                                                                                           2
       6    a 50.5             b 51.2           c 1.4%                                                                                                               c 2 (3 x − 2)(x + 1) + c    2                       d (1 + tan x ) + c          2
                                                                                                                                                                                                                                                                    9
                                                                                                                                                                                                                                                                        1
                                                                                            1                                        1 2                               15                                                  3                                            3
       7    Area = pab where a, b are the lengths of the                               e      ln |x2 - 4x + 1| + c               f     (x - 4x + 1)4 + c
                                                                                            2                                        8                                             1
                                                                                                                                                                                                            2
            semi-axes. For a circle, a = b = r
                                                                                                                                     1 sin (x2 + 1) + c
                                                                                                                                                                     e (x 2 + 1)2 + c                    f
                                                                                                                                                                                                           15
                                                                                                                                                                                                               x + 1(3x2 - 4x + 8) + c                              11 a 1                         b 8
                                                                                       g ln |sin x + 1| + c                      h                                                                                                                                          2                           3
       Exercise 10.2                                                                                                                 2
                                                                                                                                                                                                                                                                    12 p + 1
                                                                                                                                                                                                                    3
                                                                                                                                                                                                           2
                                                                                                                                                                     g 1 e x +1 + c                      h (e x − 1)2 + c
                                                                                                                                                                            2
                                                              c e −1
                                                                 2
       1    a 2                      b 5 2                                                                  3                                                          2                                   3                                                           2 6
                                         2                           e                 i
                                                                                            3
                                                                                              ( x − 1)2 + c
                                                                                            1 2
                                                                                                                                 j       x2 − 1 + c
                                                                                                                                                                                                                                                                    13 a odd function                          b even function
            d ln 2                   e   −   2                f 3 + ln 4                                                                                         Exercise 10.6
                                                                                                                                     1 x2
                 27                      p                                             k 1 ln |x2 - 1| + c                       l     e +c                              1                                               1                                          Exercise 10.7
            g       + ln 4           h     + 3                                           2                                           2                           1   a     sin 3x + c                        b       −     cos 4x + c
                  2                      3                                                                                                                               3                                               4                                                          x
                                                                                                                                                         3                                                                                                          1   a 2 ln         +c                      b 2ln |x - 3| - ln |x + 1| + c
                                                                                       m − 1 e− x + c                            n 1 ( x 2 + 2 x + 3) + c                                                                                                                          x+2
                                                                                                                                                                                  ( )                                             ( )
                                                                                                 2
                                                                                                                                                         2
       2    a 1 tan q + c            b 1 x2 - 2ln x + c                                         2                                    3                               c 2 sin 1 x + c                         d − 2 cos 3 x + c
              2                        2                                                                                                                                     2                                   3     2                                                c ln |(2x + 1)(x + 1)| + c                 d ln (x − 1)(x + 3)3 + c
            c 5sin x + 3cos x + c                                                      o 1 ln |x2 + 2x + 3| + c                  p esin x + c                            1                                               1
                                                                                           2                                                                                                                                                                                                                           2 −
                                                                                                                                                                                                                                                                        e ln 2 x − 1 + c
            a e2 - 1                                                                                                                                                 e     sin (2x + 1) + c                  f       −     cos (3x - 2) + c
       3                      b ln 3                                                                                                                                     2                                               3                                                                                     f 4 ln x 2 1 + c
                                                                                           1 x3
                                                                                       q e +c                                    r   ln |ln x| + c                                                                                                                                 2x + 1                                   x
                 ⎛p        1 ⎞                                                             3                                                                           1                                       1
       4    a ⎜ , ⎟                  b 2− 2                   c     2 −1                                                                                             g 4 tan (4x) + c                        h 2 tan (2x - 3) + c
                                                                                                                                                                                                                                                                        g 1 + ln x − 1 + c
              ⎝4 2⎠                                                                                                                                                                                                                                                                                                        x    1
                                                                                   3
                                                                                       1
                                                                                         ln 2                                                                                                                                                                                                                  h ln          −     +c
                                                                                       2                                                                                                                                                                                    x              x                             x −1 x −1
       5    e2 - e - ln 2 » 3.98                                                                                                                                         1
                                                                                                                                                                                                     −
                                                                                                                                                                                                         1                                          1
                                                                                                                                                                                                                                                      cot 4 x + c
                                                                                                                                                                                                                                                                            i ln x − 2 + 3 + c
                                                                                   4   x + ln |x - 1| + c                                                        2   a     tan 3x + c        b             cos 3x + c                      c    −
       6    e4                                                                                                                                                           3                               3                                          4                   i
                                                                                       1 n                                                                                                                                                                                             x +1            x +1
                                                                                         x + 1 x n −1 +                 + x + ln | x − 1| + c
                                                                                                                                                                                                                                                                                 ()                                                                  (7 )
            10                                                                                                                                                                                           1
       7                                                                               n    n −1                                                                     d tan x + c             e       −     ln cosec x + cot x + c                                       a ln 8                                 b ln 2 + 3                  c ln 3
            p                                                                                                                                                                                            2                                                          2
                                                                                                                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                                             5
                                                                                                                                                                     f sec x + c       g ln |sec x + tan x| + c
                                                                                                                                                                                                                                                                        5
       Exercise 10.3                                                               Exercise 10.5                                                                     h x + tan x + 2ln |sec x + tan x| + c                                                          4     ln 2 − 3 ln 3
                 1                                   1                                    1                        2                       3                                                                                                                            2        2
       1    a      sin 5x + c                    b − cos 4x + c                    1   a     (1 + x 3 )5 + c         (1 + x ) + c
                                                                                                                            b            3 2
                                                                                                                                                                         1
                 5                                   4                                                                                                                     (sin 3 x − cos 3 x ) + c
                                                                                                                                                                                                                                                                        a x + 3 ln x − 3 + c                   b x + ln x − 1 + c
                                                                                         15                        9                                                 i
                                                                                                                                                                         3                                                                                          5
            c
                 1
                   tan 3x + c                    d 2sin 1 x + c                          1                         1                                                                                                                                                               2       x+3                                 x +1
                 3                                       2                             c   sin5 x + c           d tan2 x + tan x + c                                 j   -cot x - 4ln |cosec x + cot x| + 4x + c
                                                                                         5                         2
            e
                   1
                 − cot 4x + c                    f 1 4 x −3
                                                     e      +c                                    1                                                                  k -2 cot x - 2 cosec x - x + c                           l    −
                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                         cot 2 x + c                    c x + 2 ln x + 1 + c
                   4                               4                                   e −             3 +c     f ln (x + 5) + 5 + c                                                                                                   4                                                       x
                                                                                           9 ( 3 x − 1)                        x+5
            g
                  1
                    (3 x + 2)5 + c               h 1 ln |sec 3x| + c                                                1                                            3   a 1 x + 1 sin 2 x + c                       b 1 x − 1 sin 6 x + c                                  d 1 x 2 + 2 x + 37 ln | x − 3| + 3 ln | x + 2| + c
                 15                                3                                   g 2ln (x - 1) + (x - 1) -         +c                                            2     4                                     2     12                                               2              5               5
                                                                                                                  x −1
            i    1
                   ln |3x - 1| + c               j    −
                                                                1
                                                                       +c              h       −1
                                                                                                     +
                                                                                                           2
                                                                                                                  +c                                                 c 1 (x + sin x ) + c                        d 1 x − 1 sin (6 x + 2 ) + c                       6   ln x 2 − 1
                 3                                        3 ( 3 x − 1)                    4(e x + 2)4 5(e x + 2)5                                                        2                                               2        12
 338                                                                                                                                                                                                                                                                                                                                                        339
Answers                                                                                                                                                                                                                                                                                                                            Answers

       Exercise 10.8                                                                                                                                                  Exercise 10.10                                                                                             1
                                                                                                                                                                                                                                                                                                   b 1 (x − 4)5 + 3 (x − 4)4
                                                                                     10 a 1                    b 1 − 134                                                                                                                                    6 a          −
                                                                                                                                                                                                                                                                             ( x + 3)
        1 a sin x - xcos x + c                   b xe x - e x + c                         2                        4                                                       279                                                              32                                                               5                 4
                                                                                                e                        4e                                            1 a 5 p                              b 4p                       c     5
                                                                                                                                                                                                                                               p                             3                                            3
                                                                                                                                                                                                                                                                                                                          1
           c 1 x 2 ln x − 1 x 4 + c              d 1 e2 x (2 x − 1) + c              11   −
                                                                                              1
                                                                                                cos x sin2 x − 2 cos x                                                                                                                                          c 2 (e x + 3)2                     d 2 (x + 1)2 − 2(x + 1)2
               2                     4
           e xtan x - ln |sec x| + c f
                                                    4
                                                    -e-x(1      + x) + c                   1
                                                                                              3
                                                                                                           3
                                                                                                               3
                                                                                                                         3
                                                                                                                                                                       2 a 38 p
                                                                                                                                                                            15
                                                                                                                                                                                            b p ln 3
                                                                                                                                                                                                    2               ()
                                                                                                                                                                                                                 c 8p
                                                                                                                                                                                                                    15
                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                                                            7 0.183
                                                                                                                                                                                                                                                                                                     3

                                                                                          − cos x sin 3 x − cos x sin x + x
                                                                                                                                                                            p2
                                                                                                                                                                                                                 f p e2(3e2 - 1)
                                                                                           4               8             8                                                                                                                                          1
                                                                                                                                                                         d                  e p                                                             8
           g 1 sin 2 x − 1 x cos 2 x + c                                                  5p                                                                                  4                                      4                                               3
               4                 2
                                                                                          16                                                                                 p                        p                                                     9 a ln |sin x|                       b tan x                  c ln |sec x + tan x|
                                                                                                                                                                         g (7 − 12 ln1.5)         h      (18 ln 3 − 8 ln 2 − 5)
           h − 1 2 ln x − 1 2 + c i                 1 2 x +1
                                                      e (2 x − 1) + c
                                                                                                                                                                                                                                                                               (                         )                         (                )
                                                                                                                                                                             6                         4
               2x         4x                        4                                                                                                                                                                                                           d 0.5 x + 1 sin(6 x )                                     e 0.5 x − 1 sin 6 x
                                                                                                                                                                       3 m= r
                                                              ( ln x − 2 ) + c
             1 3                                    2     3                          Exercise 10.9                                                                                                                                                                        6                                                              6
           j   x (3 ln x − 1) + c k                   x   2                                                                                                                     h
                                                                                                                                                                                                                                                                f 3x - 4ln |cos x| + tan x
             9                                      3                  3              1 1 x4 − x3 + c                         2 1 x4 − 2x3 + 9 x2 + c                  4
                                                                                                                                                                         64
                                                                                                                                                                            p
                                                                                          4                                       4                     2                                                                                                       g 1 (3 x + 4 sin x + 0.5 sin 2 x )
                       ( 4)        ( 4)
                                                                                                                                                                         15
           l   x sin x − p + cos x − p + c                                                1                                       1 3                                    1
                                                                                                                                                                                                                                                                         8


           m sin ( x + p ) − x cos ( x + p ) + c
                                                                                      3
                                                                                          7
                                                                                            (x - 6)7 + c                      4
                                                                                                                                  8
                                                                                                                                    (x - 2)8 + c                       5 p (4 − p )
                                                                                                                                                                         8                                                                                                         (2)
                                                                                                                                                                                                                                                                h 2 sin x − 2 sin3 x                (2)          i       − cos x
                                                                                                                                                                                                                                                                                                                                    2        1
                                                                                                                                                                                                                                                                                                                                   + cos3 x − cos5 x
                                                                                                                                                                       6 a 243p
                                                                                                                                                                                                                                                                                             3                                      3        5
                                                                                                         3                                                                                        b (-4, 16), (3, 9), 868 14 p
                                                                                      5 2 ( x 3 + 1) + c
                                                                                                                                1
                       6                 6                                                               2                    6   ln |x3 + 1| + c                               5                                           15                                  j        1
                                                                                                                                                                                                                                                                           (3 x − sin 4 x + 1 sin 8 x )                             k x - 2tan x
                                                                                          9                                     3                                                                                                                                        8                  8
                                                                                                                                                                                                      80
           n 1 x 2 + x tan x − ln sec x + c                                                                                                                            7 a (-2, -4), (2, 4)       b       p
                                                                                                                                                                                                                                                                                                 ( )⎠
                                                                                          1 sin (2x3) + c                     8 3 x + 3 sin 2 x + c
                                                                                                                                                                                                                                                                         0.5 ⎛ x + 2 sin x ⎞
             2                                                                        7                                                                                                                3
                                                                                          3                                     2      4                                 5p                                                                                     l            ⎜             ⎟
                                                                                                                                                                       8                                                                                                       ⎝         2
           o x(ln |x|)2 - 2x ln |x| + 2x + c                                          9   x − 1 sin 6 x + c               10 4tan x + c                                  14
                                                                                                                                                                                                                                                                         1
                                                                                                6
                                                                                                                                                                       9 p                                                                                 10 a            sin 2 x + 1 sin10 x b 0.3
                                                                                          5                                                                                                                                                                              4           20
        2 a 12 ( nx sin(nx ) + cos(nx )) + c                                         11     sin 4 x + c                   12 1 sin 2 x − 1 x cos 2 x + c                 2
                                                                                          4                                       4            2                                                                                                                   ( x − 3)
                                                                                                                                                                                                                                                                                                                           (                    )
                                                                                                                                                                                                                                                                                         3
            n                                                                                                                                                         10 a (0, 4), (1, 4)                           b 1.3p                                 11 a ln                                               b ln (x + 2)2 2 x − 1
                                                                                     13   1 3
                                                                                             x (3 ln (2 x ) − 1) + c      14      3 ln (x2 + 7) + c                                                                                                                        2  ( x − 1)
           b 12 enx (nx − 1) + c
                                                                                                                                                                      11 p (3(ln 3)2 − 6 ln 3 + 4)
                                                                                          9                                       2
             n
                                                                                     15
                                                                                           1
                                                                                              (5x - 1)(x + 1)5 + c        16         ( x + 2) + c
                                                                                                                                   1 2         6                           2                                                                                    c         7
                                                                                                                                                                                                                                                                            ln x + 1 −   7
                                                                                          30                                      12                                                                                                                                     16    x − 3 4( x − 3)
                   x n +1
           c                ((n + 1)ln x − 1) + c                                                                                 1 2x                                12 1946 p                                                                            12 a 0.182                                            b 2.886
               (n + 1)2                                                              17   1 2 x2 + c
                                                                                            e                             18        e (2x - 1) + c                             3
                                                                                                                                  4
                                                                                          4
                                                                                                                                                                      13 a 381 p                            b 197 p                                        13 a A = 3, B = 2                                     b 4 ln 2 − 5 ln 3
C4




                                                                                                                                                                                                                                                                                                                                                          C4
                                                                                                                                                                                                                                       c 16p
           d   −
                   cos nx
                     n
                          ( ln sec nx + 1) + c                                       19 -2x + tan 2x + c                  20
                                                                                                                                  1
                                                                                                                                  2
                                                                                                                                    sin 2x + c                               7                                 2                                                                                                               4
                                                                                                                                                                         21p                                                                                                                                              b sin 3 x + 1 cos 3 x
                                                                                                                                                                                                                                                                                                                            x
                                                                                                        (2 )
                                                                                                                                                                                                                                                           14 a x sin x + cos x
                                                                                     21 2 ln sin 1 x + c                  22 xln |2x| - x + c                         14                                                                                                                                                    3          9
        3 a p −1
                                                                                                                                                                          8
                                         b 4 ln 2 − 15            c ln 27 − 1
               2                                     16                     4                                                                                                                                                                                   c 1 e3 x (3 x − 1)                                        d − x cos nx + 12 sin nx
                                                                                     23 2x(ln |x| - 1) + c                24 x + ln |x + 1| + c                       15 p ⎛1 − 3 ⎞                                                                               9                                                           n
                                                                                                                                                                         2⎜     2 ⎟
                                                                                                                                                                                                                                                                                                                                         n
           d log10 4 −
                                3 log10 e                                                                                                                                      ⎝         e ⎠                                                                      1 2x                                                      1 2x
                                                                                                                                         (          )                                                                                                               e (2 x 2 − 2 x + 1)                                       e (2 sin x − cos x )
                                                 e 3log10 4 - 2log10 e
                                                                                                                                    sin 2 x + p + c
                                                                                                                                                                                                                                                                e                                                         f
                                                                                                                                                                                   (               )
                                                                                          1 4
                                    4                                                25     x + x3 + 1 x2 + 3x + c        26      1                                                                                                                               4                                                         5
                                                                                                                                                                      16 2p ln 3 − 1
                                                                        (        )
                                                                       p                  4             2                         2           2                                                                                                                   x4
           f   ln 2 + p − 3p 2                   g 1              h 1 e2 + 1              1                                       1 2x
                                                                                                                                                                                        2      6                                                                g 16 (4 ln x − 1)
                      4                            2                2                27     ln sec (2 x − p ) + c         28        e (sin 2x - cos 2x) + c
                                                                                          2                                       4                                   17 4 p ab2
        4 p, 3p                                                                                                                                                          3                                                                                 15 a 0.1517       b 0.7183                                     c 1.446             d 3.196
                                                                                            1                                     1
                                                                                                                                    cos 2 x − 1 cos 6 x + c              8p
           ( )
                                                                                     29   − cos 4x + c                    30                                                                                                                               16 a 0.5x sin 2x + 0.25cos 2x
        5 1, 1 , 1 − 6                                                                      8                                     4           12                      18
                                                                                                                                                                         15
             e       e5                                                                                                                                                                                                                                         1
                                                                                                                                                                                                                                                                  (2 x 2 + 2 x sin 2 x + cos 2 x )
                                                                                          ln x − 4 + c
                                                                                                                                                                               (                        )
                                                                                                                                  1    x−2                                                                                                                      b
               1                                                                     31
                                                                                              x +1
                                                                                                                          32
                                                                                                                                  2
                                                                                                                                    ln
                                                                                                                                         x
                                                                                                                                              +c                      19 p             3 −1− p                                                                  8
        6 a −e                                   b 1                                                                                                                                               12                                                           1        1
                                                                                                                                                3
                                                                                                                                                                      20 Torus (doughnut), 4p 2                                                            17 a x 6 − x 4          b 1 x4 − 2 x3 − 1 x2 + 2x
                                                                                                                          34 2 ( e x + 1) 2 + c
                                                                                        2
                1                                                                    33   x − 2 (x + 4) + c                                                                                                                                                     6        4             4       3     2
        7 a       (5 x − 1)(1 + x )5 + c                                                3                                    3                                                                                                                                  1                       1 2
               30                                                                       1                                      1                                      Review 10                                                                               c (x − 5)    7
                                                                                                                                                                                                                                                                                   d (x − 2)       6
                                                                                     35 ln (e2x + 1) + c                  36 − sin-3 x + c                             1 a 7.40      b 1.47     c 4.04    d 0.477                                               7                       6
               ex           2                                                           2                                      3
                                                                                                                                                                                                                                                                         ( 2 x + 15 )(x − 2)
           b        (1 + x ) + c                                                                                                                                                                                                                                                  8                  3
                                                                                                                                                                       2 a 1.008 b 1            c 0.8%    d concave curve                                       e                                    2                    f 0.5ln |x2 - 1|
           c 2 (3 x + 2)( x − 1 + c
                                           3
                                          )2                                         37 − 1 cos 7 x − 1 cos 3 x + c 38 1 sin8 x + c                                    3 a 0.5ln 1.5, 1.5ln 2.5   b i 1.792    ii 1.684
                                                                                                                                                                                                                                                                           5
                                                                                         14           6                8                                                                                                                                                                                                                 x2
                                                                                                                                                                                                                                                                g 0.5 ln x − 1                     h ln x − 1
             15
                                                                                                                                                                                                                                                   (4)
                                                                                                                                                                                   1                            1                                                                                                                   i   e2
                                                                                                                                                                       4 a 3 sin 3 x                        b 5 tan 5 x                c -4cos x                                    x +1
        8 a e x(x2 - 2x + 2) + c                                                     39 1 ln x − 3 + c                    40      −
                                                                                                                                      2
                                                                                                                                        cos3 x + c                                                                                                                                                                   x
                                                                                          6         x+3                               3                                                                                                                                     x
           b -x2cos x + 2x sin x + 2cos x + c                                                                                                                             d 1 (6x + 1)5                     e 0.5ln |sin 2x|           f 0.25ln |4x + 3|        j        2e 2 ( x    − 2)          k 0.25x2(2ln |3x | - 1)
                                                                                                p                                                                           30
                                                                                                                         b ln 3
                        (                    )
                                                                                     41 a                                                                                                                                                                                1 3
           c 1 e2 x x 2 − x + 1 + c                                                             8                             2                                           g −
                                                                                                                                                                                  1
                                                                                                                                                                                                            h 0.25e4x                                           l          x (3 ln 3x − 1)
                                                                                                                                                                              4(4 x + 3)                                                                                 9
                                                                                          c ln ( 2 + 1)
               2                         2
                                                                                                                         d 1                                                                                                                               18 a ln |sin x|                                       b ln |sec x + tan x|
                    1 −3 x                                                                                                 4                                              i        0.5e2x + 2e x + x                            j   -2cot (0.5x + 1)
           d   −      e (9 x 2 + 6 x + 2) + c
                   27                                                                42 a − 1 2 + c                      b 1 tan3 x - tan x + x + c                       k 0.5ln |sec 2x + tan 2x|                             l   1
                                                                                                                                                                                                                                      sec 2 x                   c 1 sin 4 x − 1 sin3 4 x
                                                                                            2 tan x                        3                                                                                                        2                             4          12
          e 1 e2 x (cos 2 x + sin 2 x ) + c                                               1 x3
                                                                                        c e +c
                                                                                                                                   2          1
                                                                                                                         d sin x − sin3 x + sin5 x + c
                                                                                                                                                                           1
                                                                                                                                                                       5 a (x 2 + 3)6                       b 0.5ln |x2 + 3|           c 0.5sin (x2 + 1)        d  1
                                                                                                                                                                                                                                                                     (6 x − 8 sin x + sin 2 x ) e 3 x + 1 sin 2 x
            4                                                                             3                                        3          5                            6                                                                                                                          2      4
                                                                                                                                                                                                                                                                  16
          f 1 x 2 sin 3 x + 2 x cos 3 x − 2 sin 3 x + c
            3               9              27                                             4 2       (
                                                                                        e 1 3 x − sin 2 x + 1 sin 4 x + c
                                                                                                            8             )                                              d 1 sin7x
                                                                                                                                                                           7
                                                                                                                                                                                                            e 0.5ln |x2 - 2x - 1|
                                                                                                                                                                                                                                                     3
                                                                                                                                                                                                                                                                f 1
                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                    sin 4 x − sin10 x g
                                                                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                                 1 x
                                                                                                                                                                                                                                                                                                10
                                                                                                                                                                                                                                                                                                   e (sin 3x - 3cos 3x)
                                                                                                                                                                                                                                       h 2 (1 + x 3 )2
                                                                                                                                                                                                                            2
             1 3x                                                                                                                                                                                               −0.5e − x
          g
            13
               e (3 sin 2 x − 2 cos 2 x ) + c                                             f 2 ln x + c           g ln |3 + sec x| + c               h        3x
                                                                                                                                                                 +c
                                                                                                                                                                          f ln |1 + tan x|                  g
                                                                                                                                                                                                                                            9                   h 1 (8 x 2 cos 4 x + 4 x cos 4 x − sin 4 x )
                                                                                                                                                            ln 3                                                                                                  32
                             b e −5
                                  2
 340    9 a 1 (ep − 2)                       c 2(ln 2)2 − 2 ln 2 + 3                 43 a negative               b positive                  c zero
                                                                                                                                                                                                                                                                                                                                                        341
            5                     2 e2                             4
Answers                                                                                                                                                                                                                                                                                                                                  Answers

       19 a 0.3096                              b 1.071                       c 0.125                     g 3 y = 1 x2 − x + c          h y + ln y − 1 = c − 1 x                 Before you start Answers                                                                                 Exercise 12.3
            53                                      p 2 + 2p                                                      2                                                       2                                                                                                                   1 a 24              b   2           c   -2
       20 a 15 p                                b                                                                 Ax                                                             Chapter 12
                                                        8                                                 i   y=                        j   y 2(2y + 3) = x2 (2x + 3) + c                                                                                                                     2 a 3               b   6           c   9
                                                                                                                 x +1                                                                              ⎛1 ⎞                          ⎛ −1⎞
                                                                                                                                                                                                                       ii ⎛ ⎞
                                                                                                                                                                                                                            1
       21 V = 10 8 p                                                                                      k sec y = Asin x              l y (x + 1) = Ae x                       1     a i         ⎜ ⎟                       iii ⎜ ⎟
                                                                                                                                                                                                                          ⎜− ⎟                                                                  d 9               e   -3          f   -3
                          15                                                                                                                                                                       ⎝2⎠     ⎝ ⎠              5    ⎝ 3⎠                                                         3 a 62.8°           b   73.6°       c   39.7°      d 69.5°
                                            y                                                             m y = tan x – x + c           n x = ysin y + cos y + c                       b square with vertices (9, 1), (11, 3), (9, 3), (11, 1)                                                  e 82.6°           f   71.6°       g   85.5°      h 90°
                                                                                                                            2+ y                                                                                                                                                                                      1
                                       20                                                                 o c − 4e − x = ln                                                      2     a 41               b                      74 , 24                                                      4 a -1              b
                                                                                                                            2− y                                                                                                                                                                                      2
                                       18                                                                       1               1                       1                        3     a x = 2, y = 0, z = 3                           b x = 1, y = -1, z = 2                                 5 a -3              b   ±4
                                                    g(x) = 5x                                             p y = 2 ln |sec 2x| + 4 ln|sec 2x + tan 2x| - 2 x + c                                                                                                                               6 a parallel        b   neither     c perpendicular
                                       16                                                                                                                                        Exercise 12.1                                                                                                                        4                   2
                                                                                                      6   (y – 1)2 = 8x + 9                                                          1 a 13                       b 13                       c       21                      d       14       7 a -3              b               c 10, -
                                       14                                                                                                                                                                                                                                                                             3                    5
                                                                                                      7   k=2                                                                                                                                                                              8 a i 80.8°     ii 76.1°       iii 16.7°
                                       12                                                                                                                                            2 a       70                 b 3 5                      c       141                     d 0
                                                                                                      8   y 2 = 2(xsin x + cos x + 1)                                                                                                                                                        b 54.7° with each axis
                                                                                                                                                                                           3
                                       10                                                             9   x = tan q                                                                  3 a     i+ 4j                                b
                                                                                                                                                                                                                                         5
                                                                                                                                                                                                                                           i − 12 j                                        9 29.5°
                                                                                                                                                                                           5    5                                       13     13
                                        8
                                                                                                     10   2y 3 – 3y 2 + 6y = 3x 2 + c                                                                                                                                                     10 47.6°
                                                          f(x) = x2 + 4                              11 a
                                                                                                              dy
                                                                                                                 =x
                                                                                                                    dz
                                                                                                                       +z                                                              c     1
                                                                                                                                                                                                i+ 1 j+ 1 k                       d 2i − 1 j+ 2k                                          12 a 70.7°, 23.3°, 86.0° b 38 , 6 , 34
                                        6                                                                     dx    dx                                                                        3     3    3                              3        3           3
                                                                                                                                                                                                                                                                                             c 7.12 square units
                                        4                                                            Exercise 11.2                                                                         ⎛5 ⎞                                                                                           13 b i + 4j + 7k
                                                                                                                                                                                           ⎜2 3⎟                                        ⎛ −1 ⎞
                                        2                                                             1 a v = 1 t2 + 1 t + 6            b 13.5 m s–1                                 4 a   ⎜   ⎟                                  b ⎜ ⎟
                                                                                                                                                                                                                                    ⎜ 3⎟                                                  14 a 2p × r          b 2p × r
                                                                                                                     200          10                                                       ⎜5 ⎟                                     ⎝ ⎠                                                      c |p|2 - |r|2     d (p - r)2
                                                                                                      2 a 403                           b 23 days                                          ⎝2 ⎠
              –4 –3 –2 –1 O                         1     2       3       4   5 x                                                                                                                                                                                                         17 i - 2j + k
                                                                                                      3 6.2 years                                                                    5 a 16i + 12j                                b 10 i − 10 j − 5 k
                                                                                                                                                                                                                                         3           3           3                        18 180°
       22 a 63 3 p                                        b p(2e - 1)                                 4 26.3 days
                      4                                                                                                      Rt
                                                                                                                                                                                     6 a ±2                                 b ± 6
                                                                                                                                                                                                                                                                     1                    19 11
                                                                                                      5 a i = Ae
                                                                                                                         −
                                                                                                                             L          b L ln100                                    7 a 33.7°                         b 34.5°                           c              i− 3 j                  15
       Before you start Answers                                                                                                           R                                                                                                                          10    10
                                                                                                                                                                                                                                                                                          Exercise 12.4
                                                                                                      6   a   2.56 m                    b 50 hours                                8 a 9i + j         b 2i + 6j - 4k c -5i - j - 2k
       Chapter 11                                                                                                                                                                                                                                                                         1     a     r = (1 + 2l)i + (2 - 3l)j + (-3 + l)k
                                                                                                      7   c   10 760 years                                                        9 a l = 6, m = -12       b -4
                                                                               + 1)3                                                                                                                                                                                                            b     r = (4 - 2l)i + (-1 + l)j + (3 + 2l)k
C4




                                                                                                                                                                                                                                                                                                                                                             C4
                  1
       1     a y = x3 − 5x + 2                                b y = (x                  −4            8   b   Further 12 mins           c 30.1°C                                 10 a l = 8, m = -6        b l = -4, m = -3
                                                                                                                                                                                                                                                                                                c     r = (3 + 4l)i + (1 + 2l)k
                          3                                                    3                      9   b   2 cm
                                                                                                                                                                                           ⎛2⎞                                                                                   ⎛ −1 ⎞
                                                                                                                                                                                                                  b ⎛ ⎞                      c ⎛ ⎞
                                                                                                                                                                                                                     3                          5                                               d     r = (1 + l)i + (-1 + l)j - lk
                 (2 x + 1)4                                                                                                                                                      11 a ⎜ ⎟                                                                                    d ⎜ ⎟
                                                              b 1 sin 2 x + 1 tan 3 x                10 a y = 3(e − 1)                                                                                              ⎜ ⎟                        ⎜ ⎟
                                                                                                                 t
       2     a                                                                                                                          b 0.906 grams                c 1 gram         ⎝4⎠                            1                          5                              ⎝ 3⎠             e     r = (2 + l)i + j + 3lk
                      8                                               2             3                                                                                                                                  ⎝ ⎠                       ⎝ ⎠
                                                                                                                 t    3e − 1                                                                                                                                                                    f     r = 2li + k
                                                                                                                                                                    n × ln 10
             c   1
                   ln x − 1                                   d xsin x + cos x                       1 1 Number of shakes to reduce to 10 pins =                      ln 2       12 a ⎛ ⎞
                                                                                                                                                                                       5
                                                                                                                                                                                      ⎜ ⎟                         b ⎛ ⎞
                                                                                                                                                                                                                     8
                                                                                                                                                                                                                    ⎜ ⎟                      c ⎛ ⎞
                                                                                                                                                                                                                                                 7
                                                                                                                                                                                                                                               ⎜ ⎟                           d ⎛ ⎞
                                                                                                                                                                                                                                                                                 3
                                                                                                                                                                                                                                                                               ⎜ ⎟        2     a     r = (2 + l)i + (3 - 3l)j + (1 + 3l)k
                 4    x+3                                                                                                                                                                                                                       −1                              −3
                                                                                                          where n = number of shakes for the half-life                                ⎝6⎠                           ⎝4⎠                          ⎝       ⎠                       ⎝    ⎠         b     r = (2 + 3l)i + (l - 1)j + k
             e 1 ln | x 2 + 3|                                f       x + ln |x - 1|                                                                                             14 4i + j - 3k                                                                                                 c     r = (1 + 3l)i + 5lj - 2lk
                 2
                                                                                                                                                                                                                                                                                                d     r = li + 2lj + 3lk
                                                                                                                                                                                 15 a m = a + b p = 3a + b q = a + 3 b
                                                                                                     Review 11
                                                                              c ln ⎛
                    2                                     ek                                 k ⎞                                                                                                                                                                                                e     r = (1 + l)i + (-2 + l)j + (-3 + l)k
       3     a
                 1 − 2ek
                                                b
                                                        1 − ek
                                                                                   ⎜
                                                                                    ⎝   k2
                                                                                                 ⎟
                                                                                              − 1⎠    1 a y = 1 x 3 + 2 ln x + c            b y = ln |x 3 – 1| + c                                        2                  4                    4
                                                                                                                     3                                                                                                                                                                          f     r = (2 + 3l)i + (-3 + 3l)j - k
                                                                                                          c y = ln |sin x| + c              d   y=          1                          b Trisection 2a + b a + 2 b
                                                                                                                                                         (c − x )                                                  3               3                                                      3     a     r = (2 + l)i + j - 2k
       Exercise 11.1
                                                                                                        e 1 ln 3 x − c                      f   y=1–        ke-x                       c Quintisection 4 a + b                         3a + 2 b          2a + 3 b            a + 4b             b     r = 2i + j + (-2 + l)k
       A and c are arbitrary constants                                                                    3                                                                                               5                               5                 5                   5         4     a     2             b -5             c 0
           1 a   y = 3 x5 + c                             b       y = 1 sin 2 x + c                   2 a y = 2 x3 − x2 + x − 8             b   y2   =   e2x – 1   +1            Exercise 12.2                                                                                            5     a     75.3°, intersect at (4, 7, 4)
                     5                                                2                                        3
                                                                                                                                                                                     1 a       6                                  b         20                                                  b     24.5°, intersect at (4, 8, -6)
             c   y = 1 ln(x 2 + 1) + c                    d y = x – ln |x + 1| + c
                                                                                                               3
                                                                                                      3 a y = 3(x + e ) + c       x
                                                                                                                                            b y=k           x2     +1                                                                                                                           c     0°, parallel     d 75.0°, skew       e 30.7°, skew
                     2                                                                                                                                                               2 2 3, 3
           2 a 3y 3(4x + c) + 1 = 0                       b e 2y = 2x + c                                 c tan y = sin x + c               d y − ln y + 1 = 1 x + c                                                                                                                      6     a     Possible equations are
                                                                                                                                                                         3                 1                      1                     1                            2                                r = (-1 + 3t)i + (1 + 2t)j + (3 + t)k for PQ
                                                                                                                                                                                     3 a                      b                   c 4                        d 3 (i.e n = 1.5)
             c y = Ae x – 3                               d Ae x cos y = 1                                e y =kx −2                        f   ysin y + cos y = x2 + c                    3                      5
                                                                                            1 x2                         x −1                                                        4 n - m, 2n - 2m                                                                                                 and r = si + (5 - s)j + (2 + s)k for RS
           3 a   y2
                  – =c    x2                    b y = Ax                      c y=       Ae 2         4 a 3y4 = 4x3 + 44                    b y = 3x – 1                               AB is twice the length of MN and is parallel to MN                                                       b     (2, 3, 4)        c 123.0°
             d y = Ax – 1                       e y2 = 2e t + c               f y = Atet                      1
                               −
                                   1                                                                    c 2 y2 – ln |y| = -cos(x - 1) + 3 - ln 2                                     5 a 2a + b          b 3a + b                                        c 3a + 2 b                       7     a     r = (1 + t)i + (2 - 3t)j + (3 - 4t)k
             g x = Ae              t   − 1 h Atcos x = 1                                                                                                                                      3                4                                                         5                      b     2                c 3
                                                                                                      5 k=p                                                                                5a + 3 b          na + mb
           4 a y = 1 x3 + 1 x2 + x + 2                               b 1 y2 − y = x − 1                                    1                                                           d                 e                                                                                8     l    = − 8 , m = 3 , 2 42
                          3             2                                 2                           6 y=                                                                                    8               m+n                                                                                         7      7    7
                                                                                                                  1 − x sin x − cos x                                                  q − p MN       1
                                   3
                                                                   1                                                                                                                 6 1 + k , PQ = 1 + k , MN || PQ                                                                      Review 12
             c 3 y = 2 x 2 + 10                           d      −   = ln(1 + x ) + 1 − 2             7 a i v = 60t + 100               ii v = 700
                                                                   y               1+ x                                                                                                                                                                                                       1 a 13                          b 1 (3i + 12j + 4k)
                                                                                                                                                                                       3        RS  3                                                                                                                            13
             e sin y = sin x – 1                          f      e y =3− 1
                                                                                                        b v = 40                                                                     7 (a + b),    = , RS || OC
                                                                                                                                                                                                                                                                                                       5
                                                                                                          dA                                                                           4        OC 4                                                                                            c        (3i + 12j + 4k)      d 76.7°
                                                                          ex                          8 a    = kA, a = 2.5p 20.1t, 10p m2                            b 29 days                                                                                                                        13
                                                                                                          dt                                                                         8 1:3
           5 a y = ln A(x + 1)        b e3y = 3x + c
                 2 – 4y = x2 + 4x + c d sin y = Ae x                                                  9 a k = -0.2ln (0.8)              b 6 minutes                                  9 k=2
             c y                                                                                                                                                                                                                                                                              2 AB = 2i + 2j + 3k
             e y 2 = x2 + 2x + c      f sin y = Ax                                                        dx
                                                                                                              = kx                                                               10 PQ = SR = 1 b
                                                                                                     10 a
                                                                                                          dt
                                                                                                                                        b 11.6 minutes                                                        2                                                                               3 a 1 38 21             b K(4, 8, -3)
                                                                                                                                                                                                                                 14                                                                   2
 342                                                                                                                                                                             11 a          2                       b                                                                                                                                   343
                                                                                                                                                                                                                                  3                                                           4 b 72.5°
Answers


                                                                                                     b i           -34                                  ii
                                                                                                                                                             22 015                                   Index
            5 a     AB = 3i + 4j - k                   BC = -2i + j - 4k ; 94.9°                                                                               27
              b     k = -14                                                                     11 b i            1 − 3 x − 9 x 2 − 27 x 3                        ii   0.866 210 937
                                                                                                                          2          8             16                                               acceleration 268                           half angle formula 62-3              graphs 122-6
                1
            6     (-i + 2j + 2k)
                3                                                                                    c       0.018%                                                                                 addition                                   standard results 42                     intersection of two 122
                                                                                                                                                             x 2 − 2 xy                                algebraic fractions 2                cotangent (cot) 40                         intersection with x-axis 123-4
            7   a −4                         b         65
                                                                            d   2:1             12 a
                                                                                                               y
                                                                                                                                                        b
                      9                                2                                                     2y − x                                          x2 − y2                                   numerical fractions 2                   domains and ranges 41                   location of roots on x-axis
            8 a i - 2j + 4k + l(2i + 3j - k)                                                                     y 2 (2 y + x )                              y ( y − x ln y )
                                                                                                                                                                                                       of vectors 277-8                        formula 43                               124-6
              b i - 2j + 4k + m(-i + 3j - k)                                                         c       -
                                                                                                                 x2 ( y + 2 x)
                                                                                                                                                        d    x( x − y ln x )                        algebraic fractions                        graph of 41
              c 49.9°, 2.54                                                                                                                                                                            addition and subtraction 2              standard results 42                  half angle formulae 62-3
            9 b 8.3°           c 1.95                                                           13 a         cos x
                                                                                                             sin y
                                                                                                                                                        b    (   p − 2p
                                                                                                                                                                 2
                                                                                                                                                                   ,
                                                                                                                                                                      3     2 3) (
                                                                                                                                                                        and p , 2p         )           division 2-3, 4-6
                                                                                                                                                                                                       multiplication 2-3
                                                                                                                                                                                                                                            cover-up rule 150, 153, 154, 184
                                                                                                                                                                                                                                            cubic approximation 132
                                                                                                                                                                                                                                                                                    half-life 82, 87, 203, 269
                                                                                                                                                                                                                                                                                    horizontal asymptote 21
           10 b (5, 0, 1)      c 80.4°                                                                                                                                                              arccos 50, 51                                                                   hypocycloid 199
                                                                                                14 b 64ln 2
           11 a 78.9°          b skew                                                                                                                        dr        250                          arcsine (arcsin) 50, 51                 definite integral 229
                                                                                                15 a 4pr2                                               b       =
           12 a t = 3, s = -1 c 11                                          d   33.6°                                                                        dt p r 2 (2t + 1)2                     arctan 50, 51                           dependent variable 8                    identity, trigonometric 46-7
                                                                                                                      1000t                                                                         asymptote                               differential equations                  implicit function
                                                                                                     c       V = 2t + 1                                 d i       4.77 cm
                                                                                                                                                                                                       horizontal 21                           applications 268-9                       coordinate geometry 195
           Revision 4
                    3
                      −
                        3                                  1         1         1                                                                                                                       vertical 21, 40                         first-order 262-5                        differentiation 194-5
            1 a     x x+2
                                             b     −            +         +
                                                       2( x + 1) ( x + 1)2 2( x − 3)
                                                                                                16 a         1, 1.202 69, 1.414 21                      b    0.8859                  d   0.51%
                                                                                                                                                                                                                                               second-order 262                     improper fraction 153, 154, 156
                                                                                                                                 3
                                                                                                             2 x
                                                                                                               (e − 2)                                        1
                                                                                                                                                                (x + 2)8 (8 x − 11)                 binomial expansion 180-2                differentiation 23, 91-120, 193-212     indefinite integral 228
                c   x+ 2           +
                                        2                                                       17 a                             2                      b
                           x−2         x+2                                                                   3                                               72                                     binomial series 180-2                      implicit functions 194-5             independent variable 8
                                                                                                                      1                                      1 5                                       approximations 186-8                    of parametric equations 168-9        initial fraction 148
            2 a     A = 1, B = 0, C = 2                                                              c       x + 2 sin 2x                               d    5
                                                                                                                                                               sin x
                                                                                                                                                                                                       partial fractions 184                   parametric functions 198             ‘inside’ function 226, 228




                                                                                                                                                                                                                                                                                                                             C3/C4
                    11 50
                b     +   x + 110 x 2 + 1936 x 3                                                     e       ln |x - 1| + 8ln |x + 2| + x + 2
                                                                                                                                                             12                                     bowl, hollow, volume of 250             disc, volume of 248                     integral
                     9 27      27        243
                                                                                                                                                                                                    brackets, expanding 4, 5                displacement vector 276                     definite 229
C4




            3 a     A = -1, B = 1 , C = 5                        b    p = -2, q = 3, r = 3           f       e x(x + 2)                   g        2 x
                                                                                                                                                     e sin 2 x + 1 e x cos 2 x                                                              diverging sequence 130-1                    indefinite 228
                                         2         2                                                                                               5             5
                                                                                                                                                                                                    cancelling of fractions 2               division                                    limits 172
                                                                                                                                                    (                      )
                        cos t                                1                                               1
            4 a                              b     y=             (x + 3)                            h         ln|x3 + 3|                 i        1
                                                                                                                                                     x − 1 sin 2 x                                  Cartesian equation 160, 161-2, 290         algebraic fractions 2-3, 4-6         integration
                    2 tan t sec 2 t                         4 2                                              3                                     2     2                                          chain rule 110-11, 114-15, 168, 172,       numerical fractions 2                    of parametric equations 172-3
                              x
                c   y2 = 1 + x                                                                  18      1                                                                                               194, 198, 200, 206, 207, 228           numerical long 4                         by parts 240-2, 246
                                                                                                     6 ln 2                                                                                            in reverse, standard forms 226-7     domain 8-11                                 by substitution 228-9, 246
                        2 cos 2t                         p 3p 5p 7p
            5 a     −
                          sin t
                                             b     t=     ,  ,
                                                         4 4 4 4
                                                                ,                               19 a l = 7, m = 3                         b        - 1 cos 7 x + 1 cos 3 x                          circle, equation of 161                 dot product 286-7                           as summation 222
                                                                                                                                                    14                 6
                                                                                                                                                                                                    coefficients, equating, method of 148   double angle formulae 60-2                  systematic approach 246
                    ⎛ 1 , ± 1⎞ , ⎛ −1 , ± 1⎞                                                                 5 2
                c   ⎜        ⎟ ⎜           ⎟
                                                                                                     c        21                                                                                    collinear points 283                                                                using partial fractions 238, 246
                    ⎝ 2      ⎠ ⎝ 2         ⎠                                                                                                                                                        completing the square method 20, 23     epicycloid 199                              using standard forms 224
                                                                                                20 c         y = -x + 2 - ln 2                                                                      component                               equal vectors 277                           using trigonometric identities
              e     y = −2 x 1 − x 2
                                                                                                21 b         p = 45, q = 7                                                                             form 287                             equivalent forms 66-7                        232-5, 246
            6 a     45p 2                               b        240(p - 1)        c    13.6%                                                                                                          of vector 276                        exponential function (exp (x) or ex)    intersection, points of 166
                                                                                                                  1
            7 a     11.75                               b        57 3
                                                                                                22 c          p                                                                                     composite function 12-13, 110               80-2                                inverse function 16-19
                                                                      8                                      e6    −1                                                                               compound angle formulae 54-7               differentiation 98-9                     algebraic method 17
                                                                 a2    3                        23 b         20p                          d a = 0.345                                               constant of integration 222                equations involving ln x and ex 86       graphical method 17
            8 a     6y = 3a - 3x                        b         16
                                                                                                                                                                                         376
                                                                                                                                                                                             p      continuous 124                             gradient of curve 80                 Inverse Laplace Transforms 158
                                                                                                24 a         6.75                         b overestimate                             c   15
            9 a     1 + 3x +       9x2   +   27x3,       |x| < 1                                                                                                                                    converging sequence 130-1                  graph of 80, 81                      inverse trigonometric functions
                                                               3                                              −a
                                                                                                25 p ⎛ (2b +b1)(2a + 1) ⎞
                                                                                                     ⎜                  ⎟
                                                                                                                                                                                                    cosecant (cosec) 40                        inverse 84                                50-2
                                                                                                         ⎝                               ⎠                                                             domains and ranges 41                exponential growth and decay 200-3      irrational number 81, 98
                b   1 + 1 x − 1 x 2 + 5 x 3,                     |x| < 2
                        6     36     648                                                                                                                                                               graph of 41                                                                  iteration 130
                                                                                                26 a i            t = 1, 0.5                            ii   V = 21 p
                                                                                                                                                                       4                               standard results 42                  factorial 180                           iterative formula 130-2
                c   1 − 1 x − 5 x 2 + 3 x 3 , |x| < 1
                          2        8          16                                                                                                                                                    cosine (cos)                            family of curves 262                    iterative method 130-2
                                                                                                                                       1
                                                                                                27 a i             y = ln                   , k is a constant                   ii   y = k(x + 1)
                d   1 + 5 x + 11 x 2 + 17 x 3, |x| < 4                                                                               k − 2x                                                            cos (A ± B) 55                       flow diagram 12
                          8        128           1024                                                                                                                                                  derivative of 93-5                   functions, mapping as 8-11              Laplace Transforms 158
                                                                                                                                 1 x 2 (2 x − 3)
                e   3 + 3 x + 9 x 2 + 15 x 3,               |x| < 1                                          iii y =          ke 6                      iv y =     sin-1 (ketan x)                     domains and ranges 40                                                        limits of integral 172
                        2     4        8
                                                                                                                                                                                                       double angle formulae 60-1           general solution 262, 263, 264, 268     logarithm 84
                                                                                                                                              2
                    1 − 1 nx + 1 n(n − 1)x 2 − 1 n(x − 1)(n − 2)x 3, |x| < 3                         b i           y = ⎛ x + 1⎞
                                                                                                                       ⎜
                                                                                                                          2
                                                                                                                              ⎟                         ii   y = 10 x + 1
                                                                                                                                                                     2
                                                                                                                                                                                                       graph of 40                          geometry of the sphere 207              logarithmic function (ln x) 84
           10 a         3     18              162                                                                      ⎝ 4    ⎠                                        2
                                                                                                                                                                                                                                                                                                                           345
     344
Index


           differentiation 102                Pascal's triangle 180, 181, 182        sphere, volume of 249
           equations involving ex and 86      percentage errors 219                  standard forms
        lowest common denominator 2           polygon law 278                           chain rule in reverse 226-7
                                              position vector 282-3                     integration using 224, 232
        magnitude of vector 276                  distance between two points 282     standard integrals 224
        many-to-many function 9                  midpoint of a line 283              standard trigonometric results
        many-to-one function 9, 10            principal value 50, 51, 74                 42-4
           inverse 16                         product rule 104-5, 108, 114-15, 194   straight line
        mapping 8-11                          proper fraction 148                       cartesian equation 290
        maximum 11, 95                        Pythagoras’ theorem 42, 43, 276           intersection 291-2
        method of equating coefficients 148                                             vector equation 290-2
        method of substitution 149            quadratic formula 26                   stretching functions 28, 29, 30, 31
        minimum 11, 95                        quotient rule 106-8, 114-15            substitution, method of 149
        modulus 22                                                                   subtraction
           equations and inequalities,        range 8-11                                algebraic fractions 2
            solving 26                        rate of change 206-7                      numerical fractions 2
           function 22-4                      reciprocal 16                             of vectors 277-8
           vector 276                            multiplying by 3
        multiplication                           trigonometric functions 40-4        tangent
           algebraic fractions 2-3            reflections 28, 29, 31                     derivative of 93-5
           numerical fractions 2              repeated linear factor 152                 domains and ranges 41
           by reciprocal 3                    resultant 278                              double angle formula 60
        natural (Naperian) logarithm 84       resultant vector 278                       formula 43, 168-9
C3/C4




        negative vector 277                   root 122, 124-6                            graph of 41
        number line 22                        roulette 199                               half angle formula 62
        numerical equivalent 153                                                         positive values 47
                                              scalar 276                                 standard results 42
        one-to-many function 9                scalar multiple 277                        tan (A ± B) 55
           inverse 16                         scalar product 286-7                   transformation of graphs of
        one-to-one function 9, 10             secant (sec) 40                             functions 28-31
           inverse 16                            domains and ranges 40               translations 28, 29, 30, 31
        order of transformations 28, 29          graph of 40                         trapezium rule 218-19
        ordinate 218                             sec x 94                            triangle law 278
                                                 standard results 42                 trigonometric equations 46-7
        parabola 161                          self-inverse 35                            differentiation of 92-5
        parallelogram law 278                 separating the variables 264, 265
        parameter 160                         simultaneous equations 166             unit vector 276-7, 279
        parametric equations                  sine
           curve sketching and 160-2             derivative of 93-5                  vector
           curves with 250-1                     domains and ranges 41                  applications in geometry 282-3
           differentiation 168-9, 198            double angle formula 60-1              basic definitions and notations
           integration 172-3                     graph of 41                             276-9
        partial fractions 148-58                 half angle formula 62-3                equation of straight line 290-2
           binomial series 184                   sin (A ± B) 54, 93                  vertical asymptote 21, 40
           integration using 238, 246            standard results 42                 volume of revolution 248-51
           separating 148-50                  skew 291
        particular solution 262, 263-4, 268   special triangles 55                   zero vector 276




  346

More Related Content

PPTX
Relapse Prevention In The Dual Diagnosed
PPT
Mindfulness and Relapse Prevention
PPTX
RELAPSE PREVENTION & EARLY INTERVENTION STRATEGIES
PDF
C1 c2 maths_e_book
DOCX
CS 177 – Project #1 Summer 2015 Due Date =========.docx
PPTX
update -2022 Lec 4 - Knowledge Representation.pptx
DOCX
G6 m4-g-lesson 22-s
Relapse Prevention In The Dual Diagnosed
Mindfulness and Relapse Prevention
RELAPSE PREVENTION & EARLY INTERVENTION STRATEGIES
C1 c2 maths_e_book
CS 177 – Project #1 Summer 2015 Due Date =========.docx
update -2022 Lec 4 - Knowledge Representation.pptx
G6 m4-g-lesson 22-s

Similar to Maths_2 (13)

PDF
Exploring projects 5
PDF
Exploring projects 3
PDF
Exploring projects
PDF
Exploring projects 1
PDF
Exploring projects 7
PDF
Exploring projects 6
PDF
Exploring projects 2
PDF
Exploring projects 4
PDF
Ch17 lab r_verdu103: Entry level statistics exercise (descriptives)
DOCX
G6 m4-f-lesson 22-t
PPTX
Draw The Core
PPTX
B2.2 Inside Bacteria
PPT
5.3 multiplying fractions updated
Exploring projects 5
Exploring projects 3
Exploring projects
Exploring projects 1
Exploring projects 7
Exploring projects 6
Exploring projects 2
Exploring projects 4
Ch17 lab r_verdu103: Entry level statistics exercise (descriptives)
G6 m4-f-lesson 22-t
Draw The Core
B2.2 Inside Bacteria
5.3 multiplying fractions updated
Ad

Maths_2

  • 2. 3 About this book Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. Endorsed by Edexcel, this book is designed to help you achieve your best It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in possible grade in Edexcel GCE Mathematics Core 3 and Core 4 units. Oxford New York The material is separated into the two units, C3 and C4. You can use the Auckland Cape Town Dar es Salaam Hong Kong Karachi tabs at the edge of the pages for quick reference. Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto Each chapter starts with a list of objectives and a ‘Before you start’ With offices in section to check that you are fully prepared. Chapters are structured into Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore manageable sections, and there are certain features to look out for South Korea Switzerland Thailand Turkey Ukraine Vietnam within each section: © Oxford University Press 2009 The moral rights of the author have been asserted Key points are highlighted in a blue panel. Database right Oxford University Press (maker) First published 2009 Key words are highlighted in bold blue type. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, Worked examples demonstrate the key skills and techniques you need EXAMPLE 3 Divide 3x2 + 5 by x2 + 1 without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate to develop. These are shown in boxes and include prompts to guide you •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Rewrite the numerator to involve a multiple of the denominator: reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, through the solutions. 3x 2 + 5 = 3(x 2 + 1) + 2 x2 + 1 x2 + 1 Oxford University Press, at the address above Divide each term in the numerator: =3+ 2 You must not circulate this book in any other binding or cover Derivations and additional information are shown in a panel. x2 + 1 and you must impose this same condition on any acquirer British Library Cataloguing in Publication Data Data available Helpful hints are included as blue margin notes and sometimes as blue type ISBN-13: 9780-19-911784 0 within the main text. 1 3 5 7 9 10 8 6 4 2 Misconceptions are shown in the right Investigational hints prompt you to Printed in Great Britain by Ashford Colour Press, Ltd, Gosport. margin to help you avoid making explore a concept further. Paper used in the production of this book is a natural, recyclable product made from common mistakes. wood grown in sustainable forests. The manufacturing process conforms to the environmental regulations of the country of origin. Each section includes an exercise with progressive questions, starting Series Managing Editor Anna Cox with basic practice and developing in difficulty. Some exercises also include Acknowledgements ‘stretch and challenge’ questions marked with a stretch symbol The Publisher would like to thank the following for permission to reproduce and investigations to apply your knowledge in a variety of situations. INVESTIGATION photographs: 10 Use computer software or a graphical calculator to check P38 PA Archive/PA Photos; p74 Daniel Padavona/Shutterstock; p90 some of your answers to the questions in this exercise. studiovanpascal/iStockphoto; p120 Image Source/Corbis; p138 evirgen/iStockphoto; At the end of each chapter there is a ‘Review’ section which includes You may have to use abs (absolute value) button to input a modulus. p158 servifoto/iStockphoto; p178 Sylvanie Thomas/Shutterstock; p192 Dijital Film/iStockphoto; p206 Jenny Horne/Shutterstock; p212 Toni Räsänen/Dreamstime; exam style questions as well as past exam paper questions. There are also p260 pixonaut/iStockphoto; p267 Lawrence Freytag/iStockphoto; p274 Dmitry two ‘Revision’ sections per unit which contain questions spanning a Nikolaev/Shutterstock; p296 Hal Bergman/iStockphoto. range of topics to give you plenty of realistic exam practice. The cover photograph is reproduced courtesy of Frans Lemmens/Photodisc/Getty The final page of each chapter gives a summary of the key points, fully cross-referenced to aid revision. Also, a ‘Links’ feature provides an The publishers would also like to thank Kathleen Austin, Judy Sadler and Charlie Bond for their expert help in compiling this book. engaging insight into how the mathematics you are studying is relevant to real life. At the end of the book you will find full solutions and an index. The free CD-ROM contains a key word glossary and a list of essential formulae as well as additional study and revision materials and the student book pages.
  • 3. Contents C4 6 Partial fractions 147–158 10.8 Integration by parts 240 C3 6.1 Separating fractions 148 10.9 A systematic approach 6.2 More partial fractions 152 to integration 246 1 Algebra and 3 Exponentials and Review 6 156 10.10 Volumes of revolution 248 functions 1–38 logarithms 79–90 Exit 6 158 Review 10 256 1.1 Combining algebraic fractions 2 3.1 The exponential function, e x 80 Exit 10 260 1.2 Algebraic division 4 3.2 The logarithmic function, ln x 84 7 Parametric 1.3 Mappings and functions 8 3.3 Equations involving e x and ln x 86 equations 159–178 11 Differential 1.4 Inverse functions 16 Review 3 88 7.1 Parametric equations and equations 261–274 1.5 The modulus function 22 Exit 3 90 curve sketching 160 11.1 First-order differential equations 262 1.6 Solving modulus equations 7.2 Points of intersection 166 11.2 Applications of differential and inequalities 26 4 Differentiation 91–120 7.3 Differentiation 168 equations 268 1.7 Transformations of graphs 4.1 Trigonometric functions 92 7.4 Integration 172 Review 11 272 of functions 28 4.2 The exponential function, e x 98 Review 7 176 Exit 11 274 Review 1 34 4.3 The logarithmic function, ln x 102 Exit 7 178 Exit 1 38 4.4 The product rule 104 12 Vectors 275–296 4.5 The quotient rule 106 8 The binomial series 179–192 12.1 Basic definitions and notations 276 2 Trigonometry 39–74 4.6 The chain rule 110 8.1 The binomial series 180 12.2 Applications in geometry 282 2.1 Reciprocal trigonometric functions 40 4.7 Further applications 114 8.2 Using partial fractions 184 12.3 The scalar (dot) product 286 2.2 Trigonometric equations Review 4 118 8.3 Approximations 186 12.4 The vector equation of a and identities 46 Exit 4 120 Review 8 190 straight line 290 2.3 Inverse trigonometric functions 50 Exit 8 192 Review 12 294 2.4 Compound angle formulae 54 5 Numerical methods 121–138 Exit 12 296 2.5 Double angle and half angle 5.1 Graphical methods 122 9 Differentiation 193–212 formulae 60 5.2 Iterative methods 130 9.1 Differentiating implicit functions 194 Revision 4 297–306 2.6 The equivalent forms for Review 5 136 9.2 Differentiating parametric functions 198 a cos + b sin 66 Exit 5 138 9.3 Growth and decay 200 Answers 307 Review 2 70 9.4 Rates of change 206 Index 345 Exit 2 74 Revision 2 139–146 Review 9 210 Exit 9 212 CD-ROM Revision 1 75–78 Revision 3 213–216 The factor formulae 1–3 Formulae to learn 10 Integration 217–260 Formulae given in examination 10.1 The trapezium rule 218 Glossary 10.2 Integration as summation 222 C3 Practice paper 10.3 Integration using standard forms 224 C4 Practice paper 10.4 Further use of standard forms 226 10.5 Integration by substitution 228 10.6 Integration using trigonometric identities 232 10.7 Integration using partial fractions 238
  • 4. 1 Algebra and functions This chapter will show you how to combine algebraic fractions understand that some mappings are also functions find and use composite functions and inverse functions use the modulus function and sketch graphs involving it transform graphs of functions using translations, reflections, stretches and combinations of these. Before you start You should know how to: Check in: 1 Combine numerical fractions. 1 Calculate e.g. Calculate 3 + 1 = 9 + 2 = 11 a 3+2 C3 4 6 12 12 12 8 3 3 1 3 1 × = = 4 6 24 8 b 3×2 8 3 2 Find important facts to help you sketch 2 Sketch the graphs of graphs of functions. a y = x(x - 2) e.g. The graph of f(x) = 1 passes through the x−2 b y = x2 + x - 2 ( ) point 0, − 1 , has a vertical asymptote, x = 2, and 2 c y = 1 +2 x approaches the value 0 as x ® ± ¥ 3 Translate, reflect and stretch the graph 3 Write the equation of the image of the of y = f(x) graph of y = f(x) when e.g. When the graph of y = x2 is translated a f(x) = x2 is reflected in the x-axis +2 units parallel to the x-axis, its equation b f(x) = x2 - 5x is reflected in the y-axis becomes y = (x - 2)2 ⎛ −5 ⎞ c f(x) = x2 + x is translated by ⎜ ⎟ ⎝ 0⎠ d f(x) = x2 is stretched with scale factor 4 parallel to the y-axis. 1
  • 5. 1 Algebra and functions Dividing by a fraction is equivalent to multiplying by its reciprocal. 1.1 Combining algebraic fractions EXAMPLE 3 x 2 − 2x ÷ x 2 − 4 Addition and subtraction Simplify x − 2x − 3 2 2x − 6 You can add or subtract algebraic fractions when they have a This method is similar to adding or •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• common denominator. subtracting numerical fractions. x 2 − 2x ÷ x 2 − 4 = x 2 − 2x × 2x − 6 Multiply the first fraction by the + x − 2x − 3 2x − 6 x 2 − 2x − 3 x 2 − 4 2 reciprocal of the divisor. E.g. b + y = by + by = ay by bx a x ay bx by is the common denominator. x(x − 2) 2(x − 3) = × You should find and use the lowest common denominator to (x + 1)(x − 3) (x − 2)(x + 2) keep the calculation as simple as possible. 2x = (x + 1)(x + 2) EXAMPLE 1 Evaluate a 3+1 b 2 + x−2 8 6 x2 + x x2 − 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Exercise 1.1 1 Simplify a 3 + 1 = 9 + 4 = 13 The lowest common denominator 3p2q pq 8 6 24 24 24 6x 2 y is 24. a b 8ab × 3ac 2 2 c ÷ 2 3xyz c 4b 2r 4r b Factorise the algebraic expressions first: ( b ) × a b− a 2 2 + x−2 = 2 x−2 x × x +1 a 2 x + 3 × x −1 + d e f x 2 + x x 2 − 1 x(x + 1) (x + 1)(x − 1) x2 − 1 x2 2 x + x − 2 x2 + x − 6 2 C3 C3 2(x − 1) x(x − 2) The lowest common denominator x ÷ x 2 + 2x 2 h 1 × x2 − 9 ÷ x + 3 2 = + g x(x + 1)(x − 1) x(x + 1)(x − 1) is x(x + 1)(x - 1). x 2 − 5x + 6 x −4 x x − 3x x = 2x − 2 + x − 2x 2 x(x + 1)(x − 1) 2 Simplify and express as single fractions. y = x 2− 2 2 a x+ b a+b c 1 − 1 y z b a ax bx x(x − 1) d 1 + 1 e 1 +1 f 1 − 1 xy 2 x 2 y x +1 x a −1 a +1 Multiplication and division 1 1 g 2 + a +1 h 2+ 1 i 3− 2 You do not need to have a common denominator when you The method is similar to (a + 1) x x +1 multiply or divide algebraic fractions. multiplying or dividing numerical fractions. 4 +2 2 + 1 3+ 2 j k l y −2 3 x − 1 x2 − 1 x x2 + x You can only cancel factors which are common to both the Remember when cancelling numerator and denominator. brackets to cancel the whole 2 − y 1 bracket and not just part of it. m 1 − 2 n o + 2 2 z + 1 z2 − z − 2 y + 2 y + 3y + 2 2 x + 3x + 2 x + 4x + 3 2 3y y +1 EXAMPLE 2 p + q 2z − 2z r 2+ 1 − 1 Simplify x + 2 × x(x 2 − 1) y2 − 4 y2 + y − 2 z + 2z − 3 z − 1 2 x 2 + 2x x 2 − 4 x2 − x x2 − x − 6 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3 Simplify x + 2 × x(x 2 − 1) = x + 2 × x(x − 1)(x + 1) Factorise as much as you can x2 − x x 2 − x − 6 x(x − 1) (x + 2)(x − 3) before cancelling. 1+ 1 a 1− x b y c x3 + 1 d x2 − 1 × x + 1 3 = x +1 1− 1 x2 − 1 x +x x −1 Cancel the fraction down to its 1 1− 2 x−3 simplest form. x y 2 3
  • 6. 1 Algebra and functions Some divisions result in a remainder. 1.2 Algebraic division EXAMPLE 2 Divide a 4037 by 16 You can use long division to divide a polynomial of degree m The method is similar to dividing by a polynomial of degree n, where m n. numbers using long division. b 4x3 + 3x + 7 by 2x - 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• The degree of the resulting polynomial is m - n. a 252 16 4 0 3 7 ) 3 2↓↓ EXAMPLE 1 Work out (x3 - 2x2 - x + 2) ÷ (x + 1) 83↓ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 80↓ Set out as a long division: 37 32 ) x + 1 x 3 − 2x 2 − x + 2 Write each polynomial with the highest power of x on the left. So 4037 ¸ 16 = 252 remainder 5 5 The remainder is 5. The lead term of x + 1 is x. = 252 5 16 Divide the lead term x into x3 and write x2 in the answer space: or 4037 = (252 ´ 16) + 5 Multiply this x2 by x + 1. x2 Write like terms in the 3 + x2 below and x + 1 x 3 − 2x 2 − x + 2 Bring down the next ) same column. b 4x3 + 3x + 7 does not have an x2-term. Insert a 0x2 to fill the place value for x2: The 0x2 is similar to the 0 in Write x x3 + x2 ↓ subtract. term -x. the number 4037, which −3x − x 2 2x 2 + x + 2 C3 C3 ) acts as place holder in the 2x − 1 4x 3 + 0x 2 + 3x + 7 hundreds column. Repeat this cycle until the division is complete. 4x 3 − 2x 2 ↓ ↓ The next step is to divide the lead term x into -3x2 and write - 3x in the Compare this method with the 2x 2 + 3x ↓ numerical long division answer space: 2x 2 − x ↓ 4x + 7 x 2 − 3x + 2 243 4x − 2 x3 + x2 ↓ ↓ ) x + 1 x 3 − 2x 2 − x + 2 ) 23 5 5 8 9 4 6↓ ↓ 98↓ 9 The remainder is 9. −3x − x ↓ 2 9 2↓ 4x 3 + 3x + 7 = 2x 2 + x + 2 remainder 9 So You can also write this result as −3x − 3x ↓ 2 69 2x − 1 Subtract: 69 4x3 + 3x + 7 2x + 2 0 quotient remainder = (2x - 1)(2x2 + x + 2) + 9 2x + 2 ¯ ¯ 0 giving 5589 ÷ 23 = 243 You can expand these brackets or 5589 = 243 ´ 23 = 2x + x + 2 + 9 2 to check your answer. 2x − 1 Since the remainder is 0, x + 1 is a factor of x3 - 2x2 - x + 2. Since the remainder is 0, 23 must be a factor of 5589. - So (x3 - 2x2 - x + 2) ÷ (x + 1) = x2 - 3x + 2 divisor You could also write this result as x3 - 2x2 - x + 2 = (x + 1) ´ (x2 - 3x + 2) You can then expand these brackets to check your answer. 4 5
  • 7. 1 Algebra and functions 1 Algebra and functions When the highest power of the numerator is the same as the 4 In each case find the quotient and remainder when the first expression is highest power of the denominator you can use a quicker method. divided by the second expression. a x3 + 5x2 - 5x + 1; x - 1 b x3 + 7x2 + 8x - 2; x + 2 EXAMPLE 3 Divide 3x2 + 5 by x2 + 1 Both the numerator and c 2x3 - 13x2 + 17x + 10; x - 3 d x3 - 5x2 + x + 10; x - 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• denominator have degree 2. Rewrite the numerator to involve a multiple of the denominator: e 2n3 + 7n2 - 6; 2n + 3 f 9n3 - 22n + 6; 3n - 4 3x 2 + 5 = 3(x 2 + 1) + 2 Compare this example to the x2 + 1 x2 + 1 numerical division g 3n3 - 11n2 + 2n + 1; 3n + 1 h x4 + 2x3 - 6x - 7; x2 - 3 23 (3 × 7) + 2 2 Divide each term in the numerator: = =3 7 7 7 i 2x4 + x3 + x; x2 + 1 j x3 - 2; x2 - 1 = 3 + 22 x +1 5 Find the functions f(x) which complete these equations. a x3 - 5x2 + x + 10 = (x - 2) ´ f(x) b x3 - 7x2 - 10x - 2 = (x + 1) ´ f(x) Exercise 1.2 1 In each case, divide the first expression by the second expression. c 2x3 - 11x2 + 15x - 50 = (x - 5) ´ f(x) d x4 - 3x3 + 3x - 1 = (x2 - 1) ´ f(x) a x3 - 7x2 + 14x - 8; x - 1 b x3 - x2 - 26x - 24; x + 1 6 Find the functions and k values which complete these equations. c x3 - 8x2 + 5x + 50; x + 2 d x3 - 10x2 + 31x - 30; x - 2 a x3 - 4x2 + 4x - 1 = (x - 3) ´ f(x) + k b x3 + 8x2 + 6x -1 = (x - 1) ´ f(x) + k C3 C3 e 2x3 + 5x2 - 4x - 3; 2x + 1 f 9x3 + 5x - 2; 3x - 1 c 4x3 - 3x + 2 = (2x - 1) ´ f(x) + k d x4 + 3x - 4 = (x2 - x - 1) ´ f(x) + k In part d k is not a constant. g n3 - 7n + 6; n + 3 h 2n3 - 9n2 + 5n + 6; 2n - 3 7 Divide each polynomial by the given factor and hence factorise it completely. i 9y3 - 16y - 8; 3y + 2 j 2a4 - 5a3 - 10a + 3; a - 3 a x3 - 4x2 + x + 6 has a factor x - 2 b x3 - 8x2 + 19x - 12 has a factor x - 4 k 8a4 - 20a3 + 60a - 18; 2a + 3 l 4z3 - 17z2 + 19z - 5; z2 - 3z + 1 c 4x3 - 13x - 6 has a factor 2x + 3 d x4 - 13x2 + 36 has a factor x2 - 4 m 6x3 + 7x2 - 23x + 4; 2x2 + 5x -1 n x3 + 1; x + 1 e x3 + 8 has a factor x + 2 f x3 - 8 has a factor x - 2 2 Evaluate these divisions, giving each answer as an integer plus an algebraic fraction. INVESTIGATION x+6 x +1 a b c x−2 d 3x + 7 8 x2 - 1 factorises to give (x – 1)(x + 1) and x+2 x+2 x+2 x+2 x3 - 1 factorises to give (x – 1)(x2 + x + 1). h 3x2 + 1 2 e 2x + 1 4x + 3 g x2 − 1 2 f Factorise x4 - 1 and x5 - 1. x−3 2x + 1 x +1 x −1 2−x x2 + x − 1 Can you make a deduction about x6 - 1? i 1+ x j x2 − 2 Make a statement about xn - 1 and see if you can prove it. 3 In each case, divide the first expression by the second expression. a 3x3 - 5x; x3 b 3x2 + 2; x2 - 3 c 4x2 + 1; 2x2 - 1 d 14x2 + 19; 2x2 + 3 6 7
  • 8. 1 Algebra and functions There are four kinds of mapping. 1.3 Mappings and functions One-to-one Many-to-one Domain and range X Y X Y A relationship between two sets of numbers is called a mapping. You can define a mapping as an equation. E.g. Consider y = 3x - 1 X Y 1 2 Set X maps onto set Y y 2 5 y under the mapping y = 3x - 1 3 8 You can also write this 5 y=x+2 4 11 5 as x ® 3x - 1 4 4 3 y = x2 – 4x + 5 You can also represent a mapping by a set of ordered pairs 3 2 2 (x, y) which you can show in a table or as a graph. 1 1 y x x −2 −1 O 1 2 4 O 2 4 5 6 12 x 1 2 3 4 10 Each value of x maps onto one and Each value of x maps onto one and y 2 5 8 11 8 only one value of y, and vice versa. only one value of y, but not vice versa. 6 4 A one-to-one mapping is a function. A many-to-one mapping is a function. C3 C3 2 O x 1 2 3 4 One-to-many Many-to-many X Y X Y Set X is called the domain of the mapping. Its elements are denoted by x, the independent variable. Set Y is called the range of the mapping. Its elements are denoted by y, the dependent variable. y y x2 + (y – 4)2 = 4 You say that ‘x maps onto y’ or that ‘y is the image of x’. 6 x = (y – 2)2 4 5 3 4 A mapping is a function only if each x-value maps onto one 2 3 and only one y-value. 2 1 1 O 2 3 4 x −2 −1O 1 2 x In the example shown, the mapping is a function. Each x-value maps onto more than one Many x-values map onto many y-values. You can therefore write y = 3x - 1 y-value. as either f(x) = 3x - 1 You say ‘f(x) equals 3x - 1’. or f: x ® 3x - 1 You say ‘the function f that maps x onto 3x - 1’. A one-to-many mapping is not A many-to-many mapping is not a function. a function. 8 9
  • 9. 1 Algebra and functions 1 Algebra and functions EXAMPLE 2 EXAMPLE 1 Find the range of these functions and state the type of the Find the range of the function f(x) = 4 - x2 function in each case. when the domain is x Î R means that the domain a f(x) = 2x - 1, x = {0, 1, 2, 3} a xÎR b -1 < x 3 contains all real numbers. b f(x) = x2 + 4, x Î R, -2 < x 3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Sketch the graph of the function for each of the given domains: a Sketch the mapping diagram and graph: y y y 4 4 5 X Y 3 3 0 −1 4 2 2 1 1 3 Both the domain and range are discrete as x can take only the 1 1 2 3 2 The maximum and minimum four given values. x x 3 5 1 −2 −1 O 1 2 −2 −1 O 1 2 3 y-values are not always at the −1 end points of the domain. O 1 2 3 4 x −2 −1 −3 −4 The range of f(x) is y = {-1, 1, 3, 5} −5 f(x) is a one-to-one function. a The points on the graph for b The points on the graph b Sketch the graph of f(x): x Î R have y-values from for -1 < x 3 have C3 C3 - ¥ to 4. y-values from -5 to 4, y including -5 itself. The range of f(x) is 12 y Î R, y 4 The range of f(x) is 10 y = x2 + 4 The domain is continuous as it y Î R, -5 y 4 8 takes all values from -2 to 3 6 (including 3 but not -2). The range 4 EXAMPLE 3 is therefore also continuous. 8 2 The lowest value of the range is 4 a Find the range of f(x) = x Î R, x 1 which occurs when x = 0. (x − 2)2 −2 −1 O x 1 2 3 b Find the value of k such that f(k) = 4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Refer to C1 for revision of The graph of f(x) shows that the range of f(x) is Sketch the graph of f(x). sketching graphs of functions. y Î R, 4 y 13 a From the graph, you can see that, for y f(x) is a many-to-one function. the given domain, the range is y Î R, y > 0 10 8 8 b When x = k, =4 8 y= (x – 2)2 (k − 2)2 6 (k − 2)2 = 8 = 2 4 4 k−2 = ± 2 2 giving k = 2 ± 2 −2 O 2 4 6 x The value x = 2 - 2 lies outside the domain, so the only 10 possible value of k is 2 + 2. 11
  • 10. 1 Algebra and functions 1 Algebra and functions Composite functions EXAMPLE 5 Given f(x) = 2x - 1 and g(x) = x2 + 1, prove that A composite function is formed when you combine two gf(x) ¹ fg(x) except for two values of x. (or more) functions. The output from the first function Find these two values. becomes the input to the second function. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• When f is applied first and g second, the composite function x f(x) gf(x) fg(x) = f(x2 + 1) = 2(x2 + 1) - 1 = 2x2 + 1 f g gf(x) is formed. gf(x) = g(2x - 1) = (2x - 1)2 + 1 = 4x2 - 4x + 2 When g is applied first and f second, the composite function x g(x) fg(x) Equate fg(x) and gf(x) and solve to find the values of x: g f fg(x) is formed. 4x2 - 4x + 2 = 2x2 + 1 For a composite function to be formed, the range of the 2x2 - 4x + 1 = 0 first function must be all or part of the domain of the giving x = 4 ± 16 − 8 = 1 ± 1 2 second function. 4 2 Hence fg(x) ¹ fg(x) except when x = 1 ± 1 2 2 EXAMPLE 4 If f(x) = x2, g(x) = 3x - 1 and h(x) = 1 x find Take care with the order of a fg(x) b gf(x) the functions. Exercise 1.3 c fgh(x) d g2(x) 1 For each function, draw a mapping diagram or a graph, find •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• the range, and state if the function is one-to-one or many-to-one. C3 C3 a fg(x) means that g(x) is the input of f(x). a f(x) = 4x - 3, x = {0, 2, 4, 6} Draw a flow diagram: b f(x) = 4x - 3, x Î R, 1 < x < 6 2 x 3x – 1 (3x – 1) g f c f(x) = 9 - x, x Î R, 1 < x < 4 d f(x) = x2 + 2, x Î R fg(x) = f(3x - 1) = (3x - 1)2 e f(x) = + x, x = {0, 1, 4, 9} b Draw a flow diagram: f f(x) = - x, x = {0, 1, 4, 9} x x2 3x2 – 1 g f(x) = x + 2 , x Î R, x ¹ 2 f g x−2 gf(x) = g(x2) = 3x2 -1 ⎧ x 2, x ∈ R, 0 x ⎪ 2 h f(x) = ⎨ c fgh(x) means that h(x) is the input of g(x) and then Draw a flow diagram if you find it helps. ⎩4, x ∈ R, 2 < x ⎪ 6 the result of this composite function is the input of f(x). 2 a Given g(x) = mx + c, g(2) = 8 and g(3) = 11, find m and c. (x) ( ) (x ) (x ) 2 fgh(x) = fg 1 = f 3 × 1 − 1 = f 3 − 1 = 3 − 1 b Given h(x) = ax2 + bx + c and h(0) = 1, h(1) = 0, h(2) = 1, x find a, b, and c. d g2(x) = gg(x) = g(3x - 1) = 3(3x - 1) - 1 = 9x - 4 g²(x) means that g(x) is used as the input of g(x). 12 13
  • 11. 1 Algebra and functions 1 Algebra and functions 3 Find the domain of each function. 9 When f: x ® 5 - x, g: x ® x and h: x → 1 , Say whether the function is one-to-one or many-to-one. x find a f: x ® 3x + 5 with the range y = {5, 20, 35, 50, 65} a fg b fh c gh b f: x ® x2 with the range y Î R, 0 y 9 d fgh e hgf f f2 c f: x ® x − 3 with the range y Î R, 0 y 3 g g2 h h2 d f: x → 4 with the range y Î R, 1 y 4 x−2 10 a Given that f(x) = 2x - 1 and g(x) = x2, show that fg(x) ¹ gf(x) for all values of x except x = a 4 Sketch each of these functions, given the domain x Î R. Find the value of a. Find the range of each function. b Solve the equations a f(x) = (x - 2)2 + 3 b f(x) = (x + 4)2 - 3 i fg(x) = 49 c f(x) = x2 - 6x + 10 d f(x) = 1 + 2x - x2 ii gf(x) = 9 iii f 2(x) = 13 5 Explain why these mappings are not functions. c Find the values of x which map onto themselves under ⎧3x, x ∈ ,0 the function fg. b y = 6+ x,xÎR x 2 a y =⎨ 2−x ⎩6 − x, x ∈ , 2 x 8 11 Given that f(x) = 2x + 1 and g(x) = 3x + c, 6 Sketch the graph of the function a find c if fg(x) = gf(x) for all x C3 C3 f(x) = x + 4 , x Î R, x ¹ 2 b find a if f 2(a) = a x−2 Find the range of f(x) and the values of x which 12 Given f(x) = p + qx, g(x) = x2 - 4 and h(x) = 3x + 1, are unchanged by this function. find p and q such that hgf(x) = 4(3x2 + 3x - 2) 7 If f(x) = x2 + 1 and g(x) = 2x - 1, find 13 a If f(x) = 2x + 3, a f(3) b gf(3) c gf(x) find i f 2(x) ii f 3(x) d g(3) e fg(3) f fg(x) iii f 4(x) g f 2(3) h f 2(x) i g2(3) b If f(x) = 2x + 3, find an expression in n for f n(x). j g2(x) 8 Find fg(x), gf(x), f 2(x) and g2(x) when INVESTIGATION a f(x) = x2 - 2, g(x) = 3x + 4 14 Explain why the composite function fg(x) is not allowed when f(x) = 2x + 1, x Î R, -5 x 5 b f(x) = 1 , g(x) = 3x2 + 2, x ¹ 0 and g(x) = x2, x Î R, x 0 x How would you change the domains so that the function c f(x) = x + 3, g(x) = 4x - 2 fg(x) can exist? 2 d f(x) = 1 , g(x) = 2 - x, x ¹ 1 x −1 14 15
  • 12. 1 Algebra and functions You can find an inverse function 1.4 Inverse functions algebraically by x f f(x) either using a flow The inverse function f -1(x) of the function f(x) maps the range diagram in f –1(x) f –1 x of f(x) back onto its domain. reverse or rearranging the function y = f(x) to give E.g. If f(x) = 3x - 1 x ×3 –1 3x – 1 x in terms of y, then interchanging x and then f -1(x) = x + 1 x+1 ÷3 +1 x y and writing y as f -1(x). 3 3 graphically by y The range of f(x) is the domain of f -1(x). The notation for the inverse reflecting the graph of y=x The range of f -1(x) is the domain of f(x). function uses -1. Do not confuse it with the y = f(x) in the line y = x x Both composite functions andff -1 f -1f reciprocal. (which is equivalent to E.g. (sin x)-1 is the reciprocal interchanging x and y). map x back onto itself, 1 so ff -1: x ® x and f -1f: x ® x , whereas sin-1 x is the sin x or ff -1(x) = x and f -1f(x) = x inverse function of sin x. EXAMPLE 1 + + The inverse of a one-to-one function is a function. Find the inverse function f -1(x) when f(x) = 5x2 + 4, x Î 0 R0 means all positive real Find the domain and range of the inverse function. numbers and zero. C3 C3 E.g. For a one-to-one function, f -1(x) = x + 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• If f(x) = 3x - 1 then f(x) = y leads to f -1(y) = x 3 with no ambiguity. Sketch a graph to help you to visualise the function and its inverse: y and f(5) = 14 so f -1(14) = 5 f(x) If x Î R, then the inverse of y = 5x2 + 4 would not be a y=x The inverse of a many-to-one function is a one-to-many mapping so one-to-one mapping and therefore not a function. + f –1(x) the inverse is not a function. In such a case, the inverse can be a By restricting the domain to 0 , the inverse is then a 4 function only if the domain of f(x) is restricted to certain values one-to-one mapping and a function. to make the inverse a one-to-one mapping. First method Second method O 4 x E.g. Draw a flow diagram for f(x): Write y = 5x2 + 4 If f(x) = x2 then f -1 (x) = ± x x f(x) Rearrange to make x square ×5 +4 the subject: and f(3) = 9 so f -1 (9) = ±3 y -1 Use the method that you feel most So f (x) is not a function. y = x2 Draw the flow diagram in reverse: y−4 comfortable with. You can use a 9 x=+ For f -1 (9) to have a unique 5 different method to check your answer. f –1(x) square x value, the domain of f(x) must ÷5 –4 Interchange x and y and be restricted to non-negative numbers. root replace y by f -1(x): In this case, f -1(x) = + x This reverse flow diagram gives y = + x−4 5 −3 O 3 x f −1(x) = + x − 4 f −1(x) = + x − 4 5 5 + The domain of f(x) is 0 (x 0) and the range of f(x) is y 4 So, the domain of f -1(x) is x 4 and the range of f -1(x) is y 0 16 17
  • 13. 1 Algebra and functions 1 Algebra and functions EXAMPLE 2 EXAMPLE 3 (CONT.) Find the inverse function and its domain and range if The domain has x ¹ 3 because c f(x) = f -1(x) gives the equation + x + 2 = x 2 − 2 f(x) = 4 for x Î R, x ¹ 3 when x = 3 the denominator, This is not easy to solve. x−3 x - 3, is zero and division by •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• zero is not defined. However, the graphs of f(x) and f -1(x) intersect on the Make x the subject of y = 4 : line y = x x−3 So, at this point of intersection, f(x) = f -1(x) = x y(x - 3) = 4 xy = 3y + 4 Solve the two equations x + 2 = x and x2 - 2 = x: 3y + 4 Both these equations give x2 - x - 2 = 0 x= y (x - 2)(x + 1) = 0 x = -1 is outside the Interchange x and y and replace y by f -1(x): So the only solution is x = 2 domain of f -1(x). y = 3x + 4 x f −1(x) = 3x + 4 Exercise 1.4 x 1 Find the inverse function f -1(x) of each of these functions, f(x), f -1(x)exists for all real values of x except x = 0 where the domain of f(x) is R. So, the domain of f -1(x) is x Î R, x ¹ 0 a f(x) = 3x - 2 b f(x) = 2x + 1 c f(x) = 2(x + 1) The range of f -1(x) is the domain of f(x) giving y Î R, y ¹ 3 d f(x) = x + 3 e f(x) = 1 x + 3 f f(x) = (x + 1)2, x -1 2 2 C3 C3 EXAMPLE 3 a Find f -1(x) given that g f(x) = x2 + 1, x 0 h f(x) = 6 - x i f(x) = x − 3, x 3 f(x) = + x + 2, x Î R, x -2 f(x) only exists if x + 2 0 so Sketch the graphs of f(x) and f -1(x). the domain of f(x) is limited to 2 Find the inverse function f -1(x) of each of these functions, f(x), b Show algebraically that f -1f(x) = x x -2. Also, only the positive where the domain of f(x) is R. value of the square root is c Find x such that f(x) = f -1(x) In each case, sketch the graphs of f(x) and f -1(x) on the same axes. allowed, so that f(x) is a function. c f(x) = x + 4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a f(x) = 2x + 1 b f(x) = 10 - 2x a Make x the subject of y = x + 2: 2 y2 = x + 2 d f(x) = x2 + 2, x 0 e f(x) = (x - 2)2, x 2 f f(x) = x − 4, x 4 x = y2 - 2 1 ,x>2 Interchange x and y. Replace y by f -1(x): g f(x) = x + 3 , x -3 h f(x) = i f(x) = 1 + 2, x > 0 2−x x y = x2 - 2 f -1(x) = x2 - 2 y 3 A function is self-inverse if the function and its inverse are identical. The graph of the inverse function is half of the curve y = f –1(x) Determine which of these functions have an inverse function. x2 translated 2 units downwards. y=x Find the inverse function where one exists and say whether the The graph of f -1(x) is a reflection of f(x) in the line y = x f(x) function is self-inverse or not. From the graph, the domain of f -1(x) is x Î R, x 0 a f(x) = 8 - x, x Î R b f(x) = 12 , x Î R, x ¹ 0 and the range of f -1(x) is y Î R, y -2 O x x −2 c f(x) = 4 − x 2 , x Î R, 0 x 2 d f(x) = 4 − x 2 , x Î R, -2 x 2 b Substitute f(x) = + x + 2 into f -1f(x): –2 f −1f(x) = f −1 ( + x + 2 ) = ( + x + 2 ) − 2 = x + 2 − 2 = x 2 e f(x) = 8 - x, x Î R, 0 x 8 f f(x) = x , x Î R, x ¹ 1 x −1 So, f followed by f -1 leaves x unchanged. 18 19
  • 14. 1 Algebra and functions 1 Algebra and functions 4 Find the inverse of f(x) = 8 - x, x Î R, x 0 and explain why 10 The function g(x) is defined as g: x → 2 , x Î R, x ¹ 2 x−2 the function f(x) is not self-inverse. Find the inverse function g -1(x) and its domain. Solve the equation g(x) = g -1(x) 5 Prove that g(x) = x + 1, x Î R, x ¹ 1 is self-inverse. x −1 Find the elements of the domain that map onto themselves 11 Find the inverse g-1(x) of the function g(x) = 3x + 1 , x Î R, Find the horizontal asymptote by x−3 letting x ® ¥. Also find the under g(x). x ¹ 3. And show that g(x) is self-inverse. vertical asymptote. Sketch the graphs of g(x) and g -1(x). 6 The function f(x) is defined by f(x) = x2 - 6x + 14, x Î R, x 3 To complete the square, rewrite Find the values of x which map onto themselves. By completing the square, draw the graph of f(x) and find in the form (x - a)2 + b its range. See C1 for revision. 12 The function h(x) = cx + 1 , x Î R, x ¹ 2 is self-inverse. x−2 Find the inverse function f -1(x), stating its domain and range. Find the value of c. Sketch its graph on the same axes as f(x). Find the values of x which map onto themselves. 7 For each of these functions, find its range and its You can use the ‘completing 13 Prove that f(x) = a x + b , x ¹ a is self-inverse for all a and b. the square’ method. x −a inverse function. Find the values of x which map onto themselves. State the domain and range of the inverse function. Sketch the graphs of y = f(x) and y = f -1(x) on the same axes. 14 Sketch the graph of the function f(x) = x 2 + 1 , x ∈ R 0 , x ≠ 1 2 + a f: x ® x2 - 4x + 5, x Î R, x 2 x −1 and its inverse f -1(x) on the same axes. b f: x ® x2 - 8x + 21, x Î R, x 4 State the domain and range of the inverse function. C3 C3 c f: x ® 4x - x2, x Î R, x > 2 Explain why the solution of the equation f(x) = f -1(x) is also a solution of x3 - x2 - x - 1 = 0 d f: x ® x2 + 4x + 2, x Î R, x > -2 Show that an approximate solution is x = 1.84 8 For each of these functions, f(x), find f -1(x) and its domain. Solve the equation f(x) = f -1(x) Find the points where the graphs of y = f(x) and y = f -1(x) intersect. INVESTIGATION a f(x) = 1 x + 4, x Î R 15 Which one of these four functions has an inverse function? 2 Explain why the other three functions do not have b f(x) = x2, x Î R, x 0 inverse functions. c f(x) = (x - 2)2, x Î R, x 2 f1(x) = x2 - 5, x Î R d f(x) = x2 + 8x + 12, x Î R, x -4 f2(x) = 32 , x ∈ x 9 a Find a, b and c such that f -1(x) = x2 + ax + b, x Î R, x c f3(x) = 5 – 2x, x Î R+ is the inverse function of f(x) = 1 + x + 1, x Î R, x -1 f4(x) = sin x, x Î R, 0 x p b Find the values of i f(8) ii f -1(8) iii x such that f(x) = f -1(x) 20 21
  • 15. 1 Algebra and functions EXAMPLE 2 1.5 The modulus function Sketch the graph of y = 2|x| - 3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• The modulus of a number |x| is its magnitude or absolute value. Sketch the graph of y = 2x - 3 for x 0 y and reflect it in the y-axis: In general, when x 0, |x| = x On your calculator, |x| may be The reflection has the equation 3 y = -2x - 3 y = 2|x| – 3 when x < 0, |x| = -x written as ABS(x). The function f(x) = 2|x| - 3 can be written as O x E.g. 1.5 |2| = 2 and |-2| = 2 ⎧2x − 3, x 0 |x| < 2 can also be written as -2 < x < 2 An empty circle shows that f(x) = ⎨ −2 2 the end value is not included. ⎩ −2x − 3, x < 0 –3 |x| 2 can also be written as x 2 or x -2 A filled circle on a number −2 2 line shows that the end value is included. The graph y = |f(x)| EXAMPLE 3 |f(x)| is always positive, so the graph y = |f(x)| always lies above Sketch the graphs of the x-axis. a y = f(x) b y = |f(x)| c y = f(|x|) when f(x) = x 2 - 2x - 8 EXAMPLE 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Sketch the graph of y = |2x - 3| y a y = x2 - 2x - 8 C3 C3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiating or completing the = (x - 4)(x + 2) y = x2 – 2x – 8 square shows that there is a Sketch the graph of y = 2x - 3 Show the part below the x-axis minimum value at (1, -9). When x = 0, y = -8 Where y < 0, reflect the graph in the x-axis: as a dashed line. When y = 0, x = 4 or -2 You could use computer software The reflected line has the equation y = -2x + 3 y or a graphical calculator to check The function f(x) = |2x - 3| can be written as these results. −2 O 4 x ⎧2x − 3, x 1 1 3 ⎪ 2 y = |2x – 3| f(x) = ⎨ ⎪−2x + 3, x < 1 1 ⎩ 2 O 1.5 x –8 (1, –9) –3 The graph of y = f(|x|) y b For y = |f(x)|, reflect the |x| is always positive. So, the two points on the graph with x = k part of the graph below the (1, 9) and x = -k have the same value of f(|x|). The graph y = f(|x|) is x-axis in the x-axis. y = |x2 – 2x – 8| 8 therefore symmetrical about the y-axis. −2 O 4 x –8 The solution to part c is shown on the next page. 22 23
  • 16. 1 Algebra and functions 1 Algebra and functions EXAMPLE 3 (CONT.) 4 Sketch the graph of g(x) = |6 - 2x| for the domain 0 x 8 c For y = f(|x|), reflect the part of y y= |x|2 – 2|x| – 8 Find the range of the function and the solution of the equation the graph to the right of the 8 g(x) = 4 y-axis in the y-axis: 5 Sketch the graph of h(x) = |2x + 5| for the domain -4 x 1 Find the range of the function and solve the equation h(x) = 3 −4 O x 4 6 Sketch the graph of y = f(x), y = |f(x)| and y = f(|x|) for p x p where a y = |sin x| –8 b y = sin |x| (–1, –9) (1, –9) c y = |cos x| d y = cos |x| Exercise 1.5 1 Sketch the graphs of these functions. 7 Find the point of intersection of the graphs of y = |5 - x| Give the coordinates of any point where a graph meets the and y = |x + 1| x-axis or y-axis. a y = |x - 3| b y = |x| - 3 8 Find all points of intersection of the graphs of y = |x + 2| and y = 2|x| - 4 C3 C3 c y = |2x - 1| d y = 2|x| - 1 e y = |4 - x| f y = 4 - |x| 9 How many solutions are there to the simultaneous equations y = (|x| - 2)2 and y = |2x - 4|? g y = |2x + 3| h y = -|2x + 3| Find them. i y = |x2 - 4x + 3| j y = |x|2 - 4|x| + 3 k y = |3 - 2x + x2| l y = 3 - 2|x| + |x|2 INVESTIGATION 10 Use computer software or a graphical calculator to check m y= 6 n y = -|x| some of your answers to the questions in this exercise. x You may have to use abs (absolute value) button to o y = |log10 x | input a modulus. 2 Sketch the graphs of these functions. a y = |x + 4| + |x - 1| b y = |x - 2| + |x - 1| 3 On separate axes, sketch the graphs of y = f(x), y = |f(x)| and y = f(|x|) where a f(x) = x2 - 3x - 4 b f(x) = 4x - x2 24 25
  • 17. 1 Algebra and functions Exercise 1.6 1.6 Solving modulus equations and inequalities 1 Use these two diagrams to help you solve a b y You can use a graphical or an algebraic method to find solutions y y = |x – 4| y = |x| + 2 to equations and inequalities which involve modulus signs. 5 EXAMPLE 1 4 y=5 4 y = |x – 4| Solve |2x + 1| = 5 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2 Algebraic method Graphical method O 4 x –2 O 4 x (2x + 1)2 = 52 Find the points of intersection y 4x 2 + 4x + 1 = 25 of y = |2x + 1| and y = 5: –4 –4 y = –2x – 1 y = 2x + 1 4x2 + 4x - 24 = 0 At P, 2x + 1 = 5 so x = 2 y=5 x2 + x - 6 = 0 The reflection of y = 2x + 1 in the Q P i |x - 4| = 5 ii |x - 4| < 5 i |x - 4| = |x| + 2 ii |x - 4| > |x| + 2 (x + 3)(x - 2) = 0 x-axis is y = -2x - 1: 1 x = -3 or 2 At Q, -2x - 1 = 5 O x 2 Solve these equations and inequalities. -2x = 6 so x = -3 The solutions are a i |x + 2| = 5 ii |x + 2| < 5 The solutions are x = -3 and x = 2 x = -3 and x = 2 b i |2x + 3| = 7 ii |2x + 3| > 7 c i |3x - 1| = 8 ii |3x - 1| 8 EXAMPLE 2 Solve a |x| + 4 = 3x b |x| + 4 < 3x d i |6 - 2x| = 2 ii |6 - 2x| 2 C3 C3 The graph of y = |x| + 4 involves •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a reflection in the y-axis. e i |x - 2| = |x| ii |x - 2| < |x| Sketch the graphs of y = |x| + 4 and y = 3x: y a The two graphs have only f i |3x - 2| = |x + 1| ii |3x - 2| < |x + 1| b For |x| + 4 < 3x, you y = 3x one point of intersection, P. need the graph of y = –x + 4 At P, x + 4 = 3x y=x+4 3 Solve these equations. y = |x| + 4 to be below 4 = 2x the graph of y = 3x P a |x + 1| = x + 4 b |x| + 1 = x + 4 c |2x + 3| = 3x - 2 4 This occurs to the d |2x + 3| = 6 - x e 2|x| + 3 = 4x f |2x - 4| = |x| + 2 The solution is x = 2 right of P. O x –4 The solution is x > 2 g |x2 - 4x| = 3x - 6 h |x|2 - 4|x| = x 4 Solve these inequalities. EXAMPLE 3 Both graphs involve a reflection in a |2x - 1| > x + 1 b 2|x| - 1 < x + 1 c |3x - 6| < |x| How many solutions has the equation |x2 - 3x| = |x - 2| ? the x-axis. Find the solution nearest to x = 3 d |2x - 2| |x| - 3 e |x2 - 3x| 2|x| - 4 f |x2 - 4| < |x| + 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y y = |x2 – 3x| Sketch the graphs of y = |x2 - 3x| and y = |x - 2|: x−2 < 4 5 Solve a |x2 - x - 6| = |x| + 2 b The two graphs intersect four times. x+3 So, there are four solutions to the equation |x2 - 3x| = |x - 2| 2 y = |x – 2| P The solution nearest to x = 3 is given by the point P. O x INVESTIGATION 1 2 3 At P, the graphs of y = x - 2 and y = -(x2 - 3x) intersect. –2 6 If |x2 + bx + c| = x2 + bx + c for all x, find a condition So x - 2 = -(x2 - 3x) which b and c must satisfy. x2 - 2x - 2 = 0 giving x = 1 ± 3 Reflecting y = x2 - 3x in the x-axis gives y = -(x2 - 3x) = -x2 + 3x Reject the invalid value 1 - 3 which is negative. The required solution is x = 1 + 3 = 2.73 (to 2 d.p.) Use the quadratic formula. 26 27 See C1 for revision.
  • 18. 1 Algebra and functions EXAMPLE 2 1.7 Transformations of graphs of functions Describe the two transformations needed to transform the graph of y = x2 into the graph of y = 4 - x2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Recall the rules of transforming a function: Refer to C1 for revision. Work out the result of a reflection in y You can use a sketch to check the x-axis: y = x2 your work. y = f(x) ± a is the result of translating y = f(x) parallel to the y-axis by ± a units If y = f(x) = x2, then after 4 In Example 2, the order matters: reflection in the x-axis the reflection must be first and y = f(x ± a) is the result of translating y = f(x) parallel to the y = -f(x) = -x2 the translation must be second. x-axis by a units If you did the translation first and y = -f(x) is the result of reflecting y = f(x) in the x-axis Now work out the result of translating the reflection second, then the y = f(-x) is the result of reflecting y = f(x) in the y-axis the new function, y = -x2, parallel to final graph would have the −2 O 2 x y = af(x) is the result of stretching y = f(x) parallel to the equation y = -(x2 + 4) = -x2 - 4 the y-axis 4 units upwards: y = 4 – x2 y-axis by a scale factor of a y y = f(ax) is the result of stretching y = f(x) parallel to the After the translation, y = f(x) = -x2 y = –x2 y = x2 + 4 x-axis by a scale factor of 1 is transformed into y = f(x) + 4 a = 4 - x2 These are the two required transformations. y = x2 You can combine these transformations to give new functions. 4 2 E.g. When y = f(x) is transformed by: −4 −2 O x ⎛a⎞ ⎛0⎞ −2 2 4 translations of ⎜ 0 ⎟ and then ⎜ ⎟ , the result is y = f(x - a) + b C3 C3 ⎝ ⎠ ⎝b⎠ −4 The order in which you do the a stretch of scale factor 2 parallel to the x-axis and then a reflection transformations can sometimes in the x-axis, the result is y = −f x ( 2) affect the final function. y = –x2 – 4 EXAMPLE 1 The quadratic function f(x) = x2 - 3x is reflected in the y-axis EXAMPLE 3 ⎛2⎞ Sketch the graph of the function y = 3sin 2x, x Î R and find its range. and then translated by the vector ⎜ ⎟ . 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ⎝ ⎠ Find the equation of the final function. If y = sin x, then y = sin 2x is the result of a stretch y parallel to the x-axis with scale factor 1 . •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2 The ‘stretch’ is really a ‘squash’. 3 After reflection in the y-axis, the function becomes The reflection in the y-axis y = 3sin 2x f(x) = (-x)2 - 3(-x) = x2 + 3x changes f(x) to f(-x). y = sin 2x 2 After the translation, the function now becomes 1 The translation changes the new If y = sin 2x, then y = 3sin 2x is the f(x) = (x - 2)2 + 3(x - 2) f(x) to f(x - 2). result of a stretch parallel to the y-axis −2p −p O x = x2 - 4x + 4 + 3x - 6 p 2p with scale factor 3. −1 = x2 - x - 2 You can check the answer using The range of y = 3sin 2x is -3 x 3 (or |x| 3). y = sin x −2 The equation of the final function is f(x) = x2 - x - 2 a graph-plotter. Each point on y = sin 2x maps onto a point three −3 times further away from the x-axis. The stretch parallel to the x-axis has changed the period from 2p to p (360° to 180°). 28 29
  • 19. 1 Algebra and functions 1 Algebra and functions EXAMPLE 6 EXAMPLE 4 Sketch the graph of y = 1 + cos x − p , x Î R and find its range. ( ) This diagram shows the graph of y = f(x) This function is defined by its (2 ) 4 graph rather than by an equation. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• On the same axes, sketch the graph of y = 3 − f 1 x y If y = cos x, then y = cos x − p is the 4 ( ) y y = 1 + cos x – p Find the coordinates of the images of points O (0, 0) and P (2, 3). result of a translation parallel to the 2 4 ( ) 3 P y = f(x) y = cos x x-axis of + p units to the right. 1 4 y = cos x – p ( ) 4 y = f(x - a) is the result of translating y = f(x) O O x −2p −p p 2p x 2 parallel to the x-axis by +a units. −1 ( ) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• If y = cos x − p , then −2 The three transformations involved are, in this order: 4 y = 1 + cos x − p is the result of a 4 ( ) By not involving any stretches y y = f(x) translation parallel to the y-axis of +1 unit upwards. in this problem, you have not 3 O# P y=f 1x 2 ( ) changed the period of 2p. y = f(x) + a is the result of translating y = f(x) parallel to the y-axis by +a units. In this problem, the order in y = 3 –f 1x (2 ) ( 4) which you do the two O x 2 4 P# The range of y = 1 + cos x − p is 0 x 2. translations does not matter. –1 –2 –3 y = –f 1x ( ) C3 C3 2 –4 EXAMPLE 5 Sketch the graph of y = 2|x + 3| - 4, x Î R and find its range. –5 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• i a stretch parallel to the x-axis of scale factor 2 Three transformations of y = |x| Firstly, there is a translation of y = |x| y ii a reflection in the x-axis are involved. parallel to the x-axis of -3 units to iii a translation parallel to the y-axis of +3 units upwards. y = 2|x + 3| y = |x + 3| the left. The image points are O¢(0, 3) and P¢(4, 0). 3 y = |x| Secondly, there is a stretch parallel 2 to the y-axis of scale factor 2. 1 Exercise 1.7 Thirdly, there is a translation parallel −3 −2 −1 O 1 2 3 x −1 1 This diagram gives the graph of y = x y to the y-axis of -4 units downwards. On the same axes, sketch the graphs of −2 y = √x The range is y -4 y = 2|x + 3| – 4 −3 3 i y= x ii y = x + 3 −4 iii y = x − 3 iv y = x + 3 O x 3 6 9 v y= x -3 –3 Label each sketch with its equation. 2 On the same axes, sketch the graphs of y = x2 y = x2 + 3 y = x2 - 3 y = (x + 3)2 y = (x - 3)2 Label each sketch with its equation. 30 31
  • 20. 1 Algebra and functions 1 Algebra and functions 3 a If f(x) = |x|, sketch on the same diagram the graphs of 8 Describe the transformations of the graph of y = cos x which y = f(x), y = f(2x), y = 2f(x) result in a graph with the equation a y = 1 + 2cos x b If f(x) = |x|, sketch on the same diagram the graphs of y = f(x) y = f(x + 2) y = f(x - 2) b y = 3 + cos x + p( 4 ) Label each graph with its equation. c y = 3 - cos 2x 4 Sketch the graph of y = x2 - 3x Sketch the graph and write the equation after the graph ( d y = 4cos x − p 2 ) of y = x2 - 3x has been transformed by e y = 2cos 3x a a reflection in the x-axis b a reflection in the y-axis f y = 1 cos(-x) 2 ⎛2⎞ ⎛ 0⎞ c a translation of ⎜ ⎟ d a translation of ⎜ ⎟ . ⎝0⎠ ⎝ −4 ⎠ 9 On the same axes, sketch the graphs of y = tan x and 2 ( y = 1 + tan x − p for 0 2 ) x p 5 The graph of y = x is reflected in the x-axis and then translated 5 units upwards parallel to the y-axis. Sketch the final image of 10 The graph shows the function y = f(x) y = x2 and write its equation. y 6 Sketch the graph of y = 4 - x2 C3 C3 a Sketch the image of the graph of y = 4 - x2 after a reflection x in the x-axis followed by a stretch (scale factor 2) parallel (–5, 0) O (0, –1) to the x-axis. (–3,–4) b Sketch the image of the graph of y = 4 - x2 after a reflection in the y-axis followed by a stretch a The graph of the function y = f(x) is transformed into the (scale factor 2) parallel to the x-axis. Write the equations for the resulting graphs. graph of y = f 1 x + 1 (2 ) i Describe the transformations which have taken place. 7 Sketch the graph of y = f(x) and its image when ii Sketch the graph of y = f(x) and its image on the same diagram. a f(x) = x2 - 4x + 3 is stretched (scale factor 2) parallel to the b Repeat when f(x) is transformed into y = 2 - 3f(x - 1) y-axis and then reflected in the x-axis b f(x) = x2 - 3x is reflected in the x-axis and then translated +1 units parallel to the x-axis INVESTIGATION c f(x) = |x - 4| is stretched (scale factor 3) parallel to the x-axis 11 Which two transformations result in the graph of and then translated -2 units parallel to the x-axis y = f(x) being a enlarged with scale factor k and centre (0, 0) d f(x) = sin x is reflected in the y-axis and translated +1 unit parallel to the y-axis b rotated through 180° about the origin (0, 0)? ⎛π⎞ Write the equation of the image of y = f(x) in each case. e f(x) = sin x is reflected in the x-axis and translated by the vector ⎜ 2 ⎟ . ⎜3 ⎟ ⎝ ⎠ In each case, write the equation of the image. 32 33
  • 21. 1 Algebra and functions Review 1 5 The function f is defined over the domain 0 x 4 by f(x) = x 0 x<2 1 Express each of these expressions as a single fraction in its f(x) = 4 - x 2 x 4 simplest form. a Sketch the graph of f over its domain. 1 + 2 2 − 2x a x − 1 2x + 3 b x +1 x +2 b Find all the values of x for which f(x) = x + 4 [(c) Edexcel Limited 2002] 4 2 3 + 3 2a3(a + b) × 6b c (x + 1)(x − 4) (x − 1)(x − 4) d 6 The function g is defined by g: x ® 4x2 + 9, x Î R, x 0 3b a2 − b2 a Find the inverse of g. 3m(m − 2) m2 − m − 2 4x 2 × x 2 − 3x + 2 e ÷ f m −1 m2 (x − 1)2 8x 3(x − 2) b Find the value of g -1(18). 2a Express x + x + 12 as a single fraction in its (x + 1)(x + 3) x 2 − 9 7 Prove that the function f(x) = x + 2 , x Î R, x ¹ 1 is self-inverse. Self-inverse means that the x −1 simplest form. [(c) Edexcel Limited 2001] function and its inverse Also prove that the only elements of the domain which map are identical. onto themselves are x = 1 ± 3 b Hence, find the solution of x + x + 12 = −1 1 (x + 1)(x + 3) x 2 − 9 2 8 Given that f(x) = x2 - 5x + 6, sketch the graphs of 3a Find the quotient and remainder when a y = |f(x)| C3 C3 i 4x3 + 4x2 - 5x - 3 is divided by 2x + 1 b y = f(|x|) ii x3 - 7x + 8 is divided by x - 2 b Find the function f(x) and the constant k which satisfy the identity 9 This diagram shows the graph of the function 2x3 - 3x2 + 4 º (x -1) f(x) + k y = f(x), -1 x 6 y c Divide f(x) = x3 - 2x2 - 9x + 18 by x - 2 and so factorise f(x) completely. 2 y = f(x) 4 The functions f and g are defined by f(x) = x2 - 1, x Î R, x 0 and g(x) = 2x - 1, x Î R a Find the values of –1 O 3 6 x i f(3) ii g(3) iii fg(3) iv gf(3) v f -1(3) vi g -1(3) b Find algebraic expressions for Sketch, on separate diagrams, the graphs of i fg(x) ii gf(x) iii f -1(x) iv gf -1(x) a y = f(x) - 2 c Prove that there are no solutions to the equation b y = |f(x)| fg(x) = gf(x) c y = f(|x|) Give the coordinates of any turning points on your three diagrams. 34 35
  • 22. 1 Algebra and functions 1 Algebra and functions 10 The graphs of y = x - 2 and y = 1 are shown on this diagram. 15 The graph of the function f(x) = 3 - x, x 0 y y is shown on this diagram. y=x–2 a Give the range of f(x). 3 1 y=1 b Find the values of 2 y = 3 – √x O 2 x i f -1f(6) ii f -1(-1) 1 O 2 4 6 8 10 12 14 16 18 x –2 c Sketch the graph of y = |f(x)| Find the values of the constant c if the equation Sketch the graphs of y = |x - 2| and y = 1 on the same diagram |f(x)| = c has exactly two roots. and find their points of intersection. 16 This diagram shows the graph of y = f(x) 11 Sketch the graphs of y a y = |2x - 3| b y = 2|x| - 3 (2, 4) 4 c y = |4 - x| d y = 4 - |x| f(x) 3 e y = |x2 - 5x + 4| f y = |x|2 - 5|x| + 4 2 1 g y = |2x - x2| h y = 2|x| -|x|2 O 1 2 3 4 5 6 7 x –1 12 Solve the equations C3 C3 –2 a |3x - 2| = x + 2 b 3|x| - 2 = x + 2 –3 (5, –3) c |2x - 3| = |4 - x| d 2|x| - 3 = |4 - x| Sketch on separate diagrams the graphs of e |6 - 2x| = x + 3 f |6 - 2x| = |x| + 3 a y = 1 f(x + 1) 2 b (2 ) y = f 1x +1 13 Solve the inequalities 17 The graph of y = x2 is transformed onto each of these graphs a |2x - 3| > |4 - x| b 2|x| - 3 < |4 - x| by successive transformations. c |2x - 4| < x d |6 - 2x| > x + 3 Describe the transformations which have taken place in each case. (|x| - 2)2 1 e 6 - 2|x| 1-x f x+4 a y = 3x2 - 5 b y = 2 (x - 2)2 c y = 1 - 2x2 14 Solve a |x2 - 4| = x + 2 18 f(x) = 2x + 5 − 1 , x > −2 x+3 (x + 3)(x + 2) b |x2 - 4| x+2 a Express f(x) as a single fraction in its simplest form. c |x2 - 4| |x| + 2 1 , x > −2 b Hence show that f(x) = 2 − x+2 c The curve y = 1 , x > 0, is mapped onto the curve y = f(x), x using three successive transformations T1, T2 and T3, where T1 and T3 are translations. Describe fully T1, T2 and T3. [(c) Edexcel Limited 2005] 36 37
  • 23. 1 Exit 2 Trigonometry This chapter will show you how to use reciprocal and inverse trigonometric functions solve trigonometric equations and prove identities Summary Refer to use the compound angle formulae Algebraic division follows the same procedure as numerical long division. 1.2 use the double angle and half angle formulae A function maps each element of the domain onto one and only one find equivalent forms for acos q + bsin q. element of the range. 1.3 The composite function gf(x) means that the function f is applied first and the function g is applied second. The function gf(x) only exists if the range of f is part of the domain of g. 1.3 Before you start To find the inverse function f -1 (x) of f(x) You should know how to: Check in: either use a flow diagram in reverse 1 Use the special triangles. 1 Find the values of or make x the subject of y = f(x) and then interchange x and y or reflect the graph of y = f(x) in the line y = x. a sin 60° + cos 30° A one-to-one function always has an inverse. A many-to-one function has 30º b tan 60° + tan 45° an inverse only if the domain is restricted to make it a one-to-one function. 1.4 2 C3 C3 If |x| < a, then -a < x < a. If |x| > a, then x > a or x < -a. √3 c sin2 30° + sin2 60° √2 1 To sketch the graph of y = |f(x)|, sketch y = f(x) and reflect d sin2 45° - cos2 45° any part below the x-axis in the x-axis. 60º 45° To sketch the graph of y = f(|x|), sketch y = f(x) for x > 0 only 1 mm 1 and reflect it in the y-axis. 1.5, 1.6 1 e.g. sin 30° + tan 45° = 2 + 1 = 1.5 You can apply a combination of transformations to the graph of y = f(x). The order of the transformations may affect the result. 1.7 8 2 Find cos q when q is acute and 2 a If q is acute and sin q = 17 , find the tan q is known. values of cos q and tan q. e.g. If tan q = 7 , 7 x 24 4 i b If q is obtuse and sin q = 5 , find the Links then x = 7 + 24 = 25 2 2 24 values of cos q and tan q. Many situations in real life involving several variables and 24 uncertainty can be modelled using mathematics. and cos q = 25 Computation using complex numerical methods is used in forecasting weather, and mathematics is essential in 3 Find angles in all four quadrants. 3 Find q such that 0° q 360° when understanding and predicting climate change. e.g. If cos q = - 1 , then q is in the second a sin q = 0.3 b tan q = -2 2 Even though, in reality, the variables involved are complicated, and third quadrants. 1 c cos q = 4 they can be simplified using a mathematical model which can Possible values of q = 180° ± 60° = 120° or 240° then be used to understand the system being studied and to make predictions. 4 Use identities involving sin q, cos q and tan q. 4 a If q is obtuse and sin q = 0.4, find cos q. e.g. If sin q = 0.6 and q is acute, then sin2 q + cos2 q = 1 1 ≡ 1 b Prove the identity 1 + gives cos q = 1 − (0.6) = 2 0.64 = 0.8 tan 2 q sin 2 q 38 39
  • 24. 2 Trigonometry Similarly, you can sketch the graph of y = cosec q cosec q is not defined when 2.1 Reciprocal trigonometric functions sin q = 0 y The reciprocal trigonometric functions, secant, cosecant and cotangent, are defined as y = cosec i 3 Be careful not to confuse these. 2 cot q = tanq = cosq 1 1 1 sec q = cos q cosec q = sin q You would expect cosec to be sin q related to cos and sec to sin. 1 y = sin i –360º–270º–180º–90º O 90º 180º 270º 360º i EXAMPLE 1 Find, to 3 decimal places, the values of 162° is in the second quadrant y = sin q and y = cosec q have 2p where tan is negative. –1 periods of 360° (2p radians). a sec 40° b cot 162° c cosec 5 –2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• When sin q = ±1, cosec q = ±1 1 1 When sin q = 0, the graph of a sec 40° = cos 40° = 0.76604 = 1.305 –3 162º cosec q has a vertical asymptote. O 1 1 1 b cot 162° = tan162° = - tan18° = -0.32492 = -3.077 The domains and ranges of sin q and cosec q are: When sin q is positive, cosec q is also positive. When sin q is 1 1 Domain Range c cosec 2p = sin 2p = 0.95106 = 1.051 2p radians = 360° = 72° negative, cosec q is also negative. 5 5 5 5 y = sin q qÎR y Î R, -1 y 1 C3 C3 y = cosec q q Î R, q ¹ 0°, ±180°, ±360°, . . . y Î R, y 1, y -1 The graphs of sec q, cosec q and cot q The graph of cot q is shown here. cot q is not defined when sec q is not defined when sin q = 0 Starting with the graph of y = cos q, you can sketch the graph of cos q = 0 y its reciprocal y = sec q y 3 y = sec i 2 3 2 1 1 y = tan q and y = cot q have y = cos i –360º –270º –180º –90º O 90º 180º 270º 360º i periods of 180° (p radians). y = cos q and y = sec q both have –540º –450º –360º –270º –180º –90º O 90º 180º 270º 360º 450º 540º i a period of 360° (2p radians). –1 –1 When tan q = ±1, cot q = ±1 –2 When tan q = 0, the graph of cot q –2 When cos q = ±1, sec q = ±1 y = tan i y = cot i has vertical asymptotes. When cos q = 0, sec q = ¥ and –3 –3 its graph has vertical asymptotes. The domains and ranges of tan q and cot q are: The domains and ranges of cos q and sec q are: When cos q is positive, sec q is also positive. When cos q is Domain Range Domain Range You should be familiar with all of negative, sec q is also negative. y = tan q q Î R, q ¹ ±90°, ±270°, . . . yÎR these graphs when q is in y = cos q qÎR y Î R, -1 y 1 y = cot q q Î R, q ¹ 0°, ±180°, . . . yÎR radians as well as in degrees. y = sec q q Î R, q ¹ ±90°, ±270°, . . . y Î R, y 1, y -1 40 41
  • 25. 2 Trigonometry 2 Trigonometry Standard trigonometric results 1 1 The standard trigonometric results from these two special See C2 Chapter 12 for revision. Consider cot q = tanq = sinq = cosq sinq triangles are: cosq Use Pythagoras’ Theorem. (b ) (c ) sin 0° = 0 cos 0° = 1 tan 0° = 0 a 2 2 Divide a2 + b2 = c2 by b2: +1= b so tan2 q + 1 = sec2 q 1 sin 30° = 1 cos 30° = 3 tan 30° = () () 2 2 3 30° b 2 c 2 √3 2 Divide a2 + b2 = c2 by a2: 1 + a = a so 1 + cot2 q = cosec2 q 1 sin 60° = 3 cos 60° = 2 tan 60° = 3 1 √2 2 sin 45° = 1 cos 45° = 1 tan 45° = 1 60° 45° You have 2 2 1 1 You should also know these results The same two special triangles also give you: in radians, where 180° = p radians. cot q = cosq You need to be able to recall sin q all of these trigonometric 1 cosec 60° = 2 sec 60° = 2 cot 60° = tan q = cot (90° - q) values and formulae. They are 3 3 not provided in the formulae cosec 30° = 2 sec 30° = 2 cot 30° = 3 sec2 q = 1 + tan2 q booklet in the examination. 3 cosec2 q = 1 + cot2 q cosec 45° = 2 sec 45° = 2 cot 45° = 1 EXAMPLE 2 C3 C3 and from the trigonometric graphs you get: Find, giving each answer as a surd, the exact values of sin 90° = 1 cos 90° = 0 tan 90° = ¥ a sec 330° b cosec 225° c cot 7p 6 sin 180° = 0 cos 180° = -1 tan 180° = 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a 330° is in the fourth quadrant where cosine is positive. The triangle shown gives See C2 for revision. 1 1 2 3 sec 330° = = = 1 = 2 = a cos 330° cos 30° 3 3 3 330º a = c 2 tan q = b O b c c a = sin q cos q i By Pythagoras’ Theorem, a2 + b2 = c2 b b 225° is in the third quadrant where sine is negative. Divide by c2: sin2 q + cos2 q =1 1 = 11 = − 2 cosec 225° = − sin 45° − 2 225º O You have the following results: tan q = sin q sin2 q + cos2 q = 1 cosq c 7p radians = 7 × 180° = 210° is in the third sin q = cos (90° - q) cos q = sin (90° - q) 6 6 quadrant where tangent is positive. 210º cot 7p = cot 210° = tan 210° = tan 30° = 1 = 1 1 1 3 O 6 3 42 43
  • 26. 2 Trigonometry 2 Trigonometry EXAMPLE 3 5 Angle a is a reflex angle and cos a = 9 If cos q = − 5 and q is an obtuse angle, 41 13 Find the value of find the exact value of cot q. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a cosec a b cot a Method 1 Method 2 6 Write each of these expressions as a power of sec b, cosec b or cot b. Use 1 + tan2 q = sec2 q Draw a right-angled triangle for with sec q = − 13 : 1 a first quadrant angle, f, where a b sec2b 5 cos f = 5 : tan 2 b cos b 13 ( 13 ) − 1 2 cot 2 b sec 2 b c 1 − cos b 2 tan2 q = − d 5 3 sin b sin 3 b = 169 − 1 13 x 25 144 7 Find the value of cot q when = 25 i z a 2sin q = 3cos q b 4tan q = 1 tan q = ± 12 5 5 c cos q sin q = sin2 q d cos q = 9sin q tan q But q is obtuse, so tan q Use Pythagoras’ theorem: e sin q = 3tan2 q cos q f cosec q = 2 is negative. x = 169 − 25 = 12 and 8 Simplify these expressions. So tan q = − 12 5 cot f = 5 1 12 a cot x tan x b cot x sin x tan x and cot q = tanq C3 C3 Angle q is obtuse, so tan q =−5 and cot q are negative. c cot2 x sec x sin x d cosec x sec x sin2 x 12 cot q = -cot f = − 5 1 − sec 2 a 12 e sin x(cot x cos x + sin x) f cos2 a cos ec 2a Exercise 2.1 g 1 + cot2 a sin2 a h 1 − cot a cosec 2a sin 2 a tan a 1 Use your calculator to find, to 3 significant figures, the values of a sec 200° b cot 130° c cosec 340° tan a ⎞ sec a ⎛ 1 ⎜ − cos ec a ⎟ i ⎝ cos a ⎠ d sec 3p e cot 5p f cosec 2p 5 6 9 2 Find, in surd form where needed, the values of INVESTIGATION a cot 135° b sec 120° c cosec 210° 9 What transformation maps the graph of y = sec x onto y = sec (x - 90°)? d cot 4p e sec 7p f cosec 3p What two transformations are needed to map the graph of y = cot x 3 4 2 onto y = cot (90° - x)? 3 Find angle q such that -180° < q < 180° when Use the graphs of these Use computer software to compare the graphs of functions to help you. y = sec (x - 90°) and y = cosec x and to compare the graphs of a sec q = 1.25 b cot q = 2.5 c cosec q = 3.0 y = cot (90° - x) and y = tan x. d sec q = -1.25 e cot q = -3.5 f cosec q = -2.0 What can you deduce? Is this investigation sufficient as proof of your results? 4 Given that angle q is obtuse and tan q = − 8 , find the value of 15 a sec q b cot q 44 45
  • 27. 2 Trigonometry EXAMPLE 3 2.2 Trigonometric equations and identities Solve the equation 1 + tan x = sec2 x for 0 x 2p •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Substitute 1 + tan2 x for sec2 x: 1 + tan x = 1 + tan2 x tan is positive in the first and An equation is true for some, but not all, values of the third quadrants. variables involved. 0 = tan2 x - tan x 0 = tan x (tan x - 1) An identity is true for all values of the variables involved. so tan x = 0 or tan x = 1 There are two strategies for proving identities. tan x = 0 gives x = 0 or 2p 5p You prove: p 4 either that the LHS of the identity is equal to the RHS It is usual to start with the more or tan x = 1 gives x = p or 5p 4 4 4 O (or vice versa). complicated side of the identity. or that both sides of the identity are equal to a common The solutions are x = 0, p , 5p , 2p third expression. 4 4 EXAMPLE 1 Prove that tan x sin x + cos x º sec x Exercise 2.2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 Solve these equations for -180° x 180° See C2 for revision of Manipulate the LHS of the identity: Choose one side of the translations of trignometric a sec (x - 10°) = 3 identity to work on. functions. sin x LHS = tan x sin x + cos x = cos x ´ sin x + cos x b cosec (x + 20°) = -4 = sin x + cos x 2 2 c cot (x + 30°) = -2 C3 C3 cos x 1 1 d cot 2x = 2 = cos x = sec x = RHS e sec (2x + 40°) = -2 So the identity is proved. f cosec 1 x - 10° = - 3 (2 ) 2 g 3cos x = sec x EXAMPLE 2 3 cos x tan x cos x Prove that º h 4cot x = 3tan x cosec 2 x cot 3 x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• i 3cos x - cot x = 0 Show that both sides are equal to a common expression: j 4sin x = 3tan x sin x LHS = cos x ´ cos x ´ sin 2 x = sin3 x Remember cosec2 x = 2 1 k 2cot x = cosec x sin x sin 3 x 1 cos 3 x l cot x = tan x RHS = cos3x ´ 3 = sin3 x cot 3 x = 3 = cos x tan x sin3 x 2 Solve these equations for -p q p Hence, LHS º RHS and the identity is proved. a sec2 q =2 b cot2 q = 3 c 4sin q = 3cosec q d tan q = 4sin q cos q 46 47
  • 28. 2 Trigonometry 2 Trigonometry 3 Solve these equations for 0 x 360° 6 Find the points of intersection of these pairs of curves for -360° x 360°, giving answers to 2 significant figures a 2 + sec2 x = 4tan x where necessary. b 2cot x = tan x + 1 a y = 1 + cos x, y = 2sin2 x c 3sin x - 2cosec x = 1 b y = 1 + 2tan x, y = 1 + sec x 2 d 2sec x - 1 = tan x c y = sec x, y = 1 + cos x e 4cos x - 3sec x = 1 d y = tan x - sin2 x, y = (cos x - sec x)2 f cosec2 x = 4cot x - 3 7 Prove these identities. g cos x + sec x = 2 a tan q sin q + cos q º sec q h tan q + cot q = 2 b tan q + cot q º sec q cosec q i tan q + 3cot q = 5sec q 1 c sec q - tan q º secq + tanq 4 Rewrite each pair of equations as one equation in terms of x and y. d 1 − tan 2q ≡ 1 − 2 sin2q 2 a x = 4sec a, y = 2tan a 1 + tan q b x = 3cosec a, y = 2cot a e sinq ≡ cosq c x = 4cos a, y = 3tan a 1 + tanq 1 + cotq C3 C3 d x = 1 - sin a, y = 1 + cos a f (1 + sec q)(1 - cos q) º tan q sin q e x = 3cos a, y = 4 + tan a sinq + 1 + cosq ≡ 2 g 1 + cosq sinq sinq f x = asin a, y = bsec a 5 Describe the transformations which map the graph of the h 1 ≡ 1 − cosq cot q + cosec q sin q first equation onto the graph of the second equation. a y = sec x, y = sec 1 x (2 ) i tan 2q + cos2q ≡ secq − sinq sinq + secq b y = sec x, y = 1 sec 2x 2 c y = cosec x, y = 2cosec (x + 90°) INVESTIGATION 8 Use a graphical package on a computer to check your d y = cot x, y = -cot(-x) answers to all the questions in this exercise. For example, you can check question 1 part a by plotting the graph of y = sec (x - 10°) and finding the points where y = 3. For question 3 part a, you can plot the graphs of y = 2 + sec2 x and y = 4tan x and then find their points of intersection. 48 49
  • 29. 2 Trigonometry The graphs show their domains and ranges as: 2.3 Inverse trigonometric functions Domain Range f(x) = cos x 0 x p -1 y 1 If f(x) = sin x, then the inverse function is Do not confuse sin-1 x f -1(x) = arcsin x or sin-1 x. with (sin x)-1. -1 f (x) = arccos x -1 x 1 0 y p p p E.g. sin = 0.5, so arcsin 0.5 = 6 6 The principal values of arccos x are in the range 0 y p arcsin 0.5 is the angle whose sine is 0.5. Domain Range f(x) = sin x is a many-to-one function. See Chapter 1 for revision of p for it f(x) = tan x −p p yÎR Its domain must be restricted to − p x inverse functions. 2 x 2 2 2 p to have an inverse. f -1(x) = arctan x xÎR −p y 2 2 The graph of y = arcsin x is a reflection of y = sin x in the line y = x The principal values of arctan x are in the range − p y p 2 2 y y = arcsin x 3 EXAMPLE 1 2 Find the values of 1 y = sin x a arccos 3 For arccos ⎛ 3 ⎞ , you need to find ⎜ 2 ⎟ For the reflection to work, the 2 ⎝ ⎠ x –3 –2 –1 0 1 2 3 scales on the two axes must be b arctan (-1) the angle whose cosine is 3 . –1 2 the same, with angles measured C3 C3 –2 in radians. c arcsin (-0.3) –3 y=x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Use the special triangles: The graphs show their domains and ranges as: Domain Range 30° f(x) = sin x −p x p -1 y 1 2 2 √3 2 −p p √2 -1(x) = arcsin x f -1 x 1 y 2 2 1 60° 45° 1 1 The principal value of arcsin x is the unique value of arcsin x This is shown as the continuous within the allowed range − p y p blue line on the graph. 2 2 a arccos 3 = p (or 30°) 2 6 The principal values of arctan are Similarly, provided that domains are restricted, The alternative notations are in the first and fourth quadrants. cos-1 x and tan-1 x. b arctan (-1) = − p (or -45°) y = cos x and y = tan x have inverse functions 4 So, an angle with a negative y = arccos x and y = arctan x tangent (in this case, -1) is in the fourth quadrant. y y c Use a calculator: y = tan x arcsin (-0.3) = -0.305 (or -17.5°) A negative principal value of 3 3 arcsin is a fourth quadrant angle. 2 2 1 1 y = cos x y = arctan x x x –3 –2 –1 0 1 2 3 –3 –2 –1 O 1 2 3 –1 –1 y = arccos x –2 –2 –3 –3 50 y=x y=x 51
  • 30. 2 Trigonometry 2 Trigonometry EXAMPLE 2 2 Find, as a surd where necessary, for angles between 0° and 180° Find tan arcsin 3 . 4 ( ) a sin x, given that x = arccos 1 3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You need to find tan q given that q = arcsin 3 ; 4 ( b tan arccos 3 4 ) that is, find tan q given that sin q = 3 4 c cos (arcsin 1) Take angle q to be an acute angle. Sine is positive, so angle q is in Method 1 Method 2 the first or second quadrant. ( d sin arcsin 5 8 ) tan q = sinq Draw a triangle to show sin q = 3 : e cos [arctan (-1)] 4 cosq You know sin q = 3 and so f sin [arccos (-0.5)] 4 you need cos q. 3 4 g tan éarccos ê ë ( 2 )ùûú 3 - Use sin2 q + cos2 q = 1: (4) 2 3 Find the values of cos q = 1 − 3 = 7 x i a arccos 3 + arcsin 2 ( 1) − 2 4 Use Pythagoras’ Theorem: Take +ve square root for cosine in b arctan 1 - arctan (-1) x2 + 32 = 42 C3 C3 the first quadrant. 3 x = 16 − 9 = 7 4 a If q = arcsin x, find in terms of x Hence, tan q = 4 So tan q = 3 i cos q ii tan q 7 7 4 b Express sec (arccos x) as an algebraic expression in x. = 3 7 and tan arcsin 3 = 3 4 7 ( ) 5 a Given that a = arctan x, express sin a + cos a in terms of x. b Given that x = tan q, find arccot x in terms of q. Exercise 2.3 1 Giving answers in terms of p, find 6 Prove these identities. a arcsin ⎛ 1 ⎞ ⎜ ⎟ b arctan ( 3 ) a arctan x º p - arccot x ⎝ 2⎠ 2 c arccos 1 d arctan (-1) b arcsin x + arccos x º p 2 e arccos ⎜ 3 ⎞ ⎛ ⎟ ⎝ 2 ⎠ f arcsin 0 c arctan x + arctan 1 º p (x) 2 g arccos ⎛ − 1 ⎞ ⎜ ⎟ h arctan ⎛ − 1 ⎞ ⎜ ⎟ INVESTIGATION ⎝ 2⎠ 3 ⎝ ⎠ 7 Explore how to input the inverse trigonometric functions using a computer’s graphical package. 52 53
  • 31. 2 Trigonometry Similarly, you can derive formulae for cos (A ± B): 2.4 Compound angle formulae cos (A + B) = cos Acos B - sin Asin B Try this for yourself. You can find an expression for sin (A + B) in terms of the and cos (A - B) = cos Acos B + sin Asin B trigonometric ratios of angle A and angle B. It is not true that sin (A + B) = sin A + sin B You can derive expressions for tan (A + B) and tan (A - B) You can prove this statement using a counter-example: using tanq = sinq : cosq Let A = B = 45° sin(A + B) sin A cos B + cos A sin B tan (A + B) = = Divide all terms by cos A cos B. cos(A + B) cos A cos B − sin A sin B sin (A + B) = sin (45° + 45°) = sin 90° = 1 sin A cos B cos A sin B and sin A + sin B = 1 + 1 = 2 = 2 ≠ 1 + 2 2 2 cos A cos B cos A cos B tan A + tan B = = Cancel as shown and use cos A cos B sin A sin B 1 − tan A tan B So, sin (A + B) ¹ sin A + sin B − tan q = sin q cos A cos B cos A sin B cos q In fact, sin (A + B) = sin Acos B + cos Asin B By replacing B by -B, you can derive the formula tan A − tan B tan (A - B) = 1 + tan A tan B Consider angles A and B in the R C3 C3 right-angled triangles OPQ and OQR: A These compound angle formulae can be summarised as: Triangles OMN and RMQ are similar so ÐMRQ = ÐMON = angle A L Q sin (A ± B) = sin Acos B ± cos Asin B Take care with the signs: M sin (A ± B) uses only the ± sign cos (A ± B) = cos Acos B sin Asin B cos (A ± B) uses only the sign B tan A ± tan B tan (A ± B) uses both ± and . A tan (A ± B) = O P 1 tan A tan B N NR NL + LR PQ LR In triangle ORN, sin (A + B) = OR = OR = OR + OR EXAMPLE 1 NL = PQ Find cos 15° as a surd. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• PQ OQ LR RQ Use the special triangles. = OQ × OR + RQ × OR Use the formula cos (A - B) = cos Acos B + sin Asin B: = sin Acos B + cos Asin B cos 15° = cos (45° - 30°) 30° Although proved here for A and B as acute angles, = cos 45°cos 30° + sin 45°sin 30° √3 2 this formula is true for all values of A and B. √2 1 × 3 + 1 ×1 1 = 2 2 2 2 60° 45° Replacing B by -B and using 3 +1 1 1 sin (-B) = -sin B and cos (-B) = cos B Angle -B is in the fourth = 2 2 gives quadrant where sine is negative 2 Multiply by to rationalise = 1 2 ( 3 + 1) sin (A - B) = sin Acos (-B) + cos Asin (-B) and cosine is positive. 2 or sin (A - B) = sin Acos B - cos Asin B 4 the denominator. You could also have used cos 15° = cos (60° - 45°) 54 55
  • 32. 2 Trigonometry 2 Trigonometry EXAMPLE 5 EXAMPLE 2 Find the value of cos (a + b) when a is acute, b is obtuse, Solve the equation arctan (1 + x) + arctan (1 - x) = arctan 2 cos a = 3 and sin b = 5 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 13 Let a = arctan (1 + x): tan a = 1 + x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Let b = arctan (1 - x): tan b = 1 - x From the triangles, you have 5 4 sin a = 4 and cos b = − 12 The equation to solve is now a + b = arctan 2 5 13 or tan (a + b) = 2 so cos (a + b) = cos acos b - sin asin b a Consider tan (a + b) = tana + tan b = (1 + x) + (1 − x) = 3 × − 12 − 4 × 5 5 13 5 13 ( ) 3 1 − tana tan b 1 − (1 + x)(1 − x) 2 2 = 2 = 2 −36 − 20 56 13 1 − (1 − x ) x = 5 × 13 = − 65 b 5 2 Hence =2 12 x2 The solution is x = ±1 EXAMPLE 3 Solve the equation sin (q - 30°) = 3cos q for 0° < q < 360° •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Exercise 2.4 Expand the brackets: sin qcos 30° - cos qsin 30° = 3cos q 1 Write as a single trigonometric ratio and so find the exact value of a sin 35°cos 10° + cos 35°sin 10° b sin 70°cos 10° - cos 70°sin 10° sin q ´ 3 - cos q ´ 1 = 3cos q 2 2 c cos 40°cos 10° + sin 40°sin 10° d cos 80°cos 40° - sin 80°sin 40° C3 C3 3 sin q = 7 cos q 2 2 tan 70° − tan 45° tan100° + tan 35° e f 1 + tan 70° tan 45° 1 − tan100° tan 35° tan q = 7 tan q is positive, so q is in the 3 first and third quadrants. 2 Simplify For 0° < q < 360°, q = 76.1° or 256.1° a sin 2Acos A + cos 2Asin A b cos 3acos 2a - sin 3a sin 2a c tan 2x + tan x d 1 + tan 3x tan x 1 − tan 2x tan x tan 3x − tan x EXAMPLE 4 Prove the identity sin(A + B) º tan A + tan B cos A cos B 3 Write each expression as a single trigonometric ratio. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 1 Show that the LHS is equivalent to the RHS: a cos x - sin x b 3 cos x + 1 sin x 2 2 2 2 LHS = sin A cos B + cos A sin B cos A cos B c 3 + tan x d 1 + tan x sin A cos B cos A sin B 1 − 3 tan x 1 − tan x = + cos A cos B cos A cos B e sin (90° - x)cos x + cos (90° - x)sin x f cos2 x - sin2 x = tan A + tan B Using tan q = sinq 4 By expanding sin (A - B), show that = RHS cos q a sin (90° - A) = cos A b sin (180° - A) = sin A Hence the identity is proved. 5 Find the exact value of a sin 15° b cos 75° c tan 75° d tan 15° e tan 105° f sec 75° 56 57
  • 33. 2 Trigonometry 2 Trigonometry 6 Given acute angles a and b such that sin a = 12 and tan b = 3 , find 13 Find 13 4 i the greatest value ii the least value a sin (a + b) b tan (a + b) c sec (a + b) that each of these expressions can have, given that q varies with 0° < q < 360° 4 8 a sin q cos 40° + cos q sin 40° 7 If sin q = 5 and sin f = 17 where q is acute and f is obtuse, find b cos q cos 20° - sin q sin 20° a cos (q - f) b sin (q - f) c cot (q - f) Give the values of q at which the greatest and least values occur in each case. 8 Angles A and B are obtuse and acute respectively, such that tan A = -2 and tan B = 5. Find the value of ( 3 ) 14 If tan q + p = 1 , show that tan q = 2 - 5 3 3 3 a cot (A + B) b sin (A - B) 9 a If tan (a + b) = 4 and tan a = 3, find tan b. 2 () 3 () 15 Prove that arcsin 1 + arcsin 1 ≡ arcsin ⎛ 2 2 + 3 ⎟ ⎜ ⎞ ⎝ 6 ⎠ b If sin (a + b) = cos b and sin a = 3 , find tan b. 5 16 Solve these equations. c If tan (a - b) = 5, find tan a in terms of tan b. a arctan x = arctan 7 - arctan 2 10 If sin (q + f) = cos f, show that tan q + tan f = sec q ( 13 ) b arcsin x + arccos 12 = arcsin 4 (5) 11 Solve these equations for 0 < q < 360° c x = arcsin k + arcsin ( 1 − k ) 2 a 3sin q = sin (q + 45°) b 2cos q = cos (q + 30°) C3 C3 17 Prove these identities. c 2sin q + sin (q + 60°) = 0 d tan(q - 45°) = 3cot q e sin(q - 60°) = 3cos (q - 30°) f sin(q + 90°) = tan q (x) a arctan x + arctan 1 º p 2 g tan(60° - q) = tan(q - 45°) h sin q + cos q = 1 b arcsin x + arccos x º p 2 2 12 Prove these identities. a sin (a + 30°) + sin (a - 30°) º 3sin a INVESTIGATION b (sin a + cos a)(sin b + cos b) º sin (a + b) + cos (a - b) 18 Use graphical software on a computer to check your answers to any equations in this exercise and to confirm c sin(a + b ) º tan a + tan b any identities that you have proved. cosa cos b For example, for question 11 a, draw the graphs of (4 ) (4 ) d sin p + a + sin p − a ≡ 2 cos a y = 3sin q and y = sin (q + 45°) e cos (a - b) - cos (a + b) º 2sin asin b cos(a + b ) f sina sin b º cot acot b - 1 g cos (a + b)cos (a - b) º cos2 a - sin2 b ( 4 ) ( ) h sin2 q + p + cos2 q − p ≡ 1 + 2sinq cosq 4 i cot(a + b) ≡ cot a cot b − 1 cot a + cot b 58 59
  • 34. 2 Trigonometry 2.5 Double angle and half angle formulae cos2 A = 1 (1 + cos 2A) Learn these formulae. They are not 2 in the formulae booklet. 1 sin2 A = 2 (1 - cos 2A) Double angle formulae A + A = 2A is called a Let A = B in the expansions of sin (A + B), cos (A + B) and tan (A + B): double angle. EXAMPLE 1 Find the solutions of cos 2q + 3sin q = 2 for 0 < q < p sin 2A = 2sin Acos A •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2 2 cos 2A = cos A - sin A Choose an identity which gives the equation in terms of sin q or cos q only: 2 tan A cos 2q + 3sin q = 2 tan 2A = 1 − tan 2 A Substitute cos 2q = 1 - 2sin2 q : These are the double angle formulae. 1 - 2sin2 q + 3sin q = 2 There are two other forms of the formula for cos 2A: Rearrange to equate to 0: This is a quadratic equation 2sin2 q - 3sin q + 1 = 0 in sin q. Use cos2 A + sin2 A = 1 Factorise: (2sin q - 1)(sin q - 1) = 0 Substitute cos2 A = 1 - sin2 A into the formula for cos 2A: sin q = 1 gives a first or second cos 2A = cos2 A - sin2 A Solve for sin q : sin q = + 1 or +1 2 2 quadrant angle. = (1 - sin2 A) - sin2 A C3 C3 = 1 - 2sin2 A For 0 < q < p, sin q = + 1 5p gives q = p or p - p = 5p Similarly, substituting sin2 A = 1 - cos2 A Work through this proof on your own. 2 6 6 6 6 p gives cos 2A = 2cos2 A - 1 and sin q = +1 gives q = p 6 2 O The three versions of the formula for cos 2A are The solutions are q = p , p and 5p . 6 2 6 ⎧cos2 A − sin 2 A EXAMPLE 2 ⎪ ⎪ Prove the identity cot a - tan a º 2cot 2a cos 2A = ⎨2 cos2 A − 1 ⎪ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ⎩1 − 2 sin A 2 ⎪ Show that the LHS of the identity is equivalent to the RHS: Choose one side of the identity LHS = cosa − sina to work with. You can rearrange the identities for cos 2A to give expressions for sina cosa = cos a − sin a 2 2 cos2 A and sin2 A: sina cosa = cos 2a Rearrange cos 2A = 2cos2 A - 1: sina cosa 2cos2 A = 1 + cos 2A = 2 cos 2a 2 sina cosa Divide through by 2: = 2 cos 2a sin 2a cos2 A = 1 (1 + cos 2A) = 2cot 2a 2 Similarly, sin2 A = 1 (1 - cos 2A) Work through this proof on your own. = RHS 2 The identity is proved. 60 61
  • 35. 2 Trigonometry 2 Trigonometry You can also find expressions for cos2 A and sin2 A . EXAMPLE 3 Find y in terms of x given that x = sec q and y = cos 2q 2 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Express x in terms of cos q : cos2 A = 1 (1 + cos A) 2 2 x = sec q = 1 A 1 Try to prove these results yourself. cosq sin2 = (1 – cos A) Rearrange to make cos q the subject: 2 2 cos q = 1 x EXAMPLE 5 Use the double angle formula to express y in terms of cos q : Choose the double angle Given that angle q is acute and sin q = 0.6 formula which converts y = cos 2q = 2cos2 q - 1 = 2 ⎛ 12 ⎞ − 1 = 22 − 1 ⎜ ⎟ cos 2q to cos q only. find the value of cos q . 2 ⎝x ⎠ x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• So, y = 22 − 1 Firstly find the value of cos q: x Using sin2 q + cos2 q = 1 cos2 q = 1 - sin2 q Substitute sin q = 0.6: EXAMPLE 4 Given that 2arctan 3 = arccot x, find x. cos2 q = 1 - (0.6)2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• = 0.64 Let arctan 3 = a so that tan a = 3 Hence cos q = ± 0.64 = ±0.8 = 0.8 as q is acute. Let arccot x = b so that cot b = x and tan b = 1 x Now use cos2 q = 1 (1 + cos q) and substitute cos q = 0.8: 2 2 Substitute a and b into the equation: cos2 q = 1 (1 + 0.8) = 0.9 C3 C3 2arctan 3 = arccot x 2 2 2a = b q = ±0.949 to 3 s.f. Hence cos tan 2a = 2 tan a = tan b 2 So 2 1 − tan a q is acute, so cos q = 0.949 to 3 s.f. 2 2×3 = 1 1 − 32 x x = 1 - 9 = -1 1 EXAMPLE 6 The solution is 6 3 Solve the equation sin a = cos a for 0 a p 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Change LHS into half angles: Half angle formulae You can also change between single angles and half angles. 2sin a cos a = cos a 2 2 2 You can find the half angle formulae by replacing 2A by A and 2sin a cos a - cos a = 0 2 2 2 replacing A by 1 A in the double angle formulae. Factorise by taking out cos a as a common factor: 2 2 cos a (2sin a - 1) = 0 2 2 sin A = 2 sin A cos A a 2 2 either cos = 0 or sin a = 1 a a sin 2 is positive, so 2 is in 2 2 2 ìcos2 A - sin 2 A the first or second quadrant. ï 2 2 a = p , 5p , . . . a = p , 3p , . . . ï ï 2A 2 2 2 2 6 6 cos A = í2 cos - 1 ï 2 a = p, 3p, . . . a = p , 5p , . . . ï1 - 2 sin 2 A 3 3 ï î 2 For 0 a p, the solutions are a = p or p A 3 2 tan tan A = 2 1 − tan 2 A 62 2 63
  • 36. 2 Trigonometry 2 Trigonometry Exercise 2.5 8 Solve the equations for 0 q 360° 1 Write each expression as a single trigonometric ratio. a 2sin q cos q = 1 b cos2 q - sin2 q = 3 2 42° 2 tan 70° 2 2 a 2sin 23°cos 23° b cos - sin2 42° c 1 − tan 2 70° c sin q cos q = 1 d cos 2q = sin q d 2cos2 50° -1 e 2sin 3q cos 3q f 1- 2sin2 4q 2 2 8 1 e cos 2q + 3sin q + 1 = 0 f sin 2q = cos q g 2 (1 + cos 40°) h 1 + cos 2q i sin q cos q g cos 2q - cos q + 1 = 0 h tan 2q = 3tan q 2 tan 3q 1 - tan 4q 2 j 1 - tan 2 3q k cos2 p - sin2 p l i cos q - 2 = 3cos 2q j sin 2q - 1 = cos 2q 5 5 2 tan 4q k sin 2q + sin q = tan q l 4sin q = sin q m 1 + cos q n sec q cosec q o cot q - tan q 2 m tan q = 6tan q n 3cos q = 2 + cos q 2 Find the exact value of each expression. 2 2 Give each answer as a surd where necessary. o sin q = cot q p cos q = 5sin q + 3 2 2 a 2sin p cos p b 2cos2 p - 1 c 1 - 2sin2 p 12 12 8 8 q cos 2q = tan 2q r sin q - 2 = 3cos q 2 sin p t 4sin2 q + 5sin 2q cos q = 4 ° s tan q tan 2q = 2 1 - tan 22 1 2 8 d 2 e 1 - sin2 75° f tan 22 1 ° sec p u sin q + 2cos q = 1 2 8 C3 C3 3 Find the values of sin 2a, cos 2a and tan 2a when 9 Prove these identities. a cos a = 3 b sin a = − 1 c tan a = − 5 a 1 − cos 2A ≡ tan A b sin 2A º 2 tan A 5 3 12 sin 2A 1 + tan A 2 cos A + sin A c sec 2A + tan 2A º cos A − sin A d cot A - tan A º 2cot 2A 4 Find the values of cos q and sin q when a cos q = 3 b cos q = 1 e tan A + cot A º 2cosec 2A f cosec 2A + cot 2A º cot A 2 4 2 3 g 2cosec 2A º sec Acosec A h cosec A - cot A º tan A 2 5 Find the values of sin x, cos x and tan x when x is acute and a cos 2x = 17 b sin 2x = 4 5 c tan 2x = 3 i tan Asec A º 2sin A sec A 25 9 4 2 2 6 Find the values of sin a , cos a and tan a when a is acute and 10 Prove that 2arctan 2 + arctan 3 = arccot 3 2 2 2 3 4 a cos a = 1 b sin a = 5 c tan a = 3 9 11 Use 3A = 2A + A to prove that sin 3A = 3sin A - 4sin3 A 7 Find y in terms of x given that and cos 3A = 4cos3 A - 3cos A a x = sin a, y = cos 2a Find an expression for tan 3A in terms of tan A. b x = 3tan a, y = tan 2a c x = 3sec a, y = cos 2a 64 65
  • 37. 2 Trigonometry 2.6 The equivalent forms for a cos q + b sin q In general, acos q ± bsin q is equivalent to rsin (q ± a) or rcos (q ± a), where r is positive and a is an acute angle. Consider y = 3cos q + 4sin q Compare the graphs of y = 3cos q, y = 4sin q and Let acos q + bsin q = rsin (q + a) y = 3cos q + 4sin q = rsin q cos a + rcos q sin a y For each value of x, you can add Equate the coefficients of sin q and cos q : y = 3cos i + 4sin i the two y-values on the two blue a = rsin a 4 curves to give the y-value on the b = rcos a black curve as the arrows show. y = 3cos i Divide these two equations: 2 a = r sina = tan a Cancel through by r. b r cosa O 90º 180º 270º 360º i a = arctan a b () Square a and b and add: –2 a2 + b2 = r2(sin2 a + cos2 a) = r2 sin2 a + cos2 a = 1 –4 y = 4sin i So r = a2 + b2 r is positive. y Hence, acos q + bsin q = rsin (q + a) C3 C3 The graph of y = 3cos q + 4sin q is a transformation of the 5 where r = a2 + b2 and tana = a 4 y = 5sin (i + 37º) b basic sine curve y = sin q under a stretch (scale factor 5) 3 parallel to the y-axis and a translation of about 37° 2 to the left. You can also find r and a for each of rsin (q ± a) and rcos (q ± a). 1 y = sin i Try this yourself. This diagram shows y = sin q transformed into y = 5sin (q + 37°) O 90º 180º 270º 360º i –1 EXAMPLE 1 The 37° is only approximate. –2 If 4sin q + 3cos q = rsin (q + a), You will find a more accurate value later. –3 find r and a such that r > 0 and a is acute. –4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• –5 Expand r sin (q + a): 4sin q + 3cos q = rsin qcos a + rcos q sin a Both sides contain + signs. Compare coefficients of sin q and cos q : 4 = rcos a [1] y 3 = rsin a [2] Alternatively, the graph of y = 3cos q + 4sin q is a transformation of the basic cosine curve y = cos q under 5 Divide equation [2] by equation [1]: 3 = r sin a = tan a y = 5cos (i – 53º) a is acute, so sin a, cos a and a stretch (scale factor 5) parallel to the y-axis and a 4 r cos a 4 tan a are all positive. translation of about 53° to the right. 3 a = arctan 3 = 36.9° 4 2 This diagram shows y = cos q transformed into y = 5cos (q - 53°) 1 y = cos i Square equations [1] and [2] and add: 32 + 42 = r2(sin2 a + cos2 a) The 53° is only approximate. O 90º 180º 270º 360º i = r2 –1 r = 25 = 5 r is positive so ignore r = -5 You will find a more accurate value later. –2 You can check your answer by –3 Hence, 3cos q + 4sin q = 5sin (q + 36.9°) using a graphical package on –4 a computer. –5 66 67
  • 38. 2 Trigonometry 2 Trigonometry Exercise 2.6 9 a Show that 5sin q -12cos q º rsin (q - a) for r > 0 and a acute. 1 In each equation find the values of r and a, where r > 0 and a is acute. Give the values of r and a. Give r as a surd where appropriate and a to the nearest 0.1°. b Find the maximum and minimum values of 5sin q - 12cos q a 4cos q + 3sin q = rcos (q - a) b 5sin q + 12cos q = rsin (q + a) and the smallest positive values of a at which they occur. c cos q - 2sin q = rcos (q + a) d 4sin q - 2cos q = rsin (q - a) Find the required stationary values of these expressions and, e 3sin q - 4cos q = rsin (q + a) f 8cos q + 15sin q = rcos (q + a) in each case, give the smallest positive value of q at which they occur. 2 Solve these equations, given that 0° q 360° c maximum of 5sin q - 12cos q + 20 a 5cos q + 12sin q = 6 b 2cos q - 3sin q = 1 d maximum of 20 - (6cos q + 8sin q) c 8sin q + 15cos q = 10 d 3sin q - 5cos q = 4 20 e minimum of 6 cosq + 8 sinq 3 Prove that ( 4) ( 4) f minimum of 15 a cos q + sin q = 2 sin q + p b cos q - sin q = 2 cos q + p 5 sinq − 12 cosq + 2 4 Prove that 10 a Express 3sin q - 2cos q in the form rsin (q - a) such that a ( 3cos q + sin q = 2 sin q + p 3 ) b cos q - 3sin q = 2cos q + p 3 ( ) r > 0 and a is an acute angle. b Sketch the graph of y = 3sin q - 2cos q for -360° < q < 360°, 5 Solve these equations, given that -p q p labelling all points at which the graph crosses the axes 1 C3 C3 a cos q + 3 sin q = 2 b cos q + sin q = within this interval. 2 c 3cos q + sin q = 1 d cos q + 2sin q = 2 c Describe the transformations which the graph of y = sin q undergoes to become the graph of y = 3sin q - 2cos q 6 Solve these equations, given that -180° q 180° 11 Two alternating electrical currents are combined so that the a cos 2q + 2sin 2q = 1 b 2cos 3q - 6sin 3q = 5 resultant current I is given by I = 2cos wt - 4sin wt where the constant w = 4 and t is the time (t > 0). c 6cos q + 8sin q = 3 d sin q - 4cos q = 1 2 2 2 2 Find the maximum value of I and the smallest value of t at which it occurs. 7 a Show that 2 cos q + 3 sin q can be written in the form rcos (q - a), where r > 0 and a is acute. Find the values of r and a. INVESTIGATION b Hence, find the maximum value of 2 cos q + 3sin q and the smallest positive value of q at which a maximum occurs. 12 Let 4cos q – 3sin q º r1cos (q + a1) º r2cos (q - a2) 1 º r3sin (q - a3) º r4sin (q + a4) c Find the minimum value of and the 2 cosq + 3 sinq Find the values of r1, r2, r3, r4 and a1, a2, a3, a4. smallest positive value of q at which a minimum occurs. Use computer software to draw five sinusoidal graphs to confirm your results. 8 a Express 8cos 2q - 6sin 2q in the form rcos (2q + a) where r > 0 and a is acute. State the values of r and a. b Find the minimum value of 8cos 2q - 6sin 2q and the smallest positive value of q at which a minimum value occurs. c Find the maximum value of 8cos 2q - 6sin 2q and the smallest positive value of q at which a maximum value occurs. 68 69
  • 39. 2 Trigonometry 7a Given that sin2 q + cos2 q º 1, show that 1 + tan2 q º sec2 q Review 2 b Solve, for 0 q < 360°, the equation 2tan2 q + sec q = 1 giving your answers to 1 decimal place. [(c) Edexcel Limited 2005] 1a If q is acute and tan q = 2 , find in surd form i cot q ii sec q iii cosec q 8a Sketch, on the same diagram, the graphs of b If q is obtuse and sin q = 5 , find as fractions y = cos x and y = sec x for -270° x 270° 13 i cosec q ii cot q iii sec q b On the same diagram, also sketch the graph of y = sec (x - 90°), stating the transformation which maps sec x onto sec (x - 90°). 2 Solve these equations where 0° q 180° 15 3 a cosec q = 4 b cot (q + 20°) = 4 9 Given that sin A = 17 and sin B = 5 where A and B are both acute angles, find a sin (A + B) c cot (2q - 30°) = 3 d sec (3q - 80°) = 3 b cos (A + B) e sin2 2q = 1 2 f (2 ) sec2 1 q = 4 c tan (A - B) 3 Prove these identities. 10 Use the expansions of sin (A ± B) and cos (A ± B) to find a (sin2 q - 2cos2 q)sec2 q º sec2 q - 3 a sin 15° as a surd by substituting A = 60° and B = 45° tan q + 1 cot q + 1 b ≡ b sin (A + B) where A is obtuse, sin A = 5 and B = 15° sin q cos q 13 C3 C3 cosec q + sec q c º sin q + cos q cot q + tan q 11 Solve these equations for 0° q 360° 1 + cos q a cos (q + 30°) = 2sin q b cos 2q + cos q + 1 = 0 d (cot q + cosec q)2 ≡ 1 − cos q c cos 2q = sin q d tan2 q = 2sec q - 1 4 Solve these equations where -180° q 180° e 1 + sin q = 3cos q f tan 2q = 3tan q 2 a 2cot q + tan q = 3 b 6sin q = 1 + cosec q g 4tan q + 3tan q = 0 h 3sin q = 2 + cosec q c cot q - 3cos q = 0 d tan2 q - 7 = 2sec q 2 e 3cos2 q = 2sin q cos q f tan q = 3 - 2cot q i sin q + cos q = 1 5a Describe the successive transformations which map the 12 Prove these identities. graph of y = sin q onto cos 2q a º cos q - sin q i ( y = 2sin q + p 2 ) ii y = 3 - sin 2q ( iii y = 1 + 2sin q − p 4 ) cosq + sinq cota cot b − 1 b cot (a + b) º b Sketch, on one diagram, the graphs of y = cos q and y = 3 - cos 2q, cota + cot b for -180° x 180°, giving all points of intersection with the coordinate axes. c sin 3q + sin q º 2sin 2qcos q d tan a + cot a º 2cosec 2a 6a Find, in terms of p, the principal value of i arcsin 1(2) ii arctan ( 3 ) iii arccos (-1) b Find, as a surd, the value of i ⎛ ⎝ ⎞ cos ⎜ arcsin 3 ⎟ 2 ⎠ ii sin (arctan 1) ( iii tan arccos 1 2 ) 70 71
  • 40. 2 Trigonometry 2 Trigonometry Prove the identity 1 − tan 2 x º cos 2x 2 13 Solve these equations for -180° q 180° 21 a 1 + tan x a cos q + cos 2q = 2 b Hence, prove that tan p = 7 − 4 3 12 b sin 2q = 1 sin2 q 2 c 4tan 2q tan q = 1 22 Find the values of r and a, where r > 0 and angle a is acute, when a 12sin q + 5cos q º r sin (q + a) 14 Rewrite each pair of equations as an equation in terms of x and y. b 8sin q - 15cos q º r sin (q - a) a x = sin a, y = cos 2a c 2cos q + sin q º r cos (q - a) b x = 1 sec a, y = cos 2a 2 d cos q - sin q º r cos (q + a) c x = tan 2a, y = tan a 23 a Find the values of r and a such that 3sin q + 4cos q º r sin (q + a), 15 a Given that sin x = 3 , use an appropriate double angle where r > 0 and a is an acute angle. 5 formula to find the exact value of sec 2x. b Write down the maximum value of 3sin q + 4cos q. b Prove that c Solve the equation 3sin q + 4cos q = 2 for 0 < q < 360° cot 2x + cosec 2x º cot x ( x ≠ np , n ∈ Z 2 ) [(c) Edexcel Limited 2004] 24 a Find the maximum and minimum values of each of these 16 Find the values of expressions and the smallest positive values of q at which ( 2) they occur. a arcsin ⎜ 3 ⎞ ⎛ C3 C3 ⎟ b arccos − 1 i 3sin q + cos q ⎝ 2 ⎠ ii cos q - 2sin q c ( ( 3 )) sin arctan 2 d tan ( arcsin ( 2 ) ) 3 b Solve these equations for 0° q < 360° i 3sin q + cos q = 2 (3) (5) 17 If a = arcsin 1 and b = arccos 3 , find the values of sin(a + b). ii cos q - 2sin q = 1 25 f(x) = 12cos x - 4sin x 2 () 18 Given that a + b = arctan ( 5 3 + 8 ) and b = arctan 1 , use the expansion a Given that f(x) = Rcos (x + a), where R 0 and 0 a 90°, of tan(a + b) to find the acute angle a. find the value of R and the value of a. 19 a Prove that, for all values of x, b Hence, solve the equation cos x - cos(x + 60°) º cos(x - 60°) 12cos x - 4sin x = 7 for 0 x 360°, giving your answers to one decimal place. b Use the fact that 36° = 120° - 84° to find the exact value of a given that sin a = sin 84° - sin 36° c i Write down the minimum value of 12cos x - 4sin x. ii Find, to 2 decimal places, the smallest positive value of x c For 0 x 360°, solve the equation for which this minimum value occurs. [(c) Edexcel Limited 2006] sin (60° + 2x) - 4sin 2x = 1 + sin(60° - 2x) giving your answer in degrees correct to 1 decimal place. 20 a If sin(x + 30) = 2sin(x - 30°), prove that tan x = 2 3 3 b Solve the equation 2 - 2cos 2q = sin 2q, for 0 q 360°, giving answers correct to 0.1° where necessary. 72 73
  • 41. Revision 1 2Exit 1 Simplify 3 − 3 − 2 1 + x 2 + x (2 + x)2 and express your answer as a single fraction. 2 Simplify as far as possible x 3 + x 2 − 2x a Summary Refer to x2 − 1 x + 2 sec q = 1 cosec q = 1 cot q = 1 b cos q sin q tan q x +1 x +2 tan q = cot (90° - q) sec2 q = 1 + tan2 q cosec2 q =1 + cot2 q 2.1, 2.2 The inverse trigonometric functions are arcsin x, arccos x and arctan x. 3 Find the quotient and remainder when x4 + 4x3 + 2x2 + x - 5 Their principal values are unique values within the allowed range. is divided by x2 + x + 1. q = arcsin x exists within the allowed range - p q p 2 2 4 Given that x4 - 3x3 + 7x2 - 8x + 5 º (x2 - 2x + 1) ´ Q(x) + R(x) q = arcos x exists within the allowed range 0 q p find the two function Q(x) and R(x). q = arctan x exists within the allowed range - p q p 2.3 2 2 The compound angle formulae are 5a Find the quotient and remainder when x2 - 3x + 2 sin (A ± B) = sin Acos B ± cos Asin B tan (A ± B) = tan A ± tan B is divided into 2x3 - x2 - 9x + 6. 1 tan A tan B cos (A ± B) = cos Acos B sin Asin B 2.4 b Hence, or otherwise, find the values of the constants l and m C3 C3 The double angle formulae are ⎧cos2 A − sin 2 A so that there is no remainder when 2x3 - x2 + lx + m is divided ⎪ ⎪ by x2 - 3x + 2. sin 2A = 2sin Acos A cos 2A = ⎨2 cos2 A − 1 tan 2A = 2 tan A 2.5 1 − tan 2 A ⎪ ⎩1 − 2 sin A 2 6a Express 4sin q + 3cos q in the form Rsin (q + a), where R > 0 ⎪ The half angle formulae are and a is an acute angle. sin A = 2sin A cos A ⎧cos2 A − sin 2 A b Hence, solve the equation 4sin q + 3cos q = 5 for 0° < q < 360° 2 2 ⎪ 2 2 2 ⎪ ⎪ 2 tan A cos A = ⎨2 cos2 A − 1 cos2 A = 1 (1 + cos A) tan A = 2 2 2 2 7a Express cos q + 4sin q in the form Rcos (q - a) where a is an ⎪ 1 − tan 2 A ⎪1 − 2 sin 2 A A 1 sin2 = (1 - cos A) acute angle. Give the exact value of R and the value of a correct 2 ⎪ 2.5 ⎩ 2 2 2 to the nearest degree. acos q ± bsin q can take the equivalent forms rcos (q ± a) or rsin (q ± a), where r is positive and a is an angle. 2.6 b Hence, or otherwise solve the equation cos q + 4sin q = 3 for 0 < q < 360° 8 By writing 5sin q - 12cos q in the form Rsin (q - a) where R > 0 and Links 0°< a < 90°, find Trigonometry is behind the technology of modern a the greatest possible value of 5sin q - 12cos q Satellite Navigation (Sat Nav) systems. b the smallest possible value of q for which the greatest value occurs. Sat Nav uses the Global Positioning System (GPS) which relies on a collection of satellites, orbiting the earth and transmitting 9 Given that f(x) = 9 - (x + 2)2, x Î R data. Information about how the satellites orbit, and their position at a particular time, allows a GPS receiver to calculate a find the range of f(x) its position on the surface of the Earth using basic trigonometry. b state whether f -1(x) exists or not Combined with some maps and planning software, this is the c find the value of ff(-4). basis of in-car Sat Nav technology. 74 75
  • 42. Revision 1 Revision 1 10 a Express x2 - 4x + 1 in the form (x - a)2 + b. 16 a Solve these equations. b Given that the function f is defined by f: x ® x2 - 4x + 1, x Î R, x 2, i |3x - 1| = 8 ii |x| + 3 = 2x iii |x + 3| = 2x find i the range of f ii the inverse function f -1. b Solve these inequalities. i |3x - 1| > 8 ii |x| + 2 1x iii |x - 1| < 2x + 1 c Sketch the graphs of the functions f and f -1 on the same axes. 2 11 a Describe the transformations which are needed to transform 17 This sketch shows the curve y = f(x), x Î R. Point (1, 3) is a y the graph of y = x3 into the graph of y = 1 - 2x3 turning point on the curve. The x-axis and the Indicate the order in which the transformations occur. P line x = 3 are both asymptotes to the curve. 3 b The graph of y = x2 - 2x + 5 is reflected in the y-axis and then Sketch, on three separate diagrams, the graphs of ⎛ −1 ⎞ translated by ⎜ ⎟ . Find the equation of the final image in its ⎝ 0⎠ a y = |f(x)| b y = f(|x|) c y = f(x - 3) x O 1 2 3 simplest form. showing any asymptotes and the coordinates of any maximum or minimum points. 12 The functions f and g are defined by f: x ® x2 - 5x + 4, x Î R, 2 x 5 18 a Sketch the graphs of y = |3x - 2| and y = 1 on the same diagram. x g: x ® kx - 2, x Î R, where k is a constant. b Use your graphs to say why there is only one solution of the a Find the range of the function f. equation x|3x - 2| - 1 = 0 b If gf(5) = 2, find the value of k. c Use algebra to find the solution of the equation x|3x - 2| - 1 = 0 C3 C3 13 a The function f is defined by f: x ® 5x, x Î R. 19 This diagram shows a sketch of the curve y = f(x), x -1 y Write down f -1(x) and state the domain of f -1. The curve passes through the origin O, has a maximum value at the point P(3, 2) and has the x-axis as an asymptote. P b The function g is defined by g: x ® 3x2 - 2, x Î R. 2 Find gf -1(x) and state the range of gf -1. On separate diagrams, draw sketches of the curves with these equations –1 O 3 x 14 This sketch shows the curve with equation y = f (x), x Î R, 0 x a y The curve meets the coordinate axes at the points (a, 0) and (0, b). b a y = |f(x)| b y = f(|x|) c y = f(x + 3) a Sketch, on two separate diagrams, the curves On each sketch, indicate the coordinates of points at which y = f(x) i y = f -1(x) the curves have turning points and the coordinates of points (2) where the curves meet the x-axis. ii y = 4f x O a x marking the coordinates of all points where these two curves 20 This figure shows part of the graph of y = f(x), x Î R. y meet the coordinates axes. The graph consists of two line segments that meet at the point (1, a), a < 0. One line meets the x-axis at (3, 0). b If f defined by f(x) = (x - 3)2, x Î R, 0 x 3, find the value of The other line meets the x-axis at (-1, 0) and the a and b. State the range of f. y-axis at (0, b), b < 0. –1 O 3 x –b c The function g is defined by g(x) = 1 + x , x Î R, x > 0 On separate diagrams, sketch the graphs with equations Find gf(x), giving your answer in its simplest form. a y = f(x + 1) b y = f(|x|) (1, –a) Indicate clearly on each sketch the coordinates of any points 15 a Sketch the graphs of y = |2x + 1| and y = |x - 1| on the same axes. of intersection with the axes. b Solve the equation |2x + 1| = |x - 1| c Given that f(x) = |x - 1| -2, find i the value of a and the value of b ii the value of x for which f(x) = 5x [(c) Edexcel Limited 2005] 76 77
  • 43. Revision 1 21 Prove these identities. a c sin 2q ≡ cotq 1 − cos 2q cosq + 1 secq 1 + cot 2q ≡1 b cot q - tan q º 2cot 2q d tan 2q + 1 ≡ sec 2q 1 − tan 2q 3 Exponentials and logarithms 22 Solve these equations where 0° q 180° This chapter will show you how to discover the value of the irrational number e a 2sin2 q = 3(1 - cos q) b sec2 q = 2(2tan q - 1) use natural (or Napierian) logarithms c 2cos q + cos (q + 60°) = 0 d cos 2q + cos q + 1 = 0 use the exponential function y = e x and its inverse function y = ln x draw graphs of functions which involve e x and ln x 6 cos 2q solve equations which involve e x and ln x 23 a Prove the identity 6 - 3 sec2 q º 1 + cos 2q use exponential and logarithmic functions to solve real-life problems. b Solve the equation 6 cos 2q = 13 - 11tan q for 0° < q < 360° 1 + cos 2q 24 a Prove the cos 3a º 4cos3 a - 3cos a by substituting Before you start (2a + a) for 3a. You should know how to: Check in: b Solve the equation sec 2a cos 6a + 1 = 0 for 0° < a < 90° ax 1 Calculate and loga x for different 1 Calculate the value of values of a and x. a ax for a = -3, x = -2 25 a Find, in radians, the values of e.g. If a = 1 and x = -3, C3 C3 2 b a2x+1 for a = 1 , x = − 1 i arcsin ⎛ 1 ⎞ 9 4 ⎜ ⎟ ( 2) −3 ⎝ 2 ⎠ then ax = 1 = 23 = 8 c loga (x2 + 2x + 1) for a = 10, x = 9 ii sin (arctan 3 ) b Find the value of sin [arctan (-1)] 2 Use the laws of logarithms. 2 Find x, y and z given that log3 x = 2, e.g. If log10 y = 3, then y = 103 = 1000 log10( y + 1) = 1 and z = log216 c If sin a = 3 and sin b = 8 where a is acute and b is obtuse, 2 5 17 find the value of cos (a - b). 3 Find the inverse function of f(x). 3 Find the inverse function, stating its e.g. If f(x) =3x2+ 1, x Î R, then undoing domain and range, when 26 a i Express (12cos q - 5sin q) in the form Rcos (q + a), where the operations in reverse order gives R > 0 and 0 < a < 90° a f(x) = 3x + 5 f −1(x) = + x − 1 , x Î R, x b f(x) = x − 3 ii Hence solve the equation 1 3 2 12cos q - 5sin q = 4 for 0 < q < 90°, giving your answer to 1 decimal place. c f(x) = + 2x − 1 b Solve 8cot q - 3tan q = 2 4 Reflect, stretch or translate a graph and 4 Find the equation of the resulting curve for 0 < q < 90°, giving your answer to 1 decimal place. [(c) Edexcel Limited 2004] find its new equation. when y = x2 + 2 is e.g. When the graph of y = x2 - x - 1 is a stretched (scale factor 3) parallel to the translated by ⎛ ⎞ , the equation of the new 3 ⎜0⎟ y-axis and then reflected in the y-axis ⎝ ⎠ graph is y = (x - 3)2 - (x - 3) - 1 ⎛ 0⎞ giving y = x2 - 7x + 11 b translated by ⎜ ⎟ and then stretched ⎝ −5 ⎠ (scale factor 2) parallel to the x-axis. 78 79
  • 44. 3 Exponentials and logarithms Altering the values in the Altering the values in the 3.1 The exponential function, ex spreadsheet gives: spreadsheet again gives: ( ad x − 1 ) ( ad x − 1 ) ax is an exponential function for all values of a. a dx a dx You can use a table to draw the graph of a particular 2.60 0.9556 2.70 0.9933 exponential function, for example y = 2x: 2.65 0.9746 2.71 0.9970 2.70 0.9933 2.72 1.0007 x -2 -1 0 1 2 2.75 1.0117 2.73 1.0044 y 1 1 20 = 1 21 = 2 22 = 4 2.80 1.0297 2.74 1.0080 2-2 = 4 2-1 = 2 y The value you want is between The value you want is slightly You can also draw graphs of other members of the a = 2.70 and a = 2.75 less than 2.72. family of curves y = ax y = 4x x y=3 y = 2x This value of a is known as the exponential function, e, e is an irrational number (like p). All the curves pass through the point (0, 1) where e = 2.718 28 to 5 decimal places. y = 1.5x because y = a0 = 1 for all values of a. 1 The graph of y = e x has a gradient of 1 at the point (0, 1). Sometimes e x is written as exp(x). O x EXAMPLE 1 Sketch the graphs, for x Î R, of a y = e-x b y = 2e x - 3 c y = e 2x +1 C3 C3 To investigate the gradient of the curves at the point y State the range of each function. P(0, 1) from first principles, you calculate the gradient •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• of the chord PQ for small values of dx. y = ax a The graph of y = e-x is the y dy a −1 dx Q (dx, adx ) reflection of y = e x in the 5 Gradient of chord PQ = = adx y = e–x y = ex dx dx y-axis. Its range is y Î R, 4 adx – 1 In the limit, as dx ® 0, P –1 y>0 3 the gradient of the chord PQ ® the gradient of the dx 2 tangent at P. O dx x 1 You need to find the limit of a − 1 as dx ® 0. dx –3 –2 –1 O 1 2 3 x dx Let dx take a very small value, say dx = 0.0001 b The graph of y = 2e x - 3 y y = 2ex y = ex ( ad x − 1 ) is the result of a stretch This spreadsheet shows the values of a − 1 dx a dx dx (scale factor 2) of y = e x for graphs with different values of a: 2.0 0.6932 parallel to the y-axis 2.2 0.7885 Between a = 2 and a = 3, there is a point on the curve y = ax followed by a translation 2.4 0.8755 2 of -3 downwards parallel y = 2ex – 3 where the gradient at P is exactly 1. This value is between 2.6 0.9556 a = 2.6 and a = 2.8 to the y-axis. 1 2.8 1.0297 Its range is y Î R, y > -3 3.0 1.0987 −3 −2 −1 O 1 2 3 x You can get a more accurate approximation of this value by −1 looking at the values between 2.6 and 2.8. −2 −3 The solution to part c is shown on the next page. 80 81
  • 45. 3 Exponentials and logarithms 3 Exponentials and logarithms EXAMPLE 1 (CONT.) 4 The growth of algae in a polluted river is governed by the equation c y = e 2x+1 = e 2x ´ e1 = e ´ e 2x y N = N0eat, The graph of y = e 2x+1 is the y = e2x ( result of a stretch scale factor 1 2 ) e y= ex where N is the number of organisms per unit volume of river water, t is the time in weeks from the start of the observation, of y = e x parallel to the x-axis and N0 and a are constants. followed by a stretch (scale y = e2x+1 a After 4 weeks, the number of organisms N is observed to be 1 factor e) parallel to the y-axis. double the initial number. Its range is y Î R, y > 0 O x Find the value of a to 4 significant figures. b If N0 = 20, what is the value of N after 10 weeks of observation? c How many weeks does it take for N to treble its initial value? Exercise 3.1 d Give a reason why this model of pollution is unrealistic. 1 Sketch the graphs of these functions for the domain x Î R. State the transformations of y = e x which are involved. 5 A radio-active substance decays such that its mass M at time t (hours) a y = 1 + e -x b y = 1 - e-x is given by M = M0e-kt, where M0 and k are both constants. c y = 3e x + 2 d y = 2 - 3e x a If k = 0.006 93 show that the half-life of this substance is 100 hours. e y = 3e 2x f y = e x +1 b How long does the substance take to decay to a tenth of its original mass? g y = e x-2 h y = e -x +2 C3 C3 6 The number of cells N which are infected with a virus were 2 The population, P, of rats infesting a sewer grows t observed to change with time t (hours) as given by exponentially over time, t (weeks), according to P = Ae 20 N = 200 - 50e-2t Find the value of A and copy and complete this table of values. a Construct a table of values of N for 0 t 15 and draw the t 0 5 10 15 20 graph of N against t. P 100 b How many infected cells were there initially? Draw the graph of P against t. c What is the limiting value of N as time increases? How long does it take for the population to double its initial size? d What series of transformations of N = e-2t result in the given relationship? 3 A mass of M units of a radioactive substance decays t − exponentially over time t (seconds), where M = M 0e 10 7 State the transformation of the graph of y = e x which result in Find the value of M0 and copy and complete this table of values. a y = e 2x+3 + 4 t 0 5 10 15 20 b y = e 2x-1 - 4 M 6 c y = e 2-x - 3 Draw the graph of M against t. How long does it take for the mass of the substance to INVESTIGATION reduce to 3 units? This time period is known as the 8 Find other examples of exponential growth and decay half-life of the substance. which are governed by the equations y = Aekt and y = Ae-kt E.g. What is Newton’s law of cooling? 82 83
  • 46. 3 Exponentials and logarithms Exercise 3.2 3.2 The logarithmic function, ln x 1 a Find the values (to 3 significant figures) of 1 i e1.5 ii e-1.5 iii The inverse of the exponential function y = e x You can show this by taking e1.5 is the logarithmic function y = loge x logarithms in any base n and finding x in terms of y. iv ln 1.5 v ln 1(1.5 ) vi 1 ln1.5 b Simplify i ln (e5) ii ln (ex) iii eln 5 Logarithms with base e are called natural logarithms. iv eln x v ln (2e5) vi e2ln 5 They are usually written as ln x rather than loge x. 2 Describe the transformations of y = ln x which result in each of The function y = e x has the inverse function y = ln x Their graphs are reflections of these functions. Sketch the graphs of these functions, labelling each other in the line y = x any points where the graphs intersect the coordinate axes. State the domain and range of each function. y y = e x has the x-axis as an y = ex asymptote a y = 2 + ln x b y = 3 - ln x c y = ln (x + 2) d y = ln (x - 2) y=x y = ln x has the y-axis as an asymptote e y = 1 + 3ln x f y = 1 + ln (2x) g y = 1 - ln x h y = 2ln (1 - x) 1 for y = e x, the domain is x Î R and the range is y Î R, y > 0 3 a Describe the successive transformations of the graph y = ln x for y = ln x, the domain is of y = ln x which produce the graph of y = 2ln (x + 3) + 1 O 1 x x Î R, x > 0 and the range C3 C3 is y Î R b Find the points at which this graph cuts the x-axis and y-axis. ex is positive for all values of x, ln x does not exist for negative 4 Find the inverse function f -1(x) for each function f(x). values of x. Sketch the graphs of f(x) and f -1(x) on the same diagram, labelling any intersections with the coordinate axes. EXAMPLE 1 Find the inverse function f -1(x) for the function f(x) = 1 + e-x In each case, give the domain and range of f -1(x). Sketch the graphs of f(x) and f -1(x) on the same diagram, a y = 1 + 2ln x, x>0 b y = ln (x + 4), x > -4 labelling any intersections with the coordinate axes. 1x Give the domain and range of f -1(x). c y = 3 + e-x, xÎR d y =2− e2 , xÎR •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• To find the inverse, let y = 1 + e-x: The graph of y = 1 + e-x is the 5 The functions f and g are defined by y 1x y - 1 = e-x graph of y = e x reflected in the f: x ® ln (6 - 2x), x Î R, x < 3 and g: x ® e 2 , x Î R. y = – ln(x – 1) y-axis and then translated Take logarithms: upwards by 1 unit. a Find expressions for f -1(x) and g-1(x). State their domains and ranges. -x y=x The graph of y = -ln (x - 1) is the ln (y - 1) = ln (e ) 2 graph of y = ln x translated to the b Sketch the curves y = f(x) and y = f -1(x) on the same axes, = -x ln e [ln e = 1] y=1+ e–x right by 1 unit and then reflected stating the points where they cut the axes. = -x 1 in the y-axis. c Find an expression for gf(x) in its simplest form and Interchange x and y: These transformations are the inverses of each other. calculate the value of gf(-5). ln (x - 1) = -y O 1 2 x y = -ln (x - 1) INVESTIGATION 6 What is semi-log and log-log graph paper? Hence the inverse function is f -1(x) = -ln (x - 1) Explore why and how scientists and engineers use it to draw graphs of y = Ae kx and other exponential curves. The domain of f -1(x) is x Î R, x > 1 and its range is y Î R. 84 85
  • 47. 3 Exponentials and logarithms 4 Find the three points on the graph of y = 2e3x+1 where 3.3 Equations involving e x and ln x a y = 20 b y=2 c y=1 You can use the laws of logarithms and the techniques from 5 Find the point of intersection of the curves y = 2e2x - 1 and y = 3e x - 2 unit Core 2 to solve equations involving ex and ln x. 6 The graph of the function f(x) = ln (2x - 5), x Î R, x > k EXAMPLE 1 Solve the equation e3x+2 = 25 has a vertical asymptote x = k •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a Find the value of k. b Find x such that f(x) = -1 Take logarithms to base e of both sides: 7 a Find the equation of the asymptote to the curve y = 3e2x + 5 ln (e3x+2) = ln 25 (3x + 2)ln e = ln 25 loga (xn) = nloga x b Find the points of intersection with the curve y = 8e x ln25 − 2 = 0.406 to 3 s.f. x= loga a = 1 so ln e = 1 8 Find the point where the curve y = e x + 1 intersects the curve y = 6e-x 3 9 The population, P millions, of a country is growing exponentially EXAMPLE 2 1 as given by P = 15e kt where t is the time in years. Solve the equations a ln (3x + 1) = 2 b e2x = 2e x + 8 Given that P = 20 when t = 5, find the value of k. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Calculate the population when a Use loga x = y Û x = ay: a t=0 b t = 10 1 3x + 1 = e2 3x + 1 = e 10 The mass, m, of a radioactive material at a time t is given The half-life is the time taken C3 C3 x= e −1 3 = 0.216 to 3 s.f. by m = m0e-kt where k and m0 are constants. for the material to decay to 9 half of its original mass. If m = m0 when t = 10, find the value of k. 10 b Rearrange: e2x - 2e x - 8 = 0 Also find the half-life of the material. Let y = ex: y2 - 2y - 8 = 0 y = ex is a useful substitution. (y - 4)(y + 2) = 0 Remember it. 11 The isotope strontium-90 is present in radioactive fallout and y = 4 or -2 has a half-life of 29 years. Its mass m at a time t (years) is given Hence e x = 4 or -2 by m = m0e-kt where k and m0 are constants. Find how many years elapse before any of this isotope in the ex > 0 for all x, so the solution is x = ln 4 = 1.39 to 3 s.f. atmosphere decays to a hundredth of its original mass. Exercise 3.3 12 A hot liquid cools in such a way that the temperature difference, q, 1 Solve these equations. Give your answers to 3 s.f. between its actual temperature and the room temperature is given a ex = 9 b e x = 7.39 c 4e x + 2 = 36 d e4x + 2 = 36 by q = ke-at where t is the time and k and a are constants. When the room is at a constant temperature 20 °C and the initial temperature e 4e-x + 2 = 36 f e-x = 7.39 g 7 - 2e-x = 4 h e x+2 = 20 of the liquid is 70 °C, the temperature falls to 60 °C after two minutes. i 2e 3x-1 = 10 j e4x −1 = 1 k e3-x = 1 l e2x-3 × e x = 0.1 Find the temperature of the liquid after 10 minutes. 2 2 Solve these equations. INVESTIGATION a ln x = 6 b ln (x + 1) = 2 c ln (2x - 1) = 0 13 The graph of y = Asin w t can represent an oscillation of The variable y can represent, d ln (2x + 1) = 1 e ln (3 - x) = 2 f ln (5 - 2x) = 2.78 amplitude A over a time t, where A and w are constants. for example, the noise of a If A = A0ekt, where A0 and k are constants, then the siren or an electrical current. 3 Solve these equations. amplitude A changes with time. Use computer software Start your exploration with a e 2x - 3e x + 2 = 0 b e 2x + 12 = 7e x c e 2x = e x + 2 Use the substitution y = ex to draw the graphs of y = A0 sin wt and y = A0ekt sin wt A0 = 2, k = -0.2 and w = 1 d 2e 2x = e x + 10 e 4e 2x - 8e x + 3 = 0 f e2x - 16 = 0 for t > 0 for different values of A0 and k. 86 87
  • 48. 3 Exponentials and logarithms 8 The population, P, of a certain organism grows exponentially Review 3 t over time t (days) according to P = Ae 20 Find the value of A and complete this table of values. 1 Solve these equations for x, giving answers to 2 significant figures. Draw the graph of P against t. a 3e x = 10 b e1-2x = 0.5 t 0 5 10 15 20 c ln (2x - 1) = 3 d ln (1 - x) = -3 P 5 2 Sketch the graph of y = e x Calculate how long it takes for the population to double its Sketch the graphs of these functions, stating the initial size. transformations of y = e x which occur. 9 The temperature T °C in a boiler rises exponentially over a y = e-x b y = 2e x + 3 t 24 hours so that, after a time t hours, T = T0e 20 c y = 3 - e 2x d y = e|x| a Given that the temperature is 165 °C after 10 hours, find 3 Sketch the graph of y = ln x the value of T0. Sketch the graphs of these functions, stating the b What is the temperature after 24 hours? transformations of y = ln x which occur. a y = 2 - ln x b y = 2ln x + 1 10 Trees in a certain location are infected by a disease. The number of unhealthy trees, N, was observed to change over c 1 - 2ln x d y = |ln x| −t C3 C3 time t (in years) as given by N = 200 - Ae 20 4 Solve the equations a If there are 91 unhealthy trees after 10 years, find the a e2x + ex =6 b ex + e-x = 2.5 value of A. b How many unhealthy trees were there initially? 5 Find the exact solutions of c What is the limiting value of N as time increases? a e2x+3 = 6 b ln (3x + 2) = 4 [(c) Edexcel Limited 2003] 11 Find, giving your answer to 3 significant figures where 6 Given that f(x) = ex and g(x) = 1 e x − 1, find appropriate, the value of x for which 2 a the values of f(2), f -1(2) and g -1(2), to 2 decimal places a 3x = 5 b the functions f -1(x) and g -1(x). b log2 (2x + 1) - log2 x = 2 c ln sin x = -ln sec x, in the interval 0 < x < 90° [(c) Edexcel Limited 2005] 7 Find the inverse function f -1(x) for each function f(x). Sketch the graphs of f(x) and f -1(x) on the same diagram, labelling any intersections with the coordinate axes. In each case give the domain and range of f -1(x). a f(x) = 3 + ln x b f(x) = ln (x - 2) c f(x) = 2 + e-x d f(x) = 1 - e2x 88 89
  • 49. 3Exit 4Differentiation This chapter will show you how to differentiate the three basic trigonometric functions (sin x, cos x, tan x) and the exponential and logarithmic functions (ex and ln x) Summary Refer to the sums, differences, products and quotients of these functions f(x) = a x is an exponential function for all values of a. composite functions formed by having functions within functions f(x) = e x is the exponential function, where the irrational number functions of the type x = f( y) e has a value of 2.71 828 to 5 decimal places. 3.1 f(x) = e x has the inverse function f -1(x) = ln x, where the natural logarithm ln x denotes loge x. Before you start The graph of y = ln x is the reflection of the graph of y = e x in the line y = x 3.2 You should know how to: Check in: You can solve the equation eax+b = q by taking natural 1 Find the gradient of the tangent at a 1 Draw the graph of y = x2 accurately. logarithms of both sides. point P on a curve using the method The point P(1, 1) is fixed and point Q moves You can solve the equation ln (ax + b) = q by rewriting it of small increments. from (3, 9) to (1, 1). Draw the chord PQ in as ax + b = eq 3.3 See C2 Section 7.1. several positions and find its gradient each Exponential growth occurs when a variable y changes with time. Compare these values with the C3 C3 time t and y = Aekt where k > 0 gradient of the tangent at P. Exponential decay occurs when a variable y changes with time t and y = Ae-kt where k > 0 3.3 2 Find the gradient of a tangent to a curve. 2 Find the gradient of the tangent to these dy curves at the point (1, 2). e.g. If y = 3x2 - 4x + 1, then = 6x − 4 dx a y = x2 + 2x - 1 b y = x3 - x + 2 The gradient of the tangent at (1, 0) is 6 ´ 1 - 4 = 2 c y = (2 - x)(3 - x) Links 3 Find the equation of a straight line if you 3 Find the equation of the straight line which Exponentials and logarithms are used to understand know its gradient and a point on the line. a has a gradient of 4 and passes through and quantify many natural phenomena. e.g. The point (1, 2) is on a straight line, gradient 3. the point (3, 2) The decibel scale, used to measure sound, is based on Substitute in y = mx + c: 2 = 3 ´ 1 + c so c = -1 b passes through the points (3, 1) and (5, 5). logarithms. The equation of the line is y = 3x - 1 The equation dB = 10log(I/I0) is used to compute the intensity of a sound, where dB 4 Find a stationary value of a function and 4 Find the turning points on the curve is a unit of sound in decibels, I is the intensity of the sound, decide if it is a maximum or minimum. y = x3 - 3x2 - 9x + 1 dy and determine whether they are maximums and I0 is the softest sound that a human ear can detect. e.g. If y = x2 - 6x + 1, then = 2x − 6 dx or minimums. dy This equation can be used to calculate certain values, = 0 when x = 3 and y = 32 - 18 + 1 = -8 dx such as the threshold for noise pollution. d2 y = 2 > 0, so -8 is a minimum point. dx 2 5 Use the laws of logarithms. 5 Prove that log3 18 = 1 + 1 log3 2 2 e.g. log10 500 = log10 (5 ´ 102) = log10 5 + log10 102 = log10 5 + 2log10 100 = log10 5 + 2 90 91
  • 50. 4 Differentiation The derivatives of sin x, cos x and tan x. 4.1 Trigonometric functions Consider the function y = sin x, where x is in radians. You can find the value of the derivative of the function See C1 and C2 for revision y = sin x graphically from the gradient of the tangent at of differentiation. Let P (x, y) and Q (x + dx, y + dy) be two points on y a given point. When differentiating the graph of y = sin x trigonometric functions you p Q y = sin x The tangent is parallel to the x-axis when x = must work in radians. For P, y = sin x y + dy 3p 2 and 2 and the gradient is 0. For Q, y + dy = sin (x + dx) dy P R QR y The gradient of the chord PQ = dx y PR The tangent at the point sin(x + d x) − sin x O x + dx x The gradient is also = x where x = 0 rises at 45° 1 1 when x = 2p (x + d x) − x to the x-axis and has a y = sin x = sin x cos d x + cos x sin d x − sin x Use the expansion of sin (A + B) gradient of 1. O p p 3p 2p x dx from Chapter 2. 2 2 −1 If P is fixed and Q approaches P, then dx ® 0 You can test these statements cos dx ® 1 by finding the sine and cosine and sin dx ® dx of small angles (in radians) on By symmetry, the gradient your calculator. is -1 when x = p and, in the limit, the chord PQ becomes the tangent at P. For y = sin x C3 C3 dy The phrase ‘in the limit’ indicates that d x has reduced to zero and has p 3p You can find other values using dx x 0 p 2p dy 2 2 computer software to draw the become an exact differential . dx dy curve and its tangents. So, as dx ® 0, the gradient of PQ ® sin x × 1 + cos x × d x − sin x 1 0 -1 0 1 dx dx which, as a graph, gives these points: The values in the table and on the ® cos x × d x dx graph are the same as those for the ® cos x function y = cos x In the limit, when Q reaches P, the gradient of the tangent y y at P is cos x. dy dx y = cos x 1 1 d(sin x) x is in radians in all of = cos x O p p 3p 2p x O p p 3p 2p x dx these results. 2 2 2 2 −1 −1 In a similar way, you can show that This suggests that the derivative of d(cos x) − = sin x The derivative of cos x y = sin x is closely related to the dx has a negative sign. function y = cos x Derive the results for cos x and d(tan x) = sec 2 x tan x for yourself. dx 92 93
  • 51. 4 Differentiation 4 Differentiation EXAMPLE 3 EXAMPLE 1 Find the gradient of the curve y = x2 + cos x Find the values of q for which y = 3 + sin q has a at the point where x = p maximum value. 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You have y = 3 + sin q You have y = x2 + cos x dy Differentiate wrt x: Differentiate wrt q : = cos q = 0 wrt means ‘with respect to’. dq dy = 2x − sin x for stationary values when q = p , 3p , 5p , … dx 2 2 2 Substitute x = p : d2 y 2 Differentiate again: = − sinq dq 2 = 2 × p − sin p dy dx 2 2 d2 y =p-1 At q = p = − sin p = −1 < 0 2 dq 2 2 d2 y The required gradient is p - 1. which indicates a maximum value of y < 0 indicates a maximum dq 2 d2 y 3p 2 = − sin 2 = +1 > 0 At q = 3p dq EXAMPLE 2 2 Find the equation of the normal to the curve d2 y y = 1 + 2tan x at the point (0, 1). which indicates a minimum value of y > 0 indicates a minimum dq 2 5p •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5p d2 y 2 = sin = 2 = 1 < 0 At q = − − C3 C3 You have y = 1 + 2tan x 2 dq Differentiate wrt x: which indicates a maximum value of y dy and so on. = 2 sec 2 x dx Maximum values of y occur when Substitute x = 0: = 2sec2 0 sec x = 1 q = p , 5p , 9p , … cos x 2 2 2 = 2 = p + 2np where n = 0, ±1, ±2, … cos2 0 2 =2 =2 1 The gradient of the tangent at the point (0, 1) is 2. If the gradients of the tangent Exercise 4.1 and normal are m and m¢, then The gradient of the normal at (0, 1) is − 1 . 1 Differentiate these functions with respect to x. 2 mm¢ = -1 or m¢ = − 1 m a x2 + sin x The y-intercept of the normal is 1. See C1 Chapter 2 for revision of equations of straight lines. b 6x - cos x So, the equation of the normal is y = 1 x + 1 − 2 c sin x + tan x d sin x + x + 1 e 3cos x - 4tan x f 3x2 + 2x - 1 - 1 cosx 2 94 95
  • 52. 4 Differentiation 4 Differentiation 2 Find the gradient of the tangent to each of these curves at the 11 A pendulum bob swings such that the angle q that the pendulum makes point with the given value of x. with the vertical is given by q = q0(sin t + cos t), where q0 is a constant. a y = 2x + tan x when x = p a Find the value of q when 4 p p b y = x2 - sin x when x = i t=0 ii t = 2 2 c y = 6x + 2cos x when x = p b Find the value of its angular velocity dq when dt p d y = cos x + sin x when x = p i t=0 ii t = 2 2 e y = 3tan x - 2cos x when x = 0 c Explain why the time taken for one oscillation of the bob is 2p. 3 Find the equation of the tangent to the curve y = cos x at the 12 A particle moves in a straight line so that its distance, y metres, point where x = p from a fixed point O is given by 4 y = 5cos t + 3sin t 4 Find the equation of the tangent to the curve y = sin x at the point where x = p . At which point does this tangent cut the x-axis? where t is the time in seconds after it has begun to move. 4 a How far is the particle from O at the start of the motion? 5 Find the equation of the normal to the curve y = sin x + cos x at the b Find the first two times that the particle is at rest. (2 ) point p , 1 . At which point does this normal intersect the x-axis? c What is the particle’s acceleration after one second of motion 6 Find the smallest positive value of q for which and when does the particle next have this acceleration? 1 C3 C3 a the gradient of the curve y = q + sin q has the value 2 b the gradient of the curve y = sin q - 3cos q has the value 0. INVESTIGATION 13 Construct a table of values with these headings for 0 x 0.5 in radians. 7 Find the smallest positive value of q for which these functions have maximum values. x (radians) x (degrees) sin x cos x tan x a y = sin q - 2 b y = sin q + 2cos q a When x is in radians, for what range of values of x is 8 Find the smallest positive value of q for which these functions i sin x » x ii tan x » x have minimum values. so that they differ by no more than 10% of the value of x? a y = 5 + cos q b y = cos q - sin q b The diagram shows the graph of y = 1 - kx2 9 Find the maximum and minimum values of the function y f(x) = 3sin x + 4cos x for -p x p Show that, if a and b are the smallest positive values of x at the 1 maximum and minimum values respectively, then a - b = p y = cos x O x 10 An object moves in a straight line such that its distance y from –p p 2 2 a fixed point at a time t is given by y = A sin t, where A is a positive constant. y = 1 – kx2 dy dy a Find the velocity of the object and prove that dt = A2 − y 2 Find a value of k such that dt cos x » 1 - kx2 for small values of x (in radians). d2 y b Prove that +y=0 dt 2 96 97
  • 53. 4 Differentiation You can use these values to draw the graph of y = e x: y 4.2 The exponential function, ex y = ex It is the exponential function and is one member of the family of Suppose you want to find a function that stays unchanged when exponential functions y = ax which you first met in unit C2. it is differentiated. In summary, 1 Start the search with the simple function y = 1 For y = 1, dy = 0 dx O x Now work backwards. dy d (ex ) if y = e x, then = e x or = ex dy In each step, make the same as y from the previous step and integrate dx dx dx to give a new y: dy =0 EXAMPLE 1 Þ y=1 Find the gradient of the tangent to the curve dx dy y = (e x + 1)2 - e2x at the point where x = 0 =1 Þ y=1+x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dx 2 You have y = (e x + 1)2 - e2 x dy =1+ x Þ y=1+x+ x = e2x + 2e x + 1 - e2x dx 2 = 2e x + 1 dy x2 2 3 =1+ x + Þ y=1+x+ x + x dy = 2e x dx 2 2 2×3 Differentiate wrt x: dx Continue this process to produce a series with an infinite number of terms: dy At x = 0 = 2e0 2 3 4 n dx C3 C3 y =1+ x + x + x + x + +x + This series differentiates to give =2´1=2 1× 2 1× 2 × 3 1× 2 × 3 × 4 n! the same series. The gradient of the tangent is 2 at the point where x = 0 By substituting different values of x, you can calculate the sum You need to also show that this of the series and record the results in a table. series converges no matter what value is given to x. For x = 0 y=1 EXAMPLE 2 Find the point on the curve y = e x - x at which y has a For x = 1 y = 1 + 1 + 1 + 1 + 1 + . . . = 2.718 282… stationary value. 2 6 24 Determine the nature of the stationary value. For x = 2 y = 1 + 2 + 4 + 8 + 16 + . . . = 7.389056. . . and so on. 2 6 24 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dy x 0 1 2 3 4 Differentiate y = ex - x wrt x: = ex − 1 dx y 1 2.718 282. . . 7.389 056. . . 20.085 537. . . 54.598 150. . . Recall from Chapter 3 that the At a stationary point, dy = 0 ex - 1 = 0 = 2.718 2821 = 2.718 2822 = 2.718 2823 = 2.718 2824 number e = 2.718282… dx ex = 1 Like 2 and p, the number e is irrational. x=0 It cannot be given an exact numerical value, but this series and y = e0 - 0 = 1 allows you to calculate the value of e to as many decimal places There is a stationary value at the point (0, 1). as you wish. d2 y Differentiate again: = ex You can also use negative values of x in the series. dx 2 For x = -1, y = 1 − 1 + 1 − 1 + 1 − ... = 1 = e−1 d2y d2 y 2 6 24 2.718282 At the point (0, 1) = e0 = 1 > 0 At a minimum point, dx 2 is positive. dx 2 x -1 0 1 2 3 4 ... n ... Try substituting other negative Hence, the stationary value at the point (0, 1) is a minimum. values of x into the series. y e-1 e0 = 1 e e2 e3 e4 . . . en ... 98 99
  • 54. 4 Differentiation 4 Differentiation Exercise 4.2 8 Find the values of x for which these functions have stationary values. x x x Determine the nature of the stationary values. 1 a Draw the graphs of y = 2 , y = e and y = 3 accurately on the same axes for -3 x 3 a f(x) = 1 - x + e x b Calculate the gradient of y = e x when b f(x) = 1 + x - e x i x=0 ii x = 1 c f(x) = 1 + 4x - 2e x c Find the equation of the tangent to the curve y = ex when i x=0 ii x = 1 9 Sketch the graph of the function y = x - e x Indicate any stationary values. 2 Differentiate these functions with respect to x. a 3x2 + e x b 4e x + 6x - 1 10 Consider the function y = e2x - 3e x + 2 a By letting t = e x, find the points where the graph of This substitution gives a c 5sin x + 2e x d 3tan x − 1 e x quadratic equation in t. 2 y= e2x - 3e x + 2 cuts the x-axis. e (e x + 1)(x - 1) - xe x f (e x + 1)(e-x - 1) - e-x b Find the value of x at which y has a stationary value. 3 Find the gradient of the tangent to each of these curves at the Find whether the stationary value is a maximum or a minimum. point with the given value of x. Give each answer i in terms of e ii as a decimal to 3 significant figures. 11 Sketch the curve y = x2 + e x a y = ex - x when x = 2 b y = 3x2 - 4e x when x = 1 C3 C3 INVESTIGATION c y= ex - cos x when x = p 12 Use a spreadsheet with these headings, where 2 d y = x2 + 2x + 1 - e x when x = -1 f(x) = ax, f(x + dx) = ax+dx e y = tan x + 2e x and the gradient g(x) = f(x + d x) − f(x) when x = 0 dx 4 Find the equation of the tangent to each curve at the point a x dx f(x) f(x + dx) g(x) where x = 0 a y = 3x + 2e x b y = 3e x - sin x + 5 The function g(x) gives the gradient of the chord PQ which, for small values of dx such as 0.0001, is approximately y 5 Find the equation of the normal to the curve y = 1 e x + 2x 2 equal to the gradient of the tangent at P. ( 2) 2 Q y = f(x) at the point 0, 1 . Use the spreadsheet for a ¹ e (say, a = 4) and confirm f(x + dx) that f(x) ¹ g(x) for any value of x. P Repeat for other values of a ¹ e f(x) 6 Prove that the normal to the curve y = 1 - x + e x at the point (1, e) passes through the point (e2, -1). Now let a = e Confirm the result of Chapter 3 that the gradient at the O x x + dx x 7 Line L1 is the tangent to the curve y = 2e x - x at the point (0, 2). point (0, 1) is e. Line L2 is the tangent to the curve y = sin x - x2 at the origin. Show that, for other values of x, f(x) and g(x) have (almost) Prove that the point of intersection of L1 and L2 is (2, 4). the same value. You have now illustrated (but not proved) that f(x) = e x stays unchanged when you differentiate it. 100 101
  • 55. 4 Differentiation Exercise 4.3 4.3 The logarithmic function, ln x 1 Differentiate these functions with respect to x. a 2ln x b ln x2 c ln (4x3) y y = ln x is the inverse of the function y = ex y = ex (2 ) d ln 1 x ( 2x ) e ln 1 f ln 5x 3 The graph of y = ln x is the reflection of the graph of y = ex ⎛ ⎞ g ln ⎜ 1 ⎟ h ln (e2x) i ln (xe x) in the line y = x ⎝ x⎠ 1 Consider the derivative of y = ln x j ln (x2 e2x) O x y = In x 2 Find the gradient of the tangent to each of these curves at the point with the given value of x. Rewrite the relationship: x = ey logab = c implies b = ac a y = 2x + ln x when x = 2 dx b y = x3 - ln x2 when x = 1 Differentiate with respect to y: = ey You differentiate x wrt y. dy c y = ln x + ex when x = 1 The derivative of e y wrt y is e y. ( 3x ) dy 1 So = d y = ln 1 + 1 when x = -1 dx dx dy 1 The result dx = dx is shown 3x dy dy e y = ln xp + sin x when x = p = 1y later in this chapter. 2 C3 C3 e 3 Find the points at which the graphs of these functions have zero gradient. = 1 x Determine whether the functions have a maximum or a minimum at these points. a f(x) = x - ln x b f(x) = x2 - ln (x2) dy d(ln x) 1 If y = ln x, then =1 or = x 4 Find the equation of the tangent to the curve y = x - ln x at the dx x dx point where x = 2. At which point does the tangent cut the x-axis? 5 Find the equation of the normal to the curve y = 2ln x3 at the point EXAMPLE 1 Find the differential of where x = 1. Find the distance between the points at which the b ln ⎛ ⎞ 3 normal cuts the x- and y-axes. a ln (3x4) ⎜ ⎟ ⎝ x⎠ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6 Show that the point (1, e) lies on the curve y = e x + ln x Find the area of the triangle bounded by the two coordinate a Let y = ln (3x4) b Let y = ln ⎛ 3 ⎞ Where possible, simplify the ⎜ ⎟ axes and the tangent to the curve at this point. = ln 3 + ln x4 ⎝ x⎠ logarithmic function to make it 1 easier to differentiate. = ln 3 + 4 ln x = ln 3 - ln x 2 INVESTIGATION () 1 dy So =0+4 1 x = ln 3 − 1 lnx x = x2 7 Differentiate y = log10 x by first changing the base of the dx 2 () logarithm to base e. =4 dy 1 x So =0− 1 You can then differentiate y = ln x to find d(log10 x). dx 2 x dx =−1 Try other bases. What do you notice? 2x 102 103
  • 56. 4 Differentiation EXAMPLE 1 (CONT.) 4.4 The product rule b Let y = (x3 + 2)sin x u = x3 + 2 v = sin x Consider two functions u = f(x) and v = g(x) du = 3x 2 dv = cos x which are multiplied so that y = uv y = f(x) ´ g(x) dx dx dy So = u dv + v du = (x 3 + 2)cos x + 3x 2 sin x dx dx dx Let dx be a small increase in x which produces small increases dy d(tan x) of du, dv and dy in u, v and y respectively. c When y = x2 tan x, = x 2 ´ sec2 x + tan x ´ 2x = sec 2 x dx dx You have y + dy = (u + du)(v + dv) = x2 sec2 x + 2x tan x = uv + udv + vdu + dudv Exercise 4.4 Subtract y = uv: dy = udv + vdu + dudv 1 Differentiate these functions with respect to x. Divide each term by dx: dy = ud v + vd u + d ud v (1) a xln x b x2sin x c e xtan x dx dx dx dx d (x2 - 3x + 1) e x e e x ln x f sin xln x As dx ® 0 dy dy d v dv d u du → , → , → g x-2cos x h xe 1 x i (x3 - 1)ln x dx dx d x dx d x dx d udn and du ® 0, dv ® 0 As x ® 0, tends to zero. dy dv du dx j x tan x k (x2 - 1)(x3 - x2 + 1) l (x3 + 1)(x2 - 2x + 4) In the limit from (1), dx = u dx + v dx 2 Find the gradient of the tangent to the curve y = x2sin x at the C3 C3 point where x = p 2 In the limit, if y = uv then 3 Find the equation of the tangent to the curve y = x3 e x at the point where dy dv du =u +v a x=0 b x = -3 dx dx dx d or dx [f(x) ´ g(x)] = f(x) ´ g¢(x) + g(x) ´ f ¢(x) 4 Find the equation of the normal to the curve y = (x2 - 2x + 1)(x3 - 4x2 + l) at the point (1, 0). Think of the product rule as: (1st function ´ derivative of the 2nd) + (2nd function ´ derivative of the 1st) 5 a Prove that the equation of the normal to the curve y = sin x ´ ln x at the point where x = 1 is given by y = 1.19(1 - x) EXAMPLE 1 b Find the area of the triangle enclosed by the normal and the x- and y-axes. Differentiate a x2 ln x b (x3 + 2)sin x c x2 tan x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 6 Find the turning points on the curve with the equation y = x2 (x + 1)8 a Let y = x2 ln x Determine the nature of each turning point and sketch the curve. u = x2 v = ln x du dv 1 7 Find the stationary value of the function f(x) = x3ln x = 2x = Differentiating both u and v wrt x. dx dx x and show that it is a minimum. dy dv du So =u +v dx dx dx dy 8 Given that y = sin xcos x, prove that = 2cos2 x - 1 dx = x × 1 + ln x × 2x x 2 Find the stationary points on the graph of y = sin x cos x for 0 x p = x + 2x ln x and determine whether they are maxima or minima. 104 105
  • 57. 4 Differentiation EXAMPLE 1 4.5 The quotient rule Differentiate sin x ln x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Consider two functions u = f(x) and v = g(x) sin x You have y = which are divided to give y = u v y = f(x) ln x g(x) Take care not to mix up the where u = sin x and v = ln x functions u and v. Let dx be a small increase in x which produces small increases du = cos x dv = 1 and dx x of du, dv and dy in u, v and y respectively. dx You have y + d y = u + du dy ln x × cos x − sin x × 1 x v + dv So = dx (ln x)2 Subtract y = u: d y = u + du − u v v + dv v = x ln x cos x − sin x 2 Multiply both numerator and x(ln x) denominator by x. v (u + d u ) − u ( v + d v ) Combine the two fractions on the RHS: = v (v + d v ) EXAMPLE 2 x 2 + 4x + 1 Expand and simplify: = vd2u − ud v Differentiate cos x v + vd v •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y = x + 4x + 1 2 Divide by dx: dy v × du − u × dv (1) You have = dx dx cos x dx v 2 + vd v dy cos x ´ (2x + 4) - (x 2 + 4x + 1) ´ (- sin x) d(cos x) − = sin x C3 C3 dy dy d u du d v dv So = dx As dx ® 0 → , → , → dx (cos x)2 dx dx d x dx d x dx = (2x + 4)cos x + (x + 4x + 1)sin x 2 and du ® 0, dv ® 0 2 cos x dy v du − u dv = dx 2 dx = (2x + 4) + (x + 4x + 1)tan x 2 In the limit from (1), dx v cos x EXAMPLE 3 u Find the derivatives of a tan x b cot x These results are given on the In the limit, if y = v then formulae list. You do not need c cosec x d sec x du dv to memorise them. dy v× −u× •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• = dx dx dx v2 a Let y = tan x = sin x cos x d ⎛ f(x) ⎞ g(x) × f ′(x) − f(x) × g′(x) or dx ⎜ g(x) ⎟ = dy cos x × cos x − sin x × (− sin x) ⎝ ⎠ (g(x))2 = dx cos2 x = cos x +2 sin x 2 2 Think of the quotient rule as: cos x (bottom ´ derivative of top) - (top ´ derivative of bottom), all divided by (bottom)2 = 1 cos2 x The solutions to parts b, c and d = sec2 x are on the next page. 106 107
  • 58. 4 Differentiation 4 Differentiation EXAMPLE 3 (CONT.) Exercise 4.5 cos x b Let y = cot x = sin x 1 Differentiate these functions with respect to x. x2 c x +1 2 dy sin x ´ (- sin x) - cos x ´ cos x x d ln x = a sin x b tan x x x dx sin 2 x = (sin x + cos x) 2 2 − ex x +1 x cos x 2 e sin x f g h sin x ex sin x x2 -1 = = -cosec2 x k 2x 2 − 1 3 sin x 2 i 1− x j x2 + 1 l x2 1+ x x2 − 1 3x − 1 ln x c Let y = cosec x = 1 sin x 2 Find the gradient of the tangent at the point where x = 0 dy sin x × 0 − 1 × cos x for the curve = dx sin 2 x − a y = 3x − 2 b y = tan x = cos x 2x + 1 x +1 sin 2 x = - 1 ´ cos x sin x sin x 3 The tangent to the curve y = x3 + 1 1, 2 ( ) x at the point 1 cuts the = -cosec xcot x x-axis at the point P. Find the coordinates of P. d Let y = sec x = 1 4 Find the equation of the normal at the point (0, 0) cos x on the curve y = 2x x dy cos x ´ 0 - 1 ´ (- sin x) e C3 C3 = dx cos2 x 2 5 Find d y if y = 1 + x = sin2x 2 dx x cos x = 1 ´ sin x = sec xtan x cos x cos x 6 Prove that the maximum value of f(x) = ln3x is 1 x 3e 7 Use both the product rule and the quotient rule to differentiate For some functions, you need to use both the product rule and these functions. the quotient rule. x x sin x a sin x cos x b cos x c xe x ln x EXAMPLE 4 2 x Differentiate xe x 2 x sin x sin x d e ln x e x ln x f x x e ln x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Firstly, consider the function f(x) = x2e x, which is the product of x2 and e x. INVESTIGATION Differentiate f(x) using the product rule: f ¢(x) = x2e x + e x ´ 2x x = x2e x + 2xe x 8 You can differentiate y = e sin x 2 2 x x Let y = x e and use the quotient rule: sin x either by first using the product rule on ex sin x dy sin x(x 2e x + 2xe x ) − x 2e x cos x followed by the quotient rule on the whole expression = x dx sin 2 x or by first using the quotient rule on e 2 followed by x xe x(x sin x + 2 sin x − x cos x) the product rule on the whole expression. = sin 2 x Show that these two methods give the same answer. Is one method easier than the other? 108 109
  • 59. 4 Differentiation EXAMPLE 2 4.6 The chain rule dy Find when a y = cos3 x b y = x3 − 1 dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A composite function is a ‘function of a function’. Examples of composite functions: ln (x³ - 1) esin x a y = cos3 x, so if u = cos x then y = u3 dy You can differentiate ‘functions of functions’ using the chain rule. = 3u2 = 3 cos 2 x dy du (x² - 2x - 1)4 2+ x 3 so = 3cos2 x ´ (-sin x) dx du Consider y = g(u) and u = f(x), so that y = g(f(x)) = − sin x dx = -3cos2 xsin x 1 1 1 − − Let dx be a small increase in x which produces small increases b y = x 3 − 1, so if u = x3 - 1 then y = u = u2 dy = 1 u 2 = 1 (x 3 − 1) 2 du 2 2 of du and dy in u and y respectively. dy 1 - 1 so = (x 3 - 1) 2 ´ 3x 2 du = 3x 2 d y d y du dx 2 dx Then = × d x du d x 3 x2 = dy dy dy dy d u ® du 2 x3 − 1 As dx ® 0, ® , ® and (1) dx dx du du dx dx dy dy du In the limit from (1), = × dx du dx EXAMPLE 3 a Differentiate 2ln ( x x 2 + 1 ) dy dy du b Find the equation of the tangent to the curve In the limit, if y = g(f(x)), then = × dx du dx y = 2ln ( x x 2 + 1 ) at the point where x = 1 C3 C3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a Let y = 2ln ( x x 2 + 1 ) Think of the chain rule as: Where possible, simplify functions derivative of ‘outer’ function wrt u ´ derivative of ‘inner’ function wrt x 1 before you differentiate. = 2ln x + 2ln (x 2 + 1)2 EXAMPLE 1 Differentiate a sin (x2 + 4x + 3) b ln (sin x) = 2ln x + ln (x2 + 1) ln(a ´ b) = ln a + ln b •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiate, using the chain rule for ln (x2 + 1): a Let y = sin (x2 + 4x + 3) u = x2 + 4x + 3 y = sin u du = 2x + 4 dx dy du = cos u Differentiating u wrt x and y wrt u. dy dx 1 ⎛ 1 = 2 x + 2x × ⎜ 2 ⎞ ⎟ ⎝ x + 1⎠ () y = lnu and u = x2 + 1 so dy = 1 and du = 2x du u dx ⎡ 2 1 2⎤ = 2⎢ x + 2 + x ⎥ dy dy du Apply the chain rule: = ´ dx du dx ⎣ x (x + 1) ⎦ = cos u ´ (2x + 4) 2(2x 2 + 1) = Substitute u = x2 + 4x + 3: = (2x + 4)cos (x2 + 4x + 3) x (x 2 + 1) 1 b Let y = ln (sin x) u = sin x y = ln u b When x = 1 y = 2ln (1 × 2 ) = 2 ln 2 2 = ln 2 dy du = cos x = 1 dy = 2´3 =3 dx du u dx 1 ´ 2 Apply the chain rule: dy 1 = ´ cos x The equation of the tangent is y − ln2 = 3 y − y1 dx u x −1 Using =m x − x1 y - ln 2 = 3(x - 1) Substitute u = sin x: = 1 × cos x y = 3x + ln 2 - 3 sin x = cos x cos x 1 = cot x = = cot x sin x sin x tan x 110 111
  • 60. 4 Differentiation 4 Differentiation Exercise 4.6 7 Find the gradient of the curve y = ln 1 + sin x at the point Simplify the logarithm before 1 Differentiate with respect to x where x = p you differentiate. 4 a sin (x2 + 1) b cos (x3 - 1) c tan (x2) d ln (x2 + 2x + 3) e ln (x3 + 1) f ln (x3) Simpify part f before 8 Find the equation of the tangent to the curve y = x 2 + 16 you differentiate. at the point (3, 5). g ln (sin x) h sin (ln x) i ln (ln x) 2 9 Differentiate with respect to x, where a and b are constants. j esin x k e x+4 l ex 2 1 a a 2 + b 2x 2 b c (a2x 2 − b2)3 m (x2 + 1)5 n (2x + 6)7 o (x3 - 1)-2 ax 2 + b 1 Write part r as (x - 1)-1 first. p x2 − 1 q x3 + 1 r x −1 10 Given that a and b are constants, find the only value of x for You could use the quotient rule which a has a stationary value. 3 instead of the chain rule but 2 1 the working is longer. ax 4 + b s x 2 + 3x − 1 t u 2x + 1 x2 + 1 ⎛ ⎞ 11 a Prove that the curve y = ln ⎜ 1 + xe ⎟ has no stationary values. x 1 2 ⎝ e ⎠ v ln x w x e +1 x 3 2x − 1 b Show that the tangent to this curve at the point where 2 Find f ¢(q) when x = 0 has the equation x + 2y = ln a. Find the value of a. a f(q) = sin (q 2) b f(q) = sin2 q C3 C3 c f(q ) = sin q d f(q) = tan (q 3) 12 a Prove that the curve y = 82 + 1 has only one turning point. x (1 − x)2 1 (3 ) e f(q) = tan3 q f f(q) = tan q b Show that the coordinates of the turning point are 2 , 27 . 2 dy c i Find an expression for d y . 3 Find when 2 dx dx 1 x ii Hence, prove that the turning point is a minimum. a y = sin x b y = ee 1 4 13 Find the position and nature of the stationary points of c y= d y = 4e x x 2 + 4x − 1 f(x) = sin2 x e y = ln x − 1 f y = ln (1 −sin x x ) cos Simplify the function in parts e and f before you differentiate as in question 1 part f. INVESTIGATION 4 Differentiate with respect to x. 14 Show that the function y = ln (x2 + 1) has only one stationary value. a y = sin kx b y = cos kx Determine its nature and position. c y = tan kx d y = ln kx The differential of tan kx is in the Sketch the graph of the function. formulae list provided in the exam. kx e y=e None of the other results here are Check your answers by using computer software to draw the graph. provided. 5 Find the equation of the tangent to the curve y = (2x - 4)3 Investigate the properties of ln (x2 + k) for different values of k. at the point where x = 3 6 Find the point on the curve f(x) = (2x - 1)4 When the gradient is 1, f¢(x) = 1 where the gradient is 1. 112 113
  • 61. 4 Differentiation EXAMPLE 3 4.7 Further applications Differentiate y = 3x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You can combine the product, quotient and chain rules to Take the logarithms of both sides to remove the index: differentiate more complicated functions. ln y = ln 3x = xln 3 Now, ln y is a function of y and y is a function of x. So, ln y is a function of a function of x. EXAMPLE 1 Differentiate y= ( x 2 + 1 ) sin x d(ln y) d(ln y) dy 1 dy •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• From the chain rule you have = × = × d(ln y) 1 = dx dy dx y dx dy y The function y = ( x 2 + 1 ) sin x is the product of Differentiate ln y = ln 3 ´ x with respect to x: ln 3 is a numerical constant x + 1 and sin x. 2 1 dy that is multiplying x. × = ln 3 × 1 y dx x 2 + 1 is a function of a function. 1 dy You have u = x 2 + 1 = ( x 2 + 1) 2 and v = sin x = y ´ ln 3 = 3x ln 3 dx Use the chain rule to differentiate u: 1 du 1 2 − dy = (x + 1) 2 × 2x In general, if y = ax then = a x ln a dx 2 dx Use the product rule: dy 1 − 1 Now consider a function of the type x = f(y) Examples are = x 2 + 1 × cos x + sin x × (x 2 + 1) 2 × 2x x = y 3 + 1 and C3 C3 dx 2 x = ln (y2 - 3y + 1) = ( x 2 + 1 ) cos x + x sin x Let dx be a small increase in x which produces a small x2 + 1 increase of dy in y. ( x 2 + 1)cos x + x sin x Then dy = 1 = dx dx x2 + 1 dy As dx ® 0 and dy ® 0 then d y → dy and d x → dx giving dy = 1 EXAMPLE 2 Differentiate y = ln sin (x2 + x + 1) dx dx dy dy dx dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dy You have y = ln u and u = sin v and v = x2 + x + 1 dy dy du dv Use the chain rule: = ´ ´ There are three links in the dy 1 dx du dv dx chain rule here. So, for x = f(y), = dx dx 1 dy = u × cos v × (2x + 1) EXAMPLE 4 Substitute for u and v: = 1 × cos (x2 + x + 1) ´ (2x + 1) dy sin v Find when x = y2 + 3 dx (2x + 1)cos(x 2 + x + 1) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• = dx sin(x 2 + x + 1) Differentiate x = y2 + 3 with respect to y: = 2y dy = (2x + 1) cot(x2 + x + 1) dy So = 1 = 1 = 1 dx dx 2y 2 x - 3 dy Find in terms of y first and dy dx then in terms of x. 114 115
  • 62. 4 Differentiation 4 Differentiation Exercise 4.7 7 Find the value of x which gives a stationary point on the 1 Differentiate with respect to x. curve y = 52x - 4 ´ 5x a (x2 - 1)3 sin x b (x3 + 1)2 tan x dy 8 Find in terms of x when c (3x + 2)4 ´ ex d ( x + 1) ´ ex dx a x = 3y2 - 4 b x= y2 + 3 e sin2x f ( x − 1 ) ´ ln x 2 x2 c x = (y + 1)2 g x sin (x2) h x sin2 x 9 Find dy in terms of y when i x cos 3x j x2 tan 2x dx a x = 4y3 + y k x e 2x+1 l x2 ln (x2 - 1) b x = 3sin4 y m sin x cos 2x n sin 4x cos x c x = 5tan3 (2y) o sin x cos2 x p e x sin 3x d x = y ln y e3x e x = e -y sin y q e -2x cos x r x sin x f x = 3sin 4y + 4cos 2y s e t e -x sin 2x x ( g x = ln y 2 × y − 2 ) 2 Differentiate with respect to x. C3 C3 10 Find the equation of the tangent at the point (2, 1) on the a ln sin (x2) b ln tan (x2) curve x = 2y 3 c sin2 3x d cos3 4x 11 Find the equations of the tangents to the curve x = 4y2 at the Can you see an easier method for e tan2 2x f tan3 (x + 4) points where x = 4 2 part h using inverse functions? 2 ln(x +1) g esin x h e 12 Prove that the curve x = y2 e y has no stationary points. dy 3 Find when dx a y = 4x b y = 5x INVESTIGATIONS Can you see a connection c y = c x where c is a constant d y = 22x between parts a and d? 13 Find the turning points on the curve y = e x sin 2x for 0 x 2p Sketch its graph over this range and check your answers using e y = 52x f y = xx computer software. 4 Find the value of x which gives a stationary point on the 14 a Find the turning points of the curve y = x + 1 x curve y = x −1 ´ 2 ex Sketch its graph. d2y b Prove that the curve x = y + 1 has no turning points. y 5 Find the value of 2 when x = 0 and y = e x sin 2x dx Sketch its graph. 6 Find the gradient of the curve y = ln 1 + sin 2x at the c What is the connection between your two sketches? point where x = p 2 116 117
  • 63. 4 Differentiation 9 The function y = sin (x) has the angle x measured in degrees. Review 4 a Write the function so that the angle x is in radians. d (sin x) 1 Use the product rule, quotient rule or chain rule to differentiate these functions with respect to x. b Find dx tan x a x3 tan x b tan3 x c tan (x3) d x3 1 10 Find the derivative with respect to x of these functions. e ex sin x f esin x g sin x h cos x ln x e a f(x) = ln tan x b f(x) = ln (sin x cos x) i sin 3x j tan 6x k ln (2x + 3) l e3x-1 c f(x) = (2x - 1)2(3x + 2)3 d f(x) = ln ((2x - 1)2(3x + 2)3) m sinx x n ex (x2 - 3x + 4) o x e x +12 11 Use the derivatives of cosec x and cot x to prove that 2 Differentiate these functions with respect to x, given that a and b are constants. d [ln (cosec x + cot x)] = -cosec x [(c) Edexcel Limited 2004] dx ax a y=e b y = eax+b c y = ef(x) d y = sin (ax) d2 y e y = sin (ax + b) f y = sin [f(x)] g y = tan (ax) h y = tan (ax + b) 12 Given that y = e x sin 2x, find the value of when x = 0 dx 2 i y = tan [f(x)] j y = ln (ax) k y = ln (ax + b) l y = ln [f(x)] d2 y dy 13 If y = e-x cos x, show that + 2 + 2y = 0 dx 2 dx 3 Find the derivatives of these functions with respect to x. a ex cos 3x b e3x tan x c e3x cos 2x d 4 tan 1 x (2 ) 14 Find d2 y dx 2 when y = 1 + x 1− x C3 C3 e ln (x3 sin x) f ln ( x x + 1 ) g (3x + 1)2 h ln e x (2x − 1)3 dy i sin 5x cos 5x j ( x 2 sin 2x + p 2 ) k e3tan x l (1 + sin x ) ln 1 − sin x 15 Find dx in terms of x when x a x = (y + 1)2 b x = y2 + 3 m xcot x n ln (tan x + sec x) o sec x 16 Differentiate with respect to x 4 Find the values of x for which these functions have stationary points for -p < x < p. 2x a x3e3x b cos x c tan2 x Determine the nature of the stationary points. x dy a y = xe-x b y = e ,x¹0 c y = e-x cos x d Given that x = cos y2 find dx in terms of y. [(c) Edexcel Limited 2002] sin x 5 Find the equation of the tangent to the curve y = ln 1 + sin 2q at the point where q = p 17 a Differentiate with respect to x 2 3 3 i x2e3x+2 ii cos(2x ) 6 The curve C has equation y = − ln(5x), where x > 0. 4x 2 3x The tangent at the point on C, where x = 1, meets the x-axis at the point A. dy b Given that x = 4sin (2y + 6) find in terms of x. [(c) Edexcel Limited 2006] 1 dx Prove that the x-coordinate of A is 5 ln (5e). [(c) Edexcel Limited 2002] dy 1 7 Differentiate with respect to x 18 Show that for the function y = 2 x + 3 + dx 2x + 3 a y = 2x b y = ax c y = log10 x dy 2 ( x + 1) is given by = dx ( 2 x + 3 )3 8a Find the equation of the normal to the curve y = 1 + sin2 x at the point where x = p 4 19 Find the turning points on the curve y = (x2 - 9)3 and determine b Find the equation of the normal to the curve y = tan2 x whether each of them is a maximum or minimum. 118 where x = p and the point where the normal cuts the x-axis. 119 4
  • 64. Exit 5 Numerical methods This chapter will show you how to use graphical methods to solve equations of the type f(x) = g(x) use graphical methods to solve equations of the type f(x) = 0 Summary Refer to find non-integer roots of the equation f(x) = 0 The derivatives of these functions f(x) are: 4.1 use iterative methods to solve equations f(x) f¢(x) distinguish between a sequence of convergent and divergent iterations sin x cos x represent iterative methods graphically. cos x -sin x tan x sec2 x ex ex 4.2 1 Before you start ln x 4.3 x You should know how to: Check in: dy dv du The product rule If y = uv, then =u +v 4.4 1 Rearrange an algebraic expression. 1 Find f(x) such that f(x) = 0 when dx dx dx e.g. x = 5x + 7 2 du dv a x= x3 + 1 b x= 3 x2 − 1 dy v dx − u dx 3x + 4 2x 2x The quotient rule If y = u , then = 4.5 becomes 2x2 - 4x + 7 = 0 C3 C3 v dx v2 The chain rule If y = g(u) and u = f(x) so that y = g(f(x)), 4.6 2 Solve equations graphically. 2 a Plot the graph of y = x2 - 2x - 4 dy dy du for -2 x 4 then = × 4.7 e.g. Plot the graph of y = x3 - 4x2 + 3x dx du dx Hence solve the equation x2 - 2x - 4 = 0 Hence find that the solutions of d(sin ax) = a cos ax d(cos ax) = −a sin ax x3 - 4x2 + 3x = 0 are x = 0, 1 or 3. b Plot the graph of y = x − 2x + 1 2 In particular, dx and dx x−2 for -2 x 4 and find the point where dy dy 1 If x = f(y), then you can find from = 4.7 the graph touches the x-axis. dx dx dx dy 3 Solve simultaneous equations graphically. 3 Plot the graphs of y = 4 - x2 and y = 1 for x e.g. Plot the graphs of y = x2 - x + 1 and y = 2x - 1 |x| 3. Explain how the graphs can be Hence find that the solutions of x2 - 3x + 2 = 0 are used to solve the equation x3 - 4x + 1 = 0 Links x = 1 and x = 2 and find the solutions. Mathematics is used extensively in the financial world, which relies on accurate forecasts of the future. 4 Use a spreadsheet to find the values of 4 Create a spreadsheet to show the values of In calculus, a derivative shows how a dependent variable f(x) for a range of values of x. f(x) = x2 + 2x - 3 and g(x) = x + 2 for is affected as an independent variable changes. e.g. For f(x) = x3 - x + 2 integer values of x where 0 x 7. x x3 - x + 2 This can be applied in a financial setting to, for example, 0 2 State the value of the integer a such predict how the change in price of an underlying asset 1 2 that the solution of x2 + x - 5 = 0 will affect the related market value. Techniques such as 2 8 lies between a and a + 1. the chain rule are usually used to calculate the 3 26 mathematical derivatives involved. 120 121
  • 65. 5 Numerical methods Intersection with the x-axis 5.1 Graphical methods Another graphical method for solving an equation of the type f(x) = g(x) is to define a new function h(x) = f(x) - g(x) Many equations, including those derived in real-life scenarios and then find the solution of the equation h(x) = 0 in science, engineering, economics and elsewhere, cannot be solved algebraically. You are now searching for the x-values of the points at which the graph of y = h(x) crosses (or touches) the x-axis. Instead, you have to use numerical methods to find ‘Solutions’ are also called ‘roots’. approximate solutions. EXAMPLE 2 Find the solution of the equation cos x = x for 0 < x < p This equation is the same as in Intersection of two graphs •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Example 1. One method for finding an approximate solution to an equation Let h(x) = cos x - x y of the type f(x) = g(x) is to draw the graphs of y = f(x) and y = g(x) Sketch the graph of h(x) = cos x - x: and find the x-values of any points of intersection. 1 y = cos x – x The sketch gives an approximate value of the root as x = 0.7 EXAMPLE 1 Find the solution of the equation cos x = x for 0 < x < p x The x-value where y = cos x - x crosses the x-axis is the same x-value –2 –1 0 1 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• as that at the point of intersection in Example 1. –1 Sketch the graphs of y = cos x and y = x on the same axes: y y=x Use a spreadsheet to record values with increments in x of 0.01: –2 There is only one point of intersection so the equation 1 For x 0.73, h(x) > 0 x cos x - x cos x = x has only one solution. y = cos x 0.70 0.065 > 0 y –3 –2 –1 O x For x 0.74, h(x) < 0 C3 C3 The sketch gives a rough approximation of the solution as x = 0.7 1 2 3 0.71 0.048 > 0 0.065 –1 0.72 0.032 > 0 This is an approximation. It is not an accurate answer. The root is between 0.73 and 0.74. 0.73 0.015 > 0 y = cos x – x You can find a more accurate value using The root is nearer to 0.74 because 0.74 -0.002 < 0 either a graphical calculator or graphical computer software 0.75 -0.018 < 0 x is in radians. -0.002 is closer to 0 than is 0.015. 0.76 -0.035 < 0 or an ordinary calculator or computer spreadsheet. y Reduce the increments in x to 0.001: O 0.7 x Tabulate values of x and cos x with increments in x of 0.01: 0.76 0.77 For x 0.739, h(x) > 0 x cos x - x For x 0.73, x < cos x x cos x y = cos x 0.737 0.0035 > 0 For x 0.74, x > cos x 0.70 < 0.765 y=x For x 0.740, h(x) < 0 0.738 0.0018 > 0 –0.035 0.71 < 0.758 0.739 0.0001 > 0 The solution is between 0.73 and 0.74 0.72 < 0.752 The root is between 0.739 0.73 < 0.745 0.740 -0.0015 < 0 y and 0.740 0.74 and 0.738 are closer together than 0.74 > 0.738 0.741 -0.0032 < 0 0.75 > 0.732 0.0035 0.73 and 0.745, so the solution is between The root is closer to 0.739 0.76 > 0.725 0.7 0.735 and 0.740. than 0.740 because 0.0001 is O x closer to 0 than is -0.0015. y = cos x – x 0.7 0.76 Reduce the increment in x to 0.001: y x < cos x for x 0.739 x cos x To 3 significant figures, the solution of the equation O 0.737 0.741 x 0.740 0.736 < 0.7412 y=x cos x = x is x = 0.739 x > cos x for x 0.740 y = cos x 0.737 < 0.7405 Check: The solution is between 0.739 and 0.738 < 0.7398 h(0.7395) = cos(0.7395) - 0.7395 = -0.0007 is negative, so the root 0.740 but it is closer to 0.739. 0.739 < 0.7391 –0.0032 must lie between x = 0.739 and x = 0.7395 0.740 > 0.7385 To 3 significant figures, the solution 0.735 of the equation cos x = x is x = 0.739 O 0.735 x 0.740 122 123
  • 66. 5 Numerical methods 5 Numerical methods Sometimes it is best to combine both approaches as shown in Example 3. Be aware that f(x) might cross the x-axis more than once in the [a, b] means the interval interval [a, b]. a x b EXAMPLE 3 Solve the equation x2 = sin x for − p < x < p Also be aware of the following three possibilities: 2 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y y y y y = f(x) y = f(x) Sketch the graphs of y = x2 and y = sin x: y = f(x) y = x2 There are two roots. y = sin x x = 0 is an obvious root. f(b) f(a) f(a) f(a) From the sketch, the other root is approximately x = 0.8 –3 –2 –1 O 1 2 3 x f(b) b O a b x O a b x O a x Let h(x) = sin x - x2 f(b) The solution of the equation x2 = sin x occurs when h(x) = sin x - x2 = 0 y f(a) and f(b) are both positive, f(a) and f(b) are both positive f(a) and f(b) have different signs. Record values for x from 0.85 to 0.90 in a table: 0.03 but there are two roots between but there is a single root when However there is no root between h(x) changes from positive to negative y = sin x – x2 0.02 x = a and x = b the curve touches the x-axis. x = a and x = b because f(x) has x sin x - x2 between x = 0.87 and x = 0.88 0.01 a discontinuity. 0.85 0.0288 >0 The solution is between x = 0.87 0.86 0.0182 >0 Sketching a graph will help you to visualise what is happening. O 0.85 0.9 x and 0.88. 0.87 0.0074 >0 –0.01 0.88 -0.0037 <0 When you have found an interval [a, b] which contains a root, C3 C3 –0.02 h(0.875) = 0.0019 > 0, so the root is 0.89 -0.0150 <0 you can then reduce the width of the interval to find the solution between 0.875 and 0.88. 0.90 -0.0267 <0 to the required accuracy. h(0.875) = sin(0.875) - 0.8752 The solutions are x = 0 and x = 0.88 to 2 significant figures. = 0.001918. . . EXAMPLE 4 Find all the solutions (to 2 d.p.) of the equation e x + x - 7 = 0 y •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• The location of roots on the x-axis y = ex The graph of y = e x + x - 7 cannot be sketched quickly. 8 The roots of the equation f(x) = 0 are the x-values of the points 6 where the graph y = f(x) intersects the x-axis. Rearrange the equation e x + x - 7 = 0 as e x = 7 - x 4 y=7–x Let f(x) be continuous between x = a and x = b 'Continuous' means that there is no and sketch the graphs of y = e x and y = 7 - x: break or discontinuity in the graph. 2 y y The graphs intersect only once so there is only one root. O 2 4 6 8 x y = f(x) y = f(x) The sketch gives its approximate value as x = 1.5 Consider f(x) = e x + x - 7 y f(b) f(a) positive positive 1 Take values for x between 1.4 and 1.8 with steps of 0.1: y = ex + x – 7 O f(a) a b x O a b f(b) x negative negative f(1.6) < 0 and f(1.7) > 0 x ex + x - 7 1.4 -1.545 < 0 O x The root is in the interval [1.6, 1.7] 1.4 1.8 1.5 -1.018 < 0 The root is nearer to 1.7 because 0.174 If f(a) and f(b) have different signs for distinct values a and b, 1.6 -0.447 < 0 is nearer to 0 than is -0.447. –1 then there must be at least one root of f(x) = 0 in the interval 1.7 0.174 > 0 from a to b. Example 4 is continued on the next page. 1.8 0.850 > 0 124 125
  • 67. 5 Numerical methods 5 Numerical methods EXAMPLE 4 (CONT.) 3 a Sketch the graphs of y = x 3 and y = 9 - x on the same axes. Explore within this interval in steps of x = 0.01: y b Explain why there is only one root of the equation f(1.67) < 0 and f(1.68) > 0 0.046 x ex + x - 7 y = ex + x – 7 x3 + x - 9 = 0 1.65 -0.143 < 0 The root is in the interval [1.67, 1.68] c Use your graph to state the interval [a, b] within which the 1.66 -0.081 < 0 0.014 As f(1.675) = 0.014 which is positive, 1.67 -0.018 < 0 root of the equation x 3 + x - 9 = 0 lies, where a and b are O x consecutive integers. the root is in the interval [1.67, 1.675] 1.68 0.046 > 0 1.67 1.675 1.68 1.69 0.109 > 0 –0.018 So, to 2 decimal place, the root d Find the root of the equation x 3 + x - 9 = 0 is x = 1.67 correct to 1 decimal place. 4 a Sketch the graphs of y = x 2 and y = e-x on the same axes. Exercise 5.1 b Show that the only root of the equation x 2 - e-x = 0 1 Sketch the graphs of each pair of functions f(x) and g(x). lies in the interval [0.70, 0.71]. State how many roots there are to the equation f(x) - g(x) = 0 c Find the root correct to 3 decimal places. a f(x) = x 2 g(x) = x + 2 1 b f(x) = x 3 g(x) = x + 2 5 a Sketch the graphs y = x and y = 5 - x 2 on the same axes. c f(x) = x 1 g(x) = x + 2 b How many roots has the equation 1 + x2 - 5 = 0? x 1 c Show that one root lies in the interval [2, 3] and find its C3 C3 d f(x) = x g(x) = x 3 value correct to 2 decimal places. e f(x) = x 2 - 4 g(x) = 1 x 6 Without drawing any graph, show that each of these equations f f(x) = sin x g(x) = x + 2 In parts f and g, has a root within the given interval. x is in radians. a x 3 - 5x 2 + 6x - 1 = 0 [0, 1] g f(x) = sin x g(x) = 1 x 2 b x 3 - 2x 2 + x - 3 = 0 [2, 3] h f(x) = e x g(x) = 4 - x2 c x3 - 1 - 6 = 0 [1, 2] x 2 By sketching appropriate graphs, find how many roots there d ex - x - 8 = 0 [2, 3] are for each of these equations. e ln x - x 2 + 5 = 0 [2.4, 2.5] a x3 + x - 5 = 0 f sin x + x - 5 = 0 [5.6, 5.7] b x3 - 1 + 1 = 0 x c e - x2 + 1 = 0 x 7 Show that the equation xsin x + 2 = 0 has a root a such that 3 < a < 4. Find the value of a correct to 1 decimal place. d sin x + x - 1 = 0 8 The equation e-x - x + 1 = 0 has a root in the interval [a, a + 1] e e-x + x 2 - 4 = 0 where a is a positive integer. f x2 + 1 - sin x = 0 Find the value of a and the value of the root correct to 2 decimal places. 126 127
  • 68. 5 Numerical methods 5 Numerical methods 9 a Copy and complete this table for the function 13 a By sketching the graphs of y = 2 x and y = x 3 on the f(x) = x 3 - 4x 2 - x + 5 same axes, find how many solutions there are to the equation 2 x − x 3 = 0 x -2 -1 0 1 2 3 4 5 f(x) b Find the non-zero solution of the equation correct to 2 decimal places. b Sketch the curve y = x 3 - 4x 2 - x + 5 for -2 x 5 c Write down the three intervals [a, b] where a, b are 14 a Sketch the graphs of y = ln x and y = 12 - x 2 on the same axes. consecutive integers within which roots of the equation Explain why the equation ln x + x 2 - 12 = 0 has only one root. x3 - 4x2 - x + 5 = 0 lie. b Find the root of the equation correct to 2 decimal places. d Find the largest root of - x3 4x 2 -x+5=0 correct to 2 decimal places. 15 a Choose two functions f(x) and g(x) and sketch the graphs of y = f(x) and y = g(x) to find the number of roots of the 10 a Copy and complete this table for the function equation cos x - x + 6 = 0 1 b Show that a root a exists such that 6 a 7 f(x) = 2 x 3 - 2x 2 - x + 1 c Find a correct to 3 decimal places. x -2 -1 0 1 2 3 4 5 f(x) 16 Solve the equation 3x - x 3 = 0 b Write down the three intervals [a, a + 1], where a is integer, giving solutions correct to 3 decimal places where necessary. within which roots of the equation 1 x 3 − 2x 2 − x + 1 = 0 lie. C3 C3 2 17 Find all the roots of the equation xcos x + x = 0 c Find the smallest root of x 3 - 4x 2 - x + 5 = 0 Sketch the graph of y = xcos x + x correct to 2 decimal places. INVESTIGATION 11 a Find the interval [a, a + 1], where a is a positive integer, 1 such that the only root of the equation e x + 2 x − 10 = 0 18 P lies within it. Q b Find the root correct to 2 decimal places. i O 12 a Show that the function f(q ) = sin q − q + 2 for 0 q p has a solution in the interval ⎡ 4 p , 8 p ⎤. 3 7 ⎢ ⎣ ⎥ ⎦ In this diagram, the area of triangle OPQ is half the area b Find the solution correct to 2 decimal places. of the sector OPQ. Show that the angle, q, in radians, must be a solution of the equation 2sin q - q = 0 Solve this equation to find q. 128 129
  • 69. 5 Numerical methods Whether a sequence converges or diverges depends on the 5.2 Iterative methods gradient of f(x) at the point of intersection where x = f(x) The root of the equation x - f(x) = 0 is at the point of intersection There are four possibilities: of the graphs of y = x and y = f(x) where x = f(x) y At the point of intersection, x = a y You can show the steps of the iterative process of finding a root of An iterative method is a is the root of x = f(x) in each case. y = f(x) y=x the equation x - f(x) = 0 repetitive process which uses a y=x f(x1) succession of approximations. Numerical process Graphical process Each approximation builds f(x0) y = f(x) f(x0) on the preceding approximation f(x1) Choose a value x0 close to the Locate the value x0 on the x-axis f(x2) root a until the required degree of Calculate f(x0) Rise vertically at x0 to meet accuracy is achieved. O a x0 x1 x2 x the curve at a height of f(x0) O a x3 x2 x1 x0 x Let f(x0) = x1 Go horizontally to the line y = x where f(x0) = x1 y = f(x) is a rising curve and y = f(x) is a rising curve Let x1 be the next Locate x1 on the x-axis 0 < f ¢(a) < 1 and f ¢(a) > 1 approximation to the root The iterations converge. The iterations diverge. Perform the next iteration and Go vertically to the curve and calculate x2 then go horizontally to the line to find x2 y y y = f(x) Perform more iterations. Go vertically to the curve and y = f(x) y=x y=x go horizontally to the line for f(x0) each iteration. C3 C3 f(x2) f(x1) EXAMPLE 1 Find the root of the equation 3 x + 1 − x = 0 using an iterative method, starting with x0 = 1 as the first approximation. O x2 x0 a x1 x3 x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• O x0 x2 a x3 x1 x Rearrange the equation: y = f(x) is a falling curve y = f(x) is a falling curve 3 x= x +1 and -1 < f ¢(a) < 0 and f ¢(a) < -1 Define the iterative formula: The iterations converge. The iterations diverge. xn+1 = 3 xn + 1 with x0 = 1 Overall, the iterative process converges provided that This condition can also be Carry out the iterations: -1 < f ¢(a) < 1 where a is the root. written as |f¢(a)| < 1 x1 = 3 x0 + 1 = 3 1 + 1 = 3 2 = 1.259 921. . . Try to choose a starting value x0 which is close to the root. A different iterative formula with x2 = 3 x1 + 1 = 3 1.259921 + 1 = 1.312 293. . . the same starting value can lead Start by looking for an interval which contains the root and then The iterations seem to be converging. to a different root. x3 = 3 x2 + 1 = 3 1.312293 + 1 = 1.322 353. . . choosing x0 from within that interval. The same iterative formula with a different starting value can lead x4 = 3 x3 + 1 = 3 1.322353 + 1 = 1.324 268. . . and so on. n x 3 x+1 to a different root or even a 0 1 1.25992105 diverging sequence. After four iterations, the root is correct to 1 1.25992105 1.31229384 2 decimal places and has a value of 1.32 2 1.31229384 1.32235382 3 1.32235382 1.32426874 More iterations will improve the accuracy. 4 1.32426874 1.32463263 You can do these calculations efficiently on a spreadsheet or 5 1.32463263 1.32470175 using the ‘Ans’ key on a scientific or graphical calculator. 6 1.32470175 1.32471488 7 1.32471488 1.32471737 After 8 iterations, the root is correct to 5 decimal places. 8 1.32471737 1.32471785 130 131
  • 70. 5 Numerical methods 5 Numerical methods EXAMPLE 2 Exercise 5.2 Explore the roots of the equation x3 - 5x - 3 = 0 1 a Show, without drawing a graph, that the equation using iterative methods. x2 - 5x + 2 = 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• has a root in the interval [4, 5]. First method Rearrange x3 - 5x - 3 = 0 into the form x = f (x): b Show that x2 - 5x + 2 = 0 can be rewritten as x = 5 − 2 x x3 = 5x + 3 c Using the iterative formula xn +1 = 5 − 2 and x0 = 4 x = 3 5x + 3 xn 2 Define the iterative formula: xn +1 = 3 5xn + 3 find a root of the equation x - 5x + 2 = 0 correct to 2 decimal places. Let x0 = 2: Let x0 = -2: x1 = 3 13 = 2.351 334 x1 = 3 −7 = −1.912 931 2 a Show that the equation x3 - 4x - 5 = 0 has a root in the interval [2, 3]. x2 = 2.452 803… x2 = -1.872 423… x3 = 2.480 597… x3 = -1.852 964… b Show that the equation x3 - 4x - 5 = 0 x4 = 2.488 102… x4 = -1.843 470… can be rearranged as x = 3 4x + 5 x5 = 2.490 121… x5 = -1.838 803… c Use the iterative formula xn +1 = 3 4xn + 5 with x0 = 2 x6 = 2.490 664… x6 = -1.836 499… to find a root of the equation x3 - 4x - 5 = 0 correct to 2 decimal places. x7 = -1.835 360… d Show that the equation x3 - 4x - 5 = 0 The sequence is converging. The sequence is C3 C3 xn − 5 3 The root is x = 2.49 converging on a can also produce the iterative formula xn +1 = 4 . to 2 decimal places. different root. The root Take x0 = 2 and find whether this iterative formula is x = -1.84 creates a converging or diverging sequence of to 2 decimal places. approximations to the root. Second method Rearrange x3 - 5x - 3 = 0 into the form x = f (x): 3 a Show that the equation x3 - x2 - 1 = 0 x = x −3 3 5x = x3 - 3 giving 5 has a root in the interval [1, 2]. xn − 3 3 Define the iterative formula: xn+1 = b Show that the equation x3 - x2 - 1 = 0 5 can produce the iterative formula xn +1 = 3 xn + 1 2 Let x0 = 2: Let x0 = 3: Take x0 = 1 and find this root correct to 3 decimal places. x1 = 3 − 3 = 4.8 3 x1 = 2 − 3 = 1 3 5 5 4 Show that the iterative formula xn +1 = 1 e n −x x2 = 4.8 − 3 = 21.51 3 x2 = 1 − 3 = −0.4 3 2 5 5 can be derived from the equation e-x - 2x = 0 x3 = -0.6128 x3 = 1992.18… Taking x0 = 1 find a root of this equation to 2 decimal places. x4 = -0.64 602… This sequence is x5 = -0.65 392… diverging very fast. 5 To find the value of 4 50, show that the equation x4 = 50 can be No root is found. x6 = -0.65 593… rearranged to give the iterative formula xn +1 = 3 50 xn x7 = -0.65 644… 4 Use this formula with x0 = 3 to calculate 50 This series is converging on x3 The equation - 5x - 3 = 0 correct to 4 significant figures. a third root which is is a cubic. This example shows that it has three roots x = 2.49, x = -0.66 to 2 decimal places. -1.84 and -0.66 (to 2 d.p.). 132 133
  • 71. 5 Numerical methods 5 Numerical methods 6 a Find the values of l and m such that the iterative formula 11 a Show that the equation 2x - e x + 3 = 0 has a root between -1 and -2. xn +1 = l xn + m e xn + xn xn b Show that the iterative formula xn +1 = −1 3 can be used to solve the equation x 3 - 5x2 - 7 = 0 can be used to solve this equation. b Show that a root of the equation lies between x = 5 and x = 6 c Take x0 = -2 and find the root of 2x - e x + 3 = 0 correct to 4 decimal places. c Take x0 = 5 and find the root correct to 3 significant figures. d Hence find a root of the equation 2tan q - etanq + 3 = 0 7 a Evaluate f(1.1) and f(1.4) for the function f(q) = 6q - 5sin q - 3 in degrees correct to 1 decimal place. where q is in radians. 12 a Show that the equation x 3 - 4x - 3 = 0 has a root in the Explain why there is a root of the equation 6q - 5sin q - 3 = 0 interval [2, 3]. in the range 1.1 < q < 1.4 3(xn + xn + 1) 3 b Find the values a, b and c such that the iterative formula b Show that xn +1 = is an iterative formula for the 4xn − 1 2 q n +1 = a sin q n + 1 equation x 3 - 4x - 3 = 0 b c c Take x0 = 3 and find a root of the equation correct to 3 decimal places. can be used to solve the equation 6q - 5sin q - 3 = 0 d Hence, find a root of the equation 8y - 2y+2 = 3 c Taking q0 = 1.1 find a root of equation 6q - 5sin q - 3 = 0 correct to1 decimal place. correct to 3 decimal places. C3 C3 3 8 The iterative formula xn +1 = 6 − x is used to find the root INVESTIGATION n of the equation f(x) = 0 13 Create several of your own iterative formulae to solve the Find the function f(x) and the root of the equation correct to cubic equation 3 decimal places, given that x0 = 2 ax3 + bx2 + cx + d = 0 for your choice of a, b, c and d. 9 Find the equation f(x) = 0 which each of these iterative formulae can be used to solve. Use a computer spreadsheet to calculate the iterations − 2 for different starting values x0. a xn+1 = 5xn 2 7 b xn+1 = 3 5xn + 1 c xn+1 = 8 − x xn See if your iterations converge or diverge. 2 Which one of your formulae converges most quickly to a root? e xn+1 = 4x2 − 1 3 −x n 50 − xn d xn+1 = 2 2 n f xn+1 = 6 − 2e xn 3xn + 2 xn 10 a Find the constants a and b which would allow these two iterative formulae to be used to solve the equation x4 = 20 2 xn +1 = a + xn xn +1 = b 2 2 and 3 xn xn b Taking x0 = 2 find which one of these two iterative formulae converges faster to the root of the equation. c Find the value of 4 20 correct to 5 decimal places. 134 135
  • 72. 5 Numerical methods Review 5 6 f(x) = x 3 − 2 − 1 , x ≠ 0 x a Show that the equation f(x) = 0 has a root between 1 and 2. 1 Sketch the graphs of each pair of functions f(x) and g(x). An approximation for this root is found using the iteration formula State how many roots there are to the equation f(x) - g(x) = 0 1 = ⎛2 + 1 ⎞ 3 xn +1 ⎜ with x0 = 1.5 a f(x) = x 2 g(x) = x + 2 b f(x) = e x g(x) = 4 - x ⎝ xn ⎟ ⎠ b By calculating the values of x1, x2, x3 and x4, find an 2 By sketching appropriate graphs, find how many roots there approximation to this root, giving your answer to 3 decimal places. are for each of these equations. a x3 + 2 − 1 = 0 b sin x - x 3 = 1 In part b, x is in radians. c By considering the change of sign of f(x) in a suitable x interval, verify that your answer to part b is correct to c ln x - x2 + 2 = 0 d |x + 2| - x 2 = 1 3 decimal places. [(c) Edexcel Limited 2004] 3 a Sketch the graphs of y = 3 - x 2 and y = e-x on the same axes. 7a Sketch, on the same set of axes, the graphs of y = 2 - e-x and y = x b Explain why there are only two roots of the equation x 2 + e-x = 3 [It is not necessary to find the coordinates of any points of Show that one root lies in the interval [1.6, 1.7] and find intersection with the axes.] this root correct to 2 decimal places. Given that f(x) = e −x + x − 2, x 0 c Find the other root correct to 2 decimal places. b explain how your graphs show that the equation f(x) = 0 C3 C3 has only one solution 4 Without drawing any graph, show that each of these equations has a root within the given interval. In each case, c show that the solution of f(x) = 0 lies between x = 3 and x = 4 find the root correct to 2 decimal places. The iterative formula xn+1 = ( 2 − e −xn ) is used to solve the 2 a x − 12 − 2 = 0 3 [1.3, 1.4] b ln x - e-x =0 [1.0, 1.5] x equation f(x) = 0 c cos x + 2x - 4 = 0 [2.3, 2.4] d e x + x2 - 8 = 0 [-3, -2] d Taking x0 = 4, write down the values of x1, x2, x3 and x4, and hence find an approximation to the solution of 5 a Show that the equation x 3 - 3x - 4 = 0 has a root in the f(x) = 0, giving your answer to 3 decimal places. [(c) Edexcel Limited 2003] interval [2, 3]. 8 f(x) = x 3 + x 2 - 4x - 1 b Show that the equation x 3 - 3x - 4 = 0 can be rearranged The equation f(x) = 0 has only one positive root, a. as x = 3 3x + 4 c Use the iterative formula xn +1 = 3 3xn + 4 with x0 = 2 to find the a Show that f(x) = 0 can be rearranged as x = ( 4xx ++11), x ¹ -1 root of the equation x3 - 3x - 4 = 0 correct to 2 decimal places. ⎛ 4x + 1⎞ The iterative formula xn+1 = ⎜ n ⎟ is used to d Show that the equation x3 - 3x - 4 = 0 can also produce the ⎝ xn + 1 ⎠ x3 − 4 find an approximation to a. iterative formula xn +1 = n . Take x0 = 2 and find whether 3 b Taking x1 = 1, find, to 2 decimal places, the values this iterative formula creates a converging or diverging of x2, x3 and x4. sequence of approximations to the root. c By choosing values of x in a suitable interval, prove that a = 1.70, correct to 2 decimal places. d Write down a value of x1 for which the iteration formula æ 4x + 1 ö xn+1 = ç n ÷ does not produce a valid value for x2. è xn + 1 ø 136 Justify your answer. [(c) Edexcel Limited 2004] 137
  • 73. Revision 2 5Exit 1 Express as a single fraction in its simplest form. 3x 2 − x − 2 12 (3x − 1)(x + 2) x − 2x − 8 Simplify 3x − x − 14 2 Summary 2a Refer to 2 x −4 Graphical methods Hence, express 3x − x − 14 + 2 To solve an equation of the type f(x) = g(x), draw the graphs b 2 as simply as possible. of y = f(x) and y = g(x) and find the x-values of any 2 x −4 x(x − 2) points of intersection. To solve an equation of the type f(x) = 0, draw the graph of 3a Express as a fraction in its simplest form y = f(x) and find the x-values of the points at 2 + 1 x − 3 x 2 − 8x + 15 which the graph intersects (or touches) the x-axis. If, between x = a and x = b, the graph of y = f(x) is continuous 2 + 1 b Hence, solve the equation =1 and f(x) changes its sign, then there is at least one root of the x − 3 x − 8x + 15 2 equation f(x) = 0 between x = a and x = b. 5.1 4 Given that 2x − 32 + x + 1 º (ax2 + bx + c) + dx + e , 4 Iterative methods x2 (x − 1) 2 (x − 1) To solve an equation of the form g(x) = 0 C3 C3 find the values of the constants a, b, c, d and e. [(c) Edexcel Limited 2008] rearrange g(x) into the form x = f(x) choose a value x0 which is close to the root 1 5a Express 2 - as a single fraction. use the iterative formula xn+1 = f(xn) to generate the sequence x−4 x0, x1, x2, x3, … 1 decide if this sequence of x-values is converging or diverging b The function f is defined by f(x) = 2 - , x Î R, x ¹ 4 x−4 if it is converging, continue until you have the root to the Find an expression for the inverse function f -1(x). required accuracy. 5.2 c Write down the domain of f -1. 6 The functions f and g are defined by Links f: x® 2x + ln 2, x Î R In cases where a real-life problem cannot be solved g: x ® e2x, xÎR analytically, a numerical method is applied to find an approximate soluton. a Prove that the composite function gf is gf: x ® 4e4x, x Î R Applied problems can arise from diverse areas such b Sketch the curve with equation y = gf(x), and show the coordinates as engineering, economics and biological sciences. of the point where the curve cuts the y-axis. Solutions to such problems often require scientific c Write down the range of gf. computation involving advanced iterative methods. d Find the value of x for which d [gf(x)] = 3, dx giving your answer to 3 significant figures. [(c) Edexcel Limited 2006] 138 139
  • 74. Revision 2 Revision 2 7 The function f is defined by 13 a Using sin2 q + cos2 q º 1, show that cosec2 q - cot2 q º 1 f: x ® |2x - a|, x Î R, where a is a positive constant. b Hence, or otherwise, prove that cosec4 q - cot4 q º cosec2 q + cot2 q a Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes. c Solve, for 90° < q < 180°, cosec4 q - cot4 q = 2 - cot q [(c) Edexcel Limited 2006] b On a separate diagram, sketch the graph of y = f(2x), showing 14 a Show that the coordinates of the points where the graph cuts the axes. c 1 Given that a solution of the equation f(x) = 2 x is x = 4, i cos 2x cos x + sin x 4 ( ) º cos x - sin x, x ¹ n − 1 p, n Î Z 1 find the two possible values of a. [(c) Edexcel Limited 2002] ii 2 (cos 2x - sin 2x) º cos2 x - cos x sin x - 1 2 8 The functions f and g are defined by b Hence, or otherwise, show that the equation 1 f: x ® ln(2x - 1), x Î R, x>2 g: x ® 2 , x Î R, x ¹ 3 cos q æ cos 2q ö 1 x−3 ç ÷= è cosq + sin q ø 2 a Find the exact value of fg(4). can be written as sin 2q = cos 2q b Find the inverse function f -1(x), stating its domain. c Solve, for 0 q 2p, sin 2q = cos 2q c Sketch the graph of y = |g(x)|. Indicate clearly the equation giving your answers in terms of p. [(c) Edexcel Limited 2006] of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis. 15 f(x) = 5cos x + 12sin x 2 Given that f(x) = Rcos(x - a), where R > 0 and 0 < a < p , d Find the exact values of x for which x − 3 = 3 [(c) Edexcel Limited 2008] 2 a find the value of R and the value of a to 3 decimal places C3 C3 9 The functions f and g are defined by b hence, solve the equation 5cos x + 12sin x = 6 for 0 x 2p f: x ® | x - a | + a, x Î R, g: x ® 4x + a, x Î R c i Write down the maximum value of 5cos x + 12sin x. where a is a positive constant. ii Find the smallest positive value of x for which this a On the same diagram, sketch the graphs of f and g, showing clearly maximum value occurs. [(c) Edexcel Limited 2008] the coordinates of any points at which your graphs meet the axes. 16 a The graph of y = e x is transformed into the graph of each b Use algebra to find, in terms of a, the coordinates of the point of the following equations. at which the graphs of f and g intersect. Name the transformations involved in each case and give the order c Find an expression for fg(x). in which they occur. Sketch the graph of y = e x and each of its images. d Solve, for x in terms of a, the equation fg(x) = 3a [(c) Edexcel Limited 2003] i y = 1 + 2ex ii y = 2 + e -x iii y = 3e x-2 b Name the transformations (and the order in which they occur) 10 Prove that 1 − tan 2 x º cos 2x. Hence, prove that tan2 p = 7 - 4 3 2 that transform the graph of y = ln x into the graphs of each of these 1 + tan x 12 equations. Sketch the graph of y = ln x and each of its images. 1 11 a By writing sin 3q as sin(2q + q), show that sin 3q = 3sin q - 4sin3 q i y = 3 - ln x ii y = 1 + 2ln x iii y = 2 ln (x + 2) b Given that sin q = 3 , find the exact value of sin 3q. [(c) Edexcel Limited 2007] 17 a A population P of individuals increases over a time t (days) from 4 t an initial value of P0, according to the relation P = P0 e10 12 a Given that 2sin(q + 30)° = cos (q + 60)°, find the exact value of tan q °. How many days have to elapse for the population to double in size? b i Using the identity cos (A + B) º cos Acos B - sin Asin B, b A number of cells are being infected with a virus. The number N prove that cos 2A º 1 - 2 sin2 A of uninfected cells reduces with time t (hours) as given by t ii Hence solve, for 0 x 2p, cos 2x = sin x, N = 80 + 25e 2 − giving your answers in terms of p. i How many uninfected cells were there initially? iii Show that sin 2y tan y + cos 2y º 1 for 0 y < 1 p [(c) Edexcel Limited 2005] ii What is the limiting value of N as time increases? 2 140 141
  • 75. Revision 2 Revision 2 18 A savings account earns interest on the money invested in it 22 Differentiate with respect to x. at a constant rate of 5% each year. An initial investment of ex a e x sin x b x3 ln x c e -x (x 2 - 3) d £1 thus has a value of £y after t years where y = 1.05t sin x a Sketch the graph of y = 1.05t for t 0 ln x x3 − 1 3 e f g ln(tan x) h ex x2 − 1 x3 + 1 b Find the total value of an initial investment of £500 after it has been in the account for 6 years. Give your answer to the nearest £. 3 x 2 − 2x + 5 3 ex i j k l cos2 x sin x x3 − 1 e −1 x c How many years does it take for any investment to double in value? d What must be the interest rate (to 1 decimal place) if an 23 a Differentiate with respect to x. investment is to double in value after 10 years? cos ( 2x 3 ) i x 2e 3x + 2 ii 3x 19 A particular species of orchid is being studied. The population dy p at time t years after the study started is assumed to be b Given that x = 4sin (2y + 6), find in terms of x. [(c) Edexcel Limited 2006] dx 0.2t p = 2800ae0.2t where a is a constant. 1 + ae 24 a Differentiate with respect to x Given that there were 300 orchids when the study started, i e 3x(sin x + 2cos x) ii x3 ln(5x + 2) a show that a = 0.12 Given that y = 3x + 6x 2− 7 , 2 x ¹ -1, b use the equation with a = 0.12 to predict the number of (x + 1) years before the population of orchids reaches 1850. dy 20 b show that = C3 C3 dx (x + 1)3 336 c Show that p = − 0.12 + e 0.2t d2y d2y 15 c Hence find 2 and the real values of x for which =− [(c) Edexcel Limited 2008] d Hence show that the population cannot exceed 2800. [(c) Edexcel Limited 2005] dx dx 2 4 25 a The curve C has equation y = x 20 A heated metal ball is dropped into a liquid. As the ball cools, 9 + x2 its temperature, T °C, t minutes after it enters the liquid, is Use calculus to find the coordinates of the turning points of C. given by 3 dy T = 400 e -0.05t + 25, t 0 b Given that y = (1 + e2x)2, find the value of at x = 1 ln 3 [(c) Edexcel Limited 2007] dx 2 a Find the temperature of the ball as it enters the liquid. 26 Find the stationary points on these curves and determine their nature. b Find the value of t for which T = 300, giving your answer x to 3 significant figures. a y=e b y = xe x x c Find the rate at which the temperature of the ball is y= x c d y = e-2x sin x where -p x p decreasing at the instant when t = 50. Give your answer x +1 2 in °C per minute to 3 significant figures. 27 A curve C has equation y = x2e x d From the equation for temperature T in terms of t, given dy above, explain why the temperature of the ball can never a Find , using the product rule for differentiation. dx fall to 20 °C. [(c) Edexcel Limited 2006] b Hence, find the coordinates of the turning points of C. d2y 21 Solve the equations c Find dx 2 a 6 + 3e-x = 8 b ln (x + 3)2 = 4 c e2x = 3ex - 2 d Determine the nature of each turning point of the curve C. [(c) Edexcel Limited 2008] 142 143
  • 76. Revision 2 Revision 2 x and explain why 28 a Find dy for the curve C where y = 33 a Show that the equation 1 x4 - x - 3 = 0 dx x2 − 1 10 the graph of C is a falling curve for all values of x. has a root in the interval [2, 3]. b Find the equation of the tangent to C at the point where b Show that the equation 1 x4 - x - 3 = 0 x = 2. Also find the equation of the normal to C at the 10 point where x = -2. can produce the iterative formula xn + 1 = 4 10 xn + 30 c Find, to 2 decimal places, the coordinates of the point c Take x0 = 1 and find the root correct to 3 decimal places. where this tangent and normal intersect. 34 Find the equation in the form f(x) = 0 which each of these 29 A curve C has equation y = e2x tan x, x ¹ (2n+1)p iterative formulae can be used to solve. 2 3 − xn a Show that the turning points on C occur where tan x = -1 a xn +1 = b xn +1 = 3 5(xn - 2) c xn +1 = 3 + 2 2 xn xn b Find the equation of the tangent to C at the point where x = 0 [(c) Edexcel Limited 2008] x 30 a Given that y = loga x, x > 0, where a is a positive constant, 35 a Show that the iterative formula xn + 1 = a − n can be xn b 3 2 i express x in terms of a and y used to solve the equation 2x + x - 24 = 0 ii deduce that ln x = y ln a Find the values of a and b in this case. b Show that dy = 1 b Show that a root of the equation lies between x = 2 and x = 3 dx x ln a c Take x0 = 2 and find the root correct to 3 significant figures. C3 C3 The curve C has equation y = log10 x, x > 0 The point A on C has x-coordinate 10. Using the result in part b, 36 f(x) = x3 - 2 - 1 , x ¹ 0 x c find an equation for the tangent to C at A. a Show that the equation f(x) = 0 has a root between 1 and 2. d The tangent to C at A crosses the x-axis at the point B. b An approximation for this root is found using the Find the exact x-coordinate of B. [(c) Edexcel Limited 2004] iteration formula 1 31 a Sketch the graphs of y = x3 and y = 6 - x2 on the same axes. xn+1 = ⎛ 2 + 1 ⎟ ⎜ ⎞3 with x0 = 1.5 ⎝ xn ⎠ b Explain why there is only one root of the equation By calculating the values of x1, x2, x3 and x4, find an x3 + x2 - 6 = 0 approximation to this root, giving your answer to c Use your graph to state the interval [a, b] within which the 3 decimal places. root of the equation x3 + x2 - 6 = 0 lines, where a and b are c By considering the change of sign of f(x) in a suitable consecutive integers. interval, verify that your answer to part b is correct to d Find the root of the equation x3 + x2 - 6 = 0 3 decimal places. [(c) Edexcel Limited 2004] correct to 1 decimal place. 32 a Find the interval [a, a + 1], where a is a positive integer, such that the only root of the equation e x - x2 - 2 = 0 lies within this interval. b Find the root correct to 2 decimal places. 144 145
  • 77. Revision 2 37 This diagram shows part of the curve C with equation y y = f(x), where f(x) = 0.5e x - x2 The curve C cuts the y-axis at A and there is a minimum at the point B. a Find an equation of the tangent to C at A. A C 6 Partial fractions The x-coordinate of B is approximately 2.15. A more exact O x This chapter will show you how to estimate is to be made of this coordinate using iterations B separate a fraction with different linear factors in its denominator xn+1 = ln g(xn) into partial fractions separate a fraction with a repeated linear factor in its denominator b Show that a possible form for g(x) is g(x) = 4x into partial fractions c Using xn+1 = ln 4xn, with x0 = 2.15, calculate x1, x2 and x3. separate an improper fraction into partial fractions Give the value of x3 to 4 decimal places. [(c) Edexcel Limited 2002] use the methods of equating coefficients and substitution, including the cover-up rule. 38 f(x) = 1 - 1 + ln x , x > 0 y 2x 2 This diagram shows part of the curve with equation y = f(x). Before you start The curve crosses the x-axis at the points A and B, and has a minimum at the point C. You should know how to: Check in: 1 1 1 Substitute into formulae. 1 Find the value of y and z when x = 4 a Show that the x-coordinate of C is 2 . e.g. Find z = 3x − 1 when x = 3 a y = 22x + 1 2 (x − 1) 2 4 if C4 C3 b Find the y-coordinate of C in the form kln 2, O A B x x (1 − x) 9 −1 where k is a constant. z= 4 = 5 × 16 = 20 b z = (2 − x) C 2 2 ( ) 2 4 1 3 −1 c Verify that the x-coordinate of B lies between 4.905 and 4.915 4 x (1 + 3x) d Show that the equation 1 -1 + ln x = 0 can be rearranged into 2x 2 2 Factorise expressions. 2 Factorise ⎛ 1 ⎞ ⎜ 1− 2x ⎟ e.g. 6x 2+ 11x - 10 a 4x 3 - 9x the form x = 2e⎝ n ⎠ = (2x + 5)(3x - 2) b x4 - 1 The x-coordinate of B is to be found using the iterative formula ⎛ 1− 1 ⎞ ⎜ 2x ⎟ xn+1 = 2e⎝ n ⎠ with x0 = 5 3 Create and use identities. 3 Find A and B if e.g. Find A and B if 3x + 8 º A(x + 2) + Bx a x(5x + 3) + 6x º x(Ax + B) e Calculate, to 4 decimal places, the values of x1, x2 and x3. [(c) Edexcel Limited 2005] Equate constants: 8 = 2A so A = 4 b (Ax + 3)(2x + B) º 8x 2 + 10x + 3 Equate coefficients of x: 39 f(x) = 3ex - 1 ln x - 2, x > 0 3 = A + B so B = -1 2 a Differentiate to find f ¢(x). 4 Add and subtract algebraic fractions. 4 Work out 3 + 4 e.g. 2 + 4 2 = 2(x + 1) + 4 (x + 3) 2 b The curve with equation y = f(x) has a turning point a x + 3 (x + 1) (x + 3)(x + 1)2 x + 1 (x + 1)2 at P. The x-coordinate of P is a. Show that a = 1 e-a 2x 2 + 8x + 14 6 = b 1+ 2 + 3 The iterative formula xn+1 = 1 e −xn , x0 = 1, is used to find an (x + 3)(x + 1)2 x x +1 x −1 6 approximate value for a. c Calculate the values of x1, x2, x3 and x4, giving your 5 Divide algebraic expressions. 5 Divide answers to 4 decimal places. e.g. (x 2 + 4x + 7) ¸ (x + 3) a (x 3 - 3x 2 - x + 3) by (x + 1) 4 = x +1+ b (x 2 + 6x - 1) by (x - 2) d By considering the change of sign of f ¢(x) in a suitable x+3 interval, prove that a = 0.1443 correct to 4 decimal places. [(c) Edexcel Limited 2005] 146 147
  • 78. 6 Partial fractions You can use the method of substitution to separate a fraction into 6.1 Separating fractions partial fractions. EXAMPLE 2 You can express a proper fraction of the type The initial fraction must be a 5x − 1 Express in partial fractions. This is the same as Example 1, f(x) proper fraction. That is, the (x − 2)(x + 1) using a different method. (ax + b)(cx + d )(ex + f ) numerator must be of a lower •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• degree than the denominator. as partial fractions of the type A + B + C Let 5x - 1 º A + B º A(x + 1) + B(x - 2) ax + b cx + d ex + f (x - 2)(x + 1) x - 2 x + 1 (x - 2)(x + 1) where A, B and C are constants. Equate the numerators: 5x - 1 º A(x + 1) + B(x - 2) In particular, let x = -1 to eliminate A: An identity is true for all You can use the method of equating coefficients to separate a values of x. -5 - 1 = 0 + B(-1 - 2) so B=2 fraction into partial fractions. Now let x = 2 to eliminate B: 10 - 1 = 3A so A=3 EXAMPLE 1 Express 5x − 1 in partial fractions. (x − 2)(x + 1) So, 5x − 1 ≡ 3 + 2 Check your answer by adding (x − 2)(x + 1) x − 2 x + 1 3 and 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• x−2 x −1 Form an identity (which is true for all values of x): Let 5x - 1 º A + B See C 3 for revision of You can use either of these methods or a mixture of the two (x - 2)(x + 1) x - 2 x + 1 adding fractions. to keep your working to a minimum. º A(x + 1) + B(x - 2) C4 C4 (x - 2)(x + 1) EXAMPLE 3 º (A + B)x + A - 2B x 2 − 11x − 6 Express as partial fractions (x - 2)(x + 1) (x + 2)(x − 2)(2x − 1) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Equate the numerators: 5x - 1 º (A + B)x + A - 2B Let x 2 − 11x − 6 ≡ A + B + C A, B and C are numerical The two sides of this identity must be identical. (x + 2)(x − 2)(2x − 1) x + 2 x − 2 2x − 1 constants. The Core 4 specification does not extend Equate the coefficients of x: 5 = A + B You now have two simultaneous A (x − 2)(2x − 1) + B (x + 2)(2x − 1) + C (x + 2)(x − 2) ≡ to algebraic numerators. Equate the constants: -1 = A - 2B equations in A and B. (x + 2)(x − 2)(2x − 1) Consider the numerators. Subtract these two equations to eliminate A: 5 - (-1) = B - (-2B) Let x = 2 to eliminate A and C: 4 - 22 - 6 = 0 + B ´ 4 ´ 3 + 0 x2 - 11x - 6 = 4 - 22 - 6 6 = 3B so -24 = 12B and B = -2 B=2 Let x = -2 to eliminate B and C: 4 + 22 - 6 = A ´ (-4) ´ (-5) + 0 + 0 Substitute into 5 = A + B: A=3 so 20 = 20A and A = 1 Check your answer by adding So, in partial fractions, 5x − 1 ≡ 3 + 2 3 and 2 Equate coefficients of x2: 1 = 2A + 2B + C To find the coefficients, (x − 2)(x + 1) x − 2 x + 1 x−2 x −1 expand the brackets: Substitute the values of A and B: C=3 A(x - 2)(2x - 1) = A(2x2 - 5x + 2) B(x + 2)(2x - 1) = B(2x2 - 2x - 2) So, x 2 − 11x − 6 ≡ 1 − 2 + 3 C(x + 2)(x - 2) = C(x2 - 4) (x + 2)(x − 2)(2x − 1) x + 2 x − 2 2x − 1 148 149
  • 79. 6 Partial fractions 6 Partial fractions You can use the cover-up rule when a fraction has only linear Exercise 6.1 factors. It is a shortened form of the method of substitution. 1 Use the method of equating coefficients to express these in partial fractions. a 4x + 5 b x + 25 c 2 (x + 2)(x + 1) (x − 3)(x + 4) (x − 3)(x + 5) EXAMPLE 4 Use the cover-up rule to express 3x 2 + 16x − 10 (x − 1)(x + 2)(2x − 1) 4x − 3 7x + 2 2x − 5 in partial fractions. d e f x(x − 1) (x + 5)(2x − 1) x 2 − 6x + 8 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Let 3x 2 + 16x − 10 ≡ A + B + C 2 Use the method of substitution to express these in partial fractions. (x − 1)(x + 2)(2x − 1) x − 1 x + 2 2x − 1 4x − 7 5x + 11 x+4 a b c To find A, cover up (x - 1) and substitute x = 1 in the rest of the fraction: 3x2 + 16x − 10 (x − 3)(x − 2) (x + 1)(x + 4) x(x + 1) (x − 1) (x + 2) (2x − 1) A = 3 + 16 − 10 = 9 = 3 x − 11 3x x2 − x + 1 (1 + 2) × (2 − 1) 3×1 d e f x − 7x + 6 2 (x − 1)(x − 2)(x − 3) (x 2 − 1)(2 − x) To find B, cover up (x + 2) and substitute x = -2 in the rest of the fraction: 3x2 + 16x − 10 (x − 1) ( ) (2x − 1) 3 Use the cover-up rule to express these in partial fractions. B = 3 × 4 + 16 × (−2) − 10 = −30 = −2 3x + 7 (−2 − 1) × (−4 − 1) (−3) × (−5) a 9 b (x − 1)(x + 4) c 1 (x − 2)(x + 1) (x − 5)(x − 3) To find C, cover up (2x - 1) and substitute x = 1 in the rest of the fraction: 3x2 + 16x − 10 2 (x − 1) (x + 2) ( ) d x−3 e 4−x f 1 x(x − 2) x(x + 1)(x + 2) 4x 3 − x C= 4 () 3 1 + 16 − 10 2 = −1 1 4 = 5×4 =1 ( ) ( ) ( ) () 4 Express these in partial fractions. C4 C4 1 −1 × 1 + 2 − 1 × 5 4 5 2 2 2 2 2x 3 6x a b c x 2 − 6x + 8 (x − 3)(x 2 + x − 2) (2x − 1)(3x − 2) Hence 3x 2 + 16x − 10 ≡ 3 − 2 + 1 (x − 1)(x + 2)(2x − 1) x − 1 x + 2 2x − 1 d 3 − x2 e 2x + 3 f 2x + 5 1− x 4x 3 − x 9 − 4x 2 x2 + 4 2x 6 EXAMPLE 5 x +1 g h i Express as partial fractions 2x − x 2 − x 3 (1 + 2x)(4 − x 2) x 4 − 5x 2 + 4 8x − 2x − 3 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Factorise the denominator: 8x 2 - 2x - 3 º (2x + 1)(4x - 3) INVESTIGATION x +1 ≡ A + B 5x − 1 Let (2x + 1)(4x − 3) 2x + 1 4x − 3 5 a Examples 1 and 2 showed that ≡ 3 + 2 (x − 2)(x + 1) x − 2 x + 1 1 +1 − Use a graphical calculator or a graphical computer package To find A, let x = - 1 : A= 2 =−1 Cover up (2x + 1) and substitute x = − 1 to draw the three graphs of 2 −2 − 3 10 2 y= 5x − 1 , y = 3 y = 2 3 +1 (x − 2)(x + 1) x − 2 and x +1 To find B, let x = 3 : B= 4 = 7 Cover up (4x - 3) and substitute x = 3 4 3 + 1 10 4 See how the graphs of the two partial fractions add 2 together to give the graph of the original fraction. x +1 ≡− 1 + 7 Pay particular attention to the asymptotes. So 8x 2 − 2x − 3 10 (2x + 1) 10(4x − 3) b Repeat this graphical investigation using a fraction which has a denominator with three factors, 3x such as (x − 1)(x − 2)(x − 3) 150 151
  • 80. 6 Partial fractions EXAMPLE 2 6.2 More partial fractions Express as partial fractions 2x − 2x + 14 2 2 (x + 4)(x − 2) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A proper fraction of the type f(x) , where f(x) is a (ax + b)2 is a Let 2x − 2x + 14 ≡ 2 A + B + C (ax + b)2 (1) repeated linear factor. 2 (x + 4)(x − 2) x + 4 x − 2 (x − 2)2 polynomial in x, will produce two partial fractions of the type A + B Use the cover-up rule. ax + b (ax + b)2 To find A, cover up (x + 4) and let x = -4: where A and B are constants. A = 2x − 2x + 14 = 2 × (− 4) − 2 × (2 4) + 14 = 54 = 3 2 2 − So 2 (x − 2) (− 4 − 2) 36 2 A repeated factor (ax + b)3 will produce partial fractions A B C To find C, cover up (x - 2) 2 and let x = 2: + + ax + b (ax + b)2 (ax + b)3 C = 2x − 2x + 14 = 2 × 2 − 2 × 2 + 14 = 18 = 3 2 2 So (x + 4) 2+4 6 EXAMPLE 1 Express as partial fractions 4 − 7x To find B (x + 3)(x − 2)2 either •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2x 2 − 2x + 14 ≡ A(x − 2) + B(x + 4)(x − 2) + C (x + 4) 2 4 − 7x ≡ A + B + C Let (x + 4)(x − 2) 2 (x + 4)(x − 2)2 (x + 3)(x − 2)2 x + 3 x − 2 (x − 2)2 A(x − 2)2 + B(x + 3)(x − 2) + C (x + 3) Equate coefficients of x²: C4 C4 ≡ 2=A+B (x + 3)(x − 2)2 so B = 2 − A = 2 − 3 = 1 Equate the numerators: 4 - 7x º A(x - 2)2 + B(x + 3)(x - 2) + C(x + 3) 2 2 Let x = 2: 4 - 14 = 0 + 0 + C ´ (2 + 3) or C = -2 Let x = 0 and substitute in (1): Any x-value would do, Let x = -3: 4 + 21 = A ´ (-5)2 + 0 + 0 14 = 3 + B + 3 but x = 0 is the easiest. A=1 4 × 4 2 × 4 −2 4 No other choice of x-value reduces a bracket to zero. Multiply by 8: 7 = 3 - 4B + 6 There are now two ways forward: B= 1 2 either or So 2x 2 − 2x + 14 ≡ 3 + 1 + 3 Use A = 1, C = -2 and Equate the coefficients (x + 4)(x − 2)2 2(x + 4) 2(x − 2) (x − 2)2 let x = 1 in the numerators: of x2 in the numerators: 4 - 7 = 1 ´ (-1)2 + B ´ 4 ´ (-1) + (-2) ´ 4 0=A+B -3 = 1 - 4B - 8 B = -A A fraction with a numerator of degree higher than (or equal to) x3 + 1 B = -1 B = -1 is an example of an the degree of the denominator is an improper fraction. x2 − 1 improper fraction. You could choose any value of x. Equating coefficients is usually the most x = 1 and x = 0 are generally simple to use. efficient method at this point. Before you can separate an improper fraction into partial fractions, you must first change it to a mixed fraction, A numerical equivalent is So 4 − 7x ≡ 1 − 1 − 2 consisting of a quotient and a remainder, by changing 9 to 2 1 . (x + 3)(x − 2)2 x + 3 x − 2 (x − 2)2 either algebraic long division 4 4 or rearranging the numerator and finding the quotient and remainder by inspection. 152 153
  • 81. 6 Partial fractions 6 Partial fractions EXAMPLE 3 Exercise 6.2 Express 2 x + 7 as partial fractions. 2 2 1 These fractions have repeated factors in the denominators. x −x−6 Express the fractions as partial fractions. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••v••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Numerator and denominator are both of degree 2, so it is an improper a x +1 b 16 c x2 − 7 fraction. You must change it to a mixed fraction. (x − 1)(x − 2)2 (x + 1)(x − 3)2 (2x − 1)(x + 1)2 either or d x e x − 10 f x2 − 1 Use long division: Rearrange the numerator: (x − 4)2 x 2(x − 2) x 3 − 2x 2 2 2x 2 + 7 x 2 - x - 6 2x 2 ) +7 x -x-62 The numerator is now g 1 x(3x − 1)2 h x−4 x(x + 2)3 º 2(x - x2 - 6) + 2x + 19 2 2x 2 - 2x - 12 2 ´ denominator 2x + 19 x -x-6 + compensating terms 2 Express these improper fractions as partial fractions. 2x 2 + 7 ≡ 2 + 2x + 19 º 2 + 2 x + 19 2 The quotient is 2 and a x b x2 c x2 − 2 So x -x-6 the remainder is 2 x + 19 2 x+2 x −1 2 (x − 1)(x + 3) x −x−6 2 x2 − x − 6 x − x −6 2x + 19 x2 + 1 x2 x3 Let 2 x + 19 º 2 Factorise the denominator. d x(x + 1) e x −1 f x −12 x - x - 6 (x + 2)(x - 3) º A + B g x 2− 3x + 5 3 2 h 9 + x2 x3 2 x+2 x-3 i x + x−2 9−x 4x 2 − 1 Use the cover-up rule. A = -4 + 19 = 15 = -3 C4 C4 3 Express x + 2 2 in partial fractions of the form A + B + C 3 Cover up (x + 2) and let x = -2: + D -3 -5 -2 x(x - 2) x x−2 (x − 2)2 Cover up (x - 3) and let x = 3: B = 6 + 19 = 25 = 5 3+2 5 4 Express in partial fractions. So 2x 2 + 7 ≡ 2 − 3 + 5 x −x−6 2 x+2 x−3 a 4 b 6 c 2x 2 + 1 (2x − 3)(x + 1) (x − 2)(x + 1)2 (x + 1)(2x − 1) d 2x 2 e x2 + 5 f 2x + 1 EXAMPLE 4 x2 − 1 x + 2x − 3 2 (2x − 1)(3x + 1) Express as partial fractions x 2 − 2x − 1 3 2 x − 3x + 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• g x3 + 2 h x3 i x3 + 1 x(x + 1) x −x−2 2 x 2(x − 1) This is an improper fraction. Use long division: j 3 k x3 + 1 l (x 2 + 1)2 x (x + 1)2 2 x (x + 1)2 x 2(x 2 − 1) So x 2 − 2x − 1 ≡ x + 1 + x−3 3 2 x +1 x − 3x + 2 x − 3x + 2 2 ) x 2 − 3x + 2 x 3 − 2x 2 −1 x−3 x−3 x 2 − 3x 2 + 2x Let ≡ ≡ A + B x 2 − 2x − 1 INVESTIGATION x − 3x + 2 2 (x − 1)(x − 2) x − 1 x − 2 x 2 − 3x + 2 5 Explore the graph of y = f(x) if f(x) is x−3 Use the cover-up rule. a proper fraction with repeated linear factors in the denominator Cover up (x - 1) and let x = 1: A = 1−3 = 2 an improper fraction. 1−2 2 − 3 = −1 Consider some of the fractions in this exercise, draw their Cover up (x - 2) and let x = 2: B = 2 −1 graphs, and take particular notice of any asymptotes, both vertical and horizontal. Hence x 2 − 2x − 1 ≡ x + 1 + 3 2 2 − 1 x − 3x + 2 x −1 x − 2 154 155
  • 82. 6 Partial fractions 9a Express f(x) = 3x + 2 in partial fractions. Review 6 (x + 4)(x − 1) b Find f ¢(x) and deduce that the graph of y = f(x) has a 1 Use the method of equating coefficients to express these in partial fractions. negative gradient at all points on the curve. a x+3 b 8−x c 6 (x − 2)(x − 1) x(x + 4) x2 − 9 10 The function f is given by 3(x + 1) f(x) = , x ∈ R, x ≠ −2, x ≠ 1 2 Use the method of substitution to express these in partial fractions. (x + 2)(x − 1) a x +1 b x2 - x + 5 c x 2 − 2x − 2 a Express f(x) in partial fractions. (x − 1)(x + 3) x (x - 1)(x - 5) (x 2 − 1)(x + 2) b Hence, or otherwise, prove that f ¢(x) < 0 for all values of 3 Use the cover-up rule to express these in partial fractions x in the domain. [(c) Edexcel Limited 2003] a 8 b x2 + 1 c x2 - x - 4 The fraction in part b (x − 1)(x + 3) (x − 2)(x + 1) x (x + 1)(x - 2) is improper. 1 − 3x 11 a Write (x − 2)(x + 3) in partial fractions. 4 Express these in partial fractions. b Find the gradient at the point where x = 1 on the graph of 4x 2 1 − 3x a b y= (2x + 1)(2x − 1) (3x − 2)(3x − 1) (x − 2)(x + 3) c Explain why the graph is a curve which is always rising. c x +1 d x+6 (x − 2)(x − 1)2 x 2(x − 3) C4 C4 1 12 a Express in partial fractions. 9 x + 4x − 1 2 r (r + 1) e f x(2x − 3)2 (x 2 − 1)(x − 1) 1 + 1 + 1 + + 1 = n b Deduce that 1´ 2 2 ´ 3 3´ 4 n (n + 1) n + 1 5 Show that x 2 + 4 can be expressed as A + 2 B + C r =∞ x −4 x−2 x+2 c Find the value of ∑ r(r 1 1) + Find the values of A, B and C. r =1 1 6 Express these in partial fractions. 13 a Express in partial fractions. (r + 1)(r + 2) a 3x 2 − 3 b 2x 2 − 3x − 24 r =n (x − 1)(x + 2) x2 − x − 6 b Hence show that ∑ (r + 1)(r + 2) = 1 − n + 2 1 1 r =0 c x3 − 2 d x 3 + 2x 2 − 4 r =n x 2(x + 1) x2 − 4 c Show that, as n ® ¥, ∑ (r + 1)(r + 2) converges. 1 r =0 1 State the sum to infinity. 7 Show that (x + 1)(x − k) can be expressed as partial fractions in the form 1 1 ( − 1 ) a x − k x + 1 . Find a in terms of k. 8a Show that, if f(x) = x 3 - 2x 2 - x + 2, then f(2) = 0 Hence, factorise f(x) completely. 1 b Express f(x) in partial fractions. 1 c The line x = a is a vertical asymptote to the curve y = f(x) 156 State all possible values of a. 157
  • 83. 6Exit 7Parametric equations This chapter will show you how to sketch curves using their parametric equations convert parametric equations to Cartesian equations Summary Refer to f(x) find points of intersection of curves and lines using parametric equations For a proper fraction of the type (ax + b)(cx + d)(ex + f ) differentiate parametric equations to find equations of tangents and where the factors of the denominator are all different and f(x) is a stationary values integrate parametric equations to find areas under curves. polynomial in x, the partial fractions are of the type A + B + C ax + b cx + d ex + f where A, B and C are constants. 6.1 For a proper fraction which has a repeated linear factor (ax + b)2 Before you start in its denominator, there will be two partial fractions of A + B You should know how to: Check in: the type where A and B are constants. 1 If m = 2(x + 1) and n = 3x − 2 6.2 ax + b (ax + b)2 1 Substitute into formulae. 4 You can find the constants A, B, C, ¼ in the partial fractions by using e.g. If a = 2x + 3 and b = 1 - 4x, find y when the method of equating coefficients find y when y = a2 - b a y = 1 m + 2n the method of substitution Substitute for a and b: 4 C4 C4 The cover-up rule is a shorter version of the method of substitution. 6.2 y = (2x + 3)2 - (1 - 4x) = 4x2 + 12x + 9 - 1 + 4x b y = 2m2 + 16n2 You must change an improper fraction to a mixed fraction, consisting = 4x2 + 16x + 8 of a quotient and a remainder, before you can create partial fractions by either algebraic long division 2 Solve simultaneous equations. 2 Solve these simultaneous equations. or rearranging the numerator and finding the quotient and e.g. Solve y = x + 1 and y + 5 = x2 a 2x + 3y = 1, y + 3x = 5 remainder by inspection. 6.2 Eliminate y: (x + 1) + 5 = x2 x2 - x - 6 = 0 b x2 + y2 = 3, x + 2y = 1 (x + 2)(x - 3) = 0 Links So, x = -2 or 3 and y = -1 or 4 Partial fractions allow you to express complicated The solutions are (-2, -1) and (3, 4). fractions as the sum of simpler fractions. dy These simplified expressions can be applied to find 3 Differentiate and integrate functions. 3 Find dx and y dx when antiderivatives as well as inverses of transforms, dy 2 e.g. Find and y dx if y = ⎛1 + 12 ⎞ ⎜ ⎟ such as the Laplace transform. dx ⎝ x ⎠ a y = x 2 + 1 + 12 x Expand the brackets: ( ) Engineers use Laplace Transforms to simplify problems by converting relationships that are y = 1 + 22 + 14 = 1 + 2x −2 + x − 4 b y = x(1 + x) 1 + 1 x x x dependent on time t to a set of equations expressed c y = x +1 2 dy − in terms of the Laplace operator s. They can then Hence = 2(−2) x −3 + (− 4) x 5 2 dx x use Inverse Laplace Transforms to return to the = − 43 − 45 time domain. x x −1 x −3 Laplace Transforms are particularly useful in and y dx = x + 2 x + +c −1 −3 analyzing electronic circuits. = x − − 13 + c 2 x 3x 158 159
  • 84. 7 Parametric equations EXAMPLE 2 7.1 Parametric equations and curve sketching Sketch the curve given parametrically by the equations q is the parameter. x = sin q, y = sin 2q for 0 q 2p •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A Cartesian equation has the form y = f(x) e.g. y = x2 + 2x + 1 Construct a table of values for 0 q 2p: Some relationships between x and y involve a third variable. p p 3p 5p 3p 7p q 0 p 2p q is in radians. This third variable is called a parameter. 4 2 4 4 2 4 x 0 0.707 1 0.707 0 -0.707 -1 -0.707 0 The equations x = f(t), y = g(t) are called parametric equations. t is the parameter. y 0 1 0 -1 0 1 0 -1 0 y You can sketch a curve described by parametric equations by finding points on the graph for a range of values of t. Each point on the graph has a value of t associated with it. 5p p i= i= 4 4 1 3p i= i = 0, p , 2p EXAMPLE 1 Sketch the graph of the curve with the parametric equations 2 As q increases from 0, the –1 O 1 i=p x curve traces the two x = 2t - 1, y = t2 for -4 t 4 2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• loops of a figure-of-eight. –1 7p 3p Construct a table of values: i= i= 4 4 t -4 -3 -2 -1 0 1 2 3 4 x -9 -7 -5 -3 -1 1 3 5 7 C4 C4 When a curve is expressed using parametric equations, you can y 16 9 4 1 0 1 4 9 16 find the Cartesian equation by eliminating the parameter t (or q). y EXAMPLE 3 t = –4 t=4 Find the Cartesian equation of the curves which have these 16 parametric equations. It is useful to label each point a x = 2t - 1, y = 8t2 + 3 b x = 2sin q + 3, y = 2cos q – 5 with its value of t. You can •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• then see how the curve a Substitute t from x = 2t - 1 into the equation for y: takes shape as t varies. ( ) 2 From x = 2t - 1, t = x + 1 , so y = 8 x + 1 − 1 2 2 t=3 = 2(x + 1)2 - 1 t = –3 = 2x2 + 4x + 1 2x2 + 4x + 1 is a quadratic expression, which indicates The Cartesian equation is y = 2x2 + 4x + 1 that the curve is a parabola. b Find sin q and cos q in terms of x and y: t = –2 t=2 From x = 2sin q + 3, sin q = x − 3 2 y+5 From y = 2cos q - 5, cos q = 2 t = –1 t=1 t=0 Substitute into sin2 q + cos2 q = 1: ( x 2 3) + ( y 2 5) x 2 2 –9 –1 O 7 − + =1 This equation represents a circle, The curve is a parabola. (x - 3)2 + (y + 5)2 = 4 centre (3, -5) and radius 4 = 2. See C2 for revision. The Cartesian equation is (x - 3)2 + (y + 5)2 = 4 160 161
  • 85. 7 Parametric equations 7 Parametric equations You can also find parametric equations of a curve represented 4 Find the Cartesian equation for each of the curves given by a Cartesian equation. parametrically by these equations. a x=t+4 y = 1 - 2t b x=3 y = 4t t EXAMPLE 4 Find parametric equations for the curve with the Cartesian c x=t+1 y = t2 - 2 d x = t2 y = t3 equation y = 6x 1 − x 2 e x = t2 - 1 y = t3 + 2 f x = t2 y= 2 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••• t • g x= 1−t y= 1+t h x = 3cos q y = 4sin q t t You need to find a parameter which will simplify 1 − x 2 i x = sin q y = cos 2q j x = 3cos q y = 5cos 2q Recall that 1 - sin2 q = cos2 q The parameter is q. k x = 2sec q y = 3tan q l x=1+t y=2+t Let x = sin q: 1−t 1−t Letting x = cos q will also give So y = 6 sin q 1 − sin q = 6sin q cos q 2 y = 3sin 2q. Try this yourself. = 3(2sin q cos q) 5 Point P lies on the curve x = 2t - 4, y = t + 1 = 3sin 2q If the y-coordinate of P is 6, find its x-coordinate. Hence, parametric equations for the curve are There may be more than one x = sin q, y = 3sin 2q possible pair of parametric 6 Point Q lies on the curve x = 2 + t , y = 3 − 2t equations for a given curve. 2−t 2−t If the x-coordinate of Q is 4, find its y-coordinate. Exercise 7.1 7 The point (4, k) lies on the curve x = t2 - 5, y = t - 1 1 A curve has the parametric equations x = 3t, y = t2 - 3 C4 C4 t -3 -2 -1 0 1 2 3 Find the possible values of k. Copy and complete this table. x Hence sketch the graph of the curve for -3 t 3 y 8 The variable point P (at, t2 - 1) meets the line y = 8 at the point (6, 8). Find the possible values of a and the Cartesian equation of the 2 The parametric equations of a curve are x = 3t2, y = t3 t -2 -1 0 1 2 curve along which P moves. Copy and complete this table. x Hence sketch the graph of the curve for -2 t 2 9 Find the coordinates of the points where these curves meet the x-axis. y a x = t2 + 1 y=t-3 b x = 1 + t3 y=2-t c x = 5t + 3 y = t2 - 4 d x = 3cos q y = sin q 3 Construct your own tables of values to sketch the graphs of the curves with these parametric equations for the range of 10 Find the coordinates of the points where these curves meet the y-axis. values given in each case. a x=t-5 y = t2 - 2 b x = t 2 - 3t + 2 y=t+4 a x = t 2 - 4, y = 1t3 for -3 t 3 2 c x = t3 - t y = t2 d x = tan q y = sec q b x= t3 - 2t + 4, y = t - 1 for -2 t 2 11 The curve x = at 2 - 3, y = a(t - 2) contains the point (17, 0). c x = t 2, y=1 for -3 t 3 t Find the value of a. d x = 4sin q, y = 4cos q for 0 q 2p 12 The point (20, 40) lies on the curve x = at 2, y = 4at e x = 5cos q, y = 3sin q for 0 q 2p Find the value of a. f x = sec q, y = tan q for 0 q 2p 162 163
  • 86. 7 Parametric equations 7 Parametric equations 13 The curve x = 2asin q, y = 1 + acos 2q intersects the y-axis at 21 A curve has parametric equations the point (0, 4). x = t - 2sin t, y = 1 - 2cos t, 0 t 2p Find the value of a. a Find the values of t, in terms of p, at the two points where the curve crosses the x-axis. 14 Points A and B lie on the curve x = t 2 - 3, y = 2t + 3 where t = 2 and t = 3 respectively. b The curve crosses the y-axis at two points where t = a and t = b Find Show that one of these points has a = 0. Find, by trial-and-improvement, the value of b to 1 decimal place. Find the coordinates of these a the distance between A and B two points on the y-axis. b the gradient of the chord AB 22 By substituting y = tx, find parametric equations for the c the equation of the chord AB. curves with these Cartesian equations. 15 Show that these two pairs of parametric equations represent a y3 = x2 the same straight line. Find the Cartesian equation of the line. b y = x2 - 2x a x=1-t y = 3 - 2t c x3 - y3 = x2 b x= 1 y=t +3 t +1 t +1 d x - y = xy 16 Find parametric equations of the curve with the Cartesian equation 23 A curve has the Cartesian equation x 3 + y 3 = 3xy y = x 4 − x2 a Show, by substituting y = tx, that the curve can be represented C4 C4 by the parametric equations if q is the parameter such that x = 2cos q x= 3t , y = 3t 2 17 Use the identity 1 + tan2 q = sec2 q to find parametric equations 1 + t3 1 + t3 for the curve with the Cartesian equation y = x b i Find the points where t = 0 and t = ¥ 1 + x2 ii Investigate the curve when t is close to -1. c Hence, sketch the curve and find the equation of any asymptote. 18 The Cartesian equation of a curve is y = 3 1 − x 2 x Find parametric equations for this curve if INVESTIGATION a x = sin q b x=1 t 24 a Use a computer’s graphical package to check your answers to questions 1, 2 and 3. 19 The equation of a circle is x 2 + y 2 - 6x - 4y + 12 = 0 Refer to Example 3. You can also check answers to other questions by a The equation is written in the form (x - a)2 + (y - b)2 =1 drawing appropriate graphs. Find the values of a and b. b Investigate how changing the values of constants A, Your computer software may b Hence, find parametric equations for the circle in terms B, m and n in these parametric equations alters the need to have q in degrees, of the parameter q. graphs of the curves. that is, 0° q 360° x = Asin mq, y = Bcos nq for 0 q 2p 20 A hyperbola has the equation 9x 2 - 4y 2 - 18x + 16y - 43 = 0 (x − a)2 (y − c)2 a The equation is written in the form − =1 b2 d2 Find the values of a, b, c and d. b Hence, find parametric equations for the hyperbola in terms of q. 164 165
  • 87. 7 Parametric equations 2 Find the points of intersection of each curve and the given line. 7.2 Points of intersection a x = t 2 - 1, y = 2t + 1 y=x+2 b x = t 3, y = t 2 + 2t y = 2x + 1 You can use simultaneous equations to find the points of c x = t 2 - 1, y = t 2 + t + 1 2y - x - 3 = 0 intersection when a curve is expressed in parametric equations. 3 Find the points of intersection of the curve with parametric equations x = 2t 2, y = 3t and the circle x 2 + y 2 - 6x - 1 = 0 EXAMPLE 1 Find the points of intersection of the curve with parametric equations x = 2t - 1, y = t 2 4 Find the points of intersection of the parabola x + y2 = 9 and the straight line y = 3x - 2 and the curve x = (t - 3)2, y = 2t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Solve the equations x = 2t - 1, y = t 2 ⎫ simultaneously. There are three unknowns, 5 Find the points where these curves cross the coordinate axes. ⎬ y = 3x - 2 ⎭ x, y and t. a x=t-1 y=t-4 b x=t-2 y = t2 - 9 c x = t2 + 1 y = t - 3 Substitute x = 2t - 1, y = t2 into y = 3x - 2 to eliminate x and y: t 2 = 3(2t - 1) - 2 d x = t3 - 1 y = t2 - 4 e x =1 − 1 y = t2 + 1 f x = p - 2t y = 1 - sin t t t −4 t 2 - 6t + 5 = 0 (t - 1)(t - 5) = 0 so t = 1 or 5 6 The variable point P(t 2, 2t) moves along a locus. Find the points where the locus crosses the straight line y = 2x - 4 When t = 1, x = 2(1) - 1 = 1 and y = 12 = 1 When t = 5, x = 2(5) - 1 = 9 and y = 52 = 25 7 The point P(t 2, 4t) moves as t varies. Q is the midpoint of OP The points of intersection are (1, 1) and (9, 25). where O is the origin. Write down the coordinates of Q. Find the C4 C4 Cartesian equation of the locus of Q. EXAMPLE 2 Find the points A, B and C where the curve given parametrically 8 The point P(2t 2, 6t) lies on a curve. The foot of the perpendicular by x = t 2 - 4, y = t - 1 intersects the two coordinate axes. from P to the x-axis is Q. The midpoint of PQ is M. Find Hence, find the area of triangle ABC. a the coordinates of Q and M in terms of t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• When y = 0, t - 1 = 0 giving t = 1 The curve meets the x-axis when y = 0 b the Cartesian equation of the locus of M as P moves. When t = 1, x = 12 - 4 = -3, giving the point of intersection A(-3, 0). 9 Find the points of intersection of the curve x = 1 - 5t, y = t 3 + t 2 and the line x + y + 2 = 0 When x = 0, t 2 - 4 = 0 giving t = ±2 The curve meets the y-axis when x = 0 When t = 2, y = 2 - 1 = 1 y 10 The curve x = t + 1, y = t 2 - k intersects the x- and y-axes at and, when t = -2, y = -2 - 1 = -3, points P and Q respectively. giving the points of intersection B(0, 1) and C(0, -3). B Find the value of k (k ¹ 1) such that OP = 2OQ where O is 1 The area of triangle ABC is A the origin. 1 BC × OA = 1 × 4 × 3 = 6 square units –3 O x 2 2 INVESTIGATION C –3 11 Use a computer’s graphical software to draw graphs using their parametric equations. Exercise 7.2 Check your answers to the problems in this exercise 1 Find the points of intersection of the parabola x = t 2 y = 2t where you have found points of intersection. and the straight lines a x+y=3 b 4x + 2y = 15 166 167
  • 88. 7 Parametric equations EXAMPLE 2 7.3 Differentiation A curve is defined parametrically by x = 3 - t, y = 4 - t - t 2 A normal is drawn to the curve at the point A where t = 1 dy Find another point B at which this normal intersects the curve. You can differentiate parametric equations to obtain . dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Let t = 1:x = 3 - 1 = 2 and y = 4 - 1 - 12 = 2 If x = f(t) and y = g(t) dy dy dy dx dy So, the normal is drawn at the point A (2, 2). dt the chain rule gives dt = dx × dt or dx = dx Find dy and substitute t = 1: dt dx dy dy −1 − 2t dy Once you know dx , you can use it to find equations of tangents = dt = − dx dx 1 and normals to a curve and to find stationary values. dt = 1 + 2t EXAMPLE 1 A curve has parametric equations x = t3 + 2t + 4, y = t2 - 1 When t = 1, Find a the equation of the tangent at the point where t = 2 the gradient of the tangent at the point A(2, 2) is 1 + 2(1) = 3 If the gradients of tangent and normal are m and m¢, b the nature of any stationary values and the points at which they occur. The gradient of the normal at the same point is - 1 . 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3 then m¢ = - m So, the equation of the normal at the point A(2, 2) dx a Differentiate x wrt t: = 3t 2 + 2 y−2 dt is = −1 x−2 3 dy Differentiate y wrt t: = 2t 3y + x = 8 dt C4 C4 dy 2t To find the intersections of the normal and curve, substitute the parametric dy So = dt = equations into 3y + x = 8: dx dx 3t 2 + 2 dt 3(4 - t - t 2) + (3 - t) = 8 Substitute t = 2: = 2×2 = 2 2 is the gradient of the 3t 2 + 4t - 7 = 0 You know that the curve and 3 × 22 + 2 7 7 (t - 1)(3t + 7) = 0 normal intersect when t = 1 tangent when t = 2 7 When t = 2 x = 23 + 2 ´ 2 + 4 = 16 t = 1 or - 3 and y = 22 - 1 = 3 t = 1 gives the initial point A on the normal, y So, the tangent passes through the point (16, 3) with a gradient of 2 . 7 Hence at B, t = - 7 y−3 y − y1 3 The equation of the tangent is =2 =m x − 16 7 x − x1 A Substitute t = − 7 into the parametric equations: 2 Rearrange: 7y = 2x - 11 See C1 for revision. 3 B dy 2t x = 3 + 7 = 51 y = 4 + 7 − 49 = 8 b For stationary values, = =0 3 3 3 9 9 O 2 6 x dx 3t 2 + 2 So the only stationary value occurs when t = 0 at the point where x = 03 + 2 ´ 0 + 4 = 4 The numerator 2t = 0 when t = 0 The required point of intersection is 5 1 , 8 . ( 3 9) and y = 02 - 1 = -1 Investigate the gradient on either y side of the point (4, -1): t -1 0 1 Choose values of t either side of t = 0 and make sure that the x 1 4 7 x-values are either side of x = 4 dy − 2 2 dx 5 0 5 3 There is a minimum –1 O x 4 16 value at the point (4, -1). 168 169
  • 89. 7 Parametric equations 7 Parametric equations Exercise 7.3 6 The tangent at point P(1, 1) to the curve x = 1 , y = t 2 intersects 1 Find the gradient of each curve with these parametric equations t the curve at point Q. at the point with the given value of t (or q). Find the equation of the tangent at P and the coordinates of Q. a x=t+1 y = 3t 2 when t = 2 b x = t2 - 2 y = t3 + 1 when t = 4 7 The point P lies on the curve x = 5cos q, y = 4sin q A and B are the points (-3, 0) and (3, 0) respectively. c x = t 3 - t2 y = (t + 3)2 when t = 1 a Find the distances AP and BP in terms of q. d x = 3sin q y = 5cos q when q = p 4 b Show that the sum of the distances AP and BP is constant e x=1+ t2 y = 1+ 1 when t = -2 for all points P. t f x = sin 2q y = qcos q when q = 0 ( t) 8 The line from the variable point P t, 1 to the origin O intersects the line x = 1 at the point Q. 2 Find the equation of the tangent and the normal to the curves with these equations at the point where t (or q) has the given value. y x=1 a x = 2t 2 y = 4t when t = 1 2 b x = t2 + 1 y = t3 - 1 when t = 1 when q = p P c x = 2cos q y = cos 2q Q 4 C4 C4 O 1 x y = 1 − t2 2 d x = 2t when t = 2 1+t 2 1+t 3 Find the stationary points on these curves. a x=t y = t3 - t b x = t2 y =t +1 t c x = q - cos q y = sin q for 0 < q < 2p Find d x = 3sin q + 2 y = 3cos q + 5 for 0 q 2p a the gradient and the equation of the line OP b the coordinates of Q in terms of t 4 The curve x = 2t 2, y = 4t has a normal at point P(8, 8). Find the equation of the normal. c the Cartesian equation of the locus of the midpoint of PQ. Also find the point where the normal meets the curve a second time. INVESTIGATION 5 Find the equation of the normal to the curve x = 6t, y = 6 at t 9 Investigate how to draw tangents and normals to curves the point where t = 2 using a computer’s graphical package. Hence, check some Also find the point where the normal intersects the curve again. of your answers to the problems in this exercise. 170 171
  • 90. 7 Parametric equations EXAMPLE 2 7.4 Integration This diagram shows the curve with parametric y equations x = t 2 + 1, y = t 3 - 4t t = –1 b y Find the values of t at the points A(1, 0) and B(5, 0). t2 You can modify the expression f(x) dx for the area under a a Find the area of the region enclosed by the loop of the curve. B curve using the chain rule. t1 A t = ±2 O x 1 t=0 5 For parametric equations x = f(t), y = g(t), the area under the curve between the points where O x t = t1 and t = t2 is given by a b t=1 t2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ∫ y dx dt The limits of this integral are t = t1 Find t at A and B: t1 dt and t = t2, as the independent At points A and B, y = 0 variable is now t and not x. t 3 - 4t = 0 t(t - 2)(t + 2) = 0 EXAMPLE 1 This sketch shows the curve with parametric equation y t = 0 or ±2 4 t=3 x = t 2 + 1, y = t + 1 t=1 B Let t = 0: x = 02 + 1 = 1 and y = 0 - 0 = 0 Find x and y when t = 0 t 2 A So, t = 0 at the point A(1, 0). Find the shaded area between the curve and the x-axis from O x Let t = 2: x = 22 + 1 = 5 and y = 23 - 4 ´ 2 = 0 Find x and y when t = +2 x = 2 to x = 10 2 10 –2 Let t = -2: x = (-2)2 + 1 = 5 and y = (-2)3 - 4 ´ (-2) = 0 and t = -2. C4 C4 –4 So, t = ±2 at the point B(5, 0). •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You want the area under the curve from Let x = 2: t 2 = 1, t = ±1 so y = 2 or -2. A(1, 0) where t = 0 to B(5, 0) where t = ±2 So, point A is (2, 2). When t = 1, x = 2, y = 1 - 4 = -3, giving the point (2, -3) below the x-axis. Let x = 10: 2 t = 9, t = ±3 so y = 3 1 or - 3 1 . So, integrating from t = 0 to t = 2 will give the area below the x-axis. 3 3 So, point B is 10, 3 1 . ( 3 ) Similarly, t = -1 gives the point (2, 3) and integrating from t = 0 to t = -2 gives the area above the x-axis. You want the area under the curve from A(2, 2) where t = 1 You are calculating the area area of loop = 2 ´ area enclosed by the curve above the x-axis The curve is symmetrical 3 ( to B 10, 3 1 where t = 3 ) above the x-axis only. =2´ 5 y dx = 2 −2 y dx dt where y = t3 - 4t and dx = 2t about the x-axis. dt dt 1 0 Integrate: −2 10 3 dx =2 (t3 - 4t)(2t)dt Required area = y dx = y dx dt where y = t + 1 and = 2t 0 dt t dt 2 1 Notice the change in the limits −2 3 as the independent variable = 1 ( t) t + 1 (2t) dt changes from x to t. =4 0 (t4 - 4t2)dt 3 − ⎡ 5 3⎤ 2 You could find the answer directly = 2 (t 2 + 1) dt = 4 ⎢ t − 4t ⎥ by integrating the whole way from 1 ⎣5 3 ⎦0 t = -2 to t = 2 using ( ) 3 −2 ⎡ 3 ⎤ = 4 − 32 + 32 − 0 = 2 ⎢t + t ⎥ 5 3 2t4 - 8t2 dt ⎣3 ⎦1 2 = 17 1 square units Try this yourself. ( = 2 9 + 3 − 1 − 1 = 21 1 square units 3 ) 3 15 172 173
  • 91. 7 Parametric equations 7 Parametric equations Exercise 7.4 5 a This diagram shows the curve x = t 2 + 1 , y = 2t 2 y 1 Find, in each case, the area between the x-axis and the curve t between the two points P and Q defined by the given values Find the coordinates of the points A, B and C on the C of t or x. curve where t = 1 , 1 and 2 respectively. y 2 a x = t + 2 y = 3t - 1 for t = 1 to t = 4 b Calculate the shaded area of the diagram bounded by B b x = 2t y = 4t 2 + 1 for t = 0 to t = 2 Q the curve and the line AC. c x = t2 y = 1 + 12t - 3t 2 for t = 0 to t = 4 A x P O d x = t - 1 y = 2t - 1 for x = 1 to x = 5 e x = 2t y = t2 + 2 for x = 2 to x = 4 O x f x = 4t y=2 for x = 2 to x = 4 t 2 A and B are the points on the curve x = t 3, y = t2 y where t = 0 and t = 2 Find the shaded area on the diagram. B 6 The curve x = t 2 - 3t + 2, y = 4t 2 + 1 is shown on y R t=2 Also find the area of the region labelled R. this diagram. A Find the points at which the curve cuts the y-axis. O t=0 x Also find the area bounded by the curve and the line y = 5 C4 C4 3 a The curve x = t 2 - 1, y = 2t(2 - t) cuts the y O x coordinate axes at the points A, B, C and D. Find the positions of these points and their B associated t-values. 7 a A curve is expressed parametrically by x = t 2 + 1, y = 2t R A b Calculate the area of the region R in the C O x Another curve has the parametric equations x = 2s, y = 2 s first quadrant enclosed by the curve and the Find any points of intersection. two coordinate axes. b Find the area enclosed by the two curves and the line x = 5 c Calculate the total shaded area. 8 a The straight line y = c - 2x touches the curve x = t, y = 1 t D at point P. Find the possible values of c and the coordinates of P. b Find the area enclosed by the curve x = t, y = 1 and the t line y = 3 - 2x 4 This diagram shows the curve x = t 2, y = t(4 - t 2) y Find the values of t at the two points where the curve cuts the x-axis. INVESTIGATION Hence, find the area enclosed by the loop. 9 Show that, when finding the area under a curve, you O x get the same answer whether you use the curve’s Cartesian equation or its parametric equations. Consider some of the curves in questions 1 and 2 of this exercise. 174 175
  • 92. 7 Parametric equations 8 A curve has parametric equations x = t 2, y = 2t Review 7 R is the point on the curve where t = r a Show that the normal to the curve at point R has a gradient of -r. 1 Find the Cartesian equation for each of the curves given parametrically by these equations. b If S is the point (s 2, 2s), find the gradient of the chord RS in terms of r and s. a x = t - 1, y = t2 + 1 b x = t − 1, y = t +1 c If the chord RS is normal to the curve at R, show that r2 + rs + 2 = 0 t t d At what point does the normal at the point (9, 6) meet the curve again? c x = 4cos q, y = 3sin q d x = 2cos q, y = cos 2q 9 The trajectory of a cricket ball is given parametrically by the equations 2 Use the identity sin2 q + cos2 q º 1 to find parametric equations for the curves with the Cartesian equation x = 10t, y = 2 + 10t - 5t 2 y= 5x where x and y are the horizontal and vertical distances travelled a y = 3 x 1 − x2 b 4− x2 (in metres) after a time of t seconds from the ball being struck. a Find the Cartesian equation of the trajectory. 3 The point (5, a) lies on the curve x = t 2 + 1, y = 1 (t − 1) 3 b Find the time taken before the ball hits the ground. Find the possible values of a. c What is the horizontal distance travelled by the ball before 4 Find the points where the curve given by these parametric equations it hits the ground? a x = 3t + 1, y = t 2 - 1 intersects the straight line 2x + y = 6 10 This diagram shows a sketch of part of the curve C with y C4 C4 b x = t3 - 4, y = t 2 - 4 intersects the x-axis parametric equations c x = cos t, y = 5sin t intersects the circle x 2 + y 2 = 2 x = 1 + 3 , y = t 2 sin t, p t p C P t 2 R ⎛ 2⎞ 5 Find the equation of the tangent and the normal to the curves with a The point P ⎜ a, p ⎟ lies on C. Find the value of a. ⎝ 4 ⎠ these parametric equations at the point where t has the given value. O a x b Region R is enclosed by C, the x-axis and the line a x = 2t - 1, y = t 3 + 1 when t = 1 b x = t 3 - 1, y = t 2 + t + 1 when t = 2 x = a as shown in the diagram. p c x = 1 + t, y= 1 when t = 2 d x = 2sin t, y = sin 2t when t = p 1−t 6 Show that the area of region R is given by 3 p sin t dt 2 6 Find, in each case, the area between the x-axis and the curve c Find the exact value of the area of R. between the two points defined by the given values of t or x. 11 A curve has parametric equations a x = t + 2 from t = 1 to t = 4 b x = 2t + 1 from x = 3 to x = 9 x = 2cot q, y = 2sin2 q, 0 < q p y = 3t - 1 y= t 2 dy c x = ln t from t = 2 to t = 3 d x = e-t from x = 1 to x = 2 a Find an expression for dx in terms of the parameter q. y = tsin t y = e2t + 1 b Find an equation of the tangent to the curve at the point where q = p 4 7 The curve C is defined parametrically, for 0 q p, by the equations c Find a Cartesian equation of the curve in the form y = f(x) x = 3cos q, y = 3cos 2q + 6 State the domain on which the curve is defined. [(c) Edexcel Limited 2005] dy a Find in terms of q. dx Explain why the gradient at any point on the curve C is never greater than 4. b Find the Cartesian equation of C and sketch the graph of C. 176 177
  • 93. 7Exit 8 The binomial series This chapter will show you how to find the binomial expansion of (a + b)n and (1 + x)n when n is a positive integer Summary Refer to find the binomial expansion of (1 + x)n when n is a fraction or a negative number You can sketch the graph of a curve given by the parametric equations x = f(t), and write the condition for which the expansion is valid y = g(t) by using a table of values showing the values of x and y as t varies. 7.1 use partial fractions to express certain kinds of algebraic fraction as a To convert the parametric equations x = f(t), y = g(t) of a curve into a binomial series Cartesian equation, eliminate the parameter t from the two equations. 7.1 find numerical and algebraic approximations using binomial expansions. You can find the points of intersection of two curves by solving the equations of the curves simultaneously. Before you start For example, you can substitute the parametric equations of one curve into the Cartesian equation of the other curve. 7.2 You should know how to: Check in: dy To differentiate x = f(t), y = g(t) to find dx , 1 Use the laws of indices. 1 Write in the form (1 + x)n − 2 dy 1 1 1 e.g. = = (1 + x) 3 a (1 + x)5 b dy dt g ′(t) 3 (1 + x )2 2 (1 + x )3 the chain rule gives: dx = dx = f ′(t) 7.3 (1 + x )3 C4 C4 x =b dt t =t 2 The area under a curve is given by x =a ∫ y dx = t = t1 y dx dt dt 2 Manipulate surds. 2 Write in terms of the root of an integer e.g. 0.99 = 9 × 11 = 3 11 a 1.21 b 4×3+ 4 c 1 where the parameter t has the value t1 at the point where x = a 100 10 9 1.2 and the value t2 at the point where x = b 7.4 ⎛n⎞ 3 Use Pascal’s triangle and calculate ⎜ ⎟ . 3 a Use Pascal’s triangle to expand (2 + x)3 r ⎝ ⎠ e.g. ⎛ 10 ⎞ 10 10 × 9 × 8 ⎜ ⎟ = C3 = = 120 b Find the value of 8C3 and expand (2 + x)8 Links ⎝ 3⎠ 1× 2× 3 The path of any projectile is the result of two independent motions, horizontal and vertical, which can be expressed 4 Find terms when multiplying brackets. 4 In the expansion of in terms of a parameter time t. e.g. Find the term in x2 in the expansion of (1 − 3x − 5x 2 + ) (1 + 1 x + 1 x 2 − ) You can model the path of a projectile at any time t by the 2 2 ( (1 + 2x + 3x + ) 1 − 1 x − 1 x 2 − 3 ) find 2 4 parametric equations 1 1 2 ( )1 The term is (1) − x + (2x) − x + (3x 2)(1) 3 2 ( ) a the term in x x(t) = (n0 cos q)t, y(t) = (n0 sin q) t − gt2 2 where q is the angle at which the projectile is launched at 1 ( 5 = − − 1 + 3 x2 = x2 3 3 ) b the term in x2. time t = 0, n0 is the initial velocity of the projectile, and g is the acceleration due to gravity. 5 Express a fraction in partial fractions. 5 Express in partial fractions 7 e.g. Let ≡ A + B a 3 This model can be used to analyse the motion of a specific (1 − x)(5 + 2x) 1 − x 5 + 2x (1 − 2x)(1 + x) projectile, which is useful in areas such as sports science The cover-up rule uses x = 1 to give A = 1 b 3 to study, for example, the flight of a golf ball. and uses x = −2 1 to give B = 2 2 (1 − 2x)(1 + x)2 7 So ≡ 1 + 2 (1 − x)(5 + 2x) 1 − x 5 + 2x 178 179
  • 94. 8 The binomial series When n is negative or fractional 8.1 The binomial series the binomial series obtained is an infinite series – it does not terminate after n + 1 terms For n a positive integer, the binomial series is the series can be written as a series of ascending powers of x Pascal’s triangle and nCr have no meaning when n is negative or ænö ænö ænö ænö ænö n fractional and cannot be used to find coefficients (a + b)n = ç ÷ an + ç ÷ an -1b + ç ÷ an -2b2 + + ç ÷ an -rbr + ç ÷b the condition -1 < x < 1 which restricts the range of values è0 ø è1 ø è2 ø r è ø ènø of x must always be stated to expand (a + x)n as a series when n is not a positive integer, ( a) n This is a finite series with n + 1 terms. you must first rearrange (a + x)n as an 1 + x ænö ænö You can find the coefficients ç ÷ , ç ÷ , è 0 ø è1 ø EXAMPLE 2 1 Find the first four terms in the expansion of either or 1− x from the nth row of State the range of values of x for which the expansion is valid. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Pascal’s triangle when n is small by using 1 −1 As = (1 − x ) 2 , let n = − 1 and replace x by -x in the expansion of (1 + x)n: 1 Row ⎛n⎞ n = n! 1− x 2 ⎜ ⎟ = Cr (n − r)!r ! n! means factorial n 1 1 1st ⎝r ⎠ = n ´ (n - 1) ´ (n - 2). . . ´ 1 ( 1 )( 2 ) ( x ) + ( 1 )( 2 )( 2 ) ( x ) − 3 − 3 5 − − − ( ) 1 1 2 1 2nd 1 − 2 2 n(n − 1)(n − 2) (n − r + 1) There are r terms in both the = (1 − x ) 2 = 1 + − 1 ( − x ) + − 2 − 3 + = 1− x 2 1× 2 1× 2 × 3 C4 C4 1 3 3 1 3rd 1× 2 × 3 × r numerator and denominator. 1 4 6 4 1 4th Write out the expansion in full with = 1 + 1 x + 3 x2 + 5 x3 + brackets to avoid errors with the 2 8 16 n fractions and negative signs. The special case when a = 1 and b = x gives the binomial series for (1 + x) The expansion is valid for |-x| < 1 which gives |x| < 1 (1 + x)n = 1 + nx + n(n − 1) x 2 + n(n − 1)(n − 2) x 3 + + n(n − 1)(n − 2) (n − r + 1) x r + + xn 1× 2 1× 2 × 3 1× 2 × 3 ×r This is valid for all x when n is a positive integer. EXAMPLE 3 2 Find the first four terms in the expansion of (8 + 3x)3 Give the range of values of x for which the expansion is valid. EXAMPLE 1 Find the first four terms in the expansion of (1 + 2x)20 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Rearrange so that the first term inside the bracket is 1. ⎛ n⎞ (1+ 2x )20 = 1 + 20(2x) + 20 × 2 (2x)2 + 20 × 19××318 ( 2x )3 + 1 × 19 1× 2 n is large, so use ⎜ ⎟ to find ⎝r ⎠ Then let n = 2 and replace x by 3 x in the expansion of (1 + x)n: 3 8 ( ) the coefficients. Using 2 = 1 + 40x + 760x2 + 9120x3 + … 2 2 (8 + 3x)3 = 8 3 1 + 3x 3 Pascal¢s triangle is not an 8 which are the first four terms of the series. appropriate method in this case. ⎡ 2 2 −1 = 4 ⎢1 + 2 3x + 3 3 3x ( ) ( ) + 2 ( 2 − 1)( 2 − 2) ( 3x ) + ( 3 )( 8 ) 1 × 2 8 3 31 × 2 ×33 8 2 3 ⎤ ⎥ 83 = 4 2 ⎢ ⎣ ⎥ ⎦ The binomial expansion of (1 + is also valid for all x)n You can write -1 < x < 1 as ⎡ 2 3 ⎤ x2 x3 negative or fractional values of n provided that -1 < x < 1. |x| < 1. This restriction on = 4 ⎢1 + x − x + x − ⎥ = 4 + x − 16 + 96 − As a check, substitute a small ⎣ 4 64 384 ⎦ value of x (such as x = 0.01) the value of x ensures that into the series and compare the series converges. The expansion is valid for 3 x < 1 2 8 with the value of 8.03 3 from which gives |x| < 8 or −2 2 < x < 2 2 your calculator. 3 3 3 180 181
  • 95. 8 The binomial series 8 The binomial series EXAMPLE 4 4 Expand each expression as far as the term in x2. Find the coefficient of x2 in the expansion of (1 + x )4 Find the values of x for which each expansion is valid. 31 − 3 x For what values of x is the expansion valid? a (1 + x) 1 − x b 1 − 2x 1+ x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (1 + x )4 −1 c 2+x d x+3 = (1 + x )4 (1 − 3 x ) 3 ( ) x −1 2 31 − 3 x You can find the coefficients of 1− 1x (1 + x)4 from Pascal’s triangle. ( )( ) 2 ⎛ 1 −1 − 1 ⎞ ( ) − ⎜ ⎟ = (1 + 4x + 6x + 2 ) ⎜1 + − 3 1 (−3x) + 3 3 ( −3x )2 + ⎟ 1+ x 2 ⎝ 1× 2 ⎠ e f (3 − x) (1 + 2x ) 3 1− x = (1 + 4x + 6x 2 + ) (1 + x + 2x 2 + ) g (2 + x)2 1 − 2x The term in x2 is (1)(2x2) + (4x)(x) + (6x2)(1) = 12x2 The coefficient of the x2 term is 12. 5 Find the coefficient of x2 in the expansion of 1 + x + x 2 The expansion of (1 + x)4 is valid for all values of x because the index 4 is a positive integer. 6 Find the first four terms in the binomial expansion of 1 + 2 x The expansion of (1 − 3x )− 3 is valid for |−3x| < 1 or − 1 < x < 1 1 in descending powers of x. 3 3 For what values of x is the expansion valid? The whole expansion is thus valid for − 1 < x < 1 3 3 7 The coefficient of x2 in the expansion of 1 + ax is -2. C4 C4 Find two possible values of a and the first four terms of each possible expansion. Exercise 8.1 1 Expand as a series of ascending powers of x up to and including x3. 8 The first three terms in the expansion of (1 + ax)n are 1, +2x, and -2x 2. State the range of values for which each series is valid. Find a, n and the coefficient of x3 in the expansion. 1 1 a 1 + 2x b 1+ x c 1 + 2x d (1 − x)3 9 The second and fourth terms in the expansion of (1 + kx)n e 3 1 + 3x f 1 g 1 h 4 1 + 2x are x and 5 x 3. 3 1− x (1 − 3x)2 Given that k, n > 0, find k and n. Also find the third term of the expansion. ( ) 2 For what values of x is the expansion valid? 1 1 1− 1x 3 i j k (1 + 2x) 3 l ( ) 2 2 1 − 2x 1− 1x 2 INVESTIGATION 1 1 2 a Expand i ii 10 Express f(x) = 1 + 1 as a series of descending powers of x. 1+ x 1− x x 4 as a series of ascending powers of x as far as x Show that f(x) = 1 1 + x and so express f(x) as a series of b Identify each series as a geometric progression and so find the x sum of each series using the formula for a geometric progression. ascending powers of x. Use computer software to draw the graphs of f(x) and these two series. 3 Find the first three terms in the binomial expansion of each expression. Notice the importance on the graphs of the values of x for Give the values of x for which each expansion is valid. which the two expansions are valid. 1 1 1 a 4+x b c d 2+x (2 − 3x)2 9−x 182 183
  • 96. 8 The binomial series Exercise 8.2 8.2 Using partial fractions 1 Write each expression in partial fractions and so expand each expression as a series of ascending powers of x as far as x3. You can express some fractions as a series of ascending powers Find the range of values of x for which each series is valid. of x by firstly expressing them as partial fractions. 3 4 5 a b c (1 − 2x)(1 − x) (1 + 3x)(1 − x) ( 1− ) 1 x (1 + 2x) 2 EXAMPLE 1 Find the first four terms of the expansion of 1 + 5x (1 − x)(2 + x) 3 6 2 d e f as a series of ascending powers of x. (2 − x)(1 + x) (3 + x)(2 + x) (3 − 2x)(1 − 2x) Find the range of values of x for which the expansion is valid. 4 g •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (1 + x)(1 − x)2 Let 1 + 5x ≡ A + B (1 − x)(2 + x) 1 − x 2 + x 2 a Express 2x + 32 in the form A + B , where A and B are constants. A(2 + x) + B(1 − x) (x − 4) x − 4 (x − 4)2 ≡ (1 − x)(2 + x) b Hence, or otherwise, express 2x + 32 as a binomial series up to and Equate the numerators: (x − 4) 1 + 5x º A(2 + x) + B(1 - x) The cover-up rule gives including the term in x4. Give the range of values of x for which the When x = -2, 1 - 10 = 0 + 3B the same results with series is valid. B = -3 less written working. When x = 1, 1 + 5 = 3A + 0 c Compare the value of 2x + 32 with the value of the series up to (x − 4) C4 C4 A=2 and including the term in x 4 when 1 + 5x i x=1 ii x = 1.5 iii x = 2 So = 2 − 3 = 2 − 3 (1 − x)(2 + x) 1 − x 2 + x 1 − x 2 1 + 1 x 2 ( ) What do you notice? 2( ) −1 = 2(1 − x)−1 − 3 1 + 1 x 3 f(x) = 1 + 14x , x <1 2 (1 − x)(1 + 2x) 2 a Express f(x) in partial fractions. = 2 ⎢1 + (−1)(−x) + (−1)(−2) (−x)2 + (−1)(−2)(−3) (−x)3 + . . .⎤ ⎡ ⎥ 1 ⎣ 1× 2 1× 2 × 3 ⎦ 3 b Hence find the exact value of 1 f(x) dx, giving your answer in the 3 ⎡1 + (−1) 1 x + (−1)(−2) 1 x ( ) ( ) + ( 11)( 22)(33) ( 1 x ) + . . .⎤⎥⎦ 2 3 6 − − − − form ln p, where p is rational. 2⎢⎣ 2 1× 2 2 × × 2 c Use the binomial theorem to expand f(x) in ascending powers = 2 (1 + x + x 2 + x 3 + 2 2 4 ( ) − 3 1 − 1 x + 1 x2 − 1 x3 + . . . 8 ) of x, up to and including the term in x 3, simplifying each term. [(c) Edexcel Limited 2003] = 1 + 11 x + 13 x 2 + 35 x 3 + 2 4 8 16 INVESTIGATION The expansion of (1 - x)-1 is valid for |x| < 1; that is -1 < x < 1 4 Use a computer’s graphical software to draw the graph of ( ) −1 The expansion of 1 + 1 x is valid for 1 x < 1; i.e. -2 < x < 2 -1 < x < 1 is a stricter condition y = f(x) where f(x) is one of the fractions in this exercise. 2 2 Also draw the graph of the equivalent binomial expansion. than -2 < x < 2. Both these conditions must apply, so the whole expansion is Explore the graphical significance of the range of valid valid for -1< x < 1. values of x. Repeat for other functions f(x) selected from this exercise, especially for Question 2. 184 185
  • 97. 8 The binomial series You can compare the graph of y = f(x) with the graph of its 8.3 Approximations binomial expansion. 2 3 The terms of the binomial expansion of (1 + x)n have ascending In example 2, you found that 1 + x = 1 + x − x + x − . . . 2 8 16 powers of x. for |x| < 1 If the value of x is small, such as 0.01, then successive terms in the The graph of y = 1 + x and the graph of this infinite series are expansion have smaller and smaller values. identical for |x| < 1. However, you can also compare the graph of y = 1 + x with EXAMPLE 1 Find the value of 0.9998 correct to 6 significant figures by the graphs of just parts of the series; for instance letting x = 0.001 in the expansion of (1 - x)8. 2 2 3 y = 1+ x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y = 1+ x − x and y = 1+ x − x + x (1 - x)8 = 1 + 8(-x) + 8 ´ 7 (-x)2 + 8 ´ 7 ´ 6 (-x)3 + 2 2 8 2 8 16 + x8 1´ 2 1´ 2 ´ 3 These are approximations to 1 + x and are valid when x is small = 1 - 8x + 28x2 - 56x3 + … + x8 and high powers of x are negligible in size. That is, they are valid Let x = 0.001 when x is close to x = 0 and the graph is in the neighbourhood of so (1 - x)8 = 0.9998 the point (0, 1). Then 0.9998 = 1 - 0.008 + 0.000 028 - 0.000 000 056 + . . . Keep your working to at least » 0.992 027 944 7 significant figures if you The approximation y = 1 + x gives a straight line graph. The line y = 1 + 1 x is, in fact, the 2 2 = 0.992 028 correct to 6 significant figures. require accuracy to 6 s.f. It is a linear approximation. tangent to the curve y = 1 + x at the point (0, 1). C4 C4 2 You can check this value on a calculator. The approximation y = 1 + x − x is a quadratic approximation. By including more terms of the series, the value could be calculated 2 8 beyond the accuracy of a calculator. 2 3 The approximation y = 1 + x − x + x is a cubic approximation. 2 8 16 This diagram shows that the more terms there are in the EXAMPLE 2 Find the value of 2 correct to 5 decimal places by letting approximation, the closer the graph of the approximation x = -0.02 in the expansion of 1 + x . is to the graph of y = 1 + x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y ( ) ( )( ) ( )( )( ) 1 1 −1 1 −1 − 3 1 + x = (1 + x) 2 =1+ 1 x + 2 2 x2 + 2 2 2 x3 + . . . linear 2 1× 2 1× 2 × 3 This expansion is valid for |x| < 1 approximation 2 3 and is thus valid for x = -0.02 6 = 1+ x − x + x − 2 8 16 4 Let x = -0.02, so 0.98 = 1 - 0.01 - 0.000 05 - 0.000 000 5 2 y= √1+x = 0.989 949 5 to 7 decimal places x –8 –6 –4 –2 0 2 4 6 8 –2 Now 0.98 = 49 × 2 = 7 × 2 100 10 –4 quadratic So 2 = 10 ´ 0.989 949 5 = 1.41421 approximation 7 cubic –6 correct to five decimal places. approximation 186 187
  • 98. 8 The binomial series 8 The binomial series EXAMPLE 3 1 7 a Find the first four terms in the binomial expansion of 1 − 1 Find linear and quadratic approximations to x (1 + x)2 in descending powers of x. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• For what range of x-values is the expansion valid? = (1 + x)−2 = 1 + (−2) x + (−2) × ( 3) x 2 − 1 − y 1× 2 b By letting x = 100, find the value of 99 correct to 6 decimal places. (1 + x)2 5 = 1 − 2x + 3x 2 − for |x| < 1 c Choose a value of x and use the same series to find 101 4 quadratic correct to 6 decimal places. 1 ≈ 1 − 2x approximation The linear approximation is (1 + x)2 linear 3 approximation 8 Show, by using a binomial expansion, that 1 2 ≈ 1 − 2x + 3x 2 2 The quadratic approximation is 1 (1 + x) a the linear approximation to is 1 - 3x 1 y= 1 (1 + x)3 (1 + x)2 b its quadratic approximation is 1- 3x + 6x2 –2 –1 0 1 2 x –1 (1 + 2 ) 3 9 Find the cubic approximation of the function x Exercise 8.3 10 Find 1 Substitute x = 0.03 in the expansion of (1 - x)10 to find the You can check many of the value of 0.9710 correct to 5 decimal places. answers in this exercise on a a quadratic approximation to the function 1 + 2 x 1 − 2x a calculator. However, you should not use a calculator C4 C4 2 Expand (3 + x)6 and show, by substituting x = 0.02, that 5 b a cubic approximation to the function to work out the answers. (1 − 2x)(2 + x) 3.026 = 758.650 correct to 3 decimal places. 3 By expanding 1 + x as a binomial series, find 11 A quadratic approximation to 1 is 1 − 3 x + Cx 2 (A + Bx)3 8 4 a the value of 5 correct to 5 decimal places by letting x = 1 Find the values of A, B and C. 4 b the value of 3 correct to 5 decimal places by letting x = − 1 4 INVESTIGATION 4 Expand 1 as a binomial series and, by substituting x = 0.1, 12 Use a computer’s graphical package to explore the graph 1− x 1 See question 8 in this exercise. find the value of 10 correct to six significant figures. of y = and the linear, quadratic and cubic (1 + x)3 approximations found from its binomial expansion. 5 a Find the first four terms of the binomial series for 3 1 + 3x Explore other functions and their approximations from b By substituting x = 1 find the value of 3 1003 questions in this exercise. 1000 correct to eight significant figures. 1 6 Expand as a series as far as the term in x3. (1 + 2x)3 Substitute x = 0.001 and so find the value of 1.002-3 correct to 8 decimal places. 188 189
  • 99. 8 The binomial series 7 Given that 3 + 5x º A + B , Review 8 (1 + 3x)(1 - x) 1 + 3x 1 - x a find the values of the constants A and B. 1 Expand as a series of ascending powers of x up to and including x3 b Hence, or otherwise, find the series expansion in ascending State the range of values for which each expansion is valid. powers of x, up to and including the term in x2, of 3 + 5x 1 (1 + 3x)(1 − x) a b 1 + 2x 1 − 3x c State, with a reason, whether your series expansion in part b is valid for x = 1 [(c) Edexcel Limited 2004] ( ) - 2 2 1- 1x 3 c d 9 + 2x 2 8 Expand (2 + x)5 and show, by substituting x = 0.03, that e 1 f 1 2.035 = 34.473 correct to 3 decimal places. 2−x 4−x 9 By expanding 1 + x as a binomial series, find the value of 10 g (1 − x) 1 + x h x+3 x −1 correct to 5 decimal places by letting x = 1 9 2 Find the constants A, B and C where 1 − x = A + Bx + Cx 2 + 2−x 10 Show, by using a binomal expansion, that Find the range of values of x for which the expansion is valid. a the linear approximation to 1 is 1 - 3x (1 + x)3 3 Find the coefficient of x2 in the expansion of 1 − x − x 2 b the quadratic approximation to 1 is 1 - 3x + 6x2 C4 C4 (1 + x)3 4 Find the first four terms in the binomial expansion of 1 − 2 3 x 11 The binomial expansion of (1 + 12x ) 4 in ascending powers of x up in descending powers of x. to and including the term in x3 is 1 + 9x + px 2 + qx 3, |12x| < 1 For what values of x is the expansion valid? a Find the value of p and the value of q. 5 When (1 + ax)n is expanded as a series in ascending powers b Use this expansion with your values of p and q together of x, the coefficients of x and x2 are -6 and 27 respectively. 3 with an appropriate value of x to obtain an estimate of (1.6 ) 4 . a Find the value of a and the value of n. 3 c Obtain (1.6 ) 4 from your calculator and hence make a comment b Find the coefficient of x3. on the accuracy of the estimate you obtained in part b. [(c) Edexcel Limited 2003] c State the set of values of x for which the expansion is valid. [(c) Edexcel Limited 2004] 3x 2 + 16 = A + B + C , |x| < 1 12 f(x) = 6 Write each expression in partial fractions and so expand it as a (1 − 3x)(2 + x)2 (1 − 3x) (2 + x) (2 + x)2 3 series of ascending powers of x as far as x3. a Find the values of A and C and show that B = 0 Find the range of values of x for which each expansion is valid. 3 b Hence, or otherwise, find the series expansion of f(x), in a (1 − x)(1 + 2x) ascending powers of x, up to and including the term in x3. Simplify each term. [(c) Edexcel Limited 2006] b 3x + 1 (1 − x)(1 + x)2 190 191
  • 100. 8Exit 9 Differentiation This chapter will show you how to differentiate implicit functions and parametric functions Summary Refer to use implicit and parametric functions in problems of coordinate geometry When n is a positive integer, the binomial expansion of apply exponential functions to problems involving growth and decay (a + b)n is a finite series, valid for all values of x, where find rates of change and explore how different rates of change relate to each other in practical situations. ⎛n⎞ ⎛n⎞ ⎛n⎞ ⎛n⎞ ⎛n⎞ (a + b)n = ⎜ ⎟ an + ⎜ ⎟ an −1b + ⎜ ⎟ an −2b2 + . . . + ⎜ ⎟ an −rbr + . . . ⎜ ⎟ bn 8.1 ⎝0 ⎠ ⎝1 ⎠ ⎝2 ⎠ ⎝r ⎠ ⎝n⎠ ⎛n⎞ Before you start You can find the coefficients ⎜ ⎟ either from Pascal's triangle r ⎝ ⎠ or by using n! 8.1 You should know how to: Check in: (n − r)!r! 1 Find the equation of a tangent and a 1 a Find the equation of the tangent to When n is negative or fractional, the binomial expansion of normal to a curve. the curve y = 2x 2 − 12 at the point (1 + x)n is an infinite series, valid only for |x| < 1, where e.g. Find the equation of the normal to the curve x where x = 1. (1 + x)n = 1 + nx + n(n − 1) x 2 + n(n − 1)(n − 2) x 3 + . . . + 1× 2 1× 2 × 3 n(n − 1)(n − 2). . .(n − r + 1) r 1 × 2 × 3. . . × r x + ... 8.1 x ( y = x + 1 at 2, 2 1 . 2 ) b Find the equation of the normal C4 C4 dy 1 When n is negative or fractional, you must rearrange (a + x)n =1- 2 to the curve y = sin x - cos x at the dx x ( a) point where x = p . n as an 1 + x to obtain its binomial expansion. You can rewrite some algebraic fractions using partial fractions 8.1 ( At the point 2, 2 1 , 2 ) dy dx 1 =1− = 4 4 3 4 4 before expressing them as binomial series. 8.2 So, gradient of normal is − 3 You can use binomial expansions to find numerical and algebraic The equation of the normal is approximations when x is small and terms containing high powers y − 21 2 =−4 of x are negligible in size and can be ignored. 8.3 x −2 3 which gives 6y + 8x = 31 Links The binomial series is useful for approximations. There are 2 Use the chain rule and product rule. 2 Differentiate each expression with many applications of this in physics. e.g. Differentiate y = sin2 x + sin x cos x respect to x. dy = (2sin x cos x) + (sin x ´ -sin x + cos x cos x) a y = tan3 x b y = x3 + 1 For example, in special relativity, which studies space and time, dx the parameter g is defined as = 2sin x cos x + cos2 x - sin2 x c y = ex sin x d y = x3 ln x 1 = sin 2x + cos 2x ⎛ 2 ⎞− 2 g = ⎜1 − v2 ⎟ ⎝ c ⎠ 3 Manipulate logarithmic expressions. 3 Solve these equations, where v is the velocity of a particle and c is the speed of light. e.g. Solve the equation 3x = 2x+4 giving answers to 2 s.f. This is of the form (1 + x)n and, with v very much smaller than c, Take natural logarithms: can be approximated by the first few terms of its series expansion a ln 3x = xln 2 + 1 xln 3 = (x + 4)ln 2 b e2x-3 = 20 () () 2 4 g =1+ 1 v +3 v x(ln 3 - ln 2) = 4ln 2 c e1-0.02x = 1.5 2 c 8 c 4 ln 2 ln16 x= = Using this approximation can make calculations easier and allow ln 3 − ln 2 ln1.5 related equations to be defined. 192 193
  • 101. 9 Differentiation Implicit functions and coordinate geometry 9.1 Differentiating implicit functions You can use the approaches from the Core 1 and Core 2 units Refer to C1 and C2 for revision. with curves expressed by implicit functions. Equations such as y2 + xy + y = 8, which are not easily rearranged into the form y = f(x), are known as implicit functions. EXAMPLE 2 Find the equation of the tangent to the curve x3 - y3ex + 8 = 0 You usually need to use the chain rule or the product rule See Chapter 4 for revision. at the point (0, 2). Find the equation of the normal at this point. (or both) to differentiate an implicit function. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiate with respect to x: The gradient of a tangent is given dy ( ) n n by the value of at the point of The chain rule gives d(y ) = d(y ) × dy = ny n −1 dy 3x 2 − y 3 × e x + e x × 3 y 2 dy +0 =0 dx dx dy dx dx dx contact with the curve. d(xy) dy dx dy and the product rule gives =x +y =x +y dy 3x 2 − y 3e x dx dx dx dx so = dx 3y 2e x At the point (0, 2), dy 0 − 8×1 2 = =− e0 = 1 EXAMPLE 1 dy dx 3× 4 ×1 3 Find when a 2x3 + 4y3 = 3 b x2 + 3xy + y2 =6 dx c x ln y = y2 + 1 d x3 y2 = sin(x - y) Find the equation of the tangent at (0, 2): Use y − y1 = m x − x1 y −2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a Differentiate wrt x: 6x + 4 × 3y × 2 dy =0 2 Use the chain rule for 4y3 to give = −2 so the equation of the tangent is 3y + 2x = 6 dx x−0 3 The gradient of the normal at (0, 2) = + 3 3 1 d(4y ) dy × = 4 × 3y 2 × dy The gradient of the normal, m¢ = - 2 dy dy x2 2 C4 C4 12y = -6x 2 and =− 2 dy dx dx m dx dx 2y Find the equation of the normal at (0, 2): y −2 3 b Differentiate wrt x: 2x + 3 x ( dy dx + y × 1 + 2y dy dx =0 ) Use the product rule for 3xy and the chain rule for y2. = x−0 2 so the equation of the normal is 2y = 3x + 4 dy (3x + 2y) = −(2x + 3y) dx EXAMPLE 3 dy 2x + 3y Find the stationary points on the curve x2 + y2 = 12x =− dx 3x + 2y •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiate with respect to x: x × ⎛ × ⎞ + ln y × 1 = 2y + 0 1 dy dy dy c Differentiate wrt x: ⎜ y dx ⎟ dx Use the product rule to 2x + 2y = 12 ⎝ ⎠ differentiate x ln y wrt x. Within dx dy x dy ln y = 2y − the product rule, use the chain dy 12 − 2x 6 − x dx y dx rule to differentiate ln y wrt x. = = dx 2y y y ln y dy dy = = 0 when x = 6 The gradient is zero at 2 y 2 − x dx dx stationary points. d Differentiate with respect to x: Use the chain rule to differentiate When x = 6, y2 = 12 ´ 6 - 62 = 36 and y = ±6 x3 ´ 2y dy dx ( + y2 ´ 3x2 = cos (x - y) ´ 1 − dy dx ) ( ) sin(x - y) wrt x: d(sin(x − y)) So, there are stationary points at (6, 6) and (6, -6). dy dx d( x − y ) (cos (x - y) + 2x3y) = cos (x - y) - 3x2y2 = cos (x - y) ´ dx dx dy cos(x − y) − 3x 2 y 2 ⎛ dy ⎞ You can determine if a stationary point is a maximum or minimum by = = cos (x - y) ´ ⎜ 1 − ⎟ dx cos(x − y) + 2x 3 y ⎝ dx ⎠ dy either investigating the change in sign of dx near to the stationary point d2 y or finding whether 2 is negative or positive at the stationary point. dx 194 195
  • 102. 9 Differentiation 9 Differentiation Exercise 9.1 8 Tangents to the curve y2 = 4x at the points (1, 2) and (4, 4) meet dy at the point P. Find the coordinates of P. 1 Find when dx a x2 - 3y2 = 5 b y3 - x3 = 2 c x2 + y2 - 3x + 4 = 0 9 The gradients of two tangents to the curve y2 = 16x are 2 and 1 . 3 Find the point at which the two tangents intersect. d y3 + 3y2 = x e xy = 2 f x + xy + y = 1 g x2 + xy + y2 = 1 h x2y2 + x2 + y2 = 2 i 3x2 + 2y2 = x2y2 10 The curve y(x + y)2 + 15 = 3x3 has a tangent at the point (2, 1). 2 2 3 + 4 =1 Find the point where the tangent intersects the x-axis. Also find the j x3 + 3x2y + 3xy2 + y3 = 1 k x − y =1 l angle that the tangent makes with the x-axis. x2 y2 m cos x sin y = 1 n x + y = tan y 11 Find the two points of intersection of the curves y2 = x and x2 = 8y dy Find the gradients of the curves at both points of intersection. 2 Find when Hence, find the angles at which the curves intersect. dx a y2 = ln x b yln x = ln y c x + y =1 12 Find the equations of the tangents to the curve y 2 = 3x + 12 2 x d sin (x + y) = sin x e cos 3x sin 2y = 1 f ex+y = x which are parallel to the x-axis. g xe y + yex = 1 h x = ex ln y 13 Find the x-coordinates of the turning points on the curve x3 - y3 - 2x2 + 3y + x - 4 = 0 3 Find the gradient of the tangent to each of these curves at the given point. a x2 - y2 = 7 (4, 3) b x2y = 12 (2, 3) 14 Find the points on each of these curves where the gradient of C4 C4 c x2 + 3xy + y2 = 1 (3, -1) d cos x = sin y + 1 (0, 0) the curve is zero. a x2 + 3y2 - 8x - 4y + 17 = 0 b 2x2 + 2y2 - 4x + 5y + 4 = 0 e cos (x − y) = x − p 2 ( ) p ,0 2 x f xy + e y = 1 (0, 1) 2 y2 15 Find the turning points on each of these curves and determine g y2 = 12x (3, 6) h x + = 1 (3, 0) whether they are maximum or minimum points. 9 16 i x3 + xy2 + y3 = 11 (2, 1) j xey = 2 (2, 0) a x2 - y2 + 10x - 5y + 19 = 0 b x2 - 2y2 + 6x - 3y + 18 = 0 4 Find the equations of the tangent and the normal to these curves at the given point. 16 Find the turning points on the curve x3 - 3xy2 - y3 + 3 = 0 a x(y - 3) = y2 (-4, 2) b 2sin x cos y = 1 ( p4 , p4 ) c ln (xy) = 2y - 1 ( 2, 1 ) 2 d e2x + e2y = x + y + 2 (0, 0) 17 Find the maximum and minimum values of y when a 3(x - 2)2 + 4(y - 1)2 = 16 b 3(y - 1)2 - 2(x + 1)2 = 12 5 Find the equation of the normal to the curve y2 = 8 at the point (1, 2). 1 + x2 18 a Find the values of x which give stationary values of y on the curve x3 + y3 = 3xy 6 The tangent to the curve y2 = x3 at the point (4, 8) y b Find the stationary values and determine whether they are maxima or minima. intersects the x-axis at the point P. The normal to the curve at the same point intersects 8 INVESTIGATION the x-axis at point Q. 19 Show that the equation xy - x2 + 4y + x = 0 can also be written as y = x (x - 1) P Q Find the length PQ. O 4 x x+4 dy Find in two ways: by using implicit differentiation of the first 7 a Find the equation of the normal to the curve dx y2 + 3xy - 2x2 + 1 = 0 at the point A(2, 1). equation and by using the quotient rule in the second equation. Show that your two answers are equivalent. b The normal intersects the y-axis at the point B. 196 If O is the origin, find the area of triangle OAB. 197
  • 103. 9 Differentiation 3 The strophoid in this diagram has parametric equations y 9.2 Differentiating parametric functions ⎛ ⎞ x = t 2 − 1, y = t ⎜ t 2 − 1 ⎟ 2 2 t +1 ⎝ t + 1⎠ You can find dy from the parametric equations x = f(t), y = g(t) The chain rule gives dx dy dy dx Find the positions of its stationary points. by using the chain rule to give = × dt dx dt O x dy dy dx g′(t) = ÷ = dx dt dt f ′(t) ( ) 4 The point P 4, 2 2 lies on the ellipse with parametric equations 5 EXAMPLE 1 The curve shown in the diagram y x = 5cos q, y = 4sin q and S is the point (3, 0). has parametric equations The normal to the ellipse at P meets the x-axis at Q. x = 3cos q + cos 3q and p Prove that the length QS = 3 PS i= y = 3sin q + sin 3q 6 5 P Find the gradient of the 5 A curve has parametric equations O x tangent to the curve at the y 2 3 point P where q = p x= t , y = t 6 1 + t2 1 + t2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• P dx dy The parameter t = 1 at the point P. = -3sin q - 3sin 3q = 3cos q + 3cos 3q dq dq Show that the tangent to the curve at P has the equation y = 2x − 1 C4 C4 2 O x dy dy dx 3 cos q + 3 cos 3q cos q + cos 3q Find the point Q at which the tangent meets the curve again. Q = ÷ = =− dx dq d q −(3 sin q + 3 sin 3q) sin q + sin 3q 3 cos p + cos p +0 When q = p , dy = − 6 2 = − 2 = − 3 = − 1 INVESTIGATION 6 dx sin p + sin p 1 +1 3 3 6 2 2 6 When a curve (such as a circle) rolls along a fixed curve, a point on the rolling curve traces out a locus called a roulette. 1 The gradient of the tangent at P is − 3 If a moveable circle rolls on the outside of a fixed circle, a point on its circumference traces out a special roulette called an epicycloid. Exercise 9.2 If the moveable circle rolls on the inside of a fixed circle, the 1 A hyperbola has parametric equations x = sec q, y = tan q point traces out a hypocycloid. Prove that dy = cos ec q d(sec q ) = sec q tanq Use a computer’s graphical software to investigate these dx dq Find the equations of the two tangents to the curve which special roulettes for different values of k. are parallel to the y-axis. Their parametric equations are: x = kcos q + cos kq, y = ksin q - sin kq for hypocycloids 2 The astroid in this diagram has parametric equations y and x = kcos q - cos kq, y = ksin q - sin kq for epicycloids. x = 4cos3 q, y = 4sin3 q 4 dy Prove that = − tan q and find the equations of the four dx tangents to the astroid which are equally inclined at 45° to –4 O 4 x both axes. Also find the area of the square that they enclose. –4 198 199
  • 104. 9 Differentiation EXAMPLE 3 9.3 Growth and decay Cells in a dish grow so that, at a time t (hours), the number t of cells, n, is given by n = 10 × 8 2 ax is an exponential function for all values of a. When a = e, the function ex is Find called the exponential function. Consider y = ax where a > 0 a the number of cells when t = 1 and t = 5 b the average rate of increase over the period t = 1 to t = 5 Take natural logarithms of both sides: c the instantaneous rate of increase when t = 5. ln y = ln ax = x ln a •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiate with respect to x: Use the chain rule to a When t = 1, n = 10 ´ 80.5 = 28 n is given to the nearest 1 dy differentiate ln y. When t = 5, n = 10 ´ 82.5 = 1810 whole number. y dx = 1 × ln a ln a is a constant. b The average rate of increase = 1810 − 28 dy 5 −1 dx = ln a × y = 445.5 cells per hour c The instantaneous rate of increase is given by the gradient dy dy of the curve at the instant when t = 5. When y = ax, = ln a ´ ax When a = e, = ln e ´ ex = ex dx dx t dn t 1 For n = 10 × 8 2 , = 10 × (ln 8 × 8 2) × dt 2 EXAMPLE 1 = (5ln 8) ´ 82.5 when t = 5 If y = 2x, find the value of dy when x = 3 C4 C4 dx = 1882 Hence, find the equation of the tangent to the curve at the point P where x = 3. The instantaneous rate of increase is 1882 cells per hour. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• y n dy y = 2x For y = 2 , = ln2 × 2 x x dx The gradient of the chord PQ gives = ln 2 ´ 23 = 8ln 2 when x = 3 the average rate of increase. 1810 Q When x = 3, y = 23 = 8 P Hence, the equation of the tangent at the point (3, 8) is y −8 = 8 ln 2 The gradient of the tangent at the x−3 point Q gives the rate of increase y = (8ln 2)x - 24ln 2 + 8 at the instant when t = 5. Substitute ln 2 = 0.693147… : y = 5.55x - 8.64 to 2 d.p. O 3 x 28 P O 1 2 3 4 5 t EXAMPLE 2 Find the value of f ¢(1) for the function f(x) = 32x+1 + 4 ´ 3x + 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Differentiate f(x) = 32x+1 + 4 ´ 3x + 1 with respect to x: Exponential functions of time of the type akt and a-kt are used in Use the chain rule to real life to develop models of exponential growth and decay. f ¢(x) = (ln 3 ´ 32x+1) ´ 2 + 4 ´ (ln 3 ´ 3x) + 0 differentiate 32x+1 = (2ln 3)32x+1 + (4ln 3)3x When a = e, the models use functions involving ekt for So f ¢(1) = (2ln 3) ´ 33 + (4ln 3) ´ 3 exponential growth and e-kt for exponential decay, where k > 0 = 54ln 3 + 12ln 3 = 66ln 3 200 201
  • 105. 9 Differentiation 9 Differentiation EXAMPLE 4 EXAMPLE 5 Sri Lanka had a population N0 in 2006 of 21 million people. Radioactive fallout in the atmosphere contains the isotope Its population N in another t years is predicted to be strontium-90. N = N0ert where r = 0.013 The mass m grams after a time t years is given by m = m0e-kt where k = 0.024 and m0 is the mass at time t = 0. Find Find a the predicted population of Sri Lanka in 2046 a the mass after 10 years if m0 = 5 b how long it will take to double the 2006 population b the initial rate of decay and the rate of decay after 10 years c the rate of growth of the population in 2026. if m0 = 5 m (grams) c the time taken for m to reduce to a value of 1 m0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a In 2046, t = 40 2 5 and the predicted population N = 21 ´ e0.013´40 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a When t = 10 and m0 = 5, m = 5 ´ e-0.024´10 3.93 = 21 ´ e0.52 = 35.3 million = 5 ´ 0.786… 2.5 = 3.93 grams (to 3 s.f.) b When N = 2N0 N (million) dm d(m0e −kt) ert = 2 b The rate of decay = = dt dt O 10 20 30 40 50 t (years) rt = ln 2 = m0 ´ (-k) ´ e-kt 42 28.9 t = ln 2 35.3 = -km0e-kt r dm 0.6931.. 21 When t = 0, = −0.024 × 5 × e0 = dt C4 C4 0.013 = -0.12 This value of -0.12 is the gradient = 53.3 O 10 20 30 40 50 t (years) The initial rate of decay is 0.12 grams per year. of the curve when t = 0. 53.3 In the final answer, the negative So, the population will have doubled in 53 years time; When t = 10, dm = −0.024 × 5 × e −0.024 × 10 sign is implied by the word ‘decay’. that is, by 2059. dt = -0.094 dN d(N 0ert) c The rate of growth = The rate of decay after 10 years is 0.094 grams per year. dt dt = N 0rert c When m = 1 m0 1 = e −0.024 × t Take the reciprocal of both sides. 2 2 In 2026, t = 20 and dN = 21 × 0.013 × e0.013 × 20 2 = e0.024 ´ t dt ln 2 = 0.024 ´ t = 0.273 ´ e0.26 This value gives the gradient of the curve when t = 20. t = 0.6931... = 28.9 = 0.354 0.024 This time of 29 years is called the It takes almost 29 years for half the initial mass to decay. half-life of strontium-90. So, according to this model, in 2026, the population of These calculations assume that Sri Lanka will be growing at a rate of 0.354 million the mathematical model N = N0ert = 354 000 people per year. will hold, but it is unlikely that r Exercise 9.3 will stay constant over many years. 1 Find dy when dx a y = 3x b y = 32x-1 c y = 4 ´ 35x+2 1 d y = 2x e y = 102x+5 f y = 3 ´ 51-2x 3 202 203
  • 106. 9 Differentiation 9 Differentiation 1 x +2 8 The number, N, of cells infected with a virus changes over t hours 2 Find f ¢(x) and f ¢(2) when f(x) = 2 2 + 3 (2 x) − 4 according to N = 200 - 50e-2t dN 3 Find the equation of the tangent and the equation of the a Find the value of N and when t = 0. dt normal to the curve a y = 2 ´ 3x when x = 1 b Find how many infected cells there are after 4 hours and the rate of change in the number of infected cells at this time. b y = 3 ´ 2x + 1 when x = 0. 9 A mass m grams of a substance decays exponentially over a time 4 A population P grows over a time t according to t hours where m = m0e-kt a P = 5 ´ 23t b P = 20.4t + 2 a If m = 20 when t = 0, find m0. 1.5t 0.4t - 1 c P = 3e d P=e If m = 15 when t = 5, find k. dP In each case find the value of P and when t = 1. b Find the time taken for mass of the substance to decay to dt i half its original mass ii 10% of its original mass. 5 A population Q is in decline over time according to c Find the rate of decay when t = 0 and when t = 5. a Q = 4 ´ 3-0.2t b Q = 32 - 0.4t 10 A hot liquid cools such that the difference, q, between its temperature c Q = 2e-0.01t d Q = e6 - 2t and that of its surroundings at a time t minutes is given by q = ke-at In each case, find the value of Q and dQ when t = 1. a If the liquid’s temperature is 70 °C after 1 minute, find the dt values of k and a. Room temperature is constant at 10 °C and C4 C4 6 A number of cells, n, grows over a time t such that n = n0e0.2t the liquid’s initial temperature is 80 °C. where n0 = 5. b Calculate the initial rate of cooling and the rate of cooling Find after 5 minutes. a the number of cells when t = 0 and when t = 10 c Write an expression for the temperature T of the liquid at time t. b the average rate of growth over the period t = 0 to t = 10 d Calculate the time taken for the temperature of the liquid c the instantaneous rate of growth when t = 5. to drop to 40 °C. 7 The population, P, of Manchester was 126 000 in 1821 and 236 000 in 1841. INVESTIGATION a If t is the number of years after 1821, model the population 11 The population of London was 1 950 000 in 1841 and as P = P0ekt and find the constants P0 and k. 2 800 000 in 1861. dP Model the population in two ways as: b Find and evaluate the rate of growth in 1831. dt P = P0at c Estimate the population in 1851. Find the percentage error in this P = P0ekt estimate compared to the actual population in 1851 of 303 000. where P0, a and k are constants. The actual population in 1871 was 3 250 000. Do the two models give the same estimates? Explain your answer. 204 205
  • 107. 9 Differentiation EXAMPLE 2 9.4 Rates of change A hot-air balloon is being blown up at a rate of 2 m3 per minute. The rate at which water is flowing out of a tap affects the Assuming the balloon is spherical, find r rate at which the depth of water in the bath increases. a the rate of increase in its radius r when r = 2.5 metres This is an example of a rate of change in which a change in b the rate of increase in its surface area A when one variable over a given time produces a change in the r = 2.5 metres. other variable over that time. 2 m3 min–1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• If V is the volume of water running into the bath, dV a If the volume of the balloon is V m3, then dV = 2 m3 min-1 then the rate of change of V is . dt dt Similarly, if h is the depth of water in the bath, To find dr , use the chain rule dV = dV × dr dt dt dr dt dh then the rate of change of h is . dt To find dV , use the geometry of the sphere. dr These two rates of change are linked by the chain rule V = 4 p r3 3 dV dV dh = × dV 4 dt dh dt = p × 3r 2 = 4p r 2 dr 3 dV Substitute into the chain rule with r = 2.5: The differential is independent of time t and can be derived C4 C4 dh dV dV dr from some physical or geometrical relationship between V and h. = × dt dr dt dr 2 = 4p ´ 2.52 ´ dt EXAMPLE 1 A cylindrical water tank of radius 2 m holds water which 2m dr 2 is being pumped in from the top of the tank at a rate of The rate of increase in the radius, = dt 25p 3 m3 per hour. 3 m3 h–1 = 0.025 metres per minute to 2 s.f. Find the rate at which the depth h of water is increasing. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• b The surface area of the balloon A = 4pr2 h V If the volume of water in the tank is V, then dV = 3 m3 h-1 dA = 8p r dt dr dV dV dh dh = 8p ´ 2.5 = 20p The chain rule gives = × You have to find dt when r = 2.5 dt dh dt dA dA dr From the geometry of the cylinder, V = pr2h The chain rule gives = × where, from part a, dt dr dt dr 2 = 4ph for r = 2 = dt 25p dV dA 2 = 4p Substitution gives = 20p × = 1.6 dh dt 25p dh Substitute into the chain rule: 3 = 4p × When r = 2.5 m, the rate of increase in the surface area is dt 1.6 m2 per minute. dh 3 The rate of change of the depth of water, = dt 4p Make sure you use the correct = 0.24 m h-1 units in your answer. 206 207
  • 108. 9 Differentiation 9 Differentiation Exercise 9.4 9 A spillage of coffee on to a horizontal table forms a circular 1 A square sheet of molten glass is increasing in size such that stain with a radius increasing at a rate of 2 mm s-1. the rate of increase of the length, x, of its sides is given by Find the rate at which the area of the stain is increasing dx after 5 seconds. = 0.2 m per minute. dt Find the rate of increase of its area, A, when x = 0.5 metres. 10 Sand falls onto horizontal ground at a constant rate of You will need to use the formulae 20 cm3 s-1 to form a pile in the shape of a circular-based for volume and height of a cone. 2 Oil is dripping onto a horizontal floor forming a circular pool cone with a semi-vertical angle of 45°. of radius r cm. If the rate of increase of the radius is 0.5 cm per Calculate the rate at which the vertical height of the conical second, find pile is increasing after 5 seconds. a the rate of increase of the area of the pool when r = 15 cm 11 A boy 1.5 m tall runs directly away from a light which is fixed b the rate of increase of the circumference of the pool. 2 m above a horizontal road. If he runs at a speed of 3 m s-1, find the rate at which his shadow is lengthening. 3 A crystal forms in the shape of cube of edge length x mm. If the rate of increase of its edges is 0.3 mm per minute, find 12 Robert Boyle (1627–1691) discovered that, for a fixed amount a the rate of increase of its volume when x = 6 mm of gas at a constant temperature, its pressure varies inversely b the rate of increase of its surface area when x = 6 mm. as its volume varies. A quantity of gas has an initial volume of 0.25 m3 and an initial 4 An ice cube melts uniformly on all its faces. When its edges are pressure of 2 N m-2. Its volume is allowed to increase at a 2 cm long, the rate of decrease of its surface area is 4 cm2 per hour. constant rate of 0.05 m3 s-1. Find the rate at which its pressure C4 C4 Find the rate of decrease in its volume at this instant. is changing at the instant when its volume is double its initial value. 5 A spherical bubble under water is rising to the surface and its INVESTIGATION radius r is increasing at a rate of 0.2 mm per second. a When its radius is 4 mm, find the rate of increase in its volume. 13 As a piston moves into the cylinder of an engine, the length L of the cylindrical space changes. r b Find the rate of increase in its surface area when its volume is 36p mm3. This change in length causes a change in the volume V of the gas in the cylinder, which causes the pressure P 6 Molten plastic is extruded from a nozzle at a speed of 20 cm s-1 of the gas to change. L V and forms a cylindrical shape. The nozzle has a circular cross-section of area 0.75 cm2. Find an expression for the rate of change of pressure Find the rate of change in the volume of the extruded plastic. in terms of radius r, length L and time t. Have you made any assumptions? 7 Air is leaking from a spherical balloon at a rate of 2 cm3 per second. When its radius is 12 cm, find the rate of decrease of a its radius b its surface area. 8 A hollow cone, with a semi-vertical angle of 60°, is held vertex downwards with its axis vertical. Water drips into the cone at a constant rate of 4 cm3 per minute. Find the rate at which the 60º depth of water is increasing when the water is 4 cm deep. 208 209
  • 109. 9 Differentiation 10 The parametric equations of a curve are Review 9 x = 2cos q + cos 2q and y = 2sin q + sin 2q dy Show that stationary values occur on this curve when cos q = 1 1 Find when 2 dx Find two stationary points for 0 q 2p. 2 − 3 =4 a 3x2 + 4y2 = 9 b x2 + 3xy + y2 = 2 c x2 y2 11 A curve is given by the parametric equations x = t2, y = 1 t d cos 2x sin 3y = 1 e y3 = ln x f x2ey - y2ex = 2 a Find the equation of the tangent at the point A 9,( ) 1 . 3 b The tangent at A intersects the curve at point B. dy 2 Find for the curve x3 - 2x2y - 3xy2 + y3 = 9 Find the value of the parameter t at B. dx Find the gradient of the tangent to this curve at the point (2, -1). 12 The normal to the curve with parametric equations x = 1 , y = t2 t −1 3 Find the equations to the tangent to these curves at the given points. at the point P (1, 4) meets the curve again at points Q and R. a y3 = 2x2 (2, 2) b x3 - 2x2y - y3 = 8 (3, 1) c ye2x = 3 (0, 3) a Show that the gradient of the normal is 1 and find its equation. 4 4 The normal to the curve x2 y2 + 3xy + = 11 at the point (2, 1) b Prove that the values of t at points Q and R are given by t = − 1 ± 2 meets the axes at the points P and Q. Given that O is the origin, show that 2 the area of triangle OPQ is 81 square units. 112 13 The curve C is given parametrically by x = t − 1 , y = t + 1 , t ¹ 0 t t 5 A curve has equation x3 - 2xy - 4x + y3 - 51 = 0 C4 C4 a Find the coordinates of the points on C at which the gradient is zero. Find the equation of the normal to the curve at the point (4, 3). b Find the equation of the normal to C at the point (0, 2). Give your answer in the form ax + by + c = 0, where a, b and c are integers. [(c) Edexcel Limited 2003] dy 14 a Find when i y = 4x + 4 ii y = 42x + 2 ´ 4x + 1 dx 6 a Show that, for the curve x2 + 2y2 - 4x + 4y = 26 b Find the equation of the tangent to the graphs of both these dy = 2−x dx 2 (1 + y) equations at the points where x = 0 b Find all the stationary points on the curve. 15 Bacteria grow so that, at a time t, the number n of bacteria t c Find the points on the curve where the tangents are parallel to the y-axis. is given by n = 5 × 4 3 7 An ellipse is expressed by the parametric equations x = 4sin q, y = 3cos q Find a the number of bacteria when t = 2 and t = 5 Find the equation of the tangent to the ellipse at the point where q = p 6 b the average rate of increase in the number of bacteria over the 8 A curve is expressed parametrically by the equations x = t2 + 1, y = t3 period from t = 2 to t = 5 a Find the equation of the tangent at the point where t = 2 c the instantaneous increase in the number of bacteria when t = 2 b Find the equation of the normal at the point (2, -1). d the value of t at which the value of n is double its initial value. 9 The curve C has parametric equation x = asec t, y = btan t, 0 < t < p , 16 The value £V of a car t years after the 1st January 2001 is given 2 where a and b are positive constants. by the formula V = 10 000 ´ (1.5)-t Prove that dy = b cosec t a Find the value of the car on 1st January 2005 dx a Find the equation in the form y = px + q of the tangent to dV b Find the value of when t = 4 C at the point where t = p [(c) Edexcel Limited 2003] dt 210 4 c Explain what the answer to part b represents. [(c) Edexcel Limited 2005] 211
  • 110. Revision 3 9Exit 1 Express these as partial fractions. a x+4 b x+3 c 2x (x − 2)(x + 1) x(x 2 − 1) x 2 − 5x + 6 d x2 + 2 e 2 f x+2 x ( x + 1) 2 x 2 ( 2x − 1) (1 − 2x ) ( x − 3 )2 Summary Refer to You use implicit differentiation when the relation between 2 Show that x 2+ 3 can be expressed as A + B + C + D 3 x and y cannot be expressed explicitly by y = f(x) x ( x − 1) x x −1 x +1 d(y n) dy The chain rule gives = ny n −1 Find the values of A, B, C and D. dx dx The product rule gives d ( xy ) = x dy + y dx = x dy + y 9.1 3 Express these as partial fractions. dx dx dx dx x2 + 2 x 3 − 2x 2 + 2 a b x2 − 2 c For parametric equations x = f(t), y = g(t), x2 − 1 ( x − 1) ( x + 2 ) x ( x − 1) 2 dy dy dx the chain rule gives = × 9.2 dt dx dt d x3 + 1 e 4x 3 + 1 f 2x 3 − 1 dy x If y = a , then = ln a × a x 9.3 x ( x − 2) x 2x − 1) 2( ( x + 1)2 (2x − 1) dx dy When a = e, y = ex gives = ln e × e x = e x C4 4 If x + 2x2 + 3x + 1 ≡ px 2 + qx + r + sx + t , C4 4 2 dx You can model y x −2 2 x −2 y find the values of the constants p, q, r, s and t. exponential growth by y = Aekt y = Aekt exponential decay by y = Ae-kt where k > 0 A 9.3 5a Point P lies on the curve with parametric equations x = t2 - 4, y = t + 1 A –kt y = Ae If the y-coordinate of P is 6, find its x-coordinate. O t t b The point (4, k) lies on the curve with parametric equations x = 1 − 5, y = t - 1 O t2 Find the possible values of k. When changes in x effect changes in y over a period of time, their rates of change are connected by the chain rule where dy dy dx 6 The variable point P ( l t , 3t − 1) meets the line y = 11 at the point (6, 11). = × 9.4 dt dx dt a Find the value of l. b Find the Cartesian equation of the curve along which P moves in the form y = f(x) Links Differentiation is a versatile tool that can be 7 Find the points where the curve expressed parametrically used in many fields, particularly within industry. by the equations x = 1 + t , y = 2t + 1 intersects 1−t Derivatives can be used to express the rate of decay a the x-axis b the y-axis c the line y = x - 1 of a radioactive substance in a chemical power plant. Engineers can use differentiation to calculate rates 8 A curve is defined parametrically by x = 2t + 1, y = t2 - 4t + 1 of change of variables when designing systems to A normal is drawn to the curve at the point where t = 4. ensure efficiency. Find a the equation of the normal Managers can solve maximum and minimum problems to determine how to maximize profit or minimize waste. b the point at which the normal intersects the curve a second time. 212 213
  • 111. Revision 3 Revision 3 9a A curve has parametric equations x = t2 + 3, y = 1 + t y B 13 Expand as a series of ascending powers of x up to and including x3 Find the two points A and B on the curve at which State the range of values of x for which each expansion is valid. A x = 7 and x = 12. 1 a b 1 + 5x c 9 + 2x 1 + 3x b Find the area between the curve, the x-axis and the ordinates x = 7 and x = 12. x 1 1 d e f 4 + 3x 4−x O 7 12 x 1− 1x 4 14 Find the first three terms in the binominal expansion of each expression. 10 The diagram shows the graph of the curve with parametric y Give the values of x for which each expansion is valid. equations x = t2 - 12, y = t3 - 9t 1+ x a (1 − 2x) 1 + x b a Find the values of t at the points where the curve 1 + 3x intersects the x-axis. O x 15 Find the first four terms in the binomial expansion of 1− 3 in b Find the shaded area on the diagram. x descending powers of x. For what values of x is the expansion valid? Hence, find the total area of the loop. 16 The coefficient of x2 in the expansion of 4 + ax is -1. Find two possible values of a and the first three terms of each possible expansion. 11 The curve expressed parametrically by y x = 4 - 2t, y = t 2 + 1 17 Write each expression in partial fractions and so expand it C4 C4 2 t as a series of ascending powers of x as far as x3. is shown on this diagram. The curve cuts the y-axis at P Find the range of values of x for which each expansion is valid. R the point P and has a minimum value at the point Q. a 2−x b 3 − 2x a Find the coordinates of points P and Q. Q (1 − 2x)(1 + x) (2 + x)(1 − 3x) b Find the shaded area on the diagram. 18 f(x) = 3x − 12 , O x x <1 c Find the area of the region labelled R. (1 − 2x) 2 y Given that, for +x ≠ 1 , 3x − 1 ≡ A + B L 2 (1 − 2x)2 (1 − 2x) (1 − 2x)2 12 This diagram shows the curve C with parametric equations where A and B are constants, p P a find the values of A and B. x = 8cos t, y = 4sin 2t, 0 t 2 C The point P lies on C and has coordinates ( 4, 2 3 ). b Hence, or otherwise, find the series expansion of f(x), in a Find the value of t at the point P. R ascending powers of x, up to and including the term in x3, simplifying each term. [(c) Edexcel Limited 2006] The line L is a normal to C at P. O 4 x b Show that an equation for L is y = −x 3 + 6 3 dy 19 Find when The finite region R is enclosed by the curve C, dx the x-axis and the line x = 4, as shown shaded a x2 - 5xy + y2 = 1 b xey = y3 -1 c xy = 1 + x sin y in the diagram. p 2 c Show that the area of R is given by the integral 64 sin2 t cos t dt d sin x cos y = 1 e y − x =2 f x2y = tan(x + y) p 3 d Use this integral to find the area of R, giving your answer in 20 a Find the equation of the tangent to the curve exy + 1 = x at (2, 0). the form a + b 3, where a and b are constants to be determined. [(c) Edexcel Limited 2008] b Find the equation of the normal to the curve ln (xy) = y2 - 1 at (1, 1). 214 215
  • 112. Revision 3 21 A curve is expressed parametrically by x = t + 1 , y = t2 - 1 (t ¹ 0) 2 10 t Show that there are tangents to the curve which are parallel to the y-axis and that they meet the curve at the points (2, 0) and (-2, 0). 22 a dy Find dx for an ellipse with parametric equations x = 3sin q, y = 2cos q, 0 q p Integration This chapter will show you how to b Prove that the equation of the tangent to the ellipse at the point P find the area under a curve to a specified accuracy using a where q = a is given by 3ycos a + 2xsin a = 6 numerical method c The tangent at P intersects the coordinate axes at the points A and B. find the exact area under a curve by integration Find, in terms of a, the area of triangle OAB, where O is the origin. integrate a variety of functions by using standard integral forms, substitution, trigonometric identities and partial fractions, and d Find the value of a which gives the smallest possible value of the integration by parts area of triangle OAB. State this area. be systematic in your approach to integration use integration to find volumes of revolution. 23 The tangent and normal to the curve y = 5 ´ 2x, at the point where x = 1, intersect the y-axis at the points P and Q respectively. Find the distance PQ as a decimal, correct to 1 decimal place. Before you start 24 The population N0 of a town in 2008 is 56 000. A model of its growth You should know how to: Check in: predicts that its population N in t years after 2008 will be N = N0e0.008t 1 Differentiate various functions using the 1 Differentiate Find product, quotient and chain rules. a x2 ln x b x3ex C4 C4 a its population in 2018 e.g. Differentiate y = x2sin 3x c ex tan x d x x2 + 1 dy b the rate of growth of its population in 2018 = 2x sin 3x + (3 cos 3x) x 2 dx e ln x f ln (sin x) x c how long it takes for its population to be double the 2008 figure. = 2x sin 3x + 3x cos 3x 2 25 A spherical balloon is being inflated at a constant rate of 0.2 m3 per minute. 2 Manipulate trigonometric identities. 2 Prove these identities. e.g. Prove that sin 2A ≡ cot A a tan A + cot A º 2cosec 2A Find 1 − cos 2A Use the double-angle formulae: 2 tan A a the rate of increase in its radius r when r = 0.5 metres b º sin 2A sin 2A 2 sin A cos A 1 + tan 2 A b the rate of increase in its surface area when r = 0.5 metres. ≡ 1 − cos 2A 1 − (1 − 2 sin2 A) c cos 3A º 4cos3 A – 3cos A 2 sin A cos A cos A ≡ ≡ ≡ cot A 26 This diagram shows a right circular cylindrical metal rod which 2 sin2 A sin A is expanding as it is heated. After t seconds, the radius of the rod is x cm and the length of the rod is 5x cm. x 3 Find partial fractions. 3 Express these in partial fractions. The cross-sectional area of the rod is increasing at the constant 5x x e.g. Express 2 in partial fractions. a rate of 0.032 cm2 s-1 x(x − 2) x 2 − 25 dx Let 2 A ≡ + B 6 a Find when the radius of the rod is 2 cm, giving your x(x − 2) x x−2 b x (x − 1)(x + 2) dt answer to 3 significant figures. A (x − 2) + Bx ≡ 1 x (x − 2) c b Find the rate of increase of the volume of the rod when x = 2. [(c) Edexcel Limited 2008] x (x − 1)2 Hence 2 º A(x - 2) + Bx Letting x = 0 gives A = -1 d x2 + 3 Equate coefficients of x: A + B = 0 so B = 1 x (x − 2) 2 1 1 So ≡ − x (x − 2) x−2 x 216 217
  • 113. 10 Integration 10.1 EXAMPLE 1 The trapezium rule a Estimate (to 3 significant figures) the area under the curve y = sec2 x from x = 0 to x = p by using the trapezium rule with 3 When the area enclosed by a graph, the x-axis and two ordinates For n equal intervals, i 4 equal strips ii 8 equal strips. x = a and x = b is split into n equal intervals of width h, then the use (n + 1) x-values. p trapezium rule gives x-values are sometimes 3 called ‘ordinates’. b Calculate the exact value of sec2 x dx as a surd. 0 b Find the percentage error in each of the two estimated values of f(x) dx ≈ 1 h [ y0 + yn + 2(y1 + y2 + ... + yn −1)] where h = b − a area found using the trapezium rule. a 2 n •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• p −0 y a i With 4 strips, the width of each strip, h = 3 = p 4 12 y = f(x) Record the values in a table: x 0 p 2p 3p 4p Use radians on your calculator. 12 12 12 12 y = sec2 x 1 1.0718 1.3333 2 4 yn Estimate of the area required = 1 × p × [1 + 4 + 2(1.0718 + 1.3333 + 2)] 2 12 y2 y1 1 × p × 1 + 4 + 8.8102 y0 = 2 12 [ ] C4 C4 x O a h b = 1.8078 = 1.81 units2 (to 3 s.f.) 8 p −0 Using more strips involves more calculation but gives a more ii With 8 strips, the width of each strip, h = 3 = p 8 24 accurate approximation. p 2p 3p 4p 5p 6p 7p 8p = p x 0 24 24 24 24 24 24 24 24 3 convex y 1 1.0173 1.0718 1.1716 1.3333 1.5888 2 2.6984 4 concave See for revision. Estimate of the area required = 1 × p × [1 + 4 + 2 × 10.8812] C1 All the ‘middle values’ add 2 24 together to give 10.8812 = 1 × p × 26.7624 The shaded areas are the errors 2 24 in each approximation. = 1.7516 = 1.75 units2 (to 3 s.f.) t If the graph is a concave curve, If the graph is convex, the the trapezium rule overestimates trapezium rule underestimates p 3 p the actual area. the actual area. b sec 2 x dx = ⎡tan x⎤0 ⎣ ⎦ 3 d (tan x) = sec² x 0 dx = 3 − 0= 3 i The percentage error with 4 strips = 1.8078 − 3 × 100 3 = 4.4% (to 2 s.f.) ii The percentage error with 8 strips = 1.7516 − 3 × 100 The percentage error is smaller 3 when more strips are used (but = 1.1% (to 2 s.f.) more calculation is involved). 218 219
  • 114. 10 Integration 10 Integration 1 Exercise 10.1 3 Find an approximate value for I = ex sin x dx using the 1 Use the trapezium rule to estimate the value of these integrals trapezium rule with 0 correct to 3 significant figures using the number of strips given. a six ordinates 1 a 2x dx 5 strips b eleven ordinates. 0 Give reasons why one of these values is more accurate than 5 the other. b ln(1 + x2) dx 4 strips 1 4 The semicircle y = + 36 − x 2 is split into twelve vertical strips. p 2 c ( sinq ) dq 6 strips Find an estimate of the area of the semicircle (to 3 s.f.) using 0 the trapezium rule. Hence, obtain an approximate value of p. 2 2 d e −x dx 5 strips 5 Use the trapezium rule with seven ordinates to estimate the 3 1 2 value of I = 1 − x dx to 2 decimal places. p 9 2 0 2 e cos2 q dq 6 strips x2 + y = 1 − p Sketch the graph of the ellipse 9 4 2 and use your value of I to estimate its area. 4 8 1 + e-x dx f 6 strips 6 a Estimate the value of the integral I = (3 x + 1) dx 2 C4 C4 2 0 using the trapezium rule with 8 strips. p 2 b Calculate the exact value of I. 2 a Estimate the value of the integral I = cos x dx 0 p c Find the percentage error in the estimated value to 1 decimal place. using the trapezium rule by dividing the interval from 0 to 2 into six strips. b Find the exact value of I by integration. INVESTIGATION c Calculate the percentage error in the estimated value of I. 7 Do some research to find a formula for the area of an ellipse. d Explain, using a suitable diagram, why the answer to part a How does this formula also give you the area of a circle? is an underestimate of the exact value of I. Use your answer to question 5 to find another estimate for the value of p. 220 221
  • 115. 10 Integration Exercise 10.2 10.2 Integration as summation 1 Find the values of these definite integrals. p p 1 2 You can find the exact area under a curve by summing an 2 2 1 dx See C2 for revision. a 2cos x dx b p 5sin x dx c ex dx d x infinite number of infinitely thin rectangles. y 0 4 −1 1 b b ∑dA ≈ ∑ ydx p 4 4 p Area PQRS = y = f(x) 4 x + 1 dx (x + 1)2 dx 3 cos x + sec x dx a a e sin x - cos x dx f g h Q −p 1 x 1 x 0 cos x 4 Each strip of area dA is approximated by a rectangle of height y and (x, y) width dx, so its area dA » ydx P 2 Find these indefinite integrals. y The Greek letter sigma, å, indicates the sum of many of these rectangles. 1 sec 2 q dq S R a 2 b x − 2 dx c 5cos x - 3sin x dx In the limit, as dx ® 0, O x x a dx b b area PQRS = lim ∑ yd x As dx® 0, the number of 3 a Find the area bounded by the graph of y = ex, the two d x →0 rectangles ® ¥. a coordinate axes and the line x = 2 b In the limit, the Greek letters dx = y dx and å become the English letters b The region bounded by the graph of y = ex, the two coordinate axes a dx and respectively. and the line x = k has an area of 2 units2. Find the value of k. is an elongated letter S (for Sum) 4 a Find the point of intersection of the graphs y invented by Leibnitz in about 1680. y = cos x and y = sin x for 0 x p C4 C4 2 Integration is also the reverse of differentiation, so you should 1 b Find the area, A, bounded by the graphs of y = cos x, y = cos x y = sin x already recognise these basic results: y = sin x and the x-axis as shown in this diagram. A O p x d(sin x) d(e x) = e x c Find the area bounded by the two graphs and the y-axis. = cos x cos x dx = sin x + c x e dx = e + c x 2 dx dx d(cos x) = − sin x sin x dx = -cos x + c d(ln x) = 1 1 dx = ln x + c 5 Find the area between the graphs of y = ex and y = 1 from x = 1 to x = 2. dx dx x x x c is the constant of integration. d(tan x) = sec 2 x sec2 x dx = tan x + c 6 If the region under the graph of y = 1 from x = 1 to x = a has dx x an area of 4 units2, find the value of a. A sketch graph will help you to EXAMPLE 1 Find the area enclosed by the graphs of y = cos x and y = ex visualise the problem. INVESTIGATION and the line x = 1 y •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7 If a temperature is measured discretely n times with the y = ex From the sketch, the area required is the area under y = cos x results q1, q2, . . . , qn , then the average (mean) temperature i subtracted from the area under y = ex n 1 1 is 1 ∑q i n Area = ex dx - cos x dx 1 0 0 1 If the temperature varies with time t such that q = f(t) and 1 = ⎡e x ⎤ − [sin x ]0 1 O x 5 –1 1 it is measured continuously over a period T, then the ⎣ ⎦0 y = cos x mean T = (e − 1) − (sin 1 − 0) = 2.718 − 1 − 0.841 = 0.88 You could write this as one integral mean temperature is 1 f(q) dt 1 T 0 t The area required is 0.88 units2 to 2 d.p. (ex - cos x) dx O p T 0 Find the mean temperature if q = 5sin t from t = 0 to t = p sin 1 means the sine of 1 radian 222 223 (not 1°).
  • 116. 10 Integration Exercise 10.3 10.3 Integration using standard forms 1 Integrate with respect to x. a cos 5x b sin 4x c sec2 3x The Core 3 and 4 specifications list the derivatives and integrals that you are expected to remember. d cos 1 x e cosec2 4x f e4x -3 2 The formulae booklet lists derivatives and integrals that are g (3x + 2)4 h tan 3x i 1 provided for you in your examinations. 3x − 1 1 Here is a list of standard integral forms where a, b, c and Try to derive these results yourself. j k cot 2x l cos (2x + 3) n are constants: (3x − 1)2 5 m sec2(4x + 1) n sec 4x tan 4x o sec 4x 1 x n +1 + c (n ≠ −1) x n dx = n +1 (ax + b)n dx = 1 × 1 (ax + b)n +1 + c p cosec 4x q e-2x r cos 3x + sin 1 x a n +1 3 s cosec 2x cot 2x t (e x - e-x)2 cos x dx = sin x + c cos(ax + b) dx = 1 sin(ax + b) + c 2 Evaluate these integrals. a p p p 3 8 sin x dx = -cos x + c sin(ax + b) dx = − 1 cos(ax + b) + c a cos 3x dx b sec2 2x dx c sin x dx a p 2 0 0 2 sec 2(ax + b) dx = 1 tan(ax + b) + c p 1 sec2 x dx = tan x + c 3 2 sin 3x dx 1 dx C4 C4 a d e e2x+1 dx f 4 −1 0 3x + 1 0 ex dx = ex + c eax +b dx = 1 eax +b + c a 3 Integrate with respect to x. 1 + 1 a b 1+ 1 x 2 cos2 x x sin 2 x 1 You can always check 1 dx = 1 ln |ax + b | + c x dx = ln x + c ax + b a your integration by c e2x −1 + e1−2x d sin 3x differentiating your answer. cos2 3x See the formulae booklet for other standard integrals. e cos 3x cosec2 3x EXAMPLE 1 p 3 Evaluate (cos 3x + 4sin x) dx INVESTIGATION 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4 An AC current i varies with time t such that AC means ‘alternating current’. p p ‘Rectified’ means that the current 3 i = 5sin wt where w = 3 (cos 3x + 4sin x) dx = ⎡ 1 sin 3x − 4cos x ⎤3 always flows in the same direction; 0 ⎢ ⎣3 ⎥ ⎦0 The current is rectified so that i = |5sin wt| that is, i > 0 at all times. (3 3 ) (3 ) Draw the graph of the rectified current for 0 t 2p = 1 sin p − 4cos p − 1 sin 0 − 4cos 0 Use the ideas of the investigation in Section 10.2 to find =0−4 × 1 −0+4=2 the mean value of the rectified current for t = 0 to t = p 2 3 224 225
  • 117. 10 Integration 10.4 Further use of standard forms In general, f ′(x) dx = ln|f(x)| + c f(x) There are two special cases which use standard forms and the EXAMPLE 3 chain rule in reverse. x dx cos x dx Consider y = (3x2 + 2x + 1)5 Integrate a b 3 sin x − 4 x2 + 1 dy The derivative of x2 + 1 is 2x. Apply the chain rule: = 5(3x2 + 2x + 1)4 ´ (6x + 2) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dx Modify the integral so that you x dx = 1 2x dx = 1 ln(x 2 + 1) + c = 5(6x + 2)(3x2 + 2x + 1)4 a x2 + 1 2 x2 + 1 2 have 2x ‘on the top’. The derivative of 3sin x - 4 In reverse, (6x + 2)(3x 2 + 2x + 1)4 dx = 1 (3x 2 + 2x + 1)5 + c cos x dx = 1 3 cos x dx = 1 ln |3sin x - 4| + c is 3cos x. You need to have 5 b 3 sin x − 4 3 3 sin x − 4 3 3cos x ‘on the top’. In general, you can perform an integration of the form Check your answers mentally by differentiating them using Exercise 10.4 f ¢(x) ´ g[f(x)] dx by sight. the chain rule. 1 Integrate each expression with respect to x. a 3x 2 b 3x2(x3 - 1)5 c 2x + 3 x3 − 1 x 2 + 3x − 1 EXAMPLE 1 Integrate x cos(x2 + 1) dx d (2x + 3)(x 2 + 3x - 1)4 e x−2 f (x - 2)(x2 - 4x + 1)3 x 2 − 4x + 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• The ‘inside’ function f(x) is x2 + 1 cos x C4 C4 and its derivative is 2x. g h xcos (x2 + 1) i x x2 − 1 Introduce 1 ´ 2 to make a sin x + 1 x cos (x2 + 1) dx = 1 2xcos (x2 + 1) dx = 1 sin (x2 + 1) + c 2 2 2 2 2x on the ‘outside’. j x k x l xe x x2 − 1 x2 − 1 2 m xe −x n (x + 1) x 2 + 2x + 3 o x +1 EXAMPLE 2 1 x 2 dx x + 2x + 3 2 Evaluate 3 1 (x − 2)2 3 p cos xesin x q x 2e x r 0 x ln x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 1 1 p x 2 dx = 1 3x 2 dx = 1 The ‘inside’ function f(x) is x3 - 2 2 By writing cot q º cos q , find cot q dq and show that −2 2 3x (x − 2) dx 2 3 and its derivative is 3x2. cot q dq = 1 ln 2 (x 3 − 2)2 3 (x 3 − 2)2 3 sin q p 2 Introduce 1 ´ 3 to make a 0 0 0 4 3 1 ⎡ 3 −1 ⎤ 1 3x2 on the ‘outside’. = 1 ⎢ (x − 2) ⎥ = − 1 ⎡ 3 1 ⎤ ⎢ ⎥ 3 By writing tanq ≡ sin q , prove that tan q dq = ln |sec q | + c 3⎣ −1 ⎦0 3 ⎣ x − 2 ⎦0 cosq 3( 1 2) p = −1 1 − 1 = −1 × −1 = 1 Find the value of 4 tan q dq − − 3 2 6 0 Now consider y = ln |3x2 + 2x + 1| INVESTIGATION × (6x + 2) = 26x + 2 dy 1 x dx Apply the chain rule: = 4 By writing x º x - 1 + 1, find dx 3x 2 + 2x + 1 3x + 2x + 1 x −1 2 3 n 6x + 2 dx Use long division to rewrite x , x ,..., x In reverse, = ln |3x2 + 2x + 1| + c x −1 x −1 x −1 3x 2 + 2x + 1 and so integrate each of them. 226 227
  • 118. 10 Integration 10.5 Integration by substitution To evaluate a definite integral, you can either change back to the variable x and use the original limits of x You can simplify an indefinite integral using a substitution. or stay with the new variable u, provided you change the limits on the integral to the corresponding values of u. EXAMPLE 1 Consider the indefinite integral (3x + 2)5 dx EXAMPLE 3 p •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2 cos x dx Evaluate Change the variable x by substituting u = 3x + 2: 4 + sin x 0 5 You now have u dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• du You cannot integrate a function of u with respect to x. Let u = 4 + sin x, so dx = cos x and du = cos x dx Find a substitution for the operator ‘dx’ in terms of u. Either or When x = 0, u = 4 + sin 0 = 4 Differentiate u = 3x + 2 wrt x: du = 3 p u2 dx 2 cos x dx = ∫ 1 du When x = p , u = 4 + sin p = 5 4 + sin x u1 u 2 2 Separate the operators du and dx: du = dx 0 3 p 5 2 cos x dx 1 du The actual values u1 and u2 are not needed. = You now have (3x + 2) dx = u × du = 1 5 5 u du 5 4 + sin x u 3 3 = [ lnu ]u u 2 0 4 = [ lnu ]5 1 = 1 × 1 u6 + c Change back to x and use the limits of x: 4 C4 C4 3 6 p = ⎡ ln(4 + sin x)⎤0 ⎣ ⎦ 2 Stay with u and use the limits of u. = 1 u6 + c = ln 5 - ln 4 18 = ln (4 + 1) - ln (4 + 0) = ln (1.25) Substitute u = 3x + 2: (3x + 2)5 dx = 1 (3x + 2)6 + c You must give the final = ln (1.25) 18 answer in terms of x. Exercise 10.5 EXAMPLE 2 Perform this integration x dx This substitution is chosen 1 Use the given substitutions to find these integrals. x +1 to simplify the denominator using the substitution u = x + 1 in the integral. a x2(1 + x3)4 dx u = 1 + x3 b x 2 1 + x 3 dx u = 1 + x3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Rearrange u = x + 1: u2 = x + 1 You could also use the c cos x sin4 x dx u = sin x d sec2 x (1 + tan x) dx u = tan x substitution u = x + 1. Show Differentiate wrt x using the chain rule: 2u du = 1 that it gives the same answer. dx 1 x dx e dx u = 3x - 1 f u=x+5 Separate the operators: 2u du = dx (3x − 1)4 (x + 5)2 ( x x− 1) dx Rewrite the integral in terms of u: 2 g u=x-1 h ex dx u = ex + 2 x dx = u − 1 × 2u du = 2 (u2 - 1) du 2 (e + 2)3 x x +1 u (3 = 2 1 u3 − u + c = 2 u3 − 2u + c ) 3 Substitute for u and return to x: x dx 2 (x + 1)3 − 2 x + 1 + c = x +1 3 228 229
  • 119. 10 Integration 10 Integration 2 Evaluate each integral using the given substitution. 4 The x-axis is a tangent to the curve y = (x - 1)(x 2)4 at the point P. a e x 1 + e x dx u = 1 + ex b sin x 1 − cos x dx u = 1 - cos x y x dx c u2 = x - 1 d x 3 1 + x 4 dx u2 = 1 + x4 x −1 (ln x)2 dx 1 dx A e u = ln x f u2 = x O P x x 2+ x 1 x g dx u2 = x + 1 h dx x = sin q 1+ x +1 1 − x2 a Write down the coordinates of P. b Let u = x - 2 and find the area A enclosed between 1 i dx x = sin q j sec3 x tan x dx u = sec x the curve and the x-axis. 1 − x2 dx dx 5 Find the points where each of these curves meets the x-axis. k u = ex l x = 2sin q For each curve find the area enclosed between the curve e x − e −x x2 4 − x2 and the x-axis. m x + 4 dx u2 = x + 1 a y= x 4− x x x−2 b y = x (x - 2)2 C4 C4 3 Calculate the values of these definite integrals using the given substitutions. c y = 5cos x sin3 x for 0 x p p 2 3 a 2cos x esin x dx u = sin x b (x - 1)(x - 2)3 dx u = x - 2 INVESTIGATION 0 2 6 All these integrations can be performed by choosing 1 3 appropriate substitutions. x c dx u2 = 1 + x2 d 2x 2x + 3 dx u2 = 2x + 3 Some of them, however, can be done immediately on 1 + x2 1 2 0 sight using f ¢(x) ´ g[f(x)] dx p2 2 Decide which integrals can be written down on sight. 4 1 cos x dx x dx e u2 = x f u = 2x - 1 Find all the integrals. x 1 (2x − 1)4 0 a 3x 2(x 3 + 1)4 dx b 2x3(x2 + 1)2 dx 1 5 g xe x 2 −1 dx u = x2 - 1 h x 2 − 1 dx u2 = x - 1 0 x −1 c x x + 1dx d sec 2 x 1 + tan x dx 1 x x 2 dx e dx f x2 + 1 x +1 2 +1 g xe x dx h e x e x − 1 dx 230 231
  • 120. 10 Integration EXAMPLE 3 10.6 Integration using trigonometric identities Integrate a cos4 x dx b cos5 x dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You can integrate some trigonometric expressions after ( ) 2 rearranging them into one of the standard integral forms. a cos4 x dx = 1 (1 + cos 2 x) dx cos2 x = 1 (1 + cos 2x) 2 2 1 = 4 (1 + 2cos 2x + cos2 2x) dx EXAMPLE 1 cosec x dx Integrate a b sec2 x sin x dx sec x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• =4 1 (1 + 2cos 2x + 1 (1 + cos 4x)) dx 2 ( 2 + 2cos 2x + 1 cos 4x ) dx cosec x dx 1 × cos x dx cos x dx 1 a = = = cot x dx 3 sec x sin x 1 sin x The formula book gives =4 2 = ln |sin x| + c cot x dx = ln|sin x| sec x sin x dx and 4 2 ( = 1 3 x + sin 2x + 1 × 1 sin 4x + c 2 4 ) b sec2 x sin x dx = cos x = sec x tan x dx d ( sec x ) dx = sec x tan x = 3 x + 1 sin 2x + 1 sin 4x + c = sec x + c 8 4 32 b Write cos5 x as You could use the substitution You can integrate powers of sine and cosine by first changing the cos x(cos4 x) = cos x (cos2 x)2 = cos x (1 - sin2 x)2 method with u = sin x. Try this powers to multiples. method to show that it gives cos5 x dx = cos x (1 - sin2 x)2 dx C4 C4 the same result. EXAMPLE 2 = cos x (1 - 2sin2 x + sin4 x) dx Integrate a sin2 x dx b cos2 3x dx c (1 + tan x)2 dx cos x sin2 x dx = 1 sin3 x is of the form 3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• = (cos x - 2cos x sin2 x + cos x sin4 x) dx a sin2 x dx = 1 (1 − cos 2x) dx = 1 x − 1 sin 2x + c = 1 x − 1 sin 2x + c 2 2 ( 2 ) 2 4 sin2 x = 1 (1 - cos 2x) 2 = sin x − 2 sin3 x + 1 sin5 x + c f ¢(x) ´ g[f(x)] dx, as is 3 5 cos x sin4 x dx b cos2 3x dx = 1 (1 + cos 6x) dx = 1 x + 1 sin 6x + c = 1 x + 1 sin 6x + c 2 2 ( 6 ) 2 12 The simplest examples of a product of sine and cosine involve the cos 2 3x = 1 (1 + cos 6x) same multiple of the angle. 2 (1 + tan x)2 dx = (1 + 2tan x + tan2 x) dx = (2tan x + sec2 x) dx EXAMPLE 4 c 1 + tan2 x = sec2 x Find sin 3x cos 3x dx tan x dx and sec2 x dx = 2ln |sec x| + tan x + c are both standard forms. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Use the double-angle formula sin 2A = 2sin Acos A: For higher powers of sine and cosine, the method you use depends sin 3x cos 3x = 1 × 2 sin 3x cos 3x = 1 sin 6x 2 2 on whether the power is even or odd. Hence, sin 3x cos 3x dx = 1 sin 6x dx 2 For even powers, use the double-angle formulae as many times as is needed. For odd powers, use sin2 A + cos2 A = 1 as shown in Example 3 part b. =1× 2 ( − 1 cos 6x + c = − 1 cos 6x + c 6 12 ) 232 233
  • 121. 10 Integration 10 Integration If the product involves different multiples of the angle, you can Exercise 10.6 write the product as the sum or difference of sines and cosines 1 Integrate with respect to x. and then integrate. a cos 3x b sin 4x (2 ) c cos 1 x (2) d sin 3x EXAMPLE 5 Find sin 5x cos 3x dx e cos (2x + 1) f sin (3x - 2) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Consider the expansions of sin (A ± B) where Refer to Section 2.7 g sec2 4x h sec2 (2x - 3) A = 5x and B = 3x : on the CD-ROM . 2 Find these integrals by rearranging into standard forms. sin (5x + 3x) = sin 5x cos 3x + cos 5x sin 3x 1 dx and sin (5x - 3x) = sin 5x cos 3x - cos 5x sin 3x a b tan 3x cos 3x dx cos2 3x Add the expressions together: 1 dx sin 8x + sin 2x = 2sin 5x cos 3x c d tan2 x cosec2 x dx sin 2 4x 1 Hence, sin 5x cos 3x dx = 2 (sin 8x + sin 2x) dx sec 2 x dx e cot 2x sec 2x dx f cosec x =1 2 ( − 1 cos 8x − 1 cos 2x + c 8 2 ) g tan x cosec x dx h (1 + sec x)2 dx = − 1 cos 8x − 1 cos 2x + c C4 C4 16 4 i sin 3x(1 + cot 3x) dx j (cosec x + 2)2 dx (cos x + 1)2 dx EXAMPLE 6 p k l cot 2x dx Find 8 sin 6x sin 2x dx sin 2 x sin 4x 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3 Find these integrals. Consider the expansions of cos (A ± B) where A = 6x and B = 2x : a cos2 x dx b sin2 3x dx (2) cos (6x - 2x) = cos 6x cos 2x + sin 6x sin 2x and cos (6x + 2x) = cos 6x cos 2x - sin 6x sin 2x c cos2 x dx d sin2(3x + 1) dx Subtract: e (1 - tan x)2 dx f (1 + sin x)2 dx cos 4x - cos 8x = 2sin 6x sin 2x p p 8 1 8 g sec2 x tan4 x dx h cos3 x dx Hence, sin 6x sin 2x dx = 2 (cos 4x - cos 8x)dx 0 0 p i sin3 x dx j sin4 x dx = 1 ⎡ 1 sin 4x − 1 sin 8x ⎤ 8 2⎣⎢4 8 ⎥0 ⎦ k cos7 x dx l tan3 x dx ( = 1 1 ×1 − 0 − 0 + 0 = 1 2 4 8 ) 234 235
  • 122. 10 Integration 10 Integration 4 Integrate with respect to x. 11 Find the shaded areas in these diagrams where a sin x cos x b sin 2x cos 2x a y = 2sin x cos3 x b y = 2cos3 x c tan x cos2 x d sin2 3x cot 3x y 2 2 y 2 2 e tan 3x f cot 3x g 1 − sin 2x 2 1 ( ) 2 h sin 2x 1 − sin 2 1 x 2 p x O x –p p O 5 By expanding sin (A + B) and sin (A - B), show that 2 2 2 2sin Acos B = sin (A + B) + sin (A - B) 12 Find the area enclosed by the graphs of y = 2cos2 x and Hence find sin 6x cos 2 x dx 1 y = 2 cos 3x and the y-axis, as shown in this diagram. y 6 Find a sin 4x cos x dx b cos 5x cos 4x dx c sin 3x sin 2x dx y = 2cos2 x 7 Evaluate these definite integrals. O x y = 1 cos 3x C4 C4 p p p 2 2 4 4 a sin 3x cos 2x dx b sin 4x sin 6x dx c cos 2x cos 3x dx 0 0 0 INVESTIGATION 8 Evaluate p p p p 13 Consider the integral sinn x dx where n is a positive integer. 2 4 2 5 −p a 1 + sin x dx b cosec x tan x dx c sin x dx −p −p −p Use computer software to explore the graph of y = sinn x 2 4 for different values of n. d Explain your answer to part c in terms of the graph of y = sin5 x Give a reason why p p 2 2 2 a sinn x dx = 0 when n is odd 9 Find cosec x cot x dx using the substitution u = cot x −p p 4 p p b sinn x dx = 2 ´ sinn x dx when n is even. 10 Prove that the area between the graph of y = tan x and the −p 0 x-axis from x = 0 to x = p is ln 2. 3 236 237
  • 123. 10 Integration Exercise 10.7 10.7 Integration using partial fractions 1 Find these integrals. a 4 dx b x+5 dx c 4x + 1 x(x + 2) dx You can use partial fractions to help you to integrate certain algebraic fractions. (x + 1)(x − 3) (2x − 1)(x + 1) EXAMPLE 1 2x 2 dx 8 dx x+5 d dx e f Find dx (x − 1)(x + 3) 4x 2 − 1 x(x 2 − 1) (x − 1)(x + 2) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 1 9 ≡ A + B ≡ A(x + 2) + B(x − 1) x+5 g dx h dx i dx Let (x − 1)(x + 2) x − 1 x + 2 (x + 2)(x − 1) x 2(x − 1) x(x − 1)2 (x − 2)(x + 1)2 Equate the numerators: x + 5 º A(x + 2) + B(x - 1) 2 Evaluate these integrals. Let x = 1: 1 + 5 = A(1 + 2) + 0 so A = 2 4 3 4 Let x = -2: -2 + 5 = 0 + B(-2 - 1) so B = -1 a 3 dx b x + 2 dx c 1 + 2x dx 3 (x − 2)(x + 1) 2 (x − 1)2 3 (3 + x)(2 − x) x+5 ≡ 2 − 1 So (x − 1)(x + 2) x − 1 x + 2 x + 5 dx = 2 − 1 dx 3 Show that the area enclosed by the curve y = 4 , the Hence, (x + 3)(x − 1) (x − 1)(x + 2 x −1 x +2 When you work with = 2ln |x - 1| - ln |x + 2| + c partial fractions, you often lines x = -4 and x = -5 and the x-axis is ln 5 square units. get an answer involving 3 logarithmic functions. = ln (x − 1) + c 2 x+2 4 Find the area between the graph of y = 1 C4 C4 and the x 3 − 3x 2 + 2x x-axis from the ordinates x = 3 to x = 4. EXAMPLE 2 1 x + 1 dx 5 Either rearrange the numerator or use long division before Evaluate 0 (x − 2)2 integrating these expressions using partial fractions. x 2 dx x 2 + 1 dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a b Let x +1 ≡ A + B ≡ A(x − 2) + B x2 − 9 x2 − 1 (x − 2)2 x − 2 (x − 2)2 (x − 2)2 Equate numerators: x + 1 º A(x - 2) + B c (x + 2)(x − 1) dx d x 3 + x 2 + 1 dx Let x = 2: 2 + 1 = 0 + B so B = 3 x(x + 1) x2 − x − 6 Equate coefficients of x: A=1 So x +1 ≡ 1 + 3 INVESTIGATION (x − 2)2 x − 2 (x − 2)2 x dx 1 1 6 You can evaluate the integral x + 1 dx = 1 + 3 dx x2 − 1 Hence, by several different methods. (x − 2)2 0 x − 2 (x − 2)2 0 1 Integrate using 1 + 3(x − 2)−2 dx = x−2 a a logarithmic standard form on sight 0 1 1 b partial fractions = ⎡ ln | x − 2| + − (x − 2)−1 ⎤ = ⎡ ln | x − 2| − 3 ⎤ ⎢ 3 ⎥ ⎢ ⎥ ⎣ 1 ⎦0 ⎣ x − 2 ⎦0 c the substitution u = x2 - 1 = ln1 − 3 − ln 2 + 3 = 3 − ln 2 ln 1 = 0 d the substitution x = sec u −1 −2 2 Show that your four answers are equivalent. 238 239
  • 124. 10 Integration EXAMPLE 2 10.8 Integration by parts Find a x4 ln x dx b ln x dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• You can use integration by parts to integrate the product of a Let u = ln x and dv = x 4 dv 1 two functions. = x 4 so v = x 5 and dx dx 5 du 1 The method is based on reversing the product rule for differentiation. u = ln x so = x4 ln x dx = 1 x 5 ln x − 1 x 5 × 1 dx dx x Then, 5 5 x If u and v are both functions of x, then the product rule states: d(uv) = u dv + v du dx dx dx = 1 x 5 ln x − 1 x4 dx 5 5 Rearrange: u dv = d(uv) − v du = 1 x 5 ln x − 1 × 1 x 5 + c dx dx dx 5 5 5 Integrate with respect to x: = 1 x 5(5 ln x − 1) + c 25 b Let u = 1 and dv = ln x u dv dx = uv − v du dx dx dx dx This example is important. By thinking of ln x as the product 1 ´ ln x, You can differentiate ln x du you can use ‘integration by parts’. by sight but you can not The overall aim is to make sure that v is easier to integrate dx integrate it by sight. than the u dv that you started with. Then, ln x dx = 1 ´ ln x dx dx C4 C4 Your first step in choosing which function is u and which is dv u must be simple to differentiate. dv dx dv = xln x - x × 1 dx = 1 so v = x and is crucial for success. dx dx must be simple to integrate. x Keep u Integrate Integrate Differentiate u = ln x so du = 1 dx x steady dv dv u wrt x = xln x - 1 dx dx dx = xln x - x + c Eu dx dx = u v –Ev du dx dv dx EXAMPLE 3 Use integration by parts to evaluate the definite integral 1 xex dx EXAMPLE 1 Find x cos xdx 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Let u = x and dv = e x dx Let u = x and dv = cos x 1 1 dx 1 Then, xex dx = ⎡ xe x ⎤ - ⎣ ⎦0 ex ´ 1 dx Then, 0 0 1 1 Keep Integrate Integrate Differentiate Choosing u = x gives a simplified = ⎡ xe x ⎤ − ⎡e x ⎤ ⎣ ⎦0 ⎣ ⎦0 x steady cos x cos x x wrt x final integral because du = 1 dx = (1 ´ e1 – 0) – (e1 – 1) =1 Excos x dx = xsin x –Esin x × 1 dx = xsin x + cos x + c 240 241
  • 125. 10 Integration 10 Integration In some cases, integration by parts gives you an integral which is Exercise 10.8 still not simple enough to integrate. 1 Find However, if you integrate the new integral by parts again, you can a x sin x dx b xex dx sometimes solve the problem in two stages. c x ln x dx d xe2x dx EXAMPLE 4 Find x2 e3x dx e x sec2 x dx f xe-x dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Integrate by parts: ln x dx g x sin 2x dx h Let u = x and dv = e3x 2 dv dx = e3x so v = 1 e3x 3 x3 dx and u = x 2 so du = 2x dx i xe2x+1 dx j x2 ln x dx x2 e3x dx = x 2 × 1 e3x − 1 e3x × 2x dx 3 3 = 1 x 2e3x − 2 xe3x dx 3 3 k x ln x dx l ( x cos x − p dx 4 ) Now integrate xe3x by parts: m ( x sin x + p dx 6 ) n x tan2 x dx = 1 x 2e3x − 2 x × 1 e3x − 1 e3x × 1 dx 3 ( 3 33 ) Let u = x, so du = 1, and integrate dx e3x using a standard form. o (ln x)2 dx = 1 x 2e3x − 2 ( 1 xe − 1 × 1 e 3x 3x +c ) C4 C4 3 3 3 3 3 2 Find = 1 x 2e3x − 2 xe3x + 2 e3x + c 3 9 27 =e 3 3x ( x2 − 2 x + 2 + c 3 9 ) a xcos nx dx b xenx dx c xnln x dx d sin nx ln (sec nx) dx EXAMPLE 5 Find ex cos x dx 3 Evaluate these definite integrals. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• p 2 2 Let u = e and dv = cos x x You could also solve this problem a xcos x dx b x3 ln x dx dx 0 1 using u = cos x and dv = e x dx ex cos x dx = ex sin x - ex sin x dx Try it for yourself. 3 2 c ln x dx d x log10 x dx 2 1 Integrate by parts a second time: 4 p { } 2 e log10 x dx f xcot2 x dx = e x sin x − e x(− cos x) − (− cos x) e x dx 2 p 4 1 p = ex sin x + ex cos x - ex cos x dx 3 x2 2 g x e dx h ex sin x dx 0 0 So, 2 ex cos x dx = ex sin x + ex cos x Rearrange with both integrals on LHS. x ex cos x dx = e (sin x + cos x) + c 2 242 243
  • 126. 10 Integration 10 Integration 4 The graph of y = x sin x for 0 x 2p is shown here. 9 Evaluate these definite integrals. p y 2 a e2xcos x dx 0 y = xsin x 1 Q b 2x2e-2x dx O x p 2p 0 R 2 c x(ln x)2 dx 1 Find area Q and area R. 10 This diagram shows the graph of y = x2e2x 5 This diagram shows the graph of y = xe-x y Find the position of the stationary value. y = x2e2x Find the area between the curve, the x-axis and the ordinates x = 0 and x = 5. y y = xe–x O x –2 C4 C4 x O 5 Find a the y value of the maximum stationary point 6 a Prove that the curve y = x ln x has a minimum and find this b the area enclosed by the curve, the x-axis and minimum value. the ordinate x = -2. b Find the area enclosed by the curve and the x-axis. 7 Integrate each of these functions either by parts or by INVESTIGATION using a substitution of your choice. 11 Let In = sinn x dx a x(1 + x)4 dx b (x + 1)2ex dx c x x − 1 dx By writing sinn x as sin x sinn-1 x, use integration by parts to show that nIn = -cos xsinn-1 x + (n - 1)In -2 8 Find Use this formula to find sin3 x dx and sin4 x dx a x2ex dx b x2sin x dx c x2e2x dx p Find the value of sin6 x dx d x2e-3x dx e e2xcos 2x dx f x2cos 3x dx 0 g e3xsin 2x dx 244 245
  • 127. 10 Integration 9 2 sin2 3x 10 4sec2 x 11 5 cos 4x 12 xsin 2x 10.9 A systematic approach to integration 13 x2 ln (2x) 14 3x 15 x(x + 1)4 16 x(x2 + 2)5 When integrating a particular function, you should look to use: x2 + 7 standard integrals to see if the function can be integrated on sight 20 cot 2x 2 the two particular cases f ′(x) dx and f ¢(x)g[f(x)] dx 17 xe2x 18 xe2x 19 2 tan2 2x cosec 2x f(x) the method of substitution trigonometric identities partial fractions (2 ) (2 ) 21 tan 1 x cot2 1 x 22 ln (2x) 23 ln (x 2) 24 x + 2 x +1 the method of integration by parts. 25 (x + 3)(x2 + 1) 26 cos 2x + p ( 2 ) 27 tan(2x - p) 28 e2xsin 2x EXAMPLE 1 Find a x(x3 + 1)2 dx b x(x + 1)7 dx 29 sin 2x cos 2x 30 sin 2x cos 4x 31 5 32 1 (x + 1)(x − 4) x 2 − 2x Let u = x + 1 c x2(x3 + 1)7 dx d x x + 1 dx in part d. 33 x 34 e x e x + 1 35 e2x 36 cos x 4 e +1 2x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• x−2 sin x x(x3 + 1)2 dx = x(x6 + 2x3 + 1) dx (x + 1)8 (x + 1)8 a b x(x + 1)7 dx = x ´ - ´ 1 dx 37 sin 5x cos 2x 38 cos x sin7 x 39 (x2 - 9)-1 40 sin x cos x 8 8 C4 C4 1 1 1 = 8 x (x + 1) − 8 × 9 (x + 1) + c 8 9 = (x7 + 2x4 + x) dx 41 Evaluate p p = 1 (x + 1)8(8x − 1) + c p = 1 x8 + 2 x5 + 1 x2 + c 72 4 2 1 4 tan x dx 12 8 5 2 a sin2 2x dx b dx c d ∫ 3sin 3x cos 3x dx 0 1 x(2x − 1) sin x 0 0 c x (x + 1) dx = 1 3x2(x3 + 1)7 dx 2 3 7 d x x + 1 dx = (u2 - 1) ´ u ´ 2u du 3 42 Find = 1 × 1 (x 3 + 1)8 + c = 2 (u4 - u2) du sec 2 x dx 3 3 8 a b tan4 x dx c x 2e x dx d cos5 x dx tan 3 x 2 2 = 1 (x 3 + 1)8 + c = 5 u5 − 3 u3 + c 24 1 dx sec x tan x dx 3 e sin4 x dx f g h 3x dx = 2 (x + 1)2(3x − 2) + c x ln x 3 + sec x 15 You could also use integration INVESTIGATION b by parts in d. Try it yourself to show that the two 43 What is a geometrical interpretation of the integral f(x) dx for b > a? a methods give the same answer. Without evaluating these integrals, find whether they are positive, Exercise 10.9 negative or zero. 1 p Integrate these functions with respect to x. 1 4 1 dx 5 2 a x−2 b x (1 - x ) dx c sin3 x dx −p 1 x2(x - 3) 2 x(x - 3)2 3 (x - 6)6 4 3x2(x3 - 2)7 0 0 4 x2 5 x2 x 3 + 1 6 7 x2 cos (2x3) 8 3cos2 x 246 x +1 3 247
  • 128. 10 Integration EXAMPLE 1 10.10 Volumes of revolution The area enclosed by the curve y = x2 + 1, the x-axis and the ordinates x = 1 and x = 2 is rotated about the x-axis The area under a curve y = f(x) between the ordinates x = a through 360°. and x = b is given by Find the volume of the solid of revolution. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2 2 y = x2 + 1 b b The volume = py2 dx =p (x2 + 1)2 dx y p is a constant. You can take it Area A = lim ∑ yd x = y dx 1 1 outside the integral sign. d x →0 a a 2 =p (x4 + 2x2 + 1) dx 1 If you rotate a rectangular strip of width dx about the x-axis, the strip 2 generates a thin circular disc. = p ⎡ 1 x5 + 2 x3 + x ⎤ ⎢ ⎣5 3 ⎥ ⎦1 O 1 2 x The disc is a cylinder, radius y The volume of this thin disc is dV = py2dx. y and thickness d x. 32 16 ( 1 2 =p 5 + 3 + 2 − 5 − 3 −1 ) y You can leave your answer as a 178 y = f(x) = 15 p cubic units multiple of p. y = f(x) (x, y) dx (x, y) y y y EXAMPLE 2 O x x O x Show that the volume of a sphere of radius r is given by 4 p r 3. C4 C4 a dx b a b 3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dx The circle x2 + y2 = r2 has a radius r and a centre (0, 0). y Area A volume dV Volume V The shaded semicircle is rotated about the x-axis through 360° to make a sphere of radius r. (x, y) If you rotate the whole of area A about the x-axis, you generate a Imagine a thin disc of thickness dx and radius y. solid which is formed by summing an infinite number of thin discs. y The volume of the disc, dV = py2dx = p(r2 - x2)dx As the number of discs increases, dx ® 0 and, in the limit, the r –r O x r x summation gives the exact value of the volume, V, of the solid. So, the volume of the sphere = p(r2 - x2)dx −r This is known as a volume of revolution. r = p ⎡r x − 3 x ⎤ 2 1 3 ⎢ ⎥ ⎣ ⎦ −r dx Volume V = lim d x →0 b b ∑ p y 2d x = a py2 dx ( = p r 3 − 1 r 3 − r 2(−r) + 1 (−r)3 3 3 ) a = 4 p r3 3 248 249
  • 129. 10 Integration 10 Integration EXAMPLE 4 EXAMPLE 3 y A hollow bowl is formed by a solid of revolution when the The curve with parametric equations x = t 2 + 1, y = t + 1 area between the parabola y2 = 4x and the straight line t t=2 is shown in this diagram. t=1 y = 2 x is rotated 360° about the x-axis. 3 Find the volume of revolution when the shaded area Find the volume of the bowl. O x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• bounded by the curve from t = 1 to t = 2 is rotated about the x-axis through an angle of 2p. (3 ) 2 The curve and line intersect when 2 x = 4x y y = 2x 3 4x2 = 9 ´ 4x •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ( t) 6 y2 = 4x 2 2 2 4x(x – 9) = 0 dx The volume V = py2 dx dt = p t + 1 × 2t dt dt = 2t x = 0 or 9 dt 1 1 The limits are values of t y = 0 or 6 (not values of x). ( ) (t ) 2 2 The points of intersection are at (0, 0) and (9, 6). 1 + 2t + 1 dt x O 9 Expand the bracket t + t : = 2p 3 t A solid of revolution is formed from 1 2 thin discs (of radius y = 4x ) with the = 2p ⎡ 1 t 4 + t 2 + ln t ⎤ = 27 p + p ln 4 cubic units central parts of radius y = 2 x removed. ( 3 ) ⎢4 ⎣ ⎥1 ⎦ 2 (3 ) 2 ( ) 2 The volume of the disc, dV = p 4x d x − p 2 x d x EXAMPLE 5 = (p × 4x − p × 4 x )d x A circle of radius r has parametric equations y 2 9 C4 C4 (x, y) x = rcos q, y = rsin q The volume of the solid of revolution x =9 The shaded semicircle is rotated 360° about the x-axis. y = lim d x →0 ∑dV Show that the volume V of the sphere generated is 4 p r 3 B A x =0 3 –r O x r x (p × 4x − p × 4 x ) dx 9 2 = A slightly quicker method is to 9 0 realise that the ‘hollow’ in the bowl dx is a cone of base radius 6 units (4x − 4 x ) dx 9 2 and height 9 units. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• =p 0 9 The volume of the cone is thus At points A and B, y = 0, sin q = 0, so q = 0 and p respectively. 1 9 3 p ´ 36 ´ 9 = 108p and you p p dx = p ⎡2x 2 − 4 x 3 ⎤ ⎢ can subtract it immediately from V= py2 dq dq = p(r sin q)2 ´ (-r sin q) dq dx = -r sin q ⎣ 27 ⎥0 ⎦ 0 dq 9 0 p = p (162 – 108 – 0) p ´ 4x dx = 162p 0 = -pr 3 (1 - cos2q)sin q dq Using sin2 q + cos2 q = 1 = 54 cubic units 0 p = -pr 3 ∫ (sin q - sin q cos2 q) dq 0 Curves with parametric equations p Either recognise the integral If a curve is specified by parametric equations x = f(t), y = g(t), = −p r 3 ⎡ − cosq + 1 cos3 q ⎤ of -sin q cos2 q on sight or use ⎢ ⎣ 3 ⎥0 ⎦ then the volume V of the solid of revolution is given by the substitution u = cos q b t2 The independent variable is t. = −p r 3 ⎛ 1 − 1 − ⎜ ⎝ ( 3 ) ( 1 + 1 ) ⎟⎠⎞ = 3 − − 4 pr 3 3 The negative sign indicates that you have integrated anticlockwise 2 dx = ∫ p y dt dt around the circle from A (where V= py 2 dx The limits of this integral are The volume of the sphere = 4 p r 3 cubic units t = 0) to B (where t = p). a t1 t = t1 and t = t2. 3 250 251
  • 130. 10 Integration 10 Integration Exercise 10.10 5 The region R is defined as the area between the curve y = tan x, 1 Each of these three shaded areas is rotated 360° about the x-axis. the x-axis and the line x = p . If R is rotated 180° about the Find the volumes of revolution. 4 x-axis, find the volume of the solid which is generated. a b y c y y y = 3x2 y = x(3 – x) 6 a Find the volume generated when the area enclosed by the y = √x – 1 curve y = x2, the x-axis and the line x = 3 is rotated 360° about the x-axis. x b Find the points of intersection of the curve y = x2 and the O 1 2 4 O 2 3 x line x + y = 12. Find the volume generated when the area O x in the first quadrant enclosed by the curve, the line and 1 2 the y-axis is rotated 360° about the x-axis. 2 In each case, the region R is bounded by the curve y = f(x), the 7 a Find the points of intersection of the line y = 2x and the x-axis and the given ordinates. Find the volume generated curve xy = 8 when R is rotated through an angle of 2p about the x-axis. b The area in the first quadrant bounded by this line and a f(x) = x2 - 1, x = 1, x = 2 b f(x ) = 1 , x = 2, x = 3 x curve, the x-axis and the ordinate x = 4 is rotated through 2p about the x-axis. Find the volume generated. c f(x) = x(x – 2), x = 0, x = 1 d f(x) = sin x, x = 0, x = p 2 8 The area between the two curves y = x3 and y2 = x is rotated e f(x) = 1 , x = 0, x = p f f(x) = e x x , x = 1, x = 2 through 2p about the x-axis. Find the volume of the solid cos x C4 C4 4 which is generated. g f(x) = x − 1, x = 2, x = 3 h f(x) = x ln x , x = 2, x = 3 x 9 The region R is defined as the area enclosed by the y-axis and y 3 The line y = mx passes through the point (h, r). y the two curves y = sin x and y = cos x. If R is rotated through y = mx 2p about the x-axis, find the volume generated. y = sin x The area bounded by the line, the x-axis and the ordinate x = h is rotated 360° about the x-axis (h, r) O x r y = cos x to generate a cone of height h. Find the value of m in terms of r and h. Prove that the volume of the cone is 1 p r 2h. 10 A metal washer has the shape of a solid of revolution. y 3 O h x The shaded area in this diagram, enclosed between the curve y = x2 - x + 4 and the line y = 4, is rotated through P Q 4 A solid of revolution is formed by rotating the curve an angle of 2p about the x-axis to form the washer. y = x 4 − x 2 , where x > 0, a full turn about the x-axis. a Write down the coordinates of the points of Sketch the graph of the curve and find the volume of the solid. intersection P and Q. O x b Find the volume of revolution. 252 253
  • 131. 10 Integration 10 Integration 11 If the area between the curve y = ln x, the x-axis and the 16 That part of the curve, defined parametrically by y ordinate x = 3 is rotated through 180° about the x-axis, x = y = 1 , which lies between the ordinates of t 2, 1+t find the volume generated. ( ) R 1, 2 ( ) 1 and S 4, 1 is rotated a full turn about the x-axis. 3 R S 12 A sphere of radius 13 cm is intersected by two parallel planes O x 7 cm apart. Find the volume of revolution. The larger intersection is 5 cm at its nearest point from the centre of the sphere. Find that volume of the sphere which lies between the two planes. 17 The shape of a rugby ball is called a spheroid. It is the solid of revolution when an ellipse is rotated about one of its axes. 13 Find the volumes of revolution when the shaded areas on Find the volume of the spheroid which is generated by these diagrams are rotated about the x-axis through 360°. rotating the ellipse with parametric equations x = acos q, y = b sin q about the x-axis. a b y c y t=2 18 This diagram shows the curve with parametric equations y y t=1 x = sin q, y = sin 2q 1 Find the volume of revolution when one of the loops is t=2 rotated a full turn about the x-axis. t=1 O x –1 1 O x x x –1 O O 2 4 C4 C4 19 Find the volume of the solid of revolution when the area The parametric equations are bounded by the curve x = tan q, y = sin q, the x-axis and the x = t3 x = t2 + 3 x = 4t ordinates x = 1 and x = 3 is rotated through an angle of 2p y=t 2 y = 3t + 1 y=2 about the x-axis. t 14 A curve has parametric equations x = 1, y = t 2 y INVESTIGATION t The area bounded by the curve, the x-axis and 1 2 x= ,y=t 20 y t the ordinates x = 1 and x = 2 is rotated through an angle 2 of 2p about the x-axis. Find the volume of the solid of revolution. 2 O 1 2 x 2 O 2 x 15 The part of the curve, defined parametrically by x = t2 - 1, y This circle, with centre (2, 2) and radius 1 unit, is rotated y = et, from the ordinate of P where t = 0 to the ordinate about the x-axis through an angle of 2p to generate a solid. of Q where t = -1 is rotated about the x-axis through 360°. P What name can be given to the solid? Q Find the volume of revolution. O x Can you find an expression for the volume of the solid? 254 255
  • 132. 10 Integration 4 Use standard forms to integrate these expressions with respect to x. Review 10 a cos 3x b sec2 5x c sin x d (6x + 1)4 4 1 Use the trapezium rule to estimate the value of these integrals e cot 2x f 1 g 1 h e4x 4x + 3 ( 4x + 3)2 correct to 3 significant figures using the number of strips given. a 2 3x dx 5 strips b 1 e dxx2 6 strips i (ex + 1)2 j 2( ) cosec 2 x + 1 k sec 2x l sec 2x tan 2x 0 0 5 Find 4 p 4 x dx c ln(x2 - 1) dx 6 strips d tan q dq 5 strips a 2x(x2 + 3)5 dx b c x cos (x2 + 1) dx d cos x sin6 x dx 2 0 x2 + 3 x − 1 dx sec 2 x dx 2 p 4 e f 1 + tan x g xe −x dx h x 2 1 + x 3 dx 2a Use the trapezium rule to estimate the value of I = sec2 x dx x 2 − 2x − 1 0 by dividing the interval from 0 to p into 5 strips. 6 Use the given substitutions to find these integrals. 4 b Find the exact value of I by integration. 1 a dx u=x+3 b (x - 1)(x - 4)3 dx u = x - 4 c Calculate the percentage error in the estimated value of I. ( x + 3)2 d Explain, using a suitable diagram, why the answer to x dx c e x e x + 3 dx u = ex + 3 d u2 = x + 1 part a is an overestimate of the exact value of I. x +1 C4 C4 2 ( ) 3 This figure shows a sketch of the curve with equation y 2 7 Calculate the value of x dx using the substitution u = x + 2 y = (x - 1)ln x, x > 0 y = (x – 1) In x x+2 1 a Copy and complete the table with the values of 1 2 y corresponding to x = 1.5 and x = 2.5 1 8 Use the substitution x = sin q to find the exact value of 3 dx [(c) Edexcel Limited 2005] 0 (1 − x 2 ) 2 x 1 1.5 2 2.5 3 y 0 ln 2 2ln 3 9 Find these integrals, using appropriate trigonometric identities where necessary. 3 O 1 3 x tan x dx b Given that I = (x - 1)ln x dx, use the trapezium rule a cos x cosec x dx b tan2 x cosec2 x dx c 1 1 − cos2 x i with values of y at x = 1, 2 and 3 to find an approximate value for I to 4 significant figures d cos2 3x dx e sin2 3x dx f (2 + tan x)2 dx ii with values of y at x = 1, 1.5, 2, 2.5 and 3 to find another approximate value for I to 4 significant figures. c Explain, with reference to the figure shown, why an increase g (2) cos4 x dx h (2) cos3 x dx i sin5 x dx in the number of values improves the accuracy of the approximation. 3 j sin4 2x dx k (tan4 x - sec4 x) dx l ⎜ ⎝ 4 ⎠ ⎟( ) ⎛1 − sin 2 1 x ⎞ dx d Show, by integration, that the exact value of (x - 1)ln x dx is 3 ln 3. [(c) Edexcel Limited 2006] 1 2 10 a By expanding cos (A + B) and cos (A - B), show that 2cos Acos B = cos (A - B) + cos (A + B) Hence, find cos 6x cos 4 x dx p 4 256 b Use a similar method with sin (A ± B) to find the value of sin 6x cos 4x dx 257 0
  • 133. 10 Integration 10 Integration 11 Integrate using partial fractions. 18 Integrate a x+3 ( x − 1) ( x − 3) dx b 5x (2x − 1) ( x + 2) dx c 7 ( x + 1) ( x − 3)2 dx a 1 − sin 2 x dx 1 − cos2 x b sec 2 x − 1 dx sin x c cos3 (4x) dx d (2) sin 4 x dx 12 Find the value of e (2 - sin2 x) dx f sin 7x sin 3x dx g exsin 3x dx h x2 cos 4x dx 3 2 a 1 b 9 dx dx 2 ( x − 1) (2x − 1) 1 x 2 (3 − x ) 19 Evalute p 2 3 3 sin x 5x + 8 a x(x - 1)5 dx b (x - 1)2ln (x - 1) dx c dx 13 g(x) = 1 + tan 2 x (1 + 4x)(2 − x) 1 2 p 4 a Express g(x) in the form A + B , where A and B (1 + 4x) (2 − x) are constants to be found. 20 The region R is bounded by the curve y = f(x), the x-axis and the given ordinates. In each case, find the volume generated b The finite region R is bounded by the curve with equation when R is rotated through an angle of 360° about the x-axis. y = g(x), the coordinate axes and the line x = 1 2 a f(x) = 4 - x2 x = 1, x = 2 b f(x) = sin x x = p , x = p 4 2 Find the area of R, giving your answer in the form a ln 2 + b ln 3 [(c) Edexcel Limited 2003] y y f(x) = 4 – x2 14 Use integration by parts to find C4 C4 f(x) = sin x a x cos x dx b x cos 3x dx c xe3x dx d x sin nx dx R R e x2e2x dx f e2xsin x dx g x3ln x dx O 1 2 x O p p x 4 2 15 Evaluate these integrals using integration by parts. 21 The area enclosed by the y-axis, the curve y = x2 + 4 and the straight p p 2 line y = 5x is rotated about the x-axis through an angle of 2p. 4 1 3 a x sin x dx b x2ex dx c excos x dx d x4ln x dx Draw a sketch of the area and find the volume of the solid 0 0 0 1 which is generated. 16 a Use integration by parts to find x cos 2x dx 22 Part of a curve is defined by a range of values of the parameter t. In each case, find the volume of revolution when the area between the x-axis and the defined part of the curve is rotated about b Hence, or otherwise, find x cos2 x dx [(c) Edexcel Limited 2005] the x-axis through 360°. a x = t2 + 1, y = t3 1 t 2 b x = et, y = t + 1 0 t 1 17 Choose an appropriate method of integration to find each of these integrals. a x3(x2 - 1) dx b (x - 2)(x2 - 1) dx c (x - 5)6 dx d 2x(x2 - 2)5 dx 23 This diagram shows part of the curve with y equation y = 1 + 1 2 x e x x − 2 dx f x dx g 1 dx h 1 dx The shaded region R, bounded by the curve, the x2 − 1 x2 − 1 x2 − x x-axis and the lines x = 1 and x = 4, is rotated through R O 1 4 x x2 x 360° about the x-axis. Using integration, show that i xe 2 dx j xe 2 dx k x ln (3x) dx l x2 ln (3x) dx the volume of the solid generated is p 5 + 1 ln 2 ( 2 ) [(c) Edexcel Limited 2003] 258 259
  • 134. 10 Exit 11 Differential equations This chapter will show you how to solve first-order differential equations of the forms dy dy dy Summary Refer to = f(x), = f( y) and = f(x)g(y) dx dx dx The trapezium rule gives an estimate of the area between a curve and the x-axis. 10.1 use the method of ‘separating the variables’ The area A between a curve and the x-axis from x = a to x = b is given by use first-order differential equations to solve problems in practical contexts. b either A= y dx where the curve has the Cartesian equation y = f(x) a t2 Before you start or A= y dx dt where the curve has parametric equations x = f(t), y = g(t) 10.2 t1 dt You should know how to: Check in: The volume of revolution when the area between a curve and the 1 Solve simple problems involving 1 a The gradient function of the curve x-axis from x = a to x = b is rotated 360° about the x-axis is given by gradients of curves. y = f(x) is f ¢(x) = x2 - 5 b either V = p y2 dx where the curve has the Cartesian equation y = f(x) e.g. A curve passes through the point (1, 5) such If the curve passes through the point dy a that = 2x. Find the equation of the curve. (3, -4), find its Cartesian equation. t2 dx or V= p y 2 dx dt where the curve has parametric equations x = f(t), y = g(t) 10.10 If dy = 2x , then y = x2 + c dy = (x + 1)2 C4 C4 t1 dt dx b The derivative of a curve is To pass through (1, 5), 5 = + c 12 dx To integrate a function, you may need to use If the curve passes through the point so c = 4 standard integrals which can be integrated on sight 10.3 (2, 5), find its equation. The equation of the curve is y = x2 + 4 the two particular cases f¢(x) dx and f ¢(x) ´ g[f(x)]dx 10.4 f(x) the method of substitution 10.5 2 Integrate various functions. 2 Integrate trigonometric identities 10.6 1 a (2x + 1)3 e.g. Find a 4e-3x dx b dx partial fractions 10.7 x (x + 2) b cos 2x + sec2 3x the method of integration by parts, where u dv dx = uv – v du dx 10.8 a 4e −3x −3x dx = 4 × e + c = − 4 e−3x + c dx dx −3 3 c 1 (x − 1)(x + 3) Links b 1 x ( x + 2) dx = 1 2 ( 1x − x + 2 ) dx 1 d x cos x Engineers use integration to determine the pressure exerted = 1 (ln x − ln ( x + 2)) + c x on the vertical gates of a dam by the water. 2 e x2 + 3 Pressure is defined as the force per unit area. In a fluid, the = 1 ln 2 ( x +x 2 ) + c f x force exerted on a submerged object increases if either the x −1 density of the fluid, the depth of the object, or the exposed area of the object increases. The force can also vary at 3 Use exponentials and logarithms. 3 Find x in terms of k when different points on the object if its shape is not uniform, e.g. If ln (x + 1) - ln x = k, find x in terms of k. a ln (x - 2) = ln x + ln 2 + k as is the case with many dam gates. (x) ln(x + 1) − ln x = ln x + 1 = k b 2ln x = ln (x2 + 1) + k x +1 The force exerted by the water on the gate can be modelled by So = ek c k2 = 1 + ke-x x b F=w xy dy 1= x(ek - 1) 1 a x= ek − 1 where w is the density of the water, (b - a) is the vertical length of the gate in the water and x is the horizontal length of the gate at a point at depth y below the surface of the water. 260 261
  • 135. 11 Differential equations EXAMPLE 1 11.1 First-order differential equations Find the particular solution of the differential equation dy x2 − 3x = 1 if y = 4 when x = 1. dx A differential equation is a relationship between two (or more) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• variables and one (or more) of their derivatives. dy x2 − 3x = 1 dx The order of a differential equation is given by the highest dy derivative in the equation. Rearrange: x2 = 1 + 3x dx E.g. dy 1 + 3x 1 3 = 2 = 2+ dy dx x x x = x sin x is a first-order differential equation in x and y. dx d2 y Integrate with respect to x: − 6 dy + 9 = 0 is a second-order differential equation in x and y. dx 2 dx y= ( x1 + 3x )dx 2 This chapter considers only certain types of first-order differential equations. = − 1 + 3 ln x + c This is the general solution. x When x = 1, y = 4, so 4 = -1 + 3ln1 + c Consider the differential equation dy = 2x c=4+1-3´0 dx =5 You have y = 2x dx To find the solution of the equation, integrate with respect to x. The particular solution is y = − 1 + 3 ln x + 5 giving y = x2 + c where c is an arbitrary constant. x C4 C4 This solution is called the general solution. Different values of c give different solutions but the graphs If dy = f(y), then dx = 1 dx 1 y dx dy f(y) = of these different solutions all have the same basic shape. dy dy and integrating with respect to y gives the general solution The graphs form a family of curves, in which each curve dx can be formed from any other by a simple translation parallel x= 1 dy = g(y) + c f(y) to the y-axis. (3, 14) If you choose one member of the family, then that solution is called a particular solution. EXAMPLE 2 5 Find the particular solution of the differential equation For example, consider the graph which passes through the dy = cos2 y point (3, 14). O x dx Substitute x = 3 and y = 14 into y = x2 + c given that y = 0 when x = 1. 14 = 32 + c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• giving c = 5 dx 1 The particular solution in this case is y = x2 + 5 Rearrange dy = cos 2 y : = = sec 2 y dx dy cos2 y Integrate with respect to y: If dy = f(x), then the general solution is given by dx The general solution is x = sec2 y dy = tan y + c y = f(x) dx = g(x) + c Given y = 0 when x = 1, 1 = tan 0 + c, so c = 1 The particular solution is x = 1 + tan y 262 263
  • 136. 11 Differential equations 11 Differential equations EXAMPLE 5 EXAMPLE 3 dy dy y Find the particular solution of (1 − y) + y 2 = 1, if y = 2 Find the particular solution of = 2 if y = 3 when x = 2. dx dx x −1 when x = 0. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • Factorise and use partial fractions: dy (1 + y)(1 − y) Separate the variables and integrate: Rearrange: = = 1+ y 1 = 1 dx 1− y dy = 2 dx x 2 − 1 (x − 1)(x + 1) dx 1 y x −1 So = dy 1 + y 1 dy = ln(1 + y) + c =1 2 ( x 1− 1 − x 1+ 1 ) dx Integrate with respect to y: x= This is the general solution. 1+ y ln y = 1 ( ln(x − 1) − ln(x + 1)) + c 2 When x = 0, y = 2 so 0 = ln (1 + 2) + c c = -ln 3 ln y = ln x − 1 + ln A Define a new arbitrary constant A x +1 so that c = ln A The particular solution is x = ln (1 + y) - ln 3 ⎛ ⎞ = ln ⎜ A x − 1 ⎟ You can now incorporate A within = ln 1 + y 3 ( ) ⎝ x +1⎠ the logarithm, using the fact that ln p + ln q = ln (pq) The general solution is y = A x − 1 ex = 1 + y x +1 3 y = 3e x - 1 Substitute for x and y: 3=A 1 3 C4 C4 You could have used this method so A = 3 dy If = f(x) × g(y), then the general solution is given by dy dx on = 1 + y in Example 3. The particular solution is y = 3 x − 1 dx x +1 1 dy = Try it yourself to show that it f(x) dx g(y) gives the same answer. Exercise 11.1 This method is called separating the variables. x and y (with the operators dx 1 Find the general solutions of these differential equations. dy dy and dy) are separated onto the a = 3x 4 b = cos 2x two sides of the equation. dx dx EXAMPLE 4 dy dy dy Find the general solution of xy 2 = x2 + 1 c (x 2 + 1) =x d (x + 1) =x dx dx dx •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Separate the variables and integrate: 2 Find the general solutions of these differential equations. x + 1 dx 2 dy dy y 2 dy = a = 4y 4 b = e −2y x dx dx = ( x + 1x ) dx c dy dx −y=3 d dy dx = cot y 1 y 3 = 1 x 2 + ln x + c 3 2 3 Find the general solutions of these differential equations. A new arbitrary constant c¢ has y 3 = 3 x 2 + 3 ln x + c ′ dy x dy y dy 2 been introduced where c¢ = 3c a = b = c = xy dx y dx x dx dy dy dy d x − y =1 e y = et f t = y + ty dx dt dt dx dx g t2 = x +1 h t = cot x 264 dt dt 265
  • 137. 11 Differential equations 11 Differential equations 4 Find the particular solutions of these differential equations. 8 The gradient at the point (x, y) on a curve is given by dy dy x a = x 2 + x + 1, given y = 2 when x = 0 = dx dx y sec x If the curve passes through the point (0, 2), dy 1 b = , given y = 2 when x = 1 find its Cartesian equation. dx y −1 ( ) 2 dx c dy = x, given y = 4 when x = 1 9 Find the particular solution of the equation (1 + cos 2q ) =2 given that x = 1 when q = p dx dq 4 2 dy d (1 + x) = xy , given y =1 when x = 0 2 dy dx 10 Find the general solution of the equation (y 3 + 1) − xy = x dx , given that y = 0 when x = p dy sec y e = dx sec x 2 dy 11 The differential equation xy = x 2 + y 2 can be solved dy dx f ex+ y = 1, given y = ln 2 when x = 0 using the substitution y = xz dx dy a Find an expression for in terms of x and z. dx 5 Use a mixture of methods to find the general solutions of these differential equations. dy dz dy b Eliminate y from xy = x 2 + y 2 and show that xz =1 dy dx dx a (x + 1) dx = 1 b = e −3y dx c Hence, prove that y2 = 2x2ln (ax) where a is a constant. dy x+2 dy = tan y c = d C4 C4 dx y−2 dx 12 Prove, by using the substitution y = tz, that the general solution y dy y (t + y) e y dy −x =1 f x cos y dy = sin y of the equation = is Aty = e t , where A is a constant. dx dx dt t (y − t) dy dy g 3x + x = x2 h 2y + y =1 dx dx INVESTIGATION dy y dy x +x 2 13 Oscillations and waves in, for example, simple i = j = 2 dx x(x + 1) dx y +y pendulums and electrical circuits, can be modelled dy dy using differential equations. Architects and structural k tan x = cot y l (x + 1) − xy = 0 dx dx engineers use differential equations when designing buildings and bridges to take account of their natural dy dy m cos2 x = sin2 x n y = sec y frequencies when these structures sway in the wind. If dx dx the oscillations induced by the wind match the natural dy dy oscillations of the structure, then resonance occurs. o ex + y2 = 4 p (cos x − sin x) = 2 sin x dx dx Use the Internet to investigate the early discovery of resonance; 6 Find the equation of the parabolic curve which passes through the conditions under which resonance leads to instability; dy the point (-1, 2) and for which (y − 1) =4 the structural collapse of the Tacoma Narrows Bridge dx in the USA in 1940. 7 Show that the curve, which contains the point (3, 7) and for which dy = 1 + y , has the equation y + 1 = k(x + 1) dx 1 + x Find the value of k. 266 267
  • 138. 11 Differential equations EXAMPLE 3 11.2 Applications of differential equations The radioactive element strontium-90 has a half-life of In radioactive material, atoms 29 years. Find what percentage of the initial amount of disintegrate spontaneously. The radioactive strontium is left after a hundred years. rate of disintegration at a given You can solve problems involving rates of change by forming a time t is proportional to the •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• differential equation and then using integration. amount of radioactive material left dM dM You have ∝ M giving = −kM where k is positive. in the sample. The amount of dt dt radioactive material M is EXAMPLE 1 The acceleration, a m s-2, of a moving particle depends on the decreasing over time, so the rate time, t seconds, which has elapsed since the start of the Separate the variables and integrate: of disintegration dM is negative. motion. When a = 6cos 2t dM dt = -k dt a find the velocity of the particle, v m s-1, in terms of the M time t, given that the velocity after p seconds is 7 m s-1 ln M = -kt + c = -kt + ln A Let c = ln A, so that ln M - ln A 4 b find the initial velocity. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (A) ln M = −kt giving M = Ae-kt can be combined. dv Acceleration is the rate of A half-life of 29 years means that, if the initial amount of a Acceleration a= = 6 cos 2t change of velocity. M dt strontium is M0, then 1 M0 remains after 29 years. M = MOe–kt 2 Integrate with respect to t: v = 6cos 2t dt = 3sin 2t + c This is the general solution. MO When t = p , v = 7, so 4 7 = 3sin 2 × p + c ( 4 ) When t = 0, M0 = Ae0 so A = M0 and M = M0e kt e −29k = 1 1M c=7-3=4 When t = 29, 1 M 0 = M 0e −29k so 2 O 2 2 The velocity of the particle, v = 3sin 2t + 4 This is the particular solution. e29k = 2 gives 29k = ln 2 and k = 1 ln 2 O 29 t 29 C4 C4 b When t = 0, v = 3 ´ 0 + 4 = 4 The initial velocity = 4 m s-1 Hence M = M 0e 29( ) − ln 2 t This graph illustrates the half-life of strontium as 29 years. −100 ln 2 − When t = 100, M = M 0e 29 = M 0e 2.39 EXAMPLE 2 At any given time t, the rate of increase of a population of = 0.0916M0 (to 3 s.f.) bacteria is proportional to the size of the population, N. The After 100 years, just over 9% of the strontium is radioactive. initial population is 50. If the population has increased to 100 when t = 1, find the size of the population when t = 5. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Exercise 11.2 dN The rate of increase of the population is . 1 As a train enters a tunnel with a velocity of 6 m s-1, its acceleration, a m s-2, dt So dN ∝ N giving dN = kN where k > 0 is given by a = 1 t + 1 , where t is the time in seconds spent dt dt 100 10 in the tunnel. Separate the variables and integrate: 1 dN = k dt a Find an expression for the speed of the train in terms of t. N Let c = ln A, so that ln N - ln A b If the train leaves the tunnel after 30 seconds, find its speed on exit. ln N = kt + c can be combined. = kt + ln A (A) N = kt 2 The population of a certain kind of insect is growing at a rate ln which is proportional to the number, N, of insects present at a N = Ae kt given time t (in days), where d N = 0.1N dt You have N = 50 at t = 0 and also N = 100 at t = 1 There are two unknown constants, The population is monitored over time and N = 200 when t = 0. A and k. You need two items of When t = 0, 50 = Ae0, so A = 50 information to find their values. a Find the size of the population one week after monitoring has begun. When t = 1, 100 = 50e k, so e k = 2 Hence N = Aekt = A (e k)t = 50 ´ 2t This is the particular solution. b How long will it take for the initial population to increase tenfold? When t = 5, N = 50 × = 1600 25 The size of the population when t = 5 is 1600. 268 269
  • 139. 11 Differential equations 11 Differential equations 3 Pine trees in a forest are dying due to a fungal disease. Initially there 8 Newton’s law of cooling states that, for an object at a temperature q °C, were 2000 trees, but, with a rate of infection proportional to the the rate of decrease in its temperature is proportional to the difference number of trees still unaffected by the fungus, the number unaffected between its temperature and the ambient temperature. An object is after 2 years is 1600. initially at 70 °C in a room at a constant temperature of 10 °C. Find how long it will take before half the trees are infected. During the first 10 minutes its temperature falls to 60 °C. 4 A crystal suspended in a chemical solution is increasing in size a Prove that q = 10 + 60e-kt where k = 1 ln 6 10 (5) over time. The rate of increase of volume is inversely proportional to b Find how much longer elapses before its temperature falls to 50 °C. the square of its volume. Initially, the crystal had a volume of 3 cm3 c What will its temperature be one hour after it initially started to cool? and, one day later, its volume was 4 cm3. How long will it take for its volume to increase to 10 cm3? 9 The growth of a leaf on a plant depends on the water absorbed from the plant and the water lost by evaporation from its surface. 5 When the power is switched off in an electrical circuit, it takes If the width of a leaf is w cm, then the rate of increase of the width time for the current to stop flowing. At the moment of switching is equal to 2w - w 2. off the time t = 0 and the current i = i0. 2t If the circuit has a resistance R and an inductance L, then a If w = 1 when t = 0, show that w = 2e 2t 1+ e L di + Ri = 0 where L and R are constants. dt b Find the maximum width of the leaf. a Find an expression for i as a function of t in terms of L and R. 1 b How long does it take the current to fall to a value of 100 th of 10 In a chemical reaction in a solution a new chemical is formed. its initial value? At a time t seconds, y grams of this chemical are present in the solution dy C4 C4 Give your answer in terms of R and L. and the rate of increase of the chemical is given by = 2(3 - y)(1 - y) dt 6 A oil-tank 4 metres tall has a leak. The depth of oil, h metres, in a Given that y = 0 when t = 0, find an expression for y in terms of t. the tank is decreasing over time at a rate, in metres per hour, b Find the mass, y grams, which has formed 2 seconds after the which is proportional to the square root of the depth. start of the reaction. a Given that the tank is full initially and that the initial rate at which c Find the limiting value of y as t increases. the depth is decreasing is 16 cm per hour, find the depth of oil in the tank after 10 hours. INVESTIGATION b How long does it take for the tank to empty? 11 Shake 100 drawing pins on to a table. 7 Radium is a radioactive element and it decays at a rate proportional Pins landing point down can be used to simulate radioactive to the mass M of radium which exists in a sample at a time t. atoms which have decayed in the first second. Remove them. a If the initial mass of radium in a sample is M0, show that the Repeat over and over again, removing all the pins which land mass of radium remaining after a time t is given by M = M0e-kt, point downwards, until you have only half of the original where k is a constant. 100 pins left. b If the half-life of radium is 1620 years, show that the value of k is The number of shakes that you have made gives you the approximately 4.28 ´ 10-4 half-life in seconds. c How long will it take for the initial mass of radium to decay by 99% ? Construct a mathematical model and check its validity for predicting the number of shakes required to leave 10 pins. 270 271
  • 140. 11 Differential equations 7a The acceleration, a m s-2, of a moving particle is inversely Review 11 proportional to the velocity, v m s-1, at which it is travelling after a time of t seconds. 1 Find the general solutions of these differential equations. i Find v in terms of t, given that its initial velocity is 10 m s-1 dy dy and, after 5 seconds, its velocity is 20 m s-1. a x = x3 + 2 b (x 3 − 1) = 3x 2 ii Find its velocity after a further 5 seconds of motion. dx dx dy b If the acceleration is directly proportional to the velocity, c sin x = cos x d dy = y 2 dx dx find its velocity after 10 seconds of motion, given that v = 10 dy dy when t = 0 and v = 20 when t = 5. e = e −3y f + y =1 dx dx 8 Liquid is stored in a cylindrical tank of radius 5 metres. Algae 2 Find the particular solutions of these differential equations. on the surface of the liquid is growing at a rate proportional to dy the surface area, A, which is covered with algae. The algae was a = 1 − 2x + 2x 2 given y = 4 when x = 3 first noticed when it covered 10% of the surface and, after a dx further 10 days, it covered 20% of the surface. dy b y = y2 − 1 given y = 2 when x = 1 a Write down a differential equation involving dA . dx 2 dt 3 Separate the variables to find the general solutions of these Solve the equation to find the area of the surface covered with differential equations. algae after another 10 days. dy b (x 2 + 1) dy = xy b How many days in total does it take for 75% of the surface a y2 = 1 + ex C4 C4 dx dx to be covered with algae? dy dy c sec x = cos2 y d 3y − y =1 9 Newton’s law of cooling states that an object at a temperature q °C dx dx cools in such a way that the rate of decrease in its temperature is dy y dy e = 2 f y = 2x sec y proportional to the difference between its temperature and room dx x − 3x + 2 dx temperature. An object is initially at 70 °C in a room at a constant temperature of 20 °C. During the first 5 minutes, its temperature 4 Find the particular solutions of these different equations, given falls to 60 °C. that y = 2 when x = 1. a Show that q = 20 + 50e-kt and find the value of the constant k. 3 dy a y =x 2 dx b How many more minutes elapse before its temperature falls to 50 °C? dy b x = y +1 10 Chemical A is converted into chemical B during a reaction. At any dx time during the reaction, the rate at which A is converted into B dy y c cosec(x − 1) = 2 is proportional to the quantity of A that remains at that time. dx y −1 a The quantity of A at time t is x and, when t = 0, x = x0. dy 5 A curve contains the point (0, p). Show that, if = x sec 2 y, then Write down a differential equation involving t, x and x0. dx the curve has the equation y + sin ycos y - x2 = k b In a particular experiment, the initial quantity of A is reduced by Find the value of k. a half in 5 minutes. Find how many more minutes it takes for A to reduce to only 10% of its initial quantity. 6 Given that y = 1 when x = p, solve the differential equation 2 dy = y 2x cos x dx 272 273
  • 141. 11 Exit 12Vectors This chapter will show you how to express vectors in different ways and use the components of a vector to calculate its magnitude Summary Refer to investigate properties of vectors, including how to add and subtract them dy = f(x) has the general solution y = f(x)dx = g(x) + c 11.1 calculate the distance between two points and find their midpoint in dx dy 1 3-dimensional space = f(y) has the general solution x = f(y) dy = g(y) + c 11.1 find the scalar product (or dot product) of two vectors dx dy 1 calculate the angle between two vectors and the intersection of two lines = f(x) ´ g(y) has the general solution found from dy = f(x)dx 11.1 find the vector equation of a straight line. dx g(y) This method is known as separating the variables. 11.1 The general solution of a first-order differential equation has just Before you start one arbitrary constant. 11.1 You can represent the general solution graphically by a family of curves. You should know how to: Check in: You can represent the particular solution of a first-order differential equation 1 Describe a translation using a vector. 1 a Find the vector which maps the point by just one curve selected from the family of curves. 11.1 e.g. The point (4, 1) maps onto the point (5, 3) (3, 4) onto these points. C4 C4 ⎛1 ⎞ i (4, 6) ii (4, -1) iii (2, 7) under a translation given by the vector ⎜ ⎟ . ⎝ 2⎠ b Find the image of the square (3, 3), (5, 5), (3, 5), (5, 3) under the Links ⎛ 6⎞ An example of a differential equation with translation ⎜ −2 ⎟ . ⎝ ⎠ many applications is the logistic equation dP 2 Use Pythagoras’ theorem. 2 a Find the distance from the point (0, 0) = P(1 - P) dt where P is a variable dependent on t. e.g. If the two shorter sides of a right-angled to the point (4, 5). triangle are 8 cm and 6 cm, then the longest b A right-angled triangle has two sides This differential equation is often used to side is given by 64 + 36 = 10 cm of length 5 cm and 7 cm. Calculate model population growth, where the rate two possible values of the length of of reproduction is proportional to both its third side. the existing population and the supportability of that population. 3 Solve simultaneous equations in 3 Solve these simultaneous equations. three unknowns. a 3x + 4y - z = 3 In this setting, the equation now takes the form e.g. 2x + 3y + z = 8 (1) 2x - 2y + z = 7 dt ( dP = rP 1 − P K ) 3x - y + z = 1 x + 4y + z = 9 (2) (3) x - 3y + 2z = 8 where the constant r defines the growth rate of the b x + y + 2z = 4 population, and K is the supportable population Subtract (2) from (1) to get 2x - 3y + z = 7 within the given environment. -x + 4y = 7 (4) 3x + 2y + 3z = 7 Subtract (3) from (1) to get x - y = -1 (5) Add (4) and (5): 3y = 6 y=2 Substitute into (5) and (1): x = 1, z = 0 274 275
  • 142. 12 Vectors Unit vectors parallel to the coordinate axes are denoted by ⎛4⎞ 12.1 Basic definitions and notations The vector PQ = ⎜ ⎟ can be ⎛ 1⎞ ⎛0⎞ ⎝ 3⎠ i = ⎜ ⎟ , j = ⎜ ⎟ in two dimensions ⎝0⎠ ⎝ 1⎠ written as PQ = 4i + 3j A vector is a quantity which has both a magnitude (size) and a direction. For example, velocity and force are both vectors. ⎛ 1⎞ ⎛0⎞ ⎛0⎞ ⎜ ⎟, ⎜ ⎟ and and by i = ⎜ 0 ⎟ j = ⎜ 1 ⎟ k = ⎜ 0 ⎟ in three dimensions. ⎜ ⎟ A scalar is a quantity which needs only a magnitude to describe it ⎜0⎟ ⎜0⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ fully. For example, speed and mass are both scalar quantities. A displacement vector represents a movement from a point P to xi + y j The unit vector parallel to xi + y j is a point Q. x2 + y2 The vector is represented by a directed line segment or an arrow. The length of the arrow represents the magnitude of the vector. ⎛4⎞ For the vector PQ = ⎜ ⎟ with |PQ | = 5, a unit vector in the Check: its magnitude The vector in the diagram is printed as PQ , PQ or a. Q ⎝ 3⎠ (4) + (5) 2 2 When handwritten, this vector can be written as PQ , or a . same direction will have components one-fifth of those of PQ . = 3 = 16 + 9 = 1 a 5 25 ⎛4⎞ The magnitude of the vector PQ (also called its modulus) can ⎜5⎟ The unit vector parallel to PQ is ⎜ ⎟ = 4 i + 3 j ⎜3⎟ 5 5 be printed or handwritten as PQ, |PQ |, |a| or just a. It can also P ⎝5⎠ be printed as a . Two vectors are equal if they have the same magnitude and The components of a vector are the movements parallel to the the same direction. C4 C4 coordinate axes when the vector is drawn on a Cartesian grid. Q One vector is the negative of another vector if they have the The components of this vector are 4 and 3. same magnitude but opposite directions. 3 ⎛4⎞ The vector can be written as PQ = ⎜ ⎟ One vector is a scalar multiple of another vector if they have If k is positive, ka and a have the ⎝3⎠ P the same direction but different magnitudes. same direction. Pythagoras’ theorem gives you 4 If k is negative, ka and a have 2 j In general, the vector ka is parallel to the vector a and has a |PQ | = 42 + 32 = 25 and |PQ | = 5 i magnitude k times that of a. opposite directions. ⎛ 2⎞ ⎛ 4⎞ −2 In general, in two dimensions e.g. Consider a = ⎜ ⎟ , b = ⎜ ⎟ and c = ⎛ ⎟ ⎜ ⎞ z ⎝ −1 ⎠ ⎝ −2 ⎠ ⎝ 1⎠ ⎛x⎞ You have b = 2a, c = -a and b = -2c b the magnitude of PQ = ⎜ ⎟ is x2 + y2 Q y ⎝ ⎠ P and, in three dimensions, the magnitude of a c ⎛x⎞ PQ = ⎜ y ⎟ is ⎜ ⎟ x2 + y2 + z 2 O ⎜z ⎟ ⎝ ⎠ y Adding and subtracting vectors x You can represent two successive displacements by two The zero vector O has zero magnitude and no direction. R ~ In three dimensions there are vectors PQ and QR. three axes for x, y and z. A unit vector is a vector with a magnitude of 1. They are equivalent to one displacement given by the b r=a+b The notation for a unit vector uses a ‘hat’ so that â or ~ is the â vector PR . The symbol ~ is known as ‘twiddle’. Q unit vector in the direction of vector a. a So PR = PQ + QR P 276 or r=a+b 277
  • 143. 12 Vectors 12 Vectors R EXAMPLE 1 PR (or r) is called the resultant vector or, simply, the resultant. Find a unit vector which is parallel to 6i + 8j. Using the components of the vectors, the resultant of the Find the angle between this vector and the direction (6 ) 5 (2 ) of the x-axis. ⎛6⎞ 3 vectors PQ and QR is ⎜ ⎟ . •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 ⎝ ⎠ Q Sketch a diagram to help you to visualise the problem. On diagrams, the resultant is marked by a double arrow. ( ) 4 2 If p = 6i + 8j P then the magnitude of p, p = 62 + 82 = 10 p 8 p 6i + 8j 3 You can change the order of displacements without affecting and the unit vector p = ˆ = = i + 4j p 10 5 5 the result. i So r = a + b = b + a b From the diagram, tan q = 4 r 3 6 When the two vectors are drawn tip-to-tail to make a triangle, the addition process is called the triangle law of addition. and the required angle, q = tan −1 4 = 53.1° 3 () x a EXAMPLE 2 ⎛3⎞ ⎛n⎞ Find the values of k and n if q = kp where p = ⎜ ⎟ and q = ⎜ ⎟ . ⎝2⎠ ⎝8 ⎠ When the two vectors start from the same point to make •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a parallelogram, the addition process is called the ⎛n⎞ ⎛3⎞ parallelogram law of addition. You have ⎜ ⎟ = k ⎜ ⎟ ⎝8 ⎠ ⎝2⎠ C4 C4 r The triangle law and the parallelogram law give the The y-components give 8 = 2k, so k = 4 b same resultant. The x-components give n = 3k, so n = 12 a EXAMPLE 3 If p = 2i + j - 3k and q = 4i + 2k find a |p + q| b |2p - q| To add several vectors you need to apply the triangle law b •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• several times in succession. If the vectors are drawn tip-to-tail, you can find the c ⎛ 2⎞ ⎛4⎞ ⎛ 6⎞ resultant vector from the total displacement. a p + q = ⎜ 1 ⎟ + ⎜ 0 ⎟ = ⎜ 1 ⎟ and |p + q| = 36 + 1 + 1 = 38 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ a ⎜ −3 ⎟ ⎜2⎟ ⎜ −1 ⎟ This process is called the polygon law of addition. ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ As before, the order of the addition does not matter. d ⎛ 2⎞ ⎛4⎞ ⎛ 0⎞ In this diagram, r = a + b + c + d b 2p − q = 2 ⎜ 1 ⎟ − ⎜ 0 ⎟ = ⎜ 2 ⎟ and |2p - q| = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 + 4 + 64 r ⎜ −3 ⎟ ⎜ 2 ⎟ ⎜ −8 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = 68 = 2 17 Subtracting a vector is equivalent to adding the negative of that vector. EXAMPLE 4 b Find KL when LN = 2i - 3j + k and KM = 4i - 2j + 3k That is a - b = a + (-b) given that M is the midpoint of KN. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a N L ⎛4⎞ ⎛2⎞ ⎛4⎞ ⎛ −2 ⎞ ⎛ 2⎞ KL = KN + NL = 2KM - LN In this diagram, r = a - b = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ + ⎜ ⎟ = ⎜ ⎟ –b 2 ⎝ ⎠ 3 ⎝ ⎠ 2 ⎝ ⎠ −3 ⎝ −1⎠ ⎝ ⎠ = 2(4i - 2j + 3k) - (2i - 3j + k) M r=a–b = 6i - j + 5k 278 K 279
  • 144. 12 Vectors 12 Vectors Exercise 12.1 10 If the vectors r and s are parallel, find l and m if 1 Find the magnitude of a u = 4i + 2j – 3k, v = li + 4j + mk a 5i + 12j b 5i - 12j c i + 2j + 4k d 2i - 3j + k b u = li + j + 2k, v = 12i + mj – 6k s 2 If r = 2i - 3j + k, s = 4i - 2j + 2k and t = 2i + k 11 Use this diagram to write these vectors as column vectors. –s find the magnitude of a r b s a r+s b r+s-t c 2s + t d 2r - 3s + 4t r c r+s d r-s 3 Find a unit vector in the direction of a 6i + 8j b 10i - 24j c i+j+k d 2i - j + 2k 4 Find a vector, writing it as a column vector, which a has a magnitude of 5 and makes an angle of 30° with the 12 Using this diagram, write the resultants of these vector q r positive direction of the x-axis additions as column vectors. b has a magnitude of 2 and makes an angle of 120° with the a p+q b p+q+r p positive direction of the x-axis. c p+q+r+s d p+q+r+s+t s 5 a Find a vector which has a magnitude 20 and is parallel to 4i + 3j. b Find a vector which has a magnitude of 5 and is parallel to 2i - 2j - k. C4 C4 t 6 Find the value of n, given that a |3i - 3j + nk| = 22 b |ni + nj + 2k| = 4 13 AB = 5i + 7j, CB = 11j and CD = -4i + 6j 7 The vectors p and q are given by p = 3i + 2j and q = 2i + 5j Prove that the vectors AC and BD are perpendicular. Find a the angle that p makes with the positive direction of the x-axis 14 PQ = 6i + 3j - 4k and PR = 2i - j – 2k b the angle between the directions of p and q M is the midpoint of QR. Find the vector PM . c a unit vector in the direction of p - q. INVESTIGATION 8 a If LM = 5i + 2j and MN = 4i – j, find LN . 15 Points A and B have position vectors a and b. M is the midpoint of AB. P is the midpoint of AM. Q is the b If PQ = 3i + 4j - 3k and RQ = i - 2j + k, find PR. midpoint of MB. P, M and Q are the points of c If GE = 2i - j - k and EF = 3i + 2j + 3k, find FG. quadrisection of AB. a Find the position vectors for M, P and Q in terms of 9 a Find the values of l and m if p = 3i + 2j - 4k, q = 9i + lj +mk a and b. and q = 3p b Find the position vectors for the two points of b Find the value of a if the vectors p = 2i + 5j and trisection of AB. q = ai - 10j are parallel. c Can you write down the position vectors for the four points of quintisection of AB? 280 281
  • 145. 12 Vectors The midpoint of a line 12.2 Applications in geometry Points A and B have position vectors a and b. Position vectors The midpoint M of the line AB has the position vector The position vector of point A is the fixed vector to the The lower-case notation a is m = 1 (a + b) 2 point A from the origin O. potentially confusing as it can be used either as a general It is printed as OA or a and is written as OA or a. vector or as the position vector You can prove this result in two ways. for point A. E.g. In two dimensions, for the point A(3, 4), ⎛ 3⎞ First method Second method the position vector OA = ⎜ ⎟ = 3i + 4j ⎝4⎠ A A C In three dimensions, for the point B(2, 1, -3), ⎛ 2⎞ M M ⎜ ⎟ the position vector OB = ⎜ 1 ⎟ = 2i + j - 3k a a ⎜ −3 ⎟ m m ⎝ ⎠ B B b b The distance between two points O O E.g. Points A(5, 8, 2) and B(8, 12, 14) have position vectors A (5, 8, 2) Let OACB be a parallelogram a = 5i + 8j + 2k and b = 8i + 12j + 14k whose diagonals intersect at M, The displacement from A to B can be AB direct a the midpoint of both diagonals. C4 C4 or in two stages via the origin AO + OB . B (8, 12, 14) OM = OA + AM OM = 1 OC 2 b You have AB = AO + OB = -a + b O =b-a = OA + 1 AB = 1 (OA + AC ) 2 2 = (8i + 12j + 14k) - (5i + 8j + 2k) = a + 1 (− a + b) = 1 (OA + = 3i + 4j + 12k 2 2 OB ) =a+ 1b − 1a The distance from A to B = AB = 9 + 16 + 144 2 2 = 1 (a + b) 2 = 169 = 1 (a + b) 2 = 13 EXAMPLE 1 In general, AB = b - a Prove that the points A(0, -1, 2), B(1, 1, 5) and C(3, 5, 11) Collinear points lie on the same are collinear. straight line. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Using coordinates in three dimensions, the distance from AB = b – a = (i + j + 5k) – (0i – j + 2k) From the coordinates of A, B and C, A(x1, y1, z1) to B(x2, y2, z2) is = i + 2j + 3k the position vectors are AB = ( x2 − x1 )2 + (y2 − y1)2 + (z2 − z1)2 a = - j + 2k BC = c – b = (3i + 5j + 11k) – (i + j + 5k) b = i + j + 5k = 2i + 4j + 6k c = 3i + 5j + 11k = 2(i + 2j + 3k) So, BC = 2AB Hence, BC and AB are parallel and have the point B in common. So the points A, B and C are in the same straight line. 282 283
  • 146. 12 Vectors 12 Vectors Exercise 12.2 7 The parallelogram OACB has OA = a and OB = b 1 a Find the distance between points A(2, 4, 1) and B(3, 5, 3). Point R lies on OA and point S on AC such that OR : OA = 1 : 4 b Given point C(4, 8, 1), find the length AC and show that and CS : CA = 1 : 4. Find the vector RS in terms of a and b. triangle ABC is right-angled. Deduce two facts relating RS and OC. 2 In triangle P(1, 4, 5), Q(3, -2, 1), R(5, 0, 3), M and N are the midpoints of sides PQ and PR respectively. 8 The parallelogram OACB has OA = a, OB = b and OC = c Find the lengths QR and MN. Point P lies on OB such that OP : PB = 1 : 2 Point Q lies on AB such that AQ : QB = 2 : 1 3 For each of the following sets of points A, P and B, show that Prove that OC and PQ are parallel and find the ratio PQ : OC. the points A, P and B are collinear. Find the fraction such that AP = 1 AB n (3 ) 9 L and M are the points 1 , − 1, 2 and (1, 5, 6) respectively. a A(2, 1, 4), P(3, 3, 5), B(5, 7, 7) The position vector of point P relative to the origin O b A(-1, 1, -4), P(0, 1, -2), B(4, 1, 6) is i + 3j + 6k. Point R lies on OP such that OR : RP is k : 1 Find the value of k if R, L and M are collinear. c A(1, -3, 0), P(3, -2, -1), B(9, 1, -4) d A(3, 0, 1), P(7, 2, 5), B(9, 3, 7) 10 The skew quadrilateral OABC has OA = a, OB = b and OC = c The midpoints of its four sides in order are P, Q, R and S. 4 M and N are the midpoints of sides OA and OB of triangle OAB. Find the vectors PQ and SR in terms of a, b and c. C4 C4 B Prove that PQRS is a parallelogram. N n INVESTIGATION 11 a The distance between points A(1, 2, t) and B(t, t, 0) O m M A is x, where t is a variable. Find x2 as a function of t and hence find the Find the vectors MN and AB in terms of m and n. minimum distance between these two points. Make a deduction about the lines MN and AB. b Use a similar method to find the minimum distance between P(2, 0, t) and Q(t, t, 3). 5 In triangle OAB, point P lies on AB and points A, B and P have position vectors a, b and p. Find p in terms of a and b given that AP : PB is a 1:2 b 1:3 c 2:3 d 3:5 e m:n 6 In triangle OPQ, OP = p and OQ = q. Point M lies on OP such that OM : MP = 1 : k and point N lies on OQ such that ON : NQ = 1 : k Find the vector MN in terms of p and q. Deduce two facts about MN and PQ. 284 285
  • 147. 12 Vectors 12.3 The scalar (dot) product In component form in three dimensions, you have a · b = a1b1 + a2b2 + a3b3 The scalar product (or dot product) of two vectors a and b is a For a = a1i + a2 j + a3k and b = b1i + b2 j + b3k a · b = |a| |b| cos q i·j = i·k = j·k = 0 i a · b = (a1i + a2 j + a3k) · (b1i + b2 j + b3k) i · j = |i||j|cos 90° = 0 = a1b1i · i + a1b2i · j + a1b3i · k + a2b1j · i + a2b2j · j + a2b3j · k because cos 90° = 0 where q is the angle between the directions of vectors a and b. b + a3b1k · i + a3b2k · j + a3b3k · k The scalar product is a scalar quantity. |a|, |b| and cos q are all scalar. i·i = j·j = k·k = 1 Angle q will lie between 0° and 180°. Therefore, the scalar product is = a1b1 + a2b2 + a3b3 i · i = |i||j|cos 0° = 1 positive when q is acute, zero when q is 90°, and negative when q is obtuse. because cos 0°= 1 Properties of the scalar product You can calculate the angle between two vectors using a · b = |a||b|cos q = a1b1 + a2b2 + a3b3 If a and b are perpendicular, then a · b = 0 EXAMPLE 1 b Find the angle between the vectors a = 3i + 2j + k and b = i + 3j - 4k When a and b are perpendicular, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• q = 90°, cos 90° = 0 and a · b = |a||b|cos 90° = 0 ⎛3⎞ ⎛ 1 ⎞ In particular, i · j = j · k = k · i = 0 a a × b = ⎜ 2 ⎟ . ⎜ 3 ⎟ = (3 × 1) + (2 × 3) + (1 × −4) = 3 + 6 − 4 = 5 ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎟ ⎜ −4 ⎟ a · b = a1b1 + a2b2 + a3b3 ⎝ ⎠ ⎝ ⎠ C4 C4 a · a = a2 (la) · b = a · (lb) = l(a · b) a ⋅ b = a b cosθ = 9 + 4 + 1 × 1 + 9 + 16 × cosθ = 14 × 26 × cos q As |a||b|cos q = a1b1 + a2b2 + a3b3 The angle between two equal vectors is 0° The length of la is l times the length of a. cos q = 5 = 5 as they have the same direction. That is, |la| = l|a|. so q = 74.8° to nearest 0.1° 14 × 26 364 a · a = |a||a| cos 0° = a ´ a ´ 1 = a2 So, l(a · b) = l|a||b| cos q = |la||b| cos q In particular, i · i = j · j = k · k = 1 = (la) · b EXAMPLE 2 Similarly for the lengths of lb and b, Given the four points P(2, 4, 1), Q(3, -2, 4), R(2, 0, 1) and S(-1, 2, 6), prove that |lb| = l|b| and l(a · b) = a · (lb) the lines PQ and RS are perpendicular. a·b = b·a •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Q PQ = q - p = (3i - 2j + 4k) - (2i + 4j + k) = i - 6j + 3k By definition, a · b = |a||b| cos q = |b||a| cos q = b · a RS = s - r = (-i + 2j + 6k) - (2i + k) = -3i + 2j + 5k q R So PQ · RS = (i - 6j + 3k) · (-3i + 2j + 5k) = -3 - 12 + 15 = 0 P p r a · (b + c) = a · b + a · c As the scalar product is zero, PQ and RS are perpendicular. O s S V EXAMPLE 3 By definition, a · (b + c) = |a||b + c| cos q b c Prove the cosine rule c2 = a2 + b2 - 2abcos C for this triangle. = OA ´ OV ´ cos q OV cos q = OU B W •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• = OA ´ OU A b b+c In this triangle, b = a + c and c = b - a. = OA ´ (OT + BW) Hence, c · c = (b - a) · (b - a) = b · b - b · a - a · b + a · a c = OA ´ (OBcos a + BVcos b) ai b O T a U A = a · a + b · b - 2a · b = |a||b|cos a + |a||c|cos b which gives c = a2 + b2 - 2abcos C 2 = a·b + a·c OA ´ OB cos a = |a||b|cos a B a 286 OA ´ BV cos b = |a||c|cos b C 287
  • 148. 12 Vectors 12 Vectors Exercise 12.3 9 Find the acute angle between LM and LN when L, M and N are the points 1 Find p · q when L(2, 1, 4), M(4, -1, 2) and N(3, 0, 1). a p = 3i + 2j - 4k q = 2i + 5j - 2k b p = 2i + j - 3k q = 5i - 2j + 2k 10 Find the size of angle EFG, given the three points E(1, -1, 3), c p=i-j-k q = i + 3k F(2, 1, 3) and G(-1, 0, 4). 2 If p = 2i + 3j - k, q = 4i - j + 2k and r = i + j - k, find the values of 11 Show that triangle PQR is right-angled when its vertices are a p·q b p·r c p · (q + r) a P(3, -3, 7), Q(4, 0, 2), R(1, -2, 3) b P(1, 0, -1), Q(2, 1, 0), R(3, -1, 1) d p·q + p·r e p·q - p·r f p · (q - r) 12 Triangle PQR has vertices P(2, 5, 4), Q(1, 6, -2) and R(4, 6, 3). Find Do not round during your working. 3 Find the acute angle between the vectors p and q when a angles P, Q and R to the nearest 0.1° b the lengths of the three sides a p = 3i + 4j - 3k q = 2i - j - 2k b p = 2i - j - 2k q = 5i + 3j + k c the area of triangle PQR. c p = i - j - 4k q = i + j - 2k d p = 4i - 3j + 3k q = i + 2j - k 13 a Show that the vectors u = 3i + j - k and v = i - 2k + j are perpendicular. e p = 2i - j - k q = i + 3k f p=i+k q = 2j - k b Find a vector r that is perpendicular to both u and v. Use ai + bj + ck ⎛ 2⎞ ⎛0⎞ ⎛ −3 ⎞ ⎛4⎞ 14 Simplify g p = ⎜ 5⎟ ⎜ ⎟ q = ⎜1 ⎟ ⎜ ⎟ h p = ⎜ 0⎟ ⎜ ⎟ q = ⎜5⎟ ⎜ ⎟ ⎜ −2 ⎟ ⎜2⎟ ⎜ 2⎟ ⎜6⎟ a (p + q) · r + (p - q) · r b p · (q + r) - p · (q - r) ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ c (p + r) · (p - r) d p · (p - r) - (p - r) · r C4 C4 4 These pairs of vectors are perpendicular. Find the values of l. 15 A semicircle, centre O, contains the vectors a and b as shown. Y a 3i + j + 4k and 3i - 5j + lk b 4i - lj + lk and i + 3j - 5k Prove that the angle XYZ is a right angle. 5 For which values of m are these vectors perpendicular? b ⎛ 4⎞ ⎛2⎞ ⎛ 3⎞ ⎛ −3 ⎞ ⎜ ⎟ and ⎜ ⎟ ⎜ ⎟ and ⎜ ⎟ b ⎜ m⎟ X a a Z ⎜ m⎟ a ⎜ −2 ⎟ O ⎜1 ⎟ ⎜ m⎟ ⎜2⎟ ⎜ −1 ⎟ ⎜ 7⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 16 The rhombus PQRS has PQ = a and PS = b Prove that the diagonals of the rhombus are perpendicular. 6 State whether these pairs of vectors are parallel, perpendicular or neither. ⎛ 2⎞ ⎛ 8⎞ ⎛ ⎞ 17 Find a vector which is perpendicular to both ⎜ ⎟ ⎜6 ⎟ ⎛ 3⎞ ⎛ 2⎞ ⎛6⎞ b ⎜ 2 ⎟ , ⎜ −4 ⎟ i + 2j + 3k and 2i - 3j - 8k a ⎜ 1⎟, ⎜ 2⎟ c ⎜− ⎟ ⎜ ⎟ ⎜ 4 ⎟ , ⎜3⎟ ⎜ 2⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ −1 ⎟ ⎜ −4 ⎟ ⎜1⎟ ⎜ 1⎟ ⎜ ⎟ ⎝ ⎠ ⎜ 5⎟ ⎜0⎟ ⎝ ⎠ ⎝ ⎠ ⎝2⎠ ⎝ ⎠ ⎝ ⎠ 18 Find the angle between vectors a and b when |a| = 1, |b| = 2 and |a - b| = 3 7 If p = 2i + 3j and q = li + 2j, find the value of l such that 19 Triangle OAB has vertices A(1, 2, -2), B(6, 8, 0) and the origin O. a p and q are perpendicular b p and q are parallel Find the value of cos AOB and prove that the area of triangle OAB = 2 26 c the angle between p and q is p . 4 8 a Find the angle between 2i + 3j + 12k and INVESTIGATION i the x-axis ii the y-axis iii the z-axis. 20 The tetrahedron ABCD has two pairs of opposite edges perpendicular. b Find the angle between i + j + k and each of the three coordinate axes. Prove that the third pair of opposite edges is also perpendicular. 288 289
  • 149. 12 Vectors EXAMPLE 2 12.4 The vector equation of a straight line Find the vector equation of the line through the points P(2, 3, 0) and Q(3, 5, 1). •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Consider a straight line through point A parallel to vector b b as in this diagram. R The direction of the line is A Q PQ = q - p = (3i + 5j + k) - (2i + 3j) = i + 2j + k Point A has a position vector a with respect to the origin O. P The line passes through point P, so the vector equation of Any other point R on the straight line has a position vector r. a r the line is r = p + t(q - p) = (2i + 3j) + t(i + 2j + k) p q Since the line AR is parallel to b, then the vector AR is a multiple of b. Alternatively, as the line passes through Q, the vector O That is, AR = tb, where t is a scalar. equation could also be r = q + s(q - p) = (3i + 5j + k) + s(i + 2j + k) O A can be any point on the line and The vector equation of the straight line through point A in b can be any parallel direction, so the direction b is the equation r = a + tb is not In general, the vector equation of the line through points r = OA + AR = a + tb unique. One line can have many vector equations. P and Q is r = p + t(q - p) Compare this equation with the cartesian equation of a straight line, y = mx + c. EXAMPLE 3 Show that the two vector equations r = i + 2j + 3k + t(2i - j + 2k) Given A(a1, a2, a3), R(x, y, z) and b = b1i + b2j + b3k, then the and r = 7i - j + 9k + s(4i - 2j + 4k) both describe the same vector equation of the line in component form is C4 C4 straight line. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ⎛ x ⎞ ⎛ a1 ⎞ ⎛ b1 ⎞ ⎛ a1 + tb1 ⎞ The two equations give lines with directions 2i - j + 2k and r = ⎜ y ⎟ = ⎜ a2 ⎟ + t ⎜ b2 ⎟ = ⎜ a2 + tb2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 4i - 2j + 4k. ⎜z ⎟ ⎜a ⎟ ⎜ b ⎟ ⎜ a + tb ⎟ ⎝ ⎠ ⎝ 3⎠ ⎝ 3⎠ ⎝ 3 3⎠ ⎛ 4⎞ ⎛ 2⎞ and any point R on the line has coordinates b t=3 Because ⎜ −2 ⎟ = 2 ⎜ −1⎟ these two vectors are parallel ⎜ ⎟ ⎜ ⎟ t=1 t=2 ⎜ 4⎟ ⎜ 2⎟ (a1 + tb1, a2 + tb2, a3 + tb3). t=0 ⎝ ⎠ ⎝ ⎠ t = –1 t = –2 A and so the lines have the same direction. As t varies, R moves along the line. The second line passes through the point (7, -1, 9) when s = 0. a r = a + tb When t = 0, R and A coincide. Points on the first line are given by (1 + 2t, 2 - t, 3 + 2t) and, When t is positive, R is on one side of A and when t = 3, this gives the point (7, -1, 9). when t is negative, R is on the other side of A. O Hence, the two lines pass through the same point in the same direction. The two equations represent the same line. EXAMPLE 1 Find the vector equation of the straight line through the point A(3, 2, -1) in the direction of 4i - j + 2k. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Intersection of straight lines The vector equation is r = 3i + 2j - k + t(4i - j + 2k) r = a + tb In two dimensions, two straight lines can coincide (that is, they are the same line), they can be parallel to each other, or they can An alternative form of the equation is intersect each other. r = (3 + 4t)i + (2 - t)j + (-1 + 2t)k In three dimensions, two straight lines can coincide, be parallel, Using column vectors with R(x, y, z), you can also write intersect or be skew. ⎛x⎞ ⎛ 3⎞ ⎛ 4⎞ the equation as ⎜ y ⎟ = ⎜ 2 ⎟ + t ⎜ −1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ When two lines are skew, one passes above the other without Skew lines in 3D ⎜ z ⎟ ⎜ −1 ⎟ ⎜ 2⎟ intersecting it. There is still an angle between them. ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 290 291
  • 150. 12 Vectors 12 Vectors EXAMPLE 4 2 Find a vector equation of the line through the points P and Q when a Determine whether the lines given by a P(2, 3, 1) Q(3, 0, 4) b P(2, -1, 1) Q(5, 0, 1) r = 2i - j + 4k + t(i + j - k) and r = i - 2j + 3k + s(2i + 2j - k) intersect or are skew. c P(1, 0, 0) Q(4, 5, -2) d P(0, 0, 0) Q(1, 2, 3) If they intersect, find the point of intersection. e P(1, -2, -3) Q(2, -1, -2) f P(2, -3, -1) Q(5, 0, -1) b Find the angle between the two lines, giving your answer in degrees to 1 d.p. 3 Find the vector equation of the line through the point A(2, 1, -2) which is •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• a parallel to the x-axis b perpendicular to the xy-plane. a The equations of the lines can be written as r = (2 + t)i + (-1 + t)j + (4 - t)k 4 Show that the given point lies on the given line and find the and r = (1 + 2s)i + (-2 + 2s)j + (3 - s)k corresponding value of t. They will intersect if the coefficients of i, j and k are equal. a (4, 1, -1) and r = 2i - 3j + k + t(i + 2j - k) You need to find values of s and t to make b (9, -4, 1) and r = -i + j + 6k + t(-2i + j + k) 2 + t = 1 + 2s (1) -1 + t = -2 + 2s (2) c (3, 2, 0) and r = (3 - t)i + (2 + 3t)j - tk 4-t=3-s (3) 5 Determine whether these pairs of lines are parallel, intersect or are skew. Add (2) and (3): 3=1+s so s=2 Find the acute angle between the lines. If they intersect, find their point of intersection. Substitute into (2): -1 + t = -2 + 2 ´ 2 so t=3 The values s = 2 and t = 3 a r = 3i + 5j + 7k + t(i + 2j - 3k) r = 4i + j + 2k + s(3j + k) satisfy all three equations. b r = 6i - 2j + 8k + t(i - 5j + 7k) r = i + 3j + 2k + s(3i + 5j - 8k) Substitute in (1): LHS = 2 + 3 = 5 and RHS = 1 + 2 ´ 2 = 5 The two lines do intersect. c r = 2i - 4j + k + t(2i - j - k) r = 3i + j - 6k + s(4i - 2j - 2k) C4 C4 Substitute into one of the vector equations: If all three equations were not r = 2i - j + 4k + 3(i + j - k) = 5i + 2j + k satisfied, then the lines would d r = 2j - k + t(4i - 2j + 3k) r = 4i + j - 2k + s(i + 4j + 4k) not intersect. so the point of intersection is (5, 2, 1). e r = 2i - k + t(6i + j + 8k) r = 12i - 15j - 5k + s(9i + 3j + 4k) b The directions of the two lines are given by 6 a Find the vector equations of the two lines PQ and RS where the b1 = i + j - k and b2 = 2i + 2j - k four points are P(-1, 1, 3), Q(8, 7, 6), R(0, 5, 2) and S(-2, 7, 0). The angle q between the lines is found from b1 · b2 = | b1|| b2| cosq b Show that the two lines intersect and find the point of intersection. 1 × 2 + 1 × 2 + (−1) × (−1) = 1 + 1 + 1 × 4 + 4 + 1 × cos q b1 = 12 + 12 + (−1)2 = 3 c Find angle PRS to the nearest 0.1° 5= 3 × 9 × cos q cos q = 5 b2 = 22 + 22 + (−1)2 = 9 7 a Find the vector equation of the line through the points A(1, 2, 3) and B(2, -1, -1). 3 3 Show that the point R(1 + t, 2 - 3t, 3 - 4t) lies on this line for all t. The acute angle between the two lines is 15.8° b C is the point (5, -2, -6). Find the value of t that makes the vectors CR and AB perpendicular. c Find the shortest distance from point C to line AB. Exercise 12.4 1 Find the vector equation of the line through point A INVESTIGATION which is parallel to vector b, when 8 Using the parameter l, find the general point R on the line joining a A(1, 2, -3) b = 2i - 3j + k b A(4, -1, 3) b = -2i + j + 2k points A(1, 2, 3) and B(0, 1, 2). c A(3, 0, 1) b = 4i + 2k d A(1, -1, 0) b=i+j-k Repeat using the parameter m for the general point S on the line joining ⎛1 ⎞ ⎛2⎞ C(0, -2, 2) and D(1, 0, -1). ⎜ ⎟ e A(2, 1, 0) b = ⎜0⎟ ⎜ ⎟ f A(0, 0, 1) b = ⎜0⎟ Find l and m so that the line RS is perpendicular to both AB and CD. ⎜3⎟ ⎜0⎟ ⎝ ⎠ ⎝ ⎠ Find the shortest distance between lines AB and CD. 292 293
  • 151. 12 Vectors 8a Write down the vector equation of the line L1 which passes Review 12 through point P(1, -2, 4) and is parallel to the vector 2i + 3j -k. b Find the vector equation of the line L2 which contains point P 1 Find a the magnitude of the vector a = 3i + 12j + 4k and also point Q(0, 1, 3). b the unit vector parallel to vector a c Find the angle between the two lines L1 and L2. c a vector of magnitude 5 which is parallel to vector a Hence, or otherwise, find the shortest distance from Q to L1. d the angle between a and the direction of the x-axis. 9a Show that the point A(7, 8, 1) lies on the line L with the vector equation ⎛ 3⎞ ⎛2⎞ 2 The points A, B and C have coordinates (1, 4, 3), (3, 6, 6) and ⎜ ⎟ r = ⎜ 0 ⎟ + t ⎜ 4 ⎟ , but that the point B(1, -4, 0) does not lie on L. ⎜ ⎟ (7, 10, 12) respectively. Find the vector AB and show that the ⎜ −1 ⎟ ⎜1⎟ ⎝ ⎠ ⎝ ⎠ points A, B and C are collinear. b Find the acute angle between L and the line through A and B. 3 A triangle has vertices L(3, 1, 0), M(1, -2, 5) and N(2, 5, 2). c Find the shortest distance from B to L. a Prove that the triangle is right-angled and find its area. 10 a Show that the two lines with these vector equations intersect. b Find point K such that the quadrilateral KLMN is a parallelogram. ⎛ 3⎞ ⎛ 2⎞ ⎛ 1⎞ ⎛ 1⎞ c Show that the midpoint of KM coincides with the midpoint of LN. ⎜− ⎟ ⎜ ⎟ and r = ⎜ 4 ⎟ + m ⎜ −1 ⎟ r = ⎜ 1⎟ + l ⎜ 1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 2⎟ ⎜ −1 ⎟ ⎜ −7 ⎟ ⎜ 2⎟ ⎛ 1⎞ ⎛ 4⎞ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ C4 C4 4a ⎜ ⎟ Show that the vectors ⎜ 2 ⎟ and ⎜ −1⎟ are perpendicular. ⎜ ⎟ ⎜ −2 ⎟ ⎜ 1⎟ b Find their point of intersection. ⎝ ⎠ ⎝ ⎠ b Find the acute angle between the two vectors i + 2j - 2k and 3i - j - k. c Find the acute angle between the two lines. 5a Given points A(-1, 0, 2), B(2, 4, 1) and C(0, 5, -3), find the 11 Two straight lines have the vector equations r = i - 2k + t(-2i + j + 2k) and r = 3i - 4j + k + s(i - j + k) vectors AB and BC . Hence, use the scalar product to find angle ABC to the nearest degree. a Find the acute angle between the directions of the two lines. b D is the point (1, 1, k). Find the value of k such that the lines b Do the two lines intersect or are they skew? AB and BD are perpendicular. 12 a Find the values of t and s which show that the point 6 Find a unit vector ai + bj + ck which is perpendicular to the P(-2, 6, -1) lies on the line r = i - 4k + t(-i + 2j + k) and two vectors 2i + 2j - k and 4i + 2k. that point Q(1, 7, 0) lies on the line r = 8j + 2k + s(-i + j + 2k) b Prove that PQ is perpendicular to both lines. 7 Relative to a fixed origin O, the point A has position vector 3i + 2j - k, the point B has position vector 5i + j + k, and the point C has c Find the shortest distance between the two lines. position vector 7i - j. d Find the angle between the two lines. a Find the cosine of angle ABC. b Find the exact value of the area of triangle ABC. c The point D has position vector 7i + 3k. Show that AC is perpendicular to CD. d Find the ratio AD : DB. [(c) Edexcel Limited 2003] 294 295
  • 152. Revision 4 12 Exit 1 Express these as partial fractions. 6 3x − 1 x3 a b c x(x + 2) (x + 1)2(x − 3) x −4 2 2 f(x) = 11 + 2x + x 2 = 2 A + B + C x <1 Summary Refer to (1 − 2x)(3 + x) 1 − 2x 3 + x (3 + x)2 2 Equal vectors have the same magnitude and direction. 12.1 a Find the values of A and C. Show that B = 0 The vector ka is parallel to vector a and has a magnitude k times that of a. 12.1 The vector p = xi + yj + zk has a magnitude (or modulus) |p| = x 2 + y 2 + z 2 12.1 b Hence, find an expansion of f(x), in ascending powers of x up to and including the term in x3. Simplify your answer as far as possible. p xi + y j + z k The unit vector parallel to p is p = ˆ = 12.1 p x2 + y2 + z 2 3 y The position vector of point A(a1, a2, a3) relative to the origin O is given by OA = a = a1i + a2 j + a3k 12.2 If points A and B have position vectors a and b, then AB = b - a 12.2 The midpoint M of AB has a position vector m = 1 (a + b) 12.2 2 The distance between points A(a1, a2, a3) and B(b1, b2, b3) is given by R C4 C4 AB = ( a1 − b1 ) + ( a2 − b2 ) + ( a3 − b3 ) 2 2 2 12.2 O x 2 The scalar (or dot) product a · b = |a||b| cos q = a1b1 + a2b2 + a3b3 where q is the angle between a and b. 12.3 The diagram shows part of the curve with equation y = f(x), where The vector equation of the line through point A and parallel to f(x) = x2 + 1 , 0 x<3 vector b is r = a + tb 12.4 (1 + x)(3 − x) The vector equation of the line through points P and Q is r = p + t(q - p) 12.4 a Given that f(x) = A + B + C , find the values of the 1+ x 3− x constants A, B and C. Links b The finite region R, shown in the diagram, is bounded by the curve To ensure safety during aircraft landing, the aviation industry with equation y = f(x), the x-axis, the y-axis and the line x = 2 uses vectors to guide the aircraft to the runway. Find the area of R, giving your answer in the form p + qln r, where p, q and r are rational constants to be found. [(c) Edexcel Limited 2002] As an aircraft approaches an airport, the Instrument Landing System (ILS) uses a series of radars, which are sent up from 4 A curve has parametric equations x = tan 2 t y = sin t, 0 < t < p the perimeter of the runway, to guide it to a safe landing. 2 dy Vectors and the dot product are used to determine if the a Find an equation for in terms of t. You do not need to simplify your answer. dx aircraft has intercepted the area covered by the beams. b Find an equation of the tangent to the curve at the point where t = p 4 Suppose that the aircraft has position vector s and moves with Give your answer in the form y = ax + b, where a and b are constants to be determined. velocity v, and that p is the position vector of a point P in the area covered by the radar beams. Then, if the dot product c Find the Cartesian equation of the curve in the form y2 = f(x) [(c) Edexcel Limited 2007] v·(s - p) is positive, the aircraft is moving towards P. When this product is 0 the aircraft is passing P and when it is negative it is moving away from P. 296 297
  • 153. Revision 4 Revision 4 5 y 7 y P C 1 R Q –1 O 1 x O x –1 The diagram shows a sketch of part of the curve C with parametric equations x = t 2 + 1, y = 3(1 + t) The curve shown in the diagram has parametric equations x = cos t y = sin 2 t 0 t < 2p The normal to C at the point P(5, 9) cuts the x-axis at the point Q, as shown in the diagram. dy a Find an expression for in terms of the parameter t. dx a Find the x-coordinate of Q. dy b Find the values of the parameter t at the points where =0 dx b Find the area of the finite region R bounded by C, the line c Hence, give the exact values of the coordinates of the points PQ and the x-axis. [(c) Edexcel Limited 2005] on the curve where the tangents are parallel to the x-axis. 8 y d Show that a Cartesian equation for the part of the curve where 0 t < p is y = 2x 1 − x 2 1a A e Write down a Cartesian equation for the part of the curve 2 C4 C4 B where p t < 2p [(c) Edexcel Limited 2003] O a x 6 y (metres) The curve shown in the diagram has parametric equations x = a cos 3t, y = a sin t, 0 t p C 6 R The curve meets the axes at points A and B as shown. A The straight line shown is part of the tangent to the curve at the point A. B x (metres) Find, in terms of a, This diagram shows a cross-section R of a dam. The line AC a an equation of the tangent at A is the vertical face of the dam, AB is the horizontal base and the curve BC is the profile. b an exact value for the area of the finite region between the curve, Taking x and y to be the horizontal and vertical axes, then A, B and the tangent at A and the x-axis, shown shaded in the diagram. [(c) Edexcel Limited 2006] C have coordinates (0, 0), (3p 2, 0) and (0, 30) respectively. The area of the cross-section is to be calculated. 9 Expand as a series of ascending powers of x up to and including x3. Initially the profile BC is approximated by a straight line. State the range of values for which each expansion is valid. a Find an estimate for the area of the cross-section R using a 1 b 31+ 1x c (1 − x ) 1 + x this approximation. 1 − 3x 2 The profile BC is actually described by the parametric equations 2+x 3 d e x = 16t − p , 2 2 y = 30 sin 2t, p 4 t p 2 4−x ( (1 − x) 1 + 1 x 2 ) b Find the exact area of the cross-section R. c Calculate the percentage error in the estimate of the area of the cross-section R that you found in part a. [(c) Edexcel Limited 2004] 298 299
  • 154. Revision 4 Revision 4 10 a Write down the first four terms of the binomial expansion, 15 The volume of a spherical balloon of radius r cm is V cm3, ( ) n in ascending powers of x, of 1 − 1 x , where n < 1. where V = 4 p r 3 3 3 State the range of values of x for which the expansion is valid. a Find dV dr b x3 Given that the coefficient of in this expansion is four times The volume of the balloon increases with time t seconds according the coefficient of x2, find i the value of n to the formula dV = 1000 2 , t 0 dt (2t + 1) ii the coefficient of x4 in the expansion. b Using the chain rule, or otherwise, find an expression in terms of r and t for dr dt 11 a Prove that, when x = 1 , the value of 1 − 3x is exactly equal 12 c Given that V = 0 when t = 0, solve the differential equation to cos 30° dV = 1000 , to obtain V in terms of t. dt (2t + 1)2 b i Expand 1 − 3x , x < 1 , in ascending powers of x 3 up to and including the term in x3, writing your answer d Hence, at time of t = 5 in as simple a form as possible. i find the radius of the balloon, giving your answer ii Use your expansion to find an approximation for cos 30° to 3 significant figures ii show that the rate of increase of the radius of the c Find the percentage error in your approximation for the balloon is approximately 2.90 ´ 10-2 cm s-1 [(c) Edexcel Limited 2006] value of cos 30° 16 a Copy and complete this table by finding the three missing values of y, dy given that y = sec x 12 Find , in terms of x and y, when C4 C4 dx p p 3p p a y2 = xy + 2 x 0 16 8 16 4 b x3 - 3x2y + y 3 = 1 y 1.01959 1.08239 c 1 + 1 + 1 =1 b By using the trapezium rule with all five y-values in the table, x 2 xy y 2 p 4 d x ln y = y ln x find an estimate for sec x dx 0 Show all your working, giving your answer to 4 decimal places. 13 A set of curves is given by the equation sin x + cos y = 0.5 dy c Use a standard integral to show that the exact value of a Use implicit differentiation to find an expression for p dx ln(1 + 2 ) 4 sec x dx is b For -p < x < p and -p < y < p, find the coordinates of the 0 dy points where =0 [(c) Edexcel Limited 2007] dx d Find the percentage error in the estimate that you obtained using the trapezium rule. 14 a Given that y = 2x, and using the result 2x = exln 2, or otherwise, dy 17 Evaluate using an appropriate method. show that = 2 x ln 2 dx 2 b Find the gradient of the curve with the equation y = 2(x ) at the a e x e x − 2 dx b (x − 1)(x + 2)7 dx c 2 cos2 x dx point with the coordinates (2, 16). [(c) Edexcel Limited 2007] d cos x sin 4 x dx e 9x 2 dx f (x + 3) e x dx (x − 1)(x + 2)2 g ex cos 2x dx h x 2 dx i 1 tan x sin 2x dx x +3 3 2 300 301
  • 155. Revision 4 Revision 4 1 y 18 Use the substitution u = 2x to find the exact value of 2 x dx [(c) Edexcel Limited 2007] 23 0 (2 + 1)2 x 19 a By using the formulae for sin(A ± B), with A = 5x and B = 2x, show that 2sin 2xcos 5x can be written as sin lx - sin mx, O x where l and m are positive integers. State the values of l and m. b Hence, or otherwise, find sin 2x cos 5x dx 3p 4 A table top, in the shape of a parallelogram, is made from two types c Hence find the exact value of sin 2x cos 5x dx p of wood. The design is shown in the diagram. The area inside the 4 ellipse is made from one type of wood, and the surrounding area 20 a Use the identity for cos (A + B) to prove that is made from a second type of wood. cos 2A = 2cos2 A - 1 The ellipse has parametric equations b Use the substitution x = 2 2 sin q to prove that x = 5cos q, y = 4sin q, 0 q < 2p 6 ( 8 − x 2 ) dx = 1 (p + 3 3 − 6 ) The parallelogram consists of four line segments, which are tangents to 2 3 the ellipse at the points where q = a, q = -a, q = p - a, q = -p + a c A curve is given by the parametric equations a Find an equation of the tangent to the ellipse at (5cos a, 4sin a), x = sec q, y = ln(1 + cos 2q), 0 < q < p and show that it can be written in the form 5ysin a + 4xcos a = 20 2 C4 C4 Find an equation of the tangent to the curve at the point b Find by integration the area enclosed by the ellipse. where q = p [(c) Edexcel Limited 2003] c Hence show that the area enclosed between the ellipse and 3 80 the parallelogram is sin 2a − 20p 21 a Show, by using the substitution x = sin q, that, for |x| < 1, d Given that 0 < a < p , find the value of a for which the areas 1 dx = x + c, where c is an arbitrary constant. 3 1 (1 − x 2)2 (1 − x 2)2 4 of the two types of wood are equal. [(c) Edexcel Limited 2002] b Use integration by parts to show that the exact value of 4 y 24 x2 ln x dx can be written as 8 (p ln 2 - q), 2 9 where p and q are integers. 2 Find the values of p and q. R O 2 x 22 a Use integration by parts to show that ( ) ( ) ( ) This diagram shows part of the curve with equation y = x2 + 2 xcosec x + p dx = −x cot x + p + ln ⎡sin x + p ⎤ + c, 2 ⎢ − p <x<p 6 6 ⎣ 6 ⎥ ⎦ 6 3 The finite region R is bounded by the curve, the x-axis and the lines x = 0 and x = 2. b Solve the differential equation a Use the trapezium rule with four strips of equal width to estimate ( 6 ) dx sin2 x + p dy = 2xy (y + 1) the area of R. to show that 1 ln 2 y y +1 6 (⎢ ⎣ ) = −x cot x + p + ln ⎡sin x + p ⎤ + c 6 ⎥ ⎦ ( ) b State, with a reason, whether your answer in part a is an under-estimate or over-estimate of the area of R. c Given that y = 1 when x = 0, find the exact value of y when x = p [(c) Edexcel Limited 2005] c Using integration, find the volume of the solid generated when R is rotated 12 through 360° about the x-axis, giving your answer in terms of p. [(c) Edexcel Limited 2002] 302 303
  • 156. Revision 4 Revision 4 25 y 28 In an experiment a scientist considered the loss of mass of a collection of picked leaves. The mass, M grams, of a single leaf was measured at times t days after the leaf was picked. 1 The scientist attempted to find a relationship between M and t. O a b x In a preliminary model she assumed that the rate of loss of mass was proportional to the mass M grams of the leaf. The curve shown in the diagram has the equation y = 1 2x + 1 a Write down a differential equation for the rate of change The finite region bounded by the curve, the x-axis and the lines of mass of the leaf, using this model. x = a and x = b is shown shaded. This region is rotated through b Show, by differentiation, that M = 10(0.98)t satisfies this 360° about the x-axis to generate a solid of revolution. differential equation. Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b. [(c) Edexcel Limited 2008] Further studies implied that the mass, M grams, of a certain leaf satisfied a modified differential equation 26 a The curve C1 in Figure 1 has parametric equations y 10 dM = −k (10M − 1) (1) dt x = 2 , y = 3t2 C1 where k is a positive constant and t 0 t The area bounded by the curve, the x-axis and the c Given that the mass of this leaf at time t = 0 is 10 grams, and that ordinates x = 2 and x = 4 is rotated through an its mass at time t = 10 is 8.5 grams, solve the modified differential angle of 360° about the x-axis. equation (1) to find the mass of this leaf at time t = 15. [(c) Edexcel Limited 2003] Find i the values of t when x = 2 and x = 4 O 2 4 x ii the volume of the solid of revolution. Figure 1 C4 C4 29 Fluid flows out of a cylindrical tank with constant cross-section. At time t minutes, t 0, the volume of fluid remaining in the b The curve C2 in Figure 2 is defined parametrically by y tank is V m3. The rate at which the fluid flows, in m3 min-1, is x = t + 4t, y = 1 2 proportional to the square root of V. 2+t The region between the x-axis and that part of C2 from C2 a Show that the depth, h metres, of fluid in the tank satisfies the ( 3) ( 4) the point P 5, 1 to the point Q 12, 1 is rotated P Q differential equation dh = −k h, where k is a positive constant. dt a half-turn about the x-axis. b Show that the general solution of the differential equation may O x Show that the volume of the solid generated is p ln 4 5 12 be written as h = (A - Bt)2, where A and B are constants. 3 Figure 2 c Given that, at time t = 0, the depth of fluid in the tank is 1 m, and 27 a Find the general solutions of these differential equations. that 5 minutes later the depth of fluid has reduced to 0.5 m, find dy dy the time, T minutes, which it takes for the tank to empty. i = e 2y ii (x + 1) =y dx dx d Find the depth of water in the tank at time 0.5T minutes. [(c) Edexcel Limited 2003] dy dy iii + xy = x 2 y iv cos y = sec 2 x sin y dx dx 30 Points P(2, 3, -1), Q(4, -1, 4) and R(2, -1, 3) are the vertices of a triangle. b Find the particular solutions of these differential equations. 2 a Find the vectors PR and PQ and the angle between them, to ⎛ dy ⎞ ⎜ dx ⎟ = yx , given that y = 4 when x = 2 the nearest tenth of a degree. 2 i ⎝ ⎠ dy b Find the lengths PR and PQ, giving your answers in surd form. ii (x 2 + 1) − xy = 0, given that y = 10 when x = 1 dx c Find the area of triangle PQR, correct to 3 significant figures. 304 305
  • 157. Revision 4 31 Relative to a fixed origin O, the point A has position vector 4i + 8j - k and the point B has position vector 7i + 14j + 5k. Answers a Find the vector AB . Before you start Answers 3x + 7 2(2 y 2 − 2 y − 1) b Calculate the cosine of ÐOAB. o ( x + 1)( x + 2)( x + 3) p ( y − 1)( y − 2)( y + 2) Chapter 1 c Show that, for all values of l, the point P with position vector 2x3 − 8x − 2 1 a 11 b 1 q z r li + 2lj + (2l - 9)k lies on the line through A and B. 24 4 (z + 1)(z + 3) x ( x 2 − 4) 2 a y d Find the value of l for which OP is perpendicular to AB. y = x(x – 2) 3 a -x b e Hence find the coordinates of the foot of the perpendicular y from O to AB. [(c) Edexcel Limited 2002] y −1 c 32 Referred to an origin O, the points A, B and C have position vectors O 2 x x2 − x + 1 (9i - 2j + k), (6i + 2j + 6k) and (3i + pj + qk) respectively, where x − 21 d x + x +1 p and q are constants. b y y = x2 + x – 2 x Exercise 1.2 a Find, in vector form, an equation of the line l which passes through A and B. 1 a x2 - 6x + 8 b x2 –2 O x - 2x - 24 Given that C lies on l, c x2 - 10x + 25 d –2 b find the value of p and the value of q 2 x - 8x + 15 c calculate, in degrees, the acute angle between OC and AB. c y e x2 + 2x - 3 f 3x2 + C4 C3 1 y=x+2 The point D lies on AB and is such that OD is perpendicular to AB. x+2 2 d Find the position vector of D. [(c) Edexcel Limited 2002] g n2 - 3n + 2 h n2 x - 3n - 2 1O 33 The points A and B have position vectors 2i + 6j - k and 3i + 4j + k. – 2 i 3y2 - 2y - 4 j 2a3 + The line L1 passes through the points A and B. 2 a + 3a - 1 3 a y = -x2 b y = x2 + x a Find the vector AB. c y = x2 + 11x + 30 d y = 4x2 k 4a3 - 16a2 + 24a - 6 l 4z - 5 b Find a vector equation for the line L1. Exercise 1.1 m 3x - 4 n x2 - x 2x 6a2 A second line L2 passes through the origin and is parallel to the vector i + k. 1 a b bc c 6pr +1 z The line L1 meets the line L2 at the point C. 4 1 4 d 1 e a f 1 2 a 1+ b 1− c 1− c Find the acute angle between L1 and L2. ( x − 1)x a −1 x2 −4 x+2 x+2 x+2 1 7 1 d Find the position vector of the point C. [(c) Edexcel Limited 2008] g 1 h 1 d 3+ e 2+ f 2+ x−3 x x+2 x−3 2x + 1 2 4 3 34 Lines L1 and L2 are given by the equations xz + y 2 a2 + b2 b−a g 1− h 3+ i −1 + 2 a yz b ab c abx x2 + 1 x2 − 1 x +1 L1: r = i - 2k + l(2i + 4j - k) j 1+ x +1 x+y 2x + 1 2 d e x( x + 1) f 2 x −2 L2: r = 8i + 5j - 10k + m(-i + j + 2k), where l and m are parameters. x2 y2 a2 −1 a+2 3x + 1 3 a 3 − 52 b 3 + 211 2x + 1 x −3 a Show that L1 and L2 intersect and find the coordinates of the g h i x +1 x (a + 1)2 x point of intersection. c 2+ 3 d 7− 2 2y + 8 2x + 3 3x + 5 2x2 − 1 2x2 + 3 j 3( y − 2) k l b Show that L1 and L2 are mutually perpendicular. x2 − 1 x( x + 1) 4 a x2 + 6x + 1 rem 2 b x2 + z −4 1 5x - 2 rem 2 c Show that the point P (3, 4, -3) lies on L1. m n z2 − z − 2 y +1 d P is reflected in L2. Find the coordinates of the image of P. 306 307
  • 158. Answers Answers b y g y c y 10 a a = 1 b i ±5 ii 2, -1 iii 4 21 c −1, 1 2 10 11 a 2 b -1 1 12 p = ±1, q = ±2 13 a i 4x + 9 ii 8x + 21 iii 16x + 45 b 2nx + 3 (2n - 1) −2 O 2 x 1 14 The range of g(x) is not a subset of the domain of −1 O x f(x). Change domain of g(x) to 0 x 5 1 3 O1 x 6 Range y Î R, y 1 Exercise 1.4 Range y Î R, y ¹ 1 d y 1 a x+2 b x −1 x −1 Range y Î R, 1 < y < 21 3 2 c 2 h y 2 d 2x - 3 e 2(x - 3) f x −1 c y 1 4 g x −1 h 6-x i 2 x +3 8 x O 1 2 a f −1 (x ) = x − 1 5 2 y Range y Î R, y 2 O x O 2 6 x 5 a x = 2 maps onto two values of y 1 4 Range y Î R, 0 y 4 b x = 2 does not map onto a value of y Range y Î R, 5 < y < 8 6 y One-to-one mappings: a, b, c, e, g Many-to-one mappings: d, h 1 1 –2 2 a 3, 2 b 1, -2, 1 d y O x 3 a {0, 5, 10, 15, 20} one-to-one 1 C3 C3 1 b x Î R, -3 x 3 many-to-one 1 –2 c x Î R, 3 x 12 one-to-one d x Î R, 3 x 6 one-to-one x −4 O 2 4 a y 1 2 b f −1 (x ) = 5 − x 2 −2 O x y 7 Range y Î R, y ¹ 1 10 Range y Î R, y 2 y = f (x) 3 x = 4 and -1 are unchanged 7 a 10 b 19 c 2x2 + 1 d 5 e 26 f 4x2 - 4x + 2 5 e X Y O x 2 g 101 h x4 + 2x2 + 2 i 9 0 0 y = f –1(x) 1 1 Range y Î R, y 3 j 4x - 3 8 O 5 10 x 4 2 y b 9 3 fg(x) gf(x) f2(x) g2(x) 13 Range y = {0, 1, 2, 3} c f -1(x) = 2x - 4 a 9x2 + 24x + 14 3x2 - 2 x4 - 4x2 + 2 9x + 16 y 1 3 b +2 x 27x4 + 36x2 + 14 f X Y 3x2 + 2 x2 y = f (x) 0 0 1 c 2x + 2 2x + 10 ( x + 18) 16x - 10 1 –1 4 2 y = f –1(x) 1 2x − 3 x −1 4 –2 d 1− x x −1 2− x x –4 O 2 x −4 O x 1 9 –3 9 a 5− x b 5− 1 c d 5− 1 –4 −3 x x x Range y = {0, -1, -2, -3} Range y Î R, y -3 1 1 e f x g x4 h x 5−x 308 309
  • 159. Answers Answers 1 b y d f −1 (x ) = x − 2, x 2 i f −1 (x ) = , x >2 11 x = 3 ± 10 x −2 y = f (x) y y y = f (x) y y = f –1(x) 5 4 y = f (x) 3 2 2 y = f –1(x) O 2 x y = f –1(x) O x 45 1 O 3 x – Range of f(x) is y Î R, y 5 3–1 O 2 x 3 e f −1 (x ) = x + 2, x 0 f -1(x) = 4 − x − 5 y 3 a f -1(x) = 8 - x, x Î R self-inverse Domain of f -1(x) is x Î R, x 5 Range of f -1(x) is y Î R, y 4 12 c = 2, x = 2 ± 5 b f −1 (x ) = 12 , x ∈ R, x ≠ 0 self-inverse y = f –1(x) x c y 13 x = a ± a 2 + b c f −1 (x ) = 4 − x 2 , x ∈ R, 0 x 2 self-inverse y = f –1(x) 14 y 2 y = f (x) 4 5 d No inverse function exists O x 2 e f -1(x) = 8 - x, x Î R, 0 x 8 self-inverse 2 f f -1(x) = x2 + 4, x 0 f f (x ) = x , x ∈ R, x ≠ 1 −1 self-inverse y = f –1(x) x −1 –1 y f (x) 1 y = f (x) O 2 4 y = f (x) x y = f –1(x) 4 f -1(x) = 8 - x, x Î R, x 8 f(x) and f -1(x) do not have the same domain. Range of f(x) is y Î R, y < 4 x –5 –1 O 1 5 f -1(x) = 2 + 4 − x –1 5 1± 2 Domain of f -1(x) is x Î R, x < 4 C3 C3 4 y = f (x) 6 y Range of f -1(x) is y Î R, y > 2 y = f (x) d y O 4 x y = f (x) –5 y = f (x) y = f –1(x) 4 5 x +1 g f -1(x) = x2 - 3, x 0 f -1(x) = x − 1 3 y 2 Domain x Î R, x -1, x > 1 –1 y = f (x) y = f –1(x) Range y Î R, y 0, y ¹ 1 O 3 5 x x 15 f3 has an inverse. –2 O 2 4 y = f (x) All the others are many-to-one functions. Range of f(x) is y Î R, y 5 f (x) = 3 + x − 5 -1 –2 Exercise 1.5 –3 O x Domain of f -1(x) is x Î R, x 5 1 a y Range of f(x) is y Î R, y > -2 –3 Range of f -1(x) is y Î R, y 3 f -1(x) = x + 2 − 2 7 a y Domain of f -1(x) is x Î R, x > -2 Range of f -1(x) is y Î R, y > -2 3 h f (x ) = 2 − 1 , x < 0 −1 x y = f (x) 8 a f -1(x) = 2x - 8, x Î R, x = 8 (8, 8) y y = f –1(x) O x 3 b f (x ) = −1 x, x ∈ , x 0 x = 0, 1 (0, 0), (1, 1) y = f –1(x) b y 2 c f −1 (x ) = 2 + x, x ∈ , x 0 x = 4 (4, 4) 1 d f −1(x ) = x + 4 − 4, x ∈ , x −4 2 O x x = −3, (−3, −3) 1 2 9 a a = -2, b = 0, c = 1 O x O 2 x Range of f(x) is y Î R, y 1 –3 3 y = f (x) b i 4 ii 48 iii 3 f -1(x) = 2 + x − 1 –3 2 Domain of f -1(x) is x Î R, x 1 10 g −1 (x ) = 2 + , x ∈ R, x ≠ 0 solutions are x = 1 ± 3 x Range of f -1(x) is y Î R, y 2 310 311
  • 160. Answers Answers c y j y 3 a y 4 y 3 10 6 –1 O 4 x 1 x –3 –1 O 1 3 x O 3 8 x O 1 –4 2 k y Range 0 y 10 y y = f (x) Solutions x = 1 or 5 d 3 5 y y 2 7 4 5 1O 1 x O 1 x – 2 2 3 l y –1 –1 O 4 x y = |f (x)| 3 y e y 2 O x 1 –4 –2 1 2 Range 0 y 7 4 –1 O 1 x Solutions x = -1 or -4 –4 O 4 x 6 a y m y O 4 x –4 C3 C3 f y –p O p x y = f (|x|) b y 4 b y O x n y –p O p x –4 O 4 x c y O x O 4 x g y –p O p x o y d y y = f (x) 3 y –p O p x 1O x –1 O 1 x 2 7 (2, 3) 2 a y 8 (-2, 0), (6, 8) h y 9 4 solutions; (-6, 16), (0, 4), (2, 0), (4, 4) O 4 x 1 –1 5 y = |f (x)| Exercise 1.6 2 O x y 1 a i -1, 9 ii -1 < x < 9 b i 1 ii x<1 –3 2 a i -7, 3 ii -7 < x < 3 –4 O 1 x b i -5, 2 ii x < -5, x > 2 b y c i −2 1 ,3 ii x 21, x 3 i y –4 O 4 x 3 3 d i 2, 4 ii 2 x 4 3 3 e i 1 ii x > 1 y = f (|x|) f i 1 1 ,1 ii 1 < x < 1 1 4 2 4 2 1 O 1 3 x O 1 2 x 312 313
  • 161. Answers Answers 1 1 b y 5 y b y 3 a −2 b −1 c 5 d -9, 1 2 2 y = |x + 2| y = x2 – 3x y = |x| 5 e 11 f 6, 2 g 3, 6 h -3, 0, 5 y = 5 – x2 2 3 y = |x – 2| 2 2 4 a x > 2, x < 0 b − <x<2 c 11 < x < 3 3 2 d xÎR e 2.56 x 4 –2 O 2 x O 1 3 4 x f -3 < x < -1 and 1 < x < 3 O x 4 a y y = x2 – 3x 5 a −2 2, 1 − 5, 2, 4 b x < −4 2 , x > −2 3 6 b2 4c y = –x2 + 5x – 4 6 a y Exercise 1.7 y = x2 – 4 c y 1 y 4 y = |x – 4| O 3 x y = √x + 3 2 y= (2 ) – 4 x 3 y = √x + 3 4 y= | x + 2 – 4| 3 y = √x y = –x2 + 3x y = √x – 3 –4 –2 O 2 4 x O x b y 4 10 2 2 y = x + 3x y = x – 3x –3 O 3 x d y y = 1 – sin x 2 2 y=4–x 1 C3 C3 –3 y = sin x –3 O 3 x b y –p p O p p 3p 2p x – −1 8 2 2 2 y = √x – 3 y = 2(4 – x2) e y y = 3 – sin x– p ( ) c y 2 2 y y = 3 + cos x y = x2 – 3x 4 y = (x + 3)2 y = x2 + 3 y = x2 y = (x – 3)2 3 4 2 1 y = sin x 3 O x p 3p 2p x 2 3 5 –2p – 3p –p– p O p 2 2 −1 2 2 –2 O 2 x y = x2 – 7x + 10 8 a First: Stretch parallel to y-axis with scale factor of 2 2 y=4–x –3 O 3 x y ⎛0⎞ d Second: Translation of ⎜ ⎟ y = x2 – 3x ⎝1⎠ 7 a y y = x2 – 3 y = x2 – 4x + 3 ⎛ −p ⎞ ⎛0⎞ –3 b Translation of ⎜ 4 ⎟ and translation of ⎜ ⎟ in ⎜ ⎟ 3 ⎝ ⎠ 3 ⎝ 0 ⎠ either order 3 a y x c First: A stretch parallel to x-axis with scale factor –1 O 3 4 y = |2x| = 2|x| of 1 2 O 1 2 3 4 5 x y = |x| Second: A reflection in the x-axis ⎛0⎞ –4 Third: A translation of ⎜ ⎟ ⎝ 3⎠ d A stretch parallel to the y-axis with scale factor of O x y = x2 – 3x – 4 ⎛p ⎞ 4 and a translation of ⎜ 2 ⎟ , in either order. 2 y = –2x + 8x – 6 ⎜ ⎟ 314 –6 ⎝0⎠ 315
  • 162. Answers Answers e A stretch parallel to the y-axis with scale factor 2 11 a Two stretches, both with scale factor k, one parallel 9 a y c y and a stretch parallel to the x-axis with scale factor to the x-axis and the other parallel 1 to the y-axis , in either order. O 3 x (k) 3 y = f(x) y = kf x 4 f A reflection in the y-axis and a stretch parallel to –2 1 b Two reflections, one in the x-axis and the other in the y-axis with a scale factor of , in either order. 2 the y-axis O 4 x 9 y y = 1 + tan x – p ( ) y = f(x) y = -f(-x) Turning point (3, 0) y = tan x 2 b y d y Review 1 4 1 4x + 1 2(2 − x 2 ) 6x 1 a b c 2 ( x − 1)(2 x + 3) ( x + 1)( x + 2) ( x − 4)( x 2 − 1) –4 O 4 x 4 a 3b 3m3 1 O p p x d a−b e 2 f m −1 2 x( x − 1) O 3 x 2 –1 2( x + 2) 1 Turning point (3, 2) e 2 a b x = − or 1 y ( x + 1)( x − 3) 3 y = tan x c y 3 a i 2x2 + x - 3 rem 0 ii x2 + 2x - 3 rem 2 b (x - 1)(2x2 - x - 1) + 3 2 4 10 a i A stretch parallel to the x-axis of scale factor 2 c (x - 2)(x - 3)(x + 3) ⎛0⎞ and a translation of ⎜ ⎟ . 4 a i 8 ii 5 iii 24 ⎝1⎠ –3 O 3 x O x iv 15 v 2 vi 2 1 4 ii y b i 4x (x - 1) ii 2x2 - 3 iii x +1 Turning points (±3, 2) f y y = f(x) iv 2 x + 1 − 1 10 y C3 C3 5 a y 4 –1 O x 2 2 1 (–6, –3) –4 –1 1 4 x (–3, –4) 1 O x 2 ( ) y=f x +1 O 2 4 x 2 g y (1, 1), (3, 1) ⎛1⎞ b 11 , 2 2 b i A translation of ⎜ ⎟ , a stretch parallel to the 3 5 0 11 a y ⎝ ⎠ y-axis with scale factor 3, a reflection in the 6 a 1 x −9 b 1.5 2 ⎛0⎞ 3 x-axis, and a translation of ⎜ ⎟ . y ⎝2⎠ 8 a O x 2 y = -3x3 + 18x2 - 33x + 20 image point (0, 20) h y 6 y O 1 x ii 1 2 (–3, 14) y = 2 – 3f(x – 1) –2 O 2 x y O x b 2 3 b y 12 a 0, 2 b -1, 2 c −1, 21 3 (1, 5) d −7, 21 e 1, 9 f 1, 9 3 6 1 O 1 x 13 a x < −1, x > 2 1 b −7 < x < 21 –1 1 3 3 2 2 –1 O x c 11 < x < 4 d x < 1, x > 9 3 –3 (–3, –4) y = f(x) –3 –2 O 2 3 x e −1 2 x 5 f -3 x 5 3 316 317
  • 163. Answers Answers 14 a -2, 1, 3 b x 1, x 3 2 a -1 b -2 c -2 b (30°, 2.2), (150°, -0.15), (-210°, -0.15), (-330°, 2.2) j tan 6q k cos 2p l cot 8q c (±52°, 1.6), (±310°, 1.6) 5 2cos2 q c x -3, -1 x 1, x 3 ( )( ) d 1 e 2 f -1 m n 2cosec 2q o 2cot 2q 3 d (0, 0), (±180°, 0), (±360°, 0), 45°, 1 , 225°, 1 , 2 2 2 ( )( ) 15 a y 3 b i 6 ii 16 1 , 1 1 1 3 a ±36.9° b 21.8°, -158.2° c 19.5°, 160.5° −135°, −315°, 2 a 1 b c c y 2 2 2 2 2 d ±143.3° e -15.9°, 164.1° f -30°, -150° 0<c 3 Exercise 2.3 d 2 e 2− 3 f 1 3 17 15 2 4 a − b − 4 4 15 8 1 a p b p c 0 d −p 4 3 4 O 9 x 9 3 a 24 , − 7 , − 24 b ± 4 2 , 7, ±4 2 5 a − 41 b − e p f 0 g 3p h − p 25 25 7 9 9 7 40 40 6 4 6 16 a y 6 a cot2 b b sec3 b c ± 120 , 119 , ± 120 2 a 2 2 b 7 c 0 d 5 169 169 119 c cosec b d cosec5 b 3 3 8 7 y= 1 f(x + 1) 2 4 a 1, ± 3 7 b − , ±4 2 (1, 2) 1 3 9 9 2 2 7 a 3 b 4 c 1 e f g − 5 8 8 2 2 2 ± 3 5 a 2 , 21 , 2 b 2, 5 , 2 1 , 3 ,1 b 90° or p 1 d ±3 e 3 f c 3 a 0 5 5 21 3 3 5 10 10 3 8 a 1 b sin x c cot x 2 –1 O 1 2 4 5 6 x d tan x e 1 f 1 4 a i 1 − x2 ii x b 1 6 a 2, 5 , 2 b 1 , 3 ,1 c 1 , 2 ,1 –1 x 3 3 5 10 10 3 5 2 g 1 h 1 i 1 1 − x2 5 (4, – 3 ) 2 ⎛ 90° ⎞ 5 a 1+ x b p −q 2 7 a 1 - 2x2 b 6x c 18 −2 x 2 9 A translation of ⎜ ⎟ 1 + x2 9 − x2 x b y ⎝ 0 ⎠ 8 a 22.5°, 67.5°, 202.5°, 247.5° ⎛ 90° ⎞ Exercise 2.4 b 15°, 165°, 195°, 345° (4, 5) A translation of ⎜ ⎟ followed by a reflection 1 3 3 ⎝ 0 ⎠ 1 a b c c 45°, 135° 1 in the y-axis 2 2 2 2 ( ) y=f x +1 sec (x - 90°) = cosec x d −1 e 1 f -1 d e 30°, 150°, 270° 210°, 330° cot (90° - x) = tan x 2 O f 30°, 150°, 90°, 270° 6 14 x 2 a sin 3A b cos 5a c tan 3x d cot 2x Exercise 2.2 g 60°, 90°, 270°, 300° C3 C3 (10, –2) 3 a sin (45° - x) or cos (45° + x) 1 a 80.5°, -60.5° b -34.5°, 174.5° h 0°, 30°, 150°, 210°, 330°, 360° b sin (60° + x) or cos (30° - x) 17 a A stretch (scale factor 2) parallel to the y-axis c -56.6°, 123.4° i 60°, 109.5°, 250.5°, 300° c tan (60° + x) d tan (45° + x) ⎛ 0⎞ d 31.7°, -58.3°, 121.7°, -148.3° j 90°, 270°, 45°, 255° e 1 f cos 2x followed by a translation of ⎜ −5 ⎟ e 40°, -80°, 100°, -140° f -63.6° k 0°, 180°, 60°, 300° ⎝ ⎠ 3 −1 3 +1 g ±54.7°, ±125.3° h ±49.1°, ±130.9° 5 a b 3 −1 c l 0°, 165.6°, 360° ⎛2⎞ i ±90°, 19.5°, 160.5° j 0°, ±180°, ±41.4° 2 2 2 2 3 −1 m 0°, 78.5°, 281.5°, 360° b A translation of ⎜ 0 ⎟ followed by a stretch ⎝ ⎠ k ±60° l ±45°, ±135° n 0°, 120° 3 −1 e − 3 +1 2 2 ( ) 1 d f o 90°, 180°, 270° scale factor parallel to the y-axis 2 a ± p , ± 3p b ± p , ± 5p 3 +1 3 −1 3 −1 2 4 4 6 6 p No solutions in range c A stretch (scale factor 2) parallel to the y-axis p c ± ,± 2p p , 2p d 0, ±p, ± ± 6 a 63 b − 63 c − 65 q 19.1°, 70.9°, 199.1°, 250.9° 3 3 3 3 65 16 16 r 112.8°, 247.2° followed by a reflection in the x-axis, and then a 45°, 225°, 71.6°, 251.6° 7 a 13 b 84 c 13 s 35.3°, 144.7°, 215.3°, 324.7° ⎛0⎞ 3 a − − − translation of ⎜ ⎟ 85 85 84 t 23.6°, 156.4°, 90°, 270° ⎝1⎠ b 45°, 225°, 116.6°, 296.6° ⎛ −2 ⎞ c 90°, 221.8°, 318.2° 8 a 12 + 5 5 b 2+ 5 u 90°, 323.1° 18 a 2 x + 3 c T1: A translation of ⎜ ⎟ d 60°, 300° 30 11 tan 3 A = 3 tan A − tan A 3 x+2 ⎝ 0⎠ e 0°, 360°, 138.6°, 221.4° 5 + tan b 1 − 3 tan A 2 T2: A reflection in the x-axis 9 a 1 b 1 c f 26.6°, 206.6° 13 2 1 − 5 tan b Exercise 2.6 ⎛0⎞ g 0°, 360° 11 a 17.1°, 197.1° b 113.8°, 293.8° T3 : A translation of ⎜ ⎟ 1 a 5, 36.9° b 13, 67.4° c 5, 63.4° ⎝2⎠ h 45°, 225° c 160.9°, 340.9° d 77.9°, 147.1°, 257.9°, 327.1° d 2 5, 26.6° e 5, -53.1° f 17, -61.9° i 30°, 150° e 106.1°, 286.1° f 38.2°, 141.8° 2 a 4.9°, 129.9° b 17.6°, 229.8° Before you start Answers 4 a x2 = 4y2 + 16 b 4x2 = 9y2 + 36 g 52.5°, 142.5°, 232.5°, 322.5° c 82.1°, 334.1° d 102.3°, 195.7° Chapter 2 c x2y2 = 144 - 9x2 d (x - 1)2 + (y - 1)2 = 1 h 114.3°, 335.7° 1 a 3 b 3 +1 c 1 d 0 2 2 13 a i +1, 50° ii -1, 230° 5 a p b 7p , − p e x2(y2 - 8y + 17) = 9 f x2 + b 2 = 1 3 12 12 a y b i +1, 340° ii -1, 160° 2 a 15 b 8 c p , -0.927 d p , 0.643 17 15 5 a A stretch parallel to the x-axis of scale factor 2 1 33 2 2 3 a 17.5°, 162.5° b 116.6°, 296.6° 16 a 3 b 65 c p c 75.5°, 284.5° b An enlargement, centre (0, 0) and scale factor 1 2 6 a 63.4°, -116.6°, 0°, 180°, 360° 2 b -11.3°, -131.3°, 108.7°, -36.5°, 83.5°, -156.5° − 21 ⎛ −90° ⎞ Exercise 2.5 4 a c A translation of ⎜ ⎟ and a stretch parallel to c -38.8° d 180° 5 ⎝ 0 ⎠ 1 a sin 46° b cos 84° c tan 140° 1 d cos 100° e sin 6q f cos 8q 7 a 5, 50.8° b 5, 50.8° c , 50.8° the y-axis of scale factor 2 5 Exercise 2.1 1 d A rotation of 180° about the origin g cos2 20° h 2cos2 q i sin 2q 8 a 10, 36.9° b -10, 71.6° c 10, 161.6° 1 a -1.06 b -0.839 c -2.92 ( )( ) 2 d -3.24 e -1.73 f 1.56 6 a (±180°, 0), ±60°, 1 , ±300°, 3 318 2 2 319
  • 164. Answers Answers 9 a 13, 67.4° b Max 13, 157.4°; Min -13, 337.4° 6 a i p ii p iii p 5 a Q(x) = 2x + 5, R(x) = 2x - 4 b l = -11, m = 10 15 a y c 33, 157.4° d 10, 53.1° 6 3 6 a 5sin (q + 36.9°) b 113°, 353° f(x) = |2x + 1| e -2, 233.1° f 1, 157.4° b i 1 ii 1 iii 3 4 2 2 7 a R = 17, a = 76° 10 a 13 sin (q − 33.7° ) 7 b 0°, 228.2°, 131.8° b 119° (2.08 rad), 33° (0.576 rad) 2 b y 8 8 a R = 13 b q = 157° g(x) = |x – 1| √13 y 9 a f(x) 9 b Does not exist c -40 y = sec x 3 10 a (x - 2)2 - 3 –1 O 1 5 x O x 2 –326.3 –146.3 33.7 213.7 360 y = sec (x – 90º) b x = 0, -2 –2 b i f(x) -3 ii f −1 (x ) = 2 + x + 3 , x -3 1 – √13 y = cos x 16 a i 3, − 7 ii 3 iii 3 c y 3 O x c A stretch parallel to the y-axis of scale factor 13 –180º –90º −1 90º 180º b i x < −7, x > 3 ii x Î R iii x > 0 3 ⎛ 33.7° ⎞ 4 and a translation of ⎜ ⎟ −2 17 a y ⎝ 0 ⎠ 11 2 5, t = 1.29 12 r1 = r2 = r3 = r4 = 5 2 y = |f(x)| ⎛ 90° ⎞ 3 a1 = 36.9° a2 = -36.9 a3 = 233.1° a4 = 126.9° A translation of ⎜ ⎟ ⎝ 0 ⎠ y = f(x) Review 2 9 a 84 13 c 36 –3 O 1 2 3 4 5 x b − 1 5 85 85 77 1 a i ii 5 iii 2 2 −2 10 a 1 2 ( 3 − 1) b 17 − 7 3 O 3 x b i 13 ii − 12 iii − 13 4 26 2 5 5 12 2 a 14.5°, 165.5° b 174° c 24.2°, 114.2° 11 a 19.1°, 199.1° b 90°, 270°, 120°, 240° 11 a Stretch parallel to the y-axis by scale factor 2, d 3.2°, 50.2°, 123.2°, 170.2° c 30°, 150°, 270° d 60°, 300° reflection in the x-axis then translation by 1 unit y b e 22.5°, 67.5°, 112.5°, 157.5° f 120° e 60°, 300° f 0°, 180°, 30°, 150°, 210°, 330°, 360° parallel to the y-axis C3 C3 4 a 45°, 63.4°, -116.6°, -135° g 0°, 360°, 124.8°, 235.2° h 90°, 199.5°, 340.5° i 0, 90°, 360° b y = x2 + 4x + 8 y = f(|x|) b 30°, 150°, -19.5°, -160.5° 3 c ±90°, 19.5°, 160.5° 13 a 0° b 0°, ±180°, 76.0°, -104° 12 a -2.25 f(x) 4 b k=1 d ±75.5°, ±120° c ±18.4°, ±161.6° 14 a y = 1 - 2x2 b 2x2(y + 1) = 1 c x(1 - y2) = 2y 13 a f −1 (x ) = x , x ∈ e ±90°, 56.3°, -123.7° 5 f 45°, -135°, 63.4°, -116.6° 15 a 3 4 b gf (x ) = 3 x 2 − 2, gf −1 (x ) −1 −2 –3 O 3 x 7 25 ⎛−p ⎞ 5 a i A translation of ⎜ 2 ⎟ and a stretch 16 a p b 2p c 2 d 2 ⎜ ⎟ 3 3 13 5 14 a i y ⎝ 0⎠ (scale factor 2) parallel to the y-axis c y 17 3 + 8 2 ( ) ii A stretch scale factor 1 parallel to the x-axis, 2 18 60° 15 y = f(x – 3) followed by a reflection in the x-axis, and a 19 b 24° c 99.7°, 170.3°, 279.7°, 350.3° ⎛0⎞ a translation of ⎜ ⎟ ⎝ 3⎠ 20 b 0°, 180°, 360°, 26.6°, 206.6° ⎛p ⎞ 22 a 13, 22.6° b 17, 61.9° iii A translation of ⎜ 4 ⎟ , followed by a stretch x O 6 x ⎜ ⎟ c 5, 26.6° d 2, 45° O b ⎝0⎠ (scale factor 2) parallel to the y-axis, and a 23 a 5, 53.1° b 5 c 103.3°, 330.5° ⎛0⎞ 24 a i ± 10, 71.6°, 251.6° ii ± 5, 296.6°, 116.6° ii y translation of ⎜ ⎟ 18 a y ⎝1⎠ b i 20.8°, 122.4° ii 0°, 233.1° b 4b y 25 a 4 10, 18.4° b 38.0°, 285.2° y = |3x – 2| 4 c i −4 10 ii 161.57° 2 3 1 2 Revision 1 y= x 1 1 x+4 O x 5 (1 + x )(2 + x )2 O x 2a –180º –90º O 90º 180º x x ( x + 2) x2 + 4 x + 2 −2 −1 2 a b x +1 ( x + 1)( x + 2) b a = 3, b = 9, 0 f(x) 9 b There is only one intersection. (-90°, 0), (90°, 0) 3 Q(x) = x2 + 3x - 2, R(x) = -3 c gf(x) = 4 - x c x=1 320 (0, 1), (0, 2) 4 Q(x) = x2 - x + 4, R(x) = x + 1 321
  • 165. Answers Answers 19 a y Exercise 3.1 ⎛2⎞ b y ⎛0⎞ c Reflection in y-axis; translation of ⎜ ⎟ ; y = |f(x)| 1 a Reflection in y-axis; translation of ⎜ ⎟ ⎝0⎠ y = f –1(x) P ⎝1 ⎠ ⎛ 0⎞ 2 b Reflection in y-axis; reflection in x-axis; translation of ⎜ ⎟ ⎝ −3 ⎠ In 4 y = f(x) ⎛0⎞ translation of ⎜ ⎟ Exercise 3.2 ⎝1 ⎠ O x 1 a i 4.48 ii 0.223 iii 0.223 3 c Stretch (scale factor 3) parallel to y-axis; iv 0.405 v -0.405 vi 2.47 –4 –3 O In 4 x ⎛0⎞ b i 5 ii x iii 5 b y translation of ⎜ ⎟ ⎝2⎠ iv x v 5 + ln 2 vi 25 y = f(|x|) –3 d Stretch (scale factor 3) parallel to y-axis; reflection ⎛0⎞ 2 a Translation of ⎜ ⎟ ; x > 0, x Î R 2 ⎛0⎞ 2 ⎝ ⎠ –4 in x-axis; translation of ⎜ ⎟ ⎛0⎞ ⎝2⎠ b Reflection in x-axis; translation of ⎜ ⎟ ; ( 2) x > 0, x Î R ⎝3⎠ f -1(x) = e x - 4 x e Stretch scale factor 1 parallel to x-axis; stretch –3 O 3 Domain x Î R (scale factor 3) parallel to y-axis ⎛ −2 ⎞ Range y > -4 c y c Translation of ⎜ ⎟ ; x > -2, y Î R ⎛ −1 ⎞ ⎝ 0⎠ y = f(x + 3) f Translation of ⎜ 0 ⎟ c y ⎝ ⎠ ⎛2⎞ 2 d Translation of ⎜ ⎟ ; x > 2, y Î R ⎛2⎞ ⎝0⎠ g Translation of ⎜ ⎟ ⎝0⎠ 4 y = f(x) e Stretch (scale factor 3) parallel to y-axis; ⎛2⎞ 3 O x h Reflection in y-axis; translation of ⎜ ⎟ ⎛0⎞ –3 ⎝0⎠ translation of ⎜ ⎟ ; x > 0, y Î R ⎝1 ⎠ 2 A = 100 20 a y y = f(x + 1) t 0 5 10 15 20 ( ) f Stretch scale factor 1 parallel to x-axis; 2 O x 3 4 P 100 128 165 212 272 ⎛0⎞ C3 C3 translation of ⎜ ⎟ ; x > 0, y Î R 1 ⎝ ⎠ 13.9 weeks ⎛0⎞ –2 O 2 x g Reflection in x-axis; translation of ⎜ ⎟ ; y = f –1(x) ⎝1 ⎠ 3 M0 = 6 x > 0, y Î R f -1(x) = -ln (x - 3) (0, –a) t 0 5 10 15 20 Domain x > 3 ⎛1 ⎞ b y M 6 3.64 2.21 1.34 0.81 h Reflection in y-axis; translation of ⎜ ⎟ ; stretch Range y Î R ⎝0⎠ y = f(|x|) (scale factor 2) parallel to y-axis; x < 1, y Î R Half-life = 6.93 sec d y 4 a 0.1733 b 113 c 7 weeks d There is a limit to the number of organisms ⎛ −3 ⎞ –3 O 3 x possible in a unit volume of water. 3 a Translation of ⎜ ⎟ ; stretch (scale factor 3) parallel –b ⎝ 0⎠ 2 5 b 332.2 hours 2In 2 ⎛0⎞ (–1, –a) (1, –a) 6 a N to y-axis; translation of ⎜ ⎟ 1 ⎝1 ⎠ 2In 2 1 200 b (-2.4, 0), (0, 3.2) O x c i a = 2, b = 1 ii − 6 1 2 4 a y 22 a 0°, 60° b 45°, 71.6° y = f –1(x) y = f(x) c 70.9° d 90°, 120° 150 23 b 59.0°, 63.4°, 239.0°, 243.4° y = f(x) y= f –1(x) 24 b 22.5°, 67.5° -1 f (x) = 2ln (2 - x) 25 a i p ii 3 b − 1 c − 36 O 2 4 t 4 2 2 85 11 Domain x < 2 26 a i 13cos (q + 22.6°) ii 49.5° b 53.1° b 150 c 200 e –2 Range y Î R d A stretch (scale factor 50) parallel to y-axis; O 1 x –2 1 Before you start Answers ⎛ 0⎞ e a reflection in x-axis; a translation of ⎜ ⎟ 5 a f −1 (x ) = 3 − 1 e x g-1(x) = 2ln x 2 ⎝ 200 ⎠ x −1 Chapter 3 f −1 (x ) = e Domain x Î R Domain x > 0 ( ) 2 1 a 1 b 1 c 2 7 a Stretch scale factor 1 parallel to x-axis; Domain x Î R Range y < 3 Range y Î R 9 3 2 2 x = 9, y = 10 − 1, z = 4 ⎛ −1.5 ⎞ ⎛0⎞ Range y > 0 translation of ⎜ ⎟ ; translation of ⎜ ⎟ 3 a x − 5 , x Î R, y Î R b 2x + 3, x Î R, y Î R ⎝ 0 ⎠ ⎝4⎠ ( ) 3 c x2 + 1, x 0, y 1 b Stretch scale factor 1 parallel to x-axis; 2 2 2 x2 ⎛ 0.5 ⎞ ⎛ 0⎞ 322 4 a 3x2 + 6 b −3 translation of ⎜ ⎟ ; translation of ⎜ ⎟ 323 4 ⎝0 ⎠ ⎝ −4 ⎠
  • 166. Answers Answers b y y b y = ex + 2 Before you start Answers d y y = f –1(x) Chapter 4 3 y = f –1(x) 1 Gradient of chords will approach 2. 2 a 4 b 2 c -3 3 a y = 4x - 10 b y = 2x - 5 3 4 (-1, 6) maximum O 3 x 2 (3, -26) minimum y = f(x) 1 Exercise 4.1 y = f(x) 1 a 2x + cos x b 6 + sin x O x O 2 3 x c cos x + sec2 x d cos x + 1 ( f(x) passes through 2 1 , 0 and (0, ln 6) 2 ) 3 y a e -3sin x - 4sec2 x f 6 x + 2 + 1 sin x 2 f (x) passes through (ln 6, 0) and 0, 2 1 -1 2 ( ) Domain x Î R Range y > 2 2 a 4 d -1 b p e 3 c 6 c gf (x ) = 6 − 2 x y = ln x 3 x + y 2 =1+ p c y = -ln (x - 2) 4 ( ) gf (-5) = 4 p y 4 y 2 − x = 1 − , (−0.214, 0) i.e p − 1, 0 4 4 y = f –1(x) Exercise 3.3 1 a 2.20 b 2.00 c 2.14 O 1 e2 x 5 y p = x + 1 − , (0.571, 0) i.e 2 (p 2 − 1, 0 ) 2 d 0.882 e -2.14 f -2.00 6 a p b 5p 3 6 g -0.405 h 0.996 i 0.870 y 3 c y = f(x) 7 a p b 0.464 j 0.0767 k 3 l 0.232 2 2 b 2 a 403 b 6.39 c 1 8 a p b 3p d 0.859 e -4.39 f -5.56 4 9 5, -5 3 a 0, ln 2 b ln 3, ln 4 c ln 2 O x 10 a Acos t 2 3 C3 C3 d ln 2.5 e -ln 2, ln 1.5 f ln 4 11 a i q0 ii q0 1 4 a (0.434, 20) b ( − 1 3 ,2 ) c (-0.564, 1) b i q0 ii -q0 ( ) Domain x > 2 12 a 5 metres b 0.54, 3.68 s c -5.23 m s-2, t = 6.37 s 1 − ln 2 , − Range y Î R O 1 x 5 and (0, 1) –2 1 1 13 a i x 0.78 radians 2 e e 2 6 a 2.5 b 2.68 1 ii x 0.51 radians d y = 2 ln (1 − x ) 7 a y=5 5 40 b (0, 8), ln 3 , 3 ( ) y y b k=1 2 8 (ln 2, 3) Exercise 4.2 9 1 ln 4 = 0.0575 y= f –1(x) 1 a y y = 3x 5 3 2 1 20 y = ex a 15 million b 26 million d 3 10 1 ln 10 = 0.0105, t = 65.8 years O 1 x y = 2x 10 9 11 193 years x O 1 12 36.4° C 4 a ln 2 b ±ln 2 Review 3 5 a 1 (ln 6 − 3) b 1 (e4 − 2) y = f(x) 1 a 1.2 b 0.85 2 3 6 a 7.39, 0.69, 1.79 b ln x, ln 2(x + 1) 1 c 11 d 0.95 Domain x < 1 7 a y = e x-3 –3 O 3 x 2 y Range y Î R y b a y = ex b i 1 ii e = 2.718… y = f –1(x) 8 A=5 c i y=x+1 ii y = ex 5 4 y = f(x) t 0 5 10 15 20 2 a 6x + e x b 4e x + 6 3 P 5 6.42 8.24 10.59 13.59 c 5cos x + 2e x d 3 sec 2 x − 1 e x 2 2 e–3 e 1 - ex f -e x t = 13.9 days 3 a i e2 - 1 ii 6.39 1 O e–3 x 9 a T0 = 100 b 332 °C b i 6 - 4e ii -4.87 p O x Domain x Î R 10 a 180 b 20 c 200 c i e2 + 1 ii 5.81 c Range y > 0 11 a 1.46 b 1 c 45 ° d i − 1 ii -0.368 e 3 2 e 324 325
  • 167. Answers Answers 4 a y = 5x + 2 b y = 2x + 8 tan x + 2 x sec 2 x 2(2 x + 3) 3 n 4cos 4x cos x - sin 4x sin x o cos x (1 - 3sin2 x) 3x2ln x + x − 1 3 − i j s − 2 t −3(2 x + 1) 2 x (x + 3 x − 1)2 p e x(3cos 3x + sin 3x) q -e-2x (sin x + 2cos x) 5 y = −2 x + 1 2 x 2 − 3 e3 x (3 x − 1) esin x ( x cos x − 1) − x ( x2 + 1) 4 3 2 4 3 2 1 k 5x - 4x - 3x + 4x l 5x - 8x + 12x + 2x - 2 u 2 v − r s 8 a minimum at point (0, 2) x(ln x )2 x2 x2 2 p b maximum at point (0, 0) 2 e -x(2cos 2x - sin 2x) b y = -27e-3 2e x − t c maximum at point (ln 2, 4ln 2 - 3) 3 a y=0 w − x 2 (2 x − 1) 3 4 x=1 (e x + 1)2 3 2 a 2xcot (x2) b 2xsec (x2) cot (x2) 9 y 5 b 0.6 to 1 d.p. 2 a 2q cos (q 2) b 2sin q cos q c 6sin 3x cos 3x d -12cos2 4x sin 4x 6 (0, 0) minimum e 4tan 2x sec2 2x f 3tan2 (x + 4)sec2 (x + 4) cosq O x (-0.2, 0.007) maximum c d 3q 2 sec2 (q 3) g sin 2x e sin2 x h 2x 2 sinq –1 (-1, 0) minimum e 3tan2 q sec2 q f − sec 2 q 3 a 4x ln 4 b 5x ln 5 c c x ln c 2x 2x 7 minimum value of − 1 when x = 3 1 tan 3 q d 2 ln 4 e 5 ln 25 f x x(1 + ln x) 3e e cos x x − b e x × ee 1( 1 + 5) ( ) ( ) 3p − 1 3 a 4 − 8 p 1 maximum at 4 , 2 ; minimum at 4 , 2 sin 2 x 2 1 8( x + 2) 4e x 5 4 c − d − Exercise 4.5 ( x 2 + 4 x − 1)2 x2 6 -1 maximum at (0, -1) ln 2 a sin x − 2x cos x b 2 x tan x −2x sec x 2 2 1 asymptote y = x 1 e 2( x − 1) f -cosec x 7 = 0.431 sin x tan x ln 5 10 a (0, 0), (ln 2, 0) b minimum when x = ln 3 (2) c 1 − 12 d 1 − ln x 4 a k cos kx b -k sin kx c k sec2 kx 8 a 1 3 6 x+4 b x c 1 x x2 1 x2 − 3 2 x 11 y d e k e kx e x (sin x − cos x ) x 1 1 e f − x 5 y = 24x - 164 9 a b sin 2 x ex 12 y 2 + 1 12 sin 3 y cos y g sin x − 2 x cos x h − x sin x + 2 cos x x3 6 ( 4 , 16 ) 3 1 c 1 cot2 (2 y )cos2 (2 y ) 30 d 1 1 + ln y 2 x sin 2 x −2 4x 7 1 ( 2 − 1) e ey f 1 1 i j − 2 2 cos y − sin y 12 cos 4 y − 8 sin 2 y (1 + x )2 ( x − 1)2 y = 3 x + 16 8 2 y ( y − 2) g C3 C3 O x 6 x( x 3 − x + 1) x(2 ln x − 1) b2 x − ax 5y − 8 k l 9 a b (3 x 2 − 1)2 (ln x )2 a2 + b2 x 2 10 6y = x + 4 minimum at (-0.35, 0.83) ( ax 2 + b )3 2 a 7 b 1 1 11 8y = ± (x + 4) − Exercise 4.3 3 (3, 0) c 4 a2 x(a2 x 2 − b2 ) 3 13 maxima at (1.02, 2.47) and (4.16, 57.2) 3 minima at (2.59, -11.9) and (5.73, -275.3) 1 a 2 b 2 c 3 d 1 4 x + 2y = 0 10 x = 0 x x x x 2 y 11 b a = 4 ( ) 5 e −1 f 3 g − 1 h 2 x3 13 minima at (np, 0), maxima at ⎛ n + 1 p , 1⎞ , ⎜ ⎟ x 2x 2x ⎝ 2 ⎠ a x 2 ( x cos x − x sin x − sin x cos x ) 1 2 2 7 n = 0, ±1, ±2,¼ i 1 +1 j 2 +2 x x b tan x + x sec2 x 14 minimum at (0, 0) y 2 a 21 b 1 c e+1 ex ⎡(1 + x ) ln x − 1⎤ 2 2 c ⎣ ⎦ d ex (1 - ln x + x ln x) (ln x )2 x2 O p 2p x d 2 e 2 3 x (1 + 2ln x - x ln x) f ( x cos x + sin x )ln x − sin x (not to scale) 3 a minimum at (1, 1) e ex (ln x )2 b minimum at (1, 1) and (-1, 1) O x Exercise 4.6 4 y = 1 x + 1 − ln 2, (ln 4 - 2, 0) 2 1 a 2x cos(x2 + 1) b -3x2 sin (x3 - 1) 14 a (1, 2), (-1, -2) Exercise 4.7 5 x + 6y = 1, 1 37 6 c 2x sec (x ) 2 2 d 22( x + 1) 2 2 1 a (x - 1) [6xsin x + (x - 1)cos x] 2 y 1 x + 2x + 3 y=x+ 1 b (x3 + 1) [6x2tan x + (x3 + 1) sec2 x] x 6 3x2 4(2e + 1) e f 3 c e x (3x + 2)3 (3x + 14) 4 x3 + 1 x d ( log 10 x ) e x (2 x + 3) 2 2 1 7 = 1 g cot x 1 h x cos (ln x) d e (x cos 2 x − sin 2 x ) x=y+ dx x ln10 2 x +1 x3 y 1 cos x esin x O x i j x 2 (1 + ln x ) − 1 –10 –5 5 10 Exercise 4.4 x ln x f g sin (x2) + 2x2cos (x2) 1 –2 k e x+4 x2 x x2 −1 x=y+ 1 a 1 + ln x b 2xsin x + x2cos x l 2xe y –4 c e x(sec2 x + tan x) d (x2 - x - 2)e x m 10x(x2 + 1)4 n 14(2x + 6)6 h sin2 x + 2x sin x cos x i cos 3x - 3x sin 3x 1 y=x+ j 2x (tan 2x + x sec2 2x) k (2x + 1)e2x+1 ( ) x x e e x ln x + 1 f sin x + cos xln x o -6x2(x3 - 1)-3 p 2x3 x x x2 − 1 l 2xln(x2 - 1) + c x = y + 1 is the inverse of y = x + 1 e x ( x − 1) 3x2 x2 − 1 y x g − 13 (2 cos x + x sin x ) h q r − 1 m cos x cos 2x - 2sin x sin 2x Their graphs are reflections in the line y = x x x2 2 x3 + 1 ( x − 1)2 326 327
  • 168. Answers Answers Review 4 2(cos x + x sin x ) Review 5 c y 16 a 3x2e3x(1 + x) b 1 a x3sec2 x + 3x2tan x b 3tan2 x sec2 x cos2 x 1 a y g(x) = x2 – 2 1 d x sec x − 3 tan x 2 c 3x2 sec2(x3) c 2tan x sec2x d − 2 y sin y 2 y = f(x) 4 x4 y = g(x) e ex(sin x + cos x) f cos x esinx f(x) = In(x) ii − 6 x sin 2 x 2+ cos 2 x 3 3 3 3x+2 17 a i xe (2 + 3x) 3 g − cos x h 1 cos x − sin x ln x 3x esin x x 1 O x b –2 –1 1 2 i 3cos 3x j 6sec2 6x 2 2 (16 − x 2 ) 2 k l 3e3x - 1 2x + 3 19 (0, -729) min, (3, 0) and (-3, 0) points of inflexion 1 m cos x − sin x x n ex(x2 - x + 1) –2 e Before you start Answers 1 − 3x2 –2 –1 O 1 2 x o Two roots 2 x ( x 2 + 1)2 Chapter 5 d y 2 a ae ax b ae ax + b 1 a x3 - 1 b 2x4 - x2 + 1 Two roots 2 a -1.2, 3.2 b (1, 0) 4 c f ¢(x)ef(x) d acos (ax) 3 -2.1, 0.25, 1.9 b f(x) = |x + 2| e acos (ax + b) f f ¢(x)cos [f(x)] y 3 g asec2 ax h asec2 (ax + b) 4 1 2 4 g(x) = x2 + 1 f ¢(x)sec2 [f(x)] 1 i j Exercise 5.1 1 x 1 a 2 b 1 c 2 d 2 3 a f ′( x ) k l e 3 f 1 g 3 h 2 –3 –2 –1 O 1 2 x ax + b f (x) y = g(x) 2 a 1 b 2 c 1 2 3 a e x(cos 3x - 3sin 3x) b e3x(3tan x + sec2 x) Two roots d 1 e 2 f 0 y = f(x) 1 c e3x(3 cos 2x - 2sin 2x) d 2 sec 2 ⎛ x ⎞ 3 b There is only one point of intersection. 3 a y ⎜ ⎟ g(x) = e–x ⎝2⎠ c [1, 2] d 1.9 e 3sin x + x cos x 1 4 c 0.703 O 3 x f + 1 –1 1 2 x sin x x 2( x + 1) 5 b 3 c 2.13 2 One root C3 C3 6(3 x + 1)( x + 2) 7 3.7 1 f(x) = 3 – x2 g − h 1 i 5sec2 5x (2 x − 1)4 8 a = 1, x = 1.28 –2 –1 O ( 2) ( 2 )⎦ 9 c [-2, -1], [1, 2], [3, 4] d 3.93 2 a y 1 2 x j 2 x ⎡sin 2 x + p + x cos 2 x + p ⎤ ⎢ ⎥ 10 b [-1, 0], [0, 1], [4, 5] c -0.88 ⎣ 11 a [2, 3] b 2.19 b x = 1.68 c x = -0.83 k 3e 3tan x sec2 x l - 2 12 b 2.67 2 4 a 1.36 b 1.31 c 2.35 d -2.82 cos x 1 m cot x - xcosec2 x n sec x o 1 − x tan x 13 a 2 b 1.32 f(x) = x3 +2 g(x) = x 5 c 2.20 d divergent sec x 14 b 3.29 6 b 1.395 4 a 1(max) b p (min), − 3p (max) 15 a 1 c 6.846 7 a y 4 4 –3 –2 –1 O 1 2 3 x 16 3, 2.478 c 3p (min), − p (max) f(x) = 2 – e–x 4 4 17 0, (2n + 1)p, n Î Z 2 −q + p 18 1.9 radians 5 y= –2 1 g(x) = √x 2 x x 1 Exercise 5.2 7 a 2 ln 2 b a ln a c x ln 10 c 4.56 1 4 ( 4 ) O x 8 a y + x = 6+p –1 1 2 3 4 b 4y + x = 4 + p , 4 + p , 0 c 2.46 2 d Diverges Two roots 4 b 1.466 3 9 a y = sin p x (180 ) b y = p cos ( p x ) = p cos(x °) 180 180 180 0.35 4 2.659 5 b y 8 d 3.921 b 1.58, 1.68, 1.70 1 2 g(x) = x3 + 1 d x = -1 because division by zero is impossible 10 a f ′(x ) = a l = 5, m = 7 6 c 5.25 sin x cos x a -0.856, +0.473 7 b 5, 6, 2 c 1.304 1 Revision 2 b f ′(x ) = cos x − sin x = 2 cot 2 x 2 2 x3 - 6x + 3, 2.145 8 f(x) = sin(x) sin x cos x a x3 - 5x + 7 = 0 9 b x3 - 5x - 1 = 0 1 x −6 x−4 30 x − 1 c x3 - 8x + 2 = 0 d 3x4 = 100 O x c f ′( x ) = d (2x - 1)(3x + 2)2(30x - 1) b 3x − 1 –1 1 2 3 4 (2 x − 1)(3 x + 2) e x3 - 2x - 1 = 0 f x2 + 2e-x - 6 = 0 2 a 3x − 7 –1 x −2 x 12 4 10 a 30, 20 b The second 2x − 9 4 3 a b x = 6, 4 14 c 2.114 74 –2 ( x − 5)( x − 3) (1 − x )3 11 c -1.3734 d -53.9° 4 a = 2, b = 0, c = -1, d = 1, e = 0 1 1 One root 15 a b 12 c 2.303 d 1.2 2 x 2 x −3 328 329
  • 169. Answers Answers 5 a 2x − 9 y b f −1 (x ) = 4 + 1 c x Î R, x ¹ 2 9 a y y = g(x) b i 24 a i e3x(sin x + 7cos x) ii 5x3 + 3 x 2 ln(5 x + 2) x−4 2−x g(x) = 3 – ln(x) 5x + 2 4 6 b (0, 4) −60 c ; 1, -3 y ( x + 1)4 y = f(x) 4 (0, 2a) 2 25 a (3, 1 ) , ( 3, 1 ) 6 − 6 − b 18 (0, a) f(x) = ln(x) 26 a (1, e) min b (-1, e-1) min (a, a) 3 a (– 4 , a) O x O 5 x c ( )2 1 2( 1, 1 max, −1, − min ) d (0.464, 0.177) max (-2.678, -94.74) min 2 1 b ( a , 95a ) 5 c fg (x) = 4|x| + a d x = ±a 2 27 a xex(x + 2) c ex(x2 + 4x + 2) b (0, 0), (-2, 4e-2) 11 b 9 3 ⎛0⎞ d (0, 0) minimum, (-2, 4e-2) maximum 16 Reflection in x-axis translation ⎜ 3 ⎟ 1 + x2 O x ⎝ ⎠ 28 a b 9y + 5x = 16, 15y - 27x = 44 1 ( x 2 − 1)2 12 a − b ii p , 5p , 3p ii y c y>0 d -0.418 3 3 6 6 2 c (-0.49, 2.05) g(x) = 1 + 2ln(x) 29 b y = x 7 a 13 c 135° 1 y 30 a i x = ay c y= (x − 10 + 10 ln10) 10 ln 10 14 c p , 5p , 9p , 13p d B(10(1 - ln 10), 0) 8 8 8 8 2 15 a R = 13, a = 1.176 b x = 2.267, 0.085 31 a y a c i 13 ii 1.176 f(x) = ln(x) 6 f(x) = x3 16 a i y O 1 x –2 5 e 4 O a x 4 3 –2 2 ( a , 0) , (0, a) 2 g(x) = 6 – x2 g(x) = 1 + 2ex Stretch parallel to y-axis by scale factor 2, 2 2 ⎛0⎞ f(x) = ex translation ⎜ ⎟ C4 C3 b y ⎝1⎠ –5 O x iii y –2 O 2 4 x a Stretch parallel to y-axis by scale factor 2, ⎛0⎞ translation ⎜ ⎟ 2 1 ⎝ ⎠ c [1, 2] d 1.5 ii y g(x) = 0.5ln(x + 2) 32 a [1, 2] b 1.32 O x 33 c 2.754 –2 5 O a x 34 a x3 + x - 3 = 0 b x3 - 5x + 10 = 0 3 f(x) = ln(x) 4 c x3 - 3x - 2 = 0 g(x) = 2 + e–x 2 35 a a = 12, b = 2 c 2.73 ( a , 0) , (0, a) 4 Stretch parallel to y-axis by scale factor 0.5, translation ⎜ ⎛ −2 ⎞ ⎟ 36 b 1.395 f(x) = ex 37 a 2y = x + 1 c 2.1530 ⎝ 0⎠ c a = 6, 10 O 5 x 38 b -2 ln 2 17 a 7 days b i 105 cells ii 80 cells b f −1 (x ) = 1 + e , x ∈ R x 8 a 2 e x1 = 4.9192, x2 = 4.9111, x3 = 4.9103 −3 + ln 7 2 ⎛0⎞ 18 b £670 c 15 years d 7.2% Reflection in y-axis, translation ⎜ ⎟ 19 b 14 years 1 ⎝2⎠ 39 a 3e x − c y 20 a 425 °C b 7.49 mins c 1.64 °C/min 2x iii y 21 a 0.405 b 4.39 c 0, 0.693 c x1 = 0.0613, x2 = 0.1568, x3 = 0.1425, x4 = 0.1445 4 g(x) = 3ex–2 22 a ex(sin x + cos x) b x2(1 + 3ln x) 2 e x (sin x − cos x ) Before you start Answers c e-x(3 + 2x - x2) d sin 2 x Chapter 6 2 e x − 1 2 2 x 2ln x − 2 2 6x2 1 a 24 b 28 f O 3 x 1 3 x( x − 1) ( x 3 + 1)2 2 a x(2x - 3)(2x + 3) b (x - 1)(x + 1)(x2 + 1) x f(x) = e 1 e or 2 2 3 g h 3x2 ex 3 a A = 5, B = 9 b A = 4, B = 1 (0, 2 ) O x sin x cos x sin 2 x x=3 3x + 7 (2 x + 1)(3 x − 1) 3 2x − 2 −9 x 2 4 a b Stretch parallel to y-axis by scale factor 3, i 2 j 3 ( x + 1)2 x( x 2 − 1) 3( x 2 − 2 x + 5)3 2( x 2 − 1)2 d x = 7 , 11 ⎛2⎞ 5 a x2 - 4x + 3 b x + 8 + 15 3 3 translation ⎜ ⎟ −ex x−2 0 ⎝ ⎠ k x − 1)2 l cos3 x - 2cos x sin2 x (e Exercise 6.1 6 x 2 sin(2 x 3 ) + cos(2 x 3 ) 4 23 a i (2 + 3x)xe3x + 2 ii − 1 a 3 + 1 b − 3 3x2 x + 2 x +1 x −3 x +4 1 b c 1 − 1 d 3+ 1 330 2 16 − x 2 4( x − 3) 4( x + 5) x x −1 331
  • 170. Answers Answers 3 1 3 1 Exercise 7.1 d y e x + 5 + 2x − 1 f 2( x − 4) + 2( x − 2) c 1− 1 + 1 d 2+ 1 − 1 4 x +1 2x − 1 x −1 x +1 1 y 7 2 5 1 a x −3 − x −2 b 2 + 3 e 1− + 3 f 4 − 1 x +1 x + 4 2( x + 3) 2( x − 1) 5(2 x − 1) 5(3 x + 1) t = –3 6 t=3 8 4 − 3 2 − 1 g x −1+ 2 − 1 h x +1+ + 1 c x x +1 d x −1 x − 6 x x +1 3( x − 2) 3( x + 1) t = –2 t=2 –9 t = –1 O x –4 O 4 x 3 6 9 1 1 i 1− − 2 + 2 j − 6 + 3 + 6 + 3 –3 t=1 9 e 2( x − 1) − x − 2 + 2( x − 3) x x x −1 x x 2 x + 1 ( x + 1)2 t=0 1 1 1 k 1+ 1 − 3 l 1 − 12 + 2 − 2 f 2( x − 1) − 2( x + 1) + 2 − x x x +1 x x −1 x +1 y 2 –4 t=2 3 3 2 Review 6 8 3 a x −2 − x +1 b + 1 e y x −1 x + 4 1 a 5 − 4 b 2− 3 c 1 − 1 x − 2 x −1 x x+4 x −3 x +3 3 1 1 3 1 c 2( x − 5) − 2( x − 3) d 2 x − 2( x − 2) 2 a 1 1 ( + 1 2 x −1 x + 3 ) b 1− 5 + 5 x 4( x − 1) 4( x − 5) t=0 t=1 2 5 3 1 1 e x − x +1 + x + 2 f − + + 1 c − 1 − 1 + 2 O 12 x x 2x + 1 2x − 1 t = –1 2( x + 1) 2( x − 1) x + 2 –5 O 5 x −2 3 1 1 4 a + 4 b 10( x − 3) + 5( x + 2) − 2( x − 1) x−2 x−4 3 a 2 − 2 b 1+ 5 − 2 x −1 x + 3 3( x − 2) 3( x + 1) –3 6 c − + 12 1 2 d 1− x + 1+ x 2 –8 t = –2 2x − 1 3x − 2 c − 2 − 1 y x 3( x + 1) 3( x − 2) f 3 4 2 e − + + 1 x 2x − 1 2x + 1 4 a + 1 b 2 − 2 3 a y 2x + 1 2x − 1 3x − 2 3x − 1 15 1 4 3 f 3(3 − 2 x ) + 3(3 + 2 x ) c − 3 − 2 d − 1 − 22 + 1 x − 2 x − 1 ( x − 1)2 x x x−3 e 1− 2 + 6 1 + 2 + 2 C4 C4 2 4 5 g x − 3(2 + x ) + 3(1 − x ) f − –1 O 1 x x 2 x − 3 (2 x − 3)2 x + 1 x − 1 ( x − 1)2 4 1 1 5 A = 1, B = 2, C = -2 h − 15(1 + 2 x ) + 5(2 − x ) + 3(2 + x ) 2 3 –4 O 5 x 6 a 3− 3 b 2+ x +2 − x −3 x+2 1 1 1 1 i − + + − x − 1 x + 1 2( x − 2) 2( x + 2) c 1 + 2 − 22 − 3 d x+2+ 3 + 1 x x x +1 x −2 x+2 4 a y + 2x = 9 b xy = 12 7 a=k+1 –15 3 Exercise 6.2 8 a (x - 2)(x - 1)(x + 1) 2 c y = x – 2x - 1 d y = x2 2 2 3 1 1 4 3 1 a x −1 − x − 2 + b x +1 − x −3 + b 1 − 1 + 1 c -1, 1 or 2 y e y = (x + 1)2 + 2 f xy2 = 4 ( x − 2)2 ( x − 3)2 3( x − 2) 2( x − 1) 6( x + 1) b 2 2 − 3 1 4 x2 y2 c x +1 + d x−4 + 2 + 1 ⎡ 2 b f ′(x ) = − ⎢ + 1 2⎤ 1 g y=x+2 h + =1 ( x + 1)2 2 x − 1 ( x − 4 )2 9 a ( x − 1) ⎥ 9 16 ⎣ ( x + 4) 2 x + 4 x −1 ⎦ 1 O 3 8 x i y = 1 – 2x2 j y = 10 x 2 − 5 2 5 2 e x + 2 − x −2 f + 1 + 3 10 a 1 + 2 9 x 2x2 4 x 4 ( x − 2) x + 2 x −1 y2 2 k x − =1 3x + 1 l y= 4 9 2 g 1 − 3 + 3 11 a − 1 − 2 b 9 –3 x 3 x − 1 (3 x − 1)2 x −2 x +3 8 5 6 1 1 3 1 c y′ = 1 + 2 > 0 for all x ∈ R 6 3 h 2( x + 2) + ( x + 2)2 + ( x + 2)3 − 2 x ( x − 2)2 ( x + 3)2 c y 4 7 2, -4 2 1 1 12 a 1 − 1 c 1 2 a 1− x + 2 b 1 + 2( x − 1) − 2( x + 1) r r +1 8 ± 2, y = 1 x 2 − 1 4 13 a 1 − 1 c 1 9 a (10, 0) b (9, 0) r +1 r + 2 c 1− 1 − 7 d 1+ 1 − 2 4( x − 1) 4( x + 3) x x +1 c (13, 0), (-7, 0) d (±3, 0) O x 10 a (0, 23) b (0, 5), (0, 6) 1 e x +1+ 1 f x+ + 1 Before you start Answers 9 c (0, 0), (0, 1) d (0, ±1) x −1 2( x − 1) 2( x + 1) 11 5 3 Chapter 7 g x −4+ 5 + 1 h −1 + + 3 12 5 x + 2 x −1 x +3 x −3 1 a 1 (4 x − 1) b 17x2 + 4x + 12 2 13 3 1 1 1 i x+ + 4 16(2 x − 1) 16(2 x + 1) 2 a x = 2, y = -1 b x = 2 ± 14 5 a 2 x − 23 ; x3 3 1 7 A = 1, B = 2 , C = 2 , D = 5 3 +x− 1 +c x 3 x x3 2 332 4 a 8 − 4 2 − 2 − 2 b 2 + 2x; x + x2 + 3 + c c − ;x− 1 +c 333 5(2 x − 3) 5( x + 1) b 3( x − 2) 3( x + 1) ( x + 1)2 x3 x
  • 171. Answers Answers 14 a 29 b 2 5 c 5y = 2x + 33 c ( p2 , 1) , ( 32p , 1) − d (2, 8), (2, 2) 10 a a = 1 + 6 p c 3 d -3 - 4x - 4x2, |x| < 1 15 y = 2x + 1 4 y + 2x = 24 (18, -12) 11 a -2sin3 q cos q b 2y + x = 4 e 1 + x + 1 x 2, |x| < 1 2 16 x = 2cos q, y = 2sin 2q 17 x = tan q, y = sin q 5 y = 4 x − 45 ( 3 − , − 48 4 ) c y= 8 x2 + 4 ,x 0 f 3 + 3x − 8 x2 , x < 1 3 2 b x = 1, y = 3 t2 − 1 Q( ) 18 a x = sin q, y = 3cot q t 6 y + 2x = 3 1 − ,4 g 4− 5x2 , x <1 2 Before you start Answers 2 19 a a = 3, b = 2 b x = 3 + cos q, y = 2 + sin q 3 20 a a = 1, b = 2, c = 2, d = 3 7 a AP = 3cos q + 5 Chapter 8 5 5 3 8 b x = 1 + 2sec q, y = 2 + 3tan q BP = 5 - 3cos q a (1 + x ) b (1 + x ) − 1 6 1 + 1 − 1 2 + 1 3 , |x| > 2 2 2 21 a p , 5p b b = 1.9; (0, -1) and (0, 1.6) 8 a 1 ,y = x ⎛ ⎞ b ⎜1, 1 ⎟ c y(2x – 1)2 = x 121 112 30 x 2x 2x 3 3 t2 t2 ⎝ 2 t ⎠ 2 a b c 7 a = ±4, 1 + 2x - 2x2 + 4x3, 1 - 2x - 2x2 - 4x3 1 1 10 3 6 22 a x = 3 , y = 2 b x = t + 2, y = t (t + 2) 3 a 8 + 12x + 6x2 + x3 t t Exercise 7.4 8 4, 1 , 4 b 56; 256 + 1024x + 1792x2 + 1792x3 + 1120x4 2 c x= 1 3,y= t 3 d x = 1 − 1, y = 1 − t 1 1 + 448x5 + 112x6 + 16x7 + x8 1−t 1−t t 1 a 19 2 b 25 3 c 144 9 Either k = 3, n = 1 , − x 2, x < 1 5 25 3 3 4 a − x b − x2 23 c y d 28 e 82 f 8ln 2 2 4 or k = − 3 , n = − 2 , 5 x 2, x < 2 3 2 1 4 2 1 2 3 4 3 5 a + b + + 2 19 1 , 12 4 1 − 2x 1 + x 3(1 − 2 x ) 3(1 + x ) (1 + x )2 1 1 1 5 5 10 1 + − + + ... , 2 x 8 x 2 16 x 3 3 a t = -1, (0, -6) t = 0, (-1, 0) Exercise 8.1 1 3 5 t = 1, (0, 2) t = 2, (3, 0) 1 a 1 - 2x + 4x2 - 8x3, |x| < 2 1 1 + 1 x 2 − 1 x 2 + 1 x 2 + ... O x 2 8 16 b 32 c 9 b 1 + 1 x − 1 x 2 + 1 x 3 , |x| < 1 3 28 16 Exercise 8.2 4 t = 0, ± 2 17 1 1 2 1 3, c 1+ x − x + x 1 |x| < 2 1 a 3 + 9x + 21x2 + 45x3, |x| < 1 15 2 2 2 Asymptote x + y = -1 5 a (4 1 , 1) , (2, 2), (4 1 , 4) 4 4 b 41 2 d 1 + 3x + 6x2 + 10x3, |x| < 1 b 4 - 8x + 28x2 - 80x3, |x| < 1 3 C4 C4 Exercise 7.2 6 (0, 5), (0, 17), 16 e 1 + x − x2 + 5 x3 , x < 1 c 5 − 15 x + 65 x 2 − 255 x 3, x <1 1 a (9, -6), (1, 2) b ( 9 , 3) , ( 25 , 5) 4 4 − 7 a (2, 2) b 5.67 1 + x + 3 x 2 + 5 x 3, 3 3 2 3 3 4 8 9 2 15 3 2 a ±2 2 , ⎛ 1 , 2 ⎞ , ⎛ − 1 , −2 ⎞ 3 f |x| < 1 d − x+ x − x , |x| < 1 (1, 3), (-1, -1), ( , ) 1 5 8 ⎜ ⎟ ⎜ ⎟ b - ln 2 2 8 16 2 4 8 16 2 a (-1, 1), (3, 5) b ⎝ 2 ⎠ ⎝ 2 ⎠ 4 8 4 1 c (-1, 1), (3, 3) g 1 + 6x + 27x2 + 108x3, |x| < 3 e 1 − 5 x + 19 x 2 − 65 x 3, |x| < 2 Review 7 6 36 216 3 (2, 3) and (2, -3) 1 a y = x2 + 2x + 2 h 1 + x − 3 x 2 + 7 x 3, x <1 ( 25 5 ) b y=2–x 2 16 104 2 640 3 4 (3, 0), 81 12 ,− 28 16 2 f + x+ x + x, x <1 x2 y2 2 d y = x −1 3 9 27 81 2 c + =1 3 2 5 3 1 5 a (0, -3), (3, 0) b (0, -5), (1, 0), (-5, 0) 16 9 2 i 1+ x + x + x , x < 2 g 4 + 4x + 8x + 8x , |x| < 1 3 3 2 2 2 c (10, 0) d (0, -3), (7, 0), (-9, 0) 2 a x = sin q, y = sin 2q 3 2 1 3 2 a A = 2, B = 11 2 j 1 + x + x + x , |x| < 2 e (0, 2 ) , (2, 0) 3 − f (4pn, 0), n Î Z b x = 2sin q, y = 5tan q 4 2 3 2 1 3 1 16 32 2 3 4 b 3 + 7 x + 25 x + 9 x + 47 x , 256 256 4096 x <4 1 k 1 + 3x + x − x , x < 6 (1, -2), (4, 4) 3 −1, 2 2 2 c It converges more slowly to the correct answer as 3 1 (2 ) 7 Q t 2 , 2t , y2 = 8x 4 a ( −8 + 3 14 , 22 − 6 14 ) , ( −8 − 3 14 , 22 + 6 14 ) 1 l 1− x − x − 3 1 2 36 1 3 162 x , |x| < 2 3 a |x| increases. 5 − 4 125 b ln 64 ( ) 8 a Q(2t 2, 0), M(2t 2, 3t) b 2y2 = 9x b (4, 0), (-12, 0) 2 a i 1 - x + x2 - x3 + x4 1 − x 1 + 2x 9 (-4, 2), (16, -18) ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ii 1 + x + x2 + x3 + x4 c 1 + 13x - 11x2 + 37x3 c ⎜ 3 , 5 ⎟, ⎜ 3 , − 5 ⎟, ⎜− 3 , 5 ⎟, ⎜− 3 , − 5 ⎟ 1 1 10 1 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ b i ii Exercise 8.3 4 1+ x 1− x 5 a 2y – 3x = 1, 3y + 2x = 8 1 0.737 42 Exercise 7.3 b 12y = 5x + 49, 5y + 12x = 119 3 a 2 + 1 x − 1 x2 , |x| < 4 2 729 + 1458x + 1215x2 + 540x3 + 1354 + 18x5 + x6 1 a 12 b 6 c 8 d -5 c x – y = 4, y + x = 2 4 64 3 a 2.236 07 b 1.732 05 3 1 1 1 x x 2 4 3.162 28 e f d 2 3y = 2 x + 1, 2 y + 2 3 x = 3 3 b 2 − 4 + 8 , |x| < 2 5 16 2 5 a 1 + x - x2 + x 3 b 10.009 990 28 3 2 a y = 2 x + 1, 2 y + x = 4 1 6 a 19.5 b 2 3 c 1 + 3 x + 27 x 2, x <2 6 1 - 6x + 24x2 - 80x3 ; 0.994 023 92 3 4 4 16 3 b 2y = 3x - 6, 3y + 2x = 4 c 0.574 (3 s.f.) d 2 7 a 1 − 1 − 12 − 1 3 , |x| > 1 b 9.949 874 d 1 ⎛1 + x + x ⎞ , |x| < 9 2 x ⎜ ⎟ 2x 8x 16 x c y = 2 x − 2, y = − +1 7 a 4cos q b y = 2 x 2 + 3, −3 x 3 3⎝ 18 216 ⎠ 2 3 c x = -100, 10.049 876 d 3y = 4x - 5, 4y + 3x = 0 8 b 2 s+r d ( 121 22 9 ,− 3 ) 4 a 1 + 1 x − 5 x 2 , |x| < 1 2 8 9 1 + 3 x + 3 x2 − 1 x3 4 32 128 2 ⎞ ⎛ 1 a ⎛− , 1 2 ⎞ 3 ⎜ ⎟, ⎜ ,− ⎟ 2 5 11 2 , |x| < 1 ⎝ 3 3 3⎠ ⎝ 3 3 3⎠ 9 a y =2+x− x b t = 1 + 7 or 2.18 s (3 s.f.) b 1− x + x 20 5 2 8 10 a 1 + 3 x + 7 x 2 b 5 + 15 x + 65 x 2 + 255 x 3 2 2 4 8 16 b (1, 2), (1, -2) c 21.8 m (3 s.f.) 5 2, |x| < 2 c 2 + 3x + x 334 335 2
  • 172. Answers Answers 11 2, 4, 3 cos x 6 a 5, 37 b 3.19 c 2.72 Revision 3 d − 1 e 3 tan 3x tan 2y f e −( x + y ) − 1 1 cos( x + y ) 2 7 a 126 000, 0.0314 = 1 - 3x + 6x2 - 10x3. . . 2 1 3 2 1 12 for |x| < 1 1 a − b − + + (1 + x )3 ye x + e y b 3956e0.0314t, 5415 people/year x − 2 x +1 x x −1 x +1 h y (1 − e ln y ) x g − y xe + e x ex c 323 200, 6.7% 6 4 2 1 3 Review 8 c − d − − 4 − 3 8 a 150, 100 b 200, 0.03 cells/hour x−3 x−2 x x + 1 ( x + 1)2 1 3 a b -3 c 1 a 1 + 3x + 9x2 + 27x 3, |x| < 3 7 9 a 20, 0.0575 4 2 8 3 e − x − 2 + 2x − 1 d 0 e 2 f -2 b i 12 h ii 40 h x b 1 + x − 1 x 2 + 1 x 3, x <1 g y=x+3 h x=3 c 1.15 g h-1, 0.863 g h-1 2 1 1 2 2 2 f + − 5(1 − 2 x ) 5( x − 3) ( x − 3)2 c 1 + 1 x + 5 x 2 + 5 x 3, |x| < 2 i 7y = 33 - 13x j y = 1− x 10 a 70, 0.154 2 2 A = 1, B = -3, C = 2, D = 1 381 36 b 10.8° C/min, 4.99° C/min 4 a 10y = 7x - 54, 7y = -10x - 8 3 3 1 2 1⎛ x2 + x ⎞, c T = 10 + 70e-0.154t 3 1 d ⎜3 + x − ⎟ x <9 d 5.5 min 3 a 1− + b 1− − b y = x, y = p − x 2( x + 1) 2( x − 1) 3( x − 1) 3( x + 2) 1 3⎝ 3 54 486 ⎠ 2 c x = 2, y = 2 11 Both models give the same estimate of 3 360 000, 2 2( ) e 1 1 + 1 x + 1 x 2 + 1 x 3 , |x| < 2 d y = -x, y = x because P0at = P0ekt if k is defined by a = ek c 1+ 2 − 2 + 1 d x+2− 1 + 9 2 4 8 x x −1 ( x − 1)2 2x 2( x − 2) 5 y=x+1 2( ) 1 Exercise 9.4 e 2 − 2 − 12 + 6 f 1+ x + 3 x 1 2 + 5 x 3 , |x| < 4 6 26 2 1 0.2 m2 per min x 2x − 1 x 8 128 1024 3 7 a 5y + 8x = 21 b 41 2 a 47.1 cm2 per sec b 3.14 cm per sec f 1− 4 + 1 2 − 1 g 1 − 1 x − 3 x2 − 1 x3 , |x| < 1 5 3( x + 1) ( x + 1) 3(2 x + 1) 2 8 16 8 (2, 3) 3 a 32.4 mm3 per min b 21.6 mm2 per min 9 (6, 14) 4 2 cm3 per hour 4 p = 1, q = 0, r = 4, s = 3, t = 9 h -(3 + 4x + 4x2 + 4x3), |x| < 1 (2 ) 2 4 a 40.2 mm3/sec 2 b 15.1 mm /sec 5 a x = 21 b k= − ,− 2 A = 0.5, B = 0, C = − 1, |x| < 1 10 1 1 , 0 , 63.4° 5 3 3 16 6 15 cm3/sec 2 5 11 (0, 0), (4, 2), 90°, 31° 6 a 3 b y = x −1 3 − 7 a 0.00 111 cm/sec b 0.333 cm2/sec 3 8 4 1 − 1 − 1 2 − 1 3 , |x| > 2 12 y = ±3 8 0.0265 cm/min 7 a ( 1 , 0) 3 b (0, -1) c (3, 2), (0, -1) x 2x 2x 13 1 , 1 9 126 mm2 per sec 8 a 2y + x = 11 b (-1, 6) 3 5 a a = 3, n = -2 b -108 c |x| < 1 3 14 a ( ) 4, 1 , (4, 1) 3 b ( ) 1, − 1 , (1, − 2) 2 10 11 0.305 cm/sec 9 m/sec 9 a (7, 3), (12, 4) 10 a t = 0, 3, -3 b 17.7 b 64.8, 129.6 6 a 1 + 2 , 3 − 3 x + 9 x 2 − 15 x 3, x < 1 C4 C4 1 − x 1 + 2x 2 15 a (-5, -2) min; (-5, -3) max 12 -0.1 N m-2/sec 11 a P(0, 4.25), Q(2, 2) b 52 c 41 3 2 ( ) −k dL 12 a t = p 1 1 1 3 13 64 b + − , 1 + 2x - x2 + 4x3, |x| < 1 b −3, min; (-3, -3) max p r 2 L2 dt d −8 3 1 − x 1 + x (1 + x )2 2 3 3 where k is Boyle’s constant. Assumes temperature 1 7 a A = 1, B = 2 b 3 - x + 11x2 16 (1, 1) and (1, -1) 13 a 1 - 3x + 9x2 - 27x3, |x| < remains constant. 3 1 1 17 a maximum of 3, minimum of -1 c No as x = 2 is outside |x| < 3 b maximum of -1, minimum of 3 Review 9 b 1 + 5 x − 25 x 2 + 125 x 3, x <1 9 3.162 28 (5 d.p.) 3 3 2 8 16 5 18 a 2 b 4 ,max 3x 2x + 3y 2 y3 1 a - b - c 11 a p = -13.5, q = 67.5 b 1.424 687 5 19 dy = x2 + 8x − 4 4y 3x + 2 y 3x3 c 3 + 1 x − 1 x 2 + 1 x 3, x <1 3 54 486 2 12 a A = 3, C = 4, B = 0 b 4 + 8 x + 111 x 2 + 161 x 3 dx ( x + 4)2 y 2 e x − 2 xe y 2 1 4 2 d 3 tan 2x tan 3y e 3 xy 2 f x 2 e y − 2 ye x d x + 1 x 2 + 3 x 3 , |x| < 4 8 128 Before you start Answers Exercise 9.2 1 x = ±1 3y2 + 4 xy − 3x2 17 e 1 − 3 x + 9 x 2 − 27 x 3, x < 4 Chapter 9 2 − 4 16 64 256 3 2 y = x + 2 2, y = x − 2 2, 3 y 2 − 6 xy − 2 x 2 7 1 a y = 6x - 5 b y = 2(x - 4) 1 1 3 2 5 y = − x + 2 2, y = − x − 2 2 , area = 16 3 a 3y - 2x = 2 b 7y - 5x = 8 c y + 6x = 3 f + x+ x + x 3, x <4 − 1 2 16 256 2048 2 a 3tan2 x sec2 x b 3 x 2 (x 3 + 1) 2 5 x - 2y + 2 = 0 2 (-0.618, ±0.300) 3 9 3 6 b (2, 3), (2, 5) c (2 ± 4 2 , − 1) 14 a 1 − x − x 2, x <1 ( ) c ex(sin x + cos x) d x2(1 + 3ln x) 2 8 1 −1 5 , 1 5 10 7 4 y + 3x = 8 3 b 1− x + x , x < 1 1 15 2 3 a b 1 (3 + ln 20) c 50(1 - ln1.5) 2 8 3 ln 1.5 2 8 a y = 3x - 7 b 3y = 2x - 7 Exercise 9.3 3 9 27 , x >3 Exercise 9.1 15 1 − − − 1 a ln 3 ´ 3x b 2ln 3 ´ 32x - 1 9 y = bx 2 −b 2 x 8 x 2 16 x 3 c 3 − 2x 2 a 1 a x b x2 c 20ln 3 ´ 35x + 2 d -2ln 3 ´ 3-2x 16 a = ±8, 2 + 2x - x2, 2 - 2x - x2 2y ⎛ ⎞ ⎛ ⎞ 10 ⎜ 1 , 3 3 ⎟ , ⎜ 1 , −3 3 ⎟ 3y y e 2ln 10 ´ 102x + 5 f -6ln 5 ´ 51 - 2x ⎝2 2 ⎠ ⎝2 2 ⎠ 1+ y ( ) 1 1 d 1 e − y f − 1 1 x +2 17 a + , 2 + x + 5 x 2 + 7 x 3, x <1 3 y ( y + 2) x 1+ x 2 ln 2 2 2 + 6 × 2 x , 16 ln 2 11 a 54y + x = 27 b t = -6 1 − 2x 1 + x 2 2 2x + y x(1 + y 2 ) x (3 − y 2 ) 12 a 4y = x + 15 b 1 + 1 , 3 11 + x+ 73 2 431 3 x + x, x <1 g - h − i 3 a y = 6.59x - 0.59 2 + x 8 − 3x 2 4 8 16 3 x + 2y y ( x 2 − 2) 13 a (0, 2), (0, -2) b x=0 y (1 + x 2 ) y = -0.15x + 6.15 14 a i 4xln 4 ii (24x + 22x +2)ln 2 18 a A = − 3 , B = 1 b -1 - x + 4x3 y2 3y3 b y = 4.16x + 6 2 2 j -1 k l − b i y = 5 + 2xln 2 ii y = 4 + 5xln 2 x2 4 x3 y = -0.24x + 6 15 a 13, 50 b 12.3 per sec 5y − 2x ey y − sin y m tan x tan y n cot2 y 4 a 40, 83.2 b 5.28, 1.46 19 a b c c 5.8 per sec d t = 1.5 2 y − 5x 3 y 2 − xe y x(cos y − 1) y2 y c 13.4, 20.1 d 0.55, 0.22 1 b − c − x 16 a £1975 b -£801 per year 2 a 5 a 3.21, -0.71 b 5.80, -2.55 y 2 xy − sec 2 ( x + y ) 2xy x(1 − y ln x ) c rate of depreciation d cot x cot y e f 336 c 1.98, -0.020 d 54.6, -109 x − x 2 + sec 2 ( x + y ) 337
  • 173. Answers Answers 20 a y = 1 x - 1 3 x − 2 cos x − 1 sin 2 x + c 1 3 3 b y+x=2 k 5 ln sin 2 x + c l sin (2x + 3) + c 2 a 2 (1 + e x )2 + c b 2 (1 − cos x )2 + c e tan x − 2 ln sec x + c f 2 2 5 2 3 3 2 4 22 a − 2 tanq c 6cosec 2a d p,6 m − 1 tan (4x + 1) + c 1 1 3 g 1 tan5 x + c 1 h sin x − sin 3x +c 3 4 4 n 4 sec 4x + c c 2 (x + 2) x − 1 + c d (1 + x 4 )2 + c 5 3 23 21.4 3 6 3 24 a 60 664 b 485 per year c 87 years o 1 ln |sec 4x + tan 4x| + c e 1 (ln x)3 + c f 2 x − 4 ln ( x + 2 ) + c i 1 cos3 x − cos x + c j x − 1 sin 2 x + 1 sin 4 x + c 4 3 3 8 4 32 25 a 0.0637 m/min b 0.8 m2/min 26 a 0.002 55 cm/s, b 0.48 cm3/s 1 p - 4 ln |cosec 4x + cot 4x| + c g 2 x + 1 − ln (1 + x + 1 ) + c k sin x − sin3 x + 3 sin5 x − 1 sin7 x + c 5 7 Before you start Answers 1 −2 x 1 sec x + 1 tan2 x + c q −2e + c r sin 3 x − 3 cos 1 x + c h − 1− x2 +c i -1 sin (x) + c l − ln 2 3 3 Chapter 10 k 1 ln ⎛ e x − 1 ⎞ + c x 1 1 2x 1 −2 x 1 sec3 x + c 1 a 2x ln x + x b ex(3x2 + x3) s - 2 cosec 2x + c t e − 2x − e + c j 2 ⎜ e + 1⎟ 4 a − 1 cos 2 x + c b − 1 cos 4 x + c 2 2 3 ⎝ ⎠ 4 8 2x2 +1 1 c ex(tan x + sec2 x) d 2 a 0 b c 2 ⎛ ⎞ 1 1 x2 + 1 2 l − 4 − x2 + c m 2 x + 1 + 4 ln ⎜ x + 1 − 1 ⎟ + c c − 2 cos x + c d − 12 cos 6 x + c 1 − ln x 4x ⎝ x + 1 + 1⎠ e f cot x ( ) e e −1 4 x2 d 2 2 2 −1 f 1 ln 7 1 1 3 2e 3 3 a 2(e - 1) b 9 c 2 −1 e −x + tan 3 x + c f −x − cot 3 x + c 3 3 3 a 1 + 1 b −3 + 2 + 1 20 2( x − 5) 2( x + 5) x x −1 x + 2 3 a - 1 + tan x + c b ln x - cot x + c 31 3 7 x d 23.2 e 2 f 162 g − x − 1 cot 2 x + c h 2 tan ⎛ 1 x ⎞ + c ⎜ ⎟ c 1− 1 + 1 2 d 1− + 2 ⎝2 ⎠ x x − 1 ( x − 1) 2 x 2( x − 2) c 1 ( e2 x −1 − e1−2 x ) + c d 1 sec 3x + c g e −1 h 352 1 (Arbitrary constants are omitted from answers.) 2 3 2e 15 5 − cos 8 x − 1 cos 4 x + c 1 16 8 Exercise 10.1 e − 1 cosec 3x 4 a (2, 0) b 30 1 3 6 a − cos 5 x − 1 cos 3 x + c b 1 sin x + 1 sin 9 x + c 1 a 1.45 b 8.72 c 1.17 10 5 a (0, 0), (4, 0), 128 b (0, 0), (2, 0), 4 10 6 2 18 4 15 3 d 0.137 e 1.57 f 2.12 p c 1 sin x − 1 sin 5 x + c 2 a 0.9943 d convex graph b 1 c 0.57% Exercise 10.4 (2 ) c (0, 0), p , 0 , (p , 0); 5 2 2 10 3 1 2 6 a, d, e, g, h on sight 7 a b c 3 a 0.9185 b 0.9116 ( x − 1) + c 5 5 1 3 6 5 1 a ln |x3 - 1| + c b ( x 2 + 1)4 ( x 2 + 1)2 6 a 1 ( x 3 + 1)5 + c − +c C4 C4 4 55.1, p » 3.06 3p ⎛ ⎞ b ln ⎜ 2 + 1 ⎟ b 4 2 5 8 a c 0 ( x + 3x − 1) + c 1 2 5 5 I = 2.30, 18.4 c ln |x2 + 3x - 1| + c d 3 2 ⎝ 2 − 1⎠ 5 3 2 6 a 50.5 b 51.2 c 1.4% c 2 (3 x − 2)(x + 1) + c 2 d (1 + tan x ) + c 2 9 1 1 1 2 15 3 3 7 Area = pab where a, b are the lengths of the e ln |x2 - 4x + 1| + c f (x - 4x + 1)4 + c 2 8 1 2 semi-axes. For a circle, a = b = r 1 sin (x2 + 1) + c e (x 2 + 1)2 + c f 15 x + 1(3x2 - 4x + 8) + c 11 a 1 b 8 g ln |sin x + 1| + c h 2 3 Exercise 10.2 2 12 p + 1 3 2 g 1 e x +1 + c h (e x − 1)2 + c 2 c e −1 2 1 a 2 b 5 2 3 2 3 2 6 2 e i 3 ( x − 1)2 + c 1 2 j x2 − 1 + c 13 a odd function b even function d ln 2 e − 2 f 3 + ln 4 Exercise 10.6 1 x2 27 p k 1 ln |x2 - 1| + c l e +c 1 1 Exercise 10.7 g + ln 4 h + 3 2 2 1 a sin 3x + c b − cos 4x + c 2 3 3 4 x 3 1 a 2 ln +c b 2ln |x - 3| - ln |x + 1| + c m − 1 e− x + c n 1 ( x 2 + 2 x + 3) + c x+2 ( ) ( ) 2 2 2 a 1 tan q + c b 1 x2 - 2ln x + c 2 3 c 2 sin 1 x + c d − 2 cos 3 x + c 2 2 2 3 2 c ln |(2x + 1)(x + 1)| + c d ln (x − 1)(x + 3)3 + c c 5sin x + 3cos x + c o 1 ln |x2 + 2x + 3| + c p esin x + c 1 1 2 2 − e ln 2 x − 1 + c a e2 - 1 e sin (2x + 1) + c f − cos (3x - 2) + c 3 b ln 3 2 3 f 4 ln x 2 1 + c 1 x3 q e +c r ln |ln x| + c 2x + 1 x ⎛p 1 ⎞ 3 1 1 4 a ⎜ , ⎟ b 2− 2 c 2 −1 g 4 tan (4x) + c h 2 tan (2x - 3) + c g 1 + ln x − 1 + c ⎝4 2⎠ x 1 3 1 ln 2 h ln − +c 2 x x x −1 x −1 5 e2 - e - ln 2 » 3.98 1 − 1 1 cot 4 x + c i ln x − 2 + 3 + c 4 x + ln |x - 1| + c 2 a tan 3x + c b cos 3x + c c − 6 e4 3 3 4 i 1 n x +1 x +1 x + 1 x n −1 + + x + ln | x − 1| + c () (7 ) 10 1 7 n n −1 d tan x + c e − ln cosec x + cot x + c a ln 8 b ln 2 + 3 c ln 3 p 2 2 2 5 f sec x + c g ln |sec x + tan x| + c 5 Exercise 10.3 Exercise 10.5 h x + tan x + 2ln |sec x + tan x| + c 4 ln 2 − 3 ln 3 1 1 1 2 3 2 2 1 a sin 5x + c b − cos 4x + c 1 a (1 + x 3 )5 + c (1 + x ) + c b 3 2 1 5 4 (sin 3 x − cos 3 x ) + c a x + 3 ln x − 3 + c b x + ln x − 1 + c 15 9 i 3 5 c 1 tan 3x + c d 2sin 1 x + c 1 1 2 x+3 x +1 3 2 c sin5 x + c d tan2 x + tan x + c j -cot x - 4ln |cosec x + cot x| + 4x + c 5 2 e 1 − cot 4x + c f 1 4 x −3 e +c 1 k -2 cot x - 2 cosec x - x + c l − 1 cot 2 x + c c x + 2 ln x + 1 + c 4 4 e − 3 +c f ln (x + 5) + 5 + c 4 x 9 ( 3 x − 1) x+5 g 1 (3 x + 2)5 + c h 1 ln |sec 3x| + c 1 3 a 1 x + 1 sin 2 x + c b 1 x − 1 sin 6 x + c d 1 x 2 + 2 x + 37 ln | x − 3| + 3 ln | x + 2| + c 15 3 g 2ln (x - 1) + (x - 1) - +c 2 4 2 12 2 5 5 x −1 i 1 ln |3x - 1| + c j − 1 +c h −1 + 2 +c c 1 (x + sin x ) + c d 1 x − 1 sin (6 x + 2 ) + c 6 ln x 2 − 1 3 3 ( 3 x − 1) 4(e x + 2)4 5(e x + 2)5 2 2 12 338 339
  • 174. Answers Answers Exercise 10.8 Exercise 10.10 1 b 1 (x − 4)5 + 3 (x − 4)4 10 a 1 b 1 − 134 6 a − ( x + 3) 1 a sin x - xcos x + c b xe x - e x + c 2 4 279 32 5 4 e 4e 1 a 5 p b 4p c 5 p 3 3 1 c 1 x 2 ln x − 1 x 4 + c d 1 e2 x (2 x − 1) + c 11 − 1 cos x sin2 x − 2 cos x c 2 (e x + 3)2 d 2 (x + 1)2 − 2(x + 1)2 2 4 e xtan x - ln |sec x| + c f 4 -e-x(1 + x) + c 1 3 3 3 3 2 a 38 p 15 b p ln 3 2 () c 8p 15 3 7 0.183 3 − cos x sin 3 x − cos x sin x + x p2 f p e2(3e2 - 1) 4 8 8 1 d e p 8 g 1 sin 2 x − 1 x cos 2 x + c 5p 4 4 3 4 2 16 p p 9 a ln |sin x| b tan x c ln |sec x + tan x| g (7 − 12 ln1.5) h (18 ln 3 − 8 ln 2 − 5) h − 1 2 ln x − 1 2 + c i 1 2 x +1 e (2 x − 1) + c ( ) ( ) 6 4 2x 4x 4 d 0.5 x + 1 sin(6 x ) e 0.5 x − 1 sin 6 x 3 m= r ( ln x − 2 ) + c 1 3 2 3 Exercise 10.9 6 6 j x (3 ln x − 1) + c k x 2 h f 3x - 4ln |cos x| + tan x 9 3 3 1 1 x4 − x3 + c 2 1 x4 − 2x3 + 9 x2 + c 4 64 p 4 4 2 g 1 (3 x + 4 sin x + 0.5 sin 2 x ) ( 4) ( 4) 15 l x sin x − p + cos x − p + c 1 1 3 1 8 m sin ( x + p ) − x cos ( x + p ) + c 3 7 (x - 6)7 + c 4 8 (x - 2)8 + c 5 p (4 − p ) 8 (2) h 2 sin x − 2 sin3 x (2) i − cos x 2 1 + cos3 x − cos5 x 6 a 243p 3 3 5 3 b (-4, 16), (3, 9), 868 14 p 5 2 ( x 3 + 1) + c 1 6 6 2 6 ln |x3 + 1| + c 5 15 j 1 (3 x − sin 4 x + 1 sin 8 x ) k x - 2tan x 9 3 8 8 80 n 1 x 2 + x tan x − ln sec x + c 7 a (-2, -4), (2, 4) b p ( )⎠ 1 sin (2x3) + c 8 3 x + 3 sin 2 x + c 0.5 ⎛ x + 2 sin x ⎞ 2 7 3 3 2 4 5p l ⎜ ⎟ 8 ⎝ 2 o x(ln |x|)2 - 2x ln |x| + 2x + c 9 x − 1 sin 6 x + c 10 4tan x + c 14 1 6 9 p 10 a sin 2 x + 1 sin10 x b 0.3 5 4 20 2 a 12 ( nx sin(nx ) + cos(nx )) + c 11 sin 4 x + c 12 1 sin 2 x − 1 x cos 2 x + c 2 4 4 2 ( x − 3) ( ) 3 n 10 a (0, 4), (1, 4) b 1.3p 11 a ln b ln (x + 2)2 2 x − 1 13 1 3 x (3 ln (2 x ) − 1) + c 14 3 ln (x2 + 7) + c 2 ( x − 1) b 12 enx (nx − 1) + c 11 p (3(ln 3)2 − 6 ln 3 + 4) 9 2 n 15 1 (5x - 1)(x + 1)5 + c 16 ( x + 2) + c 1 2 6 2 c 7 ln x + 1 − 7 30 12 16 x − 3 4( x − 3) x n +1 c ((n + 1)ln x − 1) + c 1 2x 12 1946 p 12 a 0.182 b 2.886 (n + 1)2 17 1 2 x2 + c e 18 e (2x - 1) + c 3 4 4 13 a 381 p b 197 p 13 a A = 3, B = 2 b 4 ln 2 − 5 ln 3 C4 C4 c 16p d − cos nx n ( ln sec nx + 1) + c 19 -2x + tan 2x + c 20 1 2 sin 2x + c 7 2 4 21p b sin 3 x + 1 cos 3 x x (2 ) 14 a x sin x + cos x 21 2 ln sin 1 x + c 22 xln |2x| - x + c 14 3 9 3 a p −1 8 b 4 ln 2 − 15 c ln 27 − 1 2 16 4 c 1 e3 x (3 x − 1) d − x cos nx + 12 sin nx 23 2x(ln |x| - 1) + c 24 x + ln |x + 1| + c 15 p ⎛1 − 3 ⎞ 9 n 2⎜ 2 ⎟ n d log10 4 − 3 log10 e ⎝ e ⎠ 1 2x 1 2x ( ) e (2 x 2 − 2 x + 1) e (2 sin x − cos x ) e 3log10 4 - 2log10 e sin 2 x + p + c e f ( ) 1 4 4 25 x + x3 + 1 x2 + 3x + c 26 1 4 5 16 2p ln 3 − 1 ( ) p 4 2 2 2 x4 f ln 2 + p − 3p 2 g 1 h 1 e2 + 1 1 1 2x 2 6 g 16 (4 ln x − 1) 4 2 2 27 ln sec (2 x − p ) + c 28 e (sin 2x - cos 2x) + c 2 4 17 4 p ab2 4 p, 3p 3 15 a 0.1517 b 0.7183 c 1.446 d 3.196 1 1 cos 2 x − 1 cos 6 x + c 8p ( ) 29 − cos 4x + c 30 16 a 0.5x sin 2x + 0.25cos 2x 5 1, 1 , 1 − 6 8 4 12 18 15 e e5 1 (2 x 2 + 2 x sin 2 x + cos 2 x ) ln x − 4 + c ( ) 1 x−2 b 1 31 x +1 32 2 ln x +c 19 p 3 −1− p 8 6 a −e b 1 12 1 1 3 20 Torus (doughnut), 4p 2 17 a x 6 − x 4 b 1 x4 − 2 x3 − 1 x2 + 2x 34 2 ( e x + 1) 2 + c 2 1 33 x − 2 (x + 4) + c 6 4 4 3 2 7 a (5 x − 1)(1 + x )5 + c 3 3 1 1 2 30 1 1 Review 10 c (x − 5) 7 d (x − 2) 6 35 ln (e2x + 1) + c 36 − sin-3 x + c 1 a 7.40 b 1.47 c 4.04 d 0.477 7 6 ex 2 2 3 ( 2 x + 15 )(x − 2) b (1 + x ) + c 8 3 2 a 1.008 b 1 c 0.8% d concave curve e 2 f 0.5ln |x2 - 1| c 2 (3 x + 2)( x − 1 + c 3 )2 37 − 1 cos 7 x − 1 cos 3 x + c 38 1 sin8 x + c 3 a 0.5ln 1.5, 1.5ln 2.5 b i 1.792 ii 1.684 5 14 6 8 x2 g 0.5 ln x − 1 h ln x − 1 15 (4) 1 1 i e2 4 a 3 sin 3 x b 5 tan 5 x c -4cos x x +1 8 a e x(x2 - 2x + 2) + c 39 1 ln x − 3 + c 40 − 2 cos3 x + c x 6 x+3 3 x b -x2cos x + 2x sin x + 2cos x + c d 1 (6x + 1)5 e 0.5ln |sin 2x| f 0.25ln |4x + 3| j 2e 2 ( x − 2) k 0.25x2(2ln |3x | - 1) p 30 b ln 3 ( ) 41 a 1 3 c 1 e2 x x 2 − x + 1 + c 8 2 g − 1 h 0.25e4x l x (3 ln 3x − 1) 4(4 x + 3) 9 c ln ( 2 + 1) 2 2 d 1 18 a ln |sin x| b ln |sec x + tan x| 1 −3 x 4 i 0.5e2x + 2e x + x j -2cot (0.5x + 1) d − e (9 x 2 + 6 x + 2) + c 27 42 a − 1 2 + c b 1 tan3 x - tan x + x + c k 0.5ln |sec 2x + tan 2x| l 1 sec 2 x c 1 sin 4 x − 1 sin3 4 x 2 tan x 3 2 4 12 e 1 e2 x (cos 2 x + sin 2 x ) + c 1 x3 c e +c 2 1 d sin x − sin3 x + sin5 x + c 1 5 a (x 2 + 3)6 b 0.5ln |x2 + 3| c 0.5sin (x2 + 1) d 1 (6 x − 8 sin x + sin 2 x ) e 3 x + 1 sin 2 x 4 3 3 5 6 2 4 16 f 1 x 2 sin 3 x + 2 x cos 3 x − 2 sin 3 x + c 3 9 27 4 2 ( e 1 3 x − sin 2 x + 1 sin 4 x + c 8 ) d 1 sin7x 7 e 0.5ln |x2 - 2x - 1| 3 f 1 8 1 sin 4 x − sin10 x g 20 1 x 10 e (sin 3x - 3cos 3x) h 2 (1 + x 3 )2 2 1 3x −0.5e − x g 13 e (3 sin 2 x − 2 cos 2 x ) + c f 2 ln x + c g ln |3 + sec x| + c h 3x +c f ln |1 + tan x| g 9 h 1 (8 x 2 cos 4 x + 4 x cos 4 x − sin 4 x ) ln 3 32 b e −5 2 340 9 a 1 (ep − 2) c 2(ln 2)2 − 2 ln 2 + 3 43 a negative b positive c zero 341 5 2 e2 4
  • 175. Answers Answers 19 a 0.3096 b 1.071 c 0.125 g 3 y = 1 x2 − x + c h y + ln y − 1 = c − 1 x Before you start Answers Exercise 12.3 53 p 2 + 2p 2 2 1 a 24 b 2 c -2 20 a 15 p b Ax Chapter 12 8 i y= j y 2(2y + 3) = x2 (2x + 3) + c 2 a 3 b 6 c 9 x +1 ⎛1 ⎞ ⎛ −1⎞ ii ⎛ ⎞ 1 21 V = 10 8 p k sec y = Asin x l y (x + 1) = Ae x 1 a i ⎜ ⎟ iii ⎜ ⎟ ⎜− ⎟ d 9 e -3 f -3 15 ⎝2⎠ ⎝ ⎠ 5 ⎝ 3⎠ 3 a 62.8° b 73.6° c 39.7° d 69.5° y m y = tan x – x + c n x = ysin y + cos y + c b square with vertices (9, 1), (11, 3), (9, 3), (11, 1) e 82.6° f 71.6° g 85.5° h 90° 2+ y 1 20 o c − 4e − x = ln 2 a 41 b 74 , 24 4 a -1 b 2− y 2 18 1 1 1 3 a x = 2, y = 0, z = 3 b x = 1, y = -1, z = 2 5 a -3 b ±4 g(x) = 5x p y = 2 ln |sec 2x| + 4 ln|sec 2x + tan 2x| - 2 x + c 6 a parallel b neither c perpendicular 16 Exercise 12.1 4 2 6 (y – 1)2 = 8x + 9 1 a 13 b 13 c 21 d 14 7 a -3 b c 10, - 14 3 5 7 k=2 8 a i 80.8° ii 76.1° iii 16.7° 12 2 a 70 b 3 5 c 141 d 0 8 y 2 = 2(xsin x + cos x + 1) b 54.7° with each axis 3 10 9 x = tan q 3 a i+ 4j b 5 i − 12 j 9 29.5° 5 5 13 13 8 10 2y 3 – 3y 2 + 6y = 3x 2 + c 10 47.6° f(x) = x2 + 4 11 a dy =x dz +z c 1 i+ 1 j+ 1 k d 2i − 1 j+ 2k 12 a 70.7°, 23.3°, 86.0° b 38 , 6 , 34 6 dx dx 3 3 3 3 3 3 c 7.12 square units 4 Exercise 11.2 ⎛5 ⎞ 13 b i + 4j + 7k ⎜2 3⎟ ⎛ −1 ⎞ 2 1 a v = 1 t2 + 1 t + 6 b 13.5 m s–1 4 a ⎜ ⎟ b ⎜ ⎟ ⎜ 3⎟ 14 a 2p × r b 2p × r 200 10 ⎜5 ⎟ ⎝ ⎠ c |p|2 - |r|2 d (p - r)2 2 a 403 b 23 days ⎝2 ⎠ –4 –3 –2 –1 O 1 2 3 4 5 x 17 i - 2j + k 3 6.2 years 5 a 16i + 12j b 10 i − 10 j − 5 k 3 3 3 18 180° 22 a 63 3 p b p(2e - 1) 4 26.3 days 4 Rt 6 a ±2 b ± 6 1 19 11 5 a i = Ae − L b L ln100 7 a 33.7° b 34.5° c i− 3 j 15 Before you start Answers R 10 10 Exercise 12.4 6 a 2.56 m b 50 hours 8 a 9i + j b 2i + 6j - 4k c -5i - j - 2k Chapter 11 1 a r = (1 + 2l)i + (2 - 3l)j + (-3 + l)k 7 c 10 760 years 9 a l = 6, m = -12 b -4 + 1)3 b r = (4 - 2l)i + (-1 + l)j + (3 + 2l)k C4 C4 1 1 a y = x3 − 5x + 2 b y = (x −4 8 b Further 12 mins c 30.1°C 10 a l = 8, m = -6 b l = -4, m = -3 c r = (3 + 4l)i + (1 + 2l)k 3 3 9 b 2 cm ⎛2⎞ ⎛ −1 ⎞ b ⎛ ⎞ c ⎛ ⎞ 3 5 d r = (1 + l)i + (-1 + l)j - lk (2 x + 1)4 11 a ⎜ ⎟ d ⎜ ⎟ b 1 sin 2 x + 1 tan 3 x 10 a y = 3(e − 1) ⎜ ⎟ ⎜ ⎟ t 2 a b 0.906 grams c 1 gram ⎝4⎠ 1 5 ⎝ 3⎠ e r = (2 + l)i + j + 3lk 8 2 3 ⎝ ⎠ ⎝ ⎠ t 3e − 1 f r = 2li + k n × ln 10 c 1 ln x − 1 d xsin x + cos x 1 1 Number of shakes to reduce to 10 pins = ln 2 12 a ⎛ ⎞ 5 ⎜ ⎟ b ⎛ ⎞ 8 ⎜ ⎟ c ⎛ ⎞ 7 ⎜ ⎟ d ⎛ ⎞ 3 ⎜ ⎟ 2 a r = (2 + l)i + (3 - 3l)j + (1 + 3l)k 4 x+3 −1 −3 where n = number of shakes for the half-life ⎝6⎠ ⎝4⎠ ⎝ ⎠ ⎝ ⎠ b r = (2 + 3l)i + (l - 1)j + k e 1 ln | x 2 + 3| f x + ln |x - 1| 14 4i + j - 3k c r = (1 + 3l)i + 5lj - 2lk 2 d r = li + 2lj + 3lk 15 a m = a + b p = 3a + b q = a + 3 b Review 11 c ln ⎛ 2 ek k ⎞ e r = (1 + l)i + (-2 + l)j + (-3 + l)k 3 a 1 − 2ek b 1 − ek ⎜ ⎝ k2 ⎟ − 1⎠ 1 a y = 1 x 3 + 2 ln x + c b y = ln |x 3 – 1| + c 2 4 4 3 f r = (2 + 3l)i + (-3 + 3l)j - k c y = ln |sin x| + c d y= 1 b Trisection 2a + b a + 2 b (c − x ) 3 3 3 a r = (2 + l)i + j - 2k Exercise 11.1 e 1 ln 3 x − c f y=1– ke-x c Quintisection 4 a + b 3a + 2 b 2a + 3 b a + 4b b r = 2i + j + (-2 + l)k A and c are arbitrary constants 3 5 5 5 5 4 a 2 b -5 c 0 1 a y = 3 x5 + c b y = 1 sin 2 x + c 2 a y = 2 x3 − x2 + x − 8 b y2 = e2x – 1 +1 Exercise 12.2 5 a 75.3°, intersect at (4, 7, 4) 5 2 3 1 a 6 b 20 b 24.5°, intersect at (4, 8, -6) c y = 1 ln(x 2 + 1) + c d y = x – ln |x + 1| + c 3 3 a y = 3(x + e ) + c x b y=k x2 +1 c 0°, parallel d 75.0°, skew e 30.7°, skew 2 2 2 3, 3 2 a 3y 3(4x + c) + 1 = 0 b e 2y = 2x + c c tan y = sin x + c d y − ln y + 1 = 1 x + c 6 a Possible equations are 3 1 1 1 2 r = (-1 + 3t)i + (1 + 2t)j + (3 + t)k for PQ 3 a b c 4 d 3 (i.e n = 1.5) c y = Ae x – 3 d Ae x cos y = 1 e y =kx −2 f ysin y + cos y = x2 + c 3 5 1 x2 x −1 4 n - m, 2n - 2m and r = si + (5 - s)j + (2 + s)k for RS 3 a y2 – =c x2 b y = Ax c y= Ae 2 4 a 3y4 = 4x3 + 44 b y = 3x – 1 AB is twice the length of MN and is parallel to MN b (2, 3, 4) c 123.0° d y = Ax – 1 e y2 = 2e t + c f y = Atet 1 − 1 c 2 y2 – ln |y| = -cos(x - 1) + 3 - ln 2 5 a 2a + b b 3a + b c 3a + 2 b 7 a r = (1 + t)i + (2 - 3t)j + (3 - 4t)k g x = Ae t − 1 h Atcos x = 1 3 4 5 b 2 c 3 5 k=p 5a + 3 b na + mb 4 a y = 1 x3 + 1 x2 + x + 2 b 1 y2 − y = x − 1 1 d e 8 l = − 8 , m = 3 , 2 42 3 2 2 6 y= 8 m+n 7 7 7 1 − x sin x − cos x q − p MN 1 3 1 6 1 + k , PQ = 1 + k , MN || PQ Review 12 c 3 y = 2 x 2 + 10 d − = ln(1 + x ) + 1 − 2 7 a i v = 60t + 100 ii v = 700 y 1+ x 1 a 13 b 1 (3i + 12j + 4k) 3 RS 3 13 e sin y = sin x – 1 f e y =3− 1 b v = 40 7 (a + b), = , RS || OC 5 dA 4 OC 4 c (3i + 12j + 4k) d 76.7° ex 8 a = kA, a = 2.5p 20.1t, 10p m2 b 29 days 13 dt 8 1:3 5 a y = ln A(x + 1) b e3y = 3x + c 2 – 4y = x2 + 4x + c d sin y = Ae x 9 a k = -0.2ln (0.8) b 6 minutes 9 k=2 c y 2 AB = 2i + 2j + 3k e y 2 = x2 + 2x + c f sin y = Ax dx = kx 10 PQ = SR = 1 b 10 a dt b 11.6 minutes 2 3 a 1 38 21 b K(4, 8, -3) 14 2 342 11 a 2 b 343 3 4 b 72.5°
  • 176. Answers b i -34 ii 22 015 Index 5 a AB = 3i + 4j - k BC = -2i + j - 4k ; 94.9° 27 b k = -14 11 b i 1 − 3 x − 9 x 2 − 27 x 3 ii 0.866 210 937 2 8 16 acceleration 268 half angle formula 62-3 graphs 122-6 1 6 (-i + 2j + 2k) 3 c 0.018% addition standard results 42 intersection of two 122 x 2 − 2 xy algebraic fractions 2 cotangent (cot) 40 intersection with x-axis 123-4 7 a −4 b 65 d 2:1 12 a y b 9 2 2y − x x2 − y2 numerical fractions 2 domains and ranges 41 location of roots on x-axis 8 a i - 2j + 4k + l(2i + 3j - k) y 2 (2 y + x ) y ( y − x ln y ) of vectors 277-8 formula 43 124-6 b i - 2j + 4k + m(-i + 3j - k) c - x2 ( y + 2 x) d x( x − y ln x ) algebraic fractions graph of 41 c 49.9°, 2.54 addition and subtraction 2 standard results 42 half angle formulae 62-3 9 b 8.3° c 1.95 13 a cos x sin y b ( p − 2p 2 , 3 2 3) ( and p , 2p ) division 2-3, 4-6 multiplication 2-3 cover-up rule 150, 153, 154, 184 cubic approximation 132 half-life 82, 87, 203, 269 horizontal asymptote 21 10 b (5, 0, 1) c 80.4° arccos 50, 51 hypocycloid 199 14 b 64ln 2 11 a 78.9° b skew dr 250 arcsine (arcsin) 50, 51 definite integral 229 15 a 4pr2 b = 12 a t = 3, s = -1 c 11 d 33.6° dt p r 2 (2t + 1)2 arctan 50, 51 dependent variable 8 identity, trigonometric 46-7 1000t asymptote differential equations implicit function c V = 2t + 1 d i 4.77 cm horizontal 21 applications 268-9 coordinate geometry 195 Revision 4 3 − 3 1 1 1 vertical 21, 40 first-order 262-5 differentiation 194-5 1 a x x+2 b − + + 2( x + 1) ( x + 1)2 2( x − 3) 16 a 1, 1.202 69, 1.414 21 b 0.8859 d 0.51% second-order 262 improper fraction 153, 154, 156 3 2 x (e − 2) 1 (x + 2)8 (8 x − 11) binomial expansion 180-2 differentiation 23, 91-120, 193-212 indefinite integral 228 c x+ 2 + 2 17 a 2 b x−2 x+2 3 72 binomial series 180-2 implicit functions 194-5 independent variable 8 1 1 5 approximations 186-8 of parametric equations 168-9 initial fraction 148 2 a A = 1, B = 0, C = 2 c x + 2 sin 2x d 5 sin x partial fractions 184 parametric functions 198 ‘inside’ function 226, 228 C3/C4 11 50 b + x + 110 x 2 + 1936 x 3 e ln |x - 1| + 8ln |x + 2| + x + 2 12 bowl, hollow, volume of 250 disc, volume of 248 integral 9 27 27 243 brackets, expanding 4, 5 displacement vector 276 definite 229 C4 3 a A = -1, B = 1 , C = 5 b p = -2, q = 3, r = 3 f e x(x + 2) g 2 x e sin 2 x + 1 e x cos 2 x diverging sequence 130-1 indefinite 228 2 2 5 5 cancelling of fractions 2 division limits 172 ( ) cos t 1 1 4 a b y= (x + 3) h ln|x3 + 3| i 1 x − 1 sin 2 x Cartesian equation 160, 161-2, 290 algebraic fractions 2-3, 4-6 integration 2 tan t sec 2 t 4 2 3 2 2 chain rule 110-11, 114-15, 168, 172, numerical fractions 2 of parametric equations 172-3 x c y2 = 1 + x 18 1 194, 198, 200, 206, 207, 228 numerical long 4 by parts 240-2, 246 6 ln 2 in reverse, standard forms 226-7 domain 8-11 by substitution 228-9, 246 2 cos 2t p 3p 5p 7p 5 a − sin t b t= , , 4 4 4 4 , 19 a l = 7, m = 3 b - 1 cos 7 x + 1 cos 3 x circle, equation of 161 dot product 286-7 as summation 222 14 6 coefficients, equating, method of 148 double angle formulae 60-2 systematic approach 246 ⎛ 1 , ± 1⎞ , ⎛ −1 , ± 1⎞ 5 2 c ⎜ ⎟ ⎜ ⎟ c 21 collinear points 283 using partial fractions 238, 246 ⎝ 2 ⎠ ⎝ 2 ⎠ completing the square method 20, 23 epicycloid 199 using standard forms 224 20 c y = -x + 2 - ln 2 component equal vectors 277 using trigonometric identities e y = −2 x 1 − x 2 21 b p = 45, q = 7 form 287 equivalent forms 66-7 232-5, 246 6 a 45p 2 b 240(p - 1) c 13.6% of vector 276 exponential function (exp (x) or ex) intersection, points of 166 1 7 a 11.75 b 57 3 22 c p composite function 12-13, 110 80-2 inverse function 16-19 8 e6 −1 compound angle formulae 54-7 differentiation 98-9 algebraic method 17 a2 3 23 b 20p d a = 0.345 constant of integration 222 equations involving ln x and ex 86 graphical method 17 8 a 6y = 3a - 3x b 16 376 p continuous 124 gradient of curve 80 Inverse Laplace Transforms 158 24 a 6.75 b overestimate c 15 9 a 1 + 3x + 9x2 + 27x3, |x| < 1 converging sequence 130-1 graph of 80, 81 inverse trigonometric functions 3 −a 25 p ⎛ (2b +b1)(2a + 1) ⎞ ⎜ ⎟ cosecant (cosec) 40 inverse 84 50-2 ⎝ ⎠ domains and ranges 41 exponential growth and decay 200-3 irrational number 81, 98 b 1 + 1 x − 1 x 2 + 5 x 3, |x| < 2 6 36 648 graph of 41 iteration 130 26 a i t = 1, 0.5 ii V = 21 p 4 standard results 42 factorial 180 iterative formula 130-2 c 1 − 1 x − 5 x 2 + 3 x 3 , |x| < 1 2 8 16 cosine (cos) family of curves 262 iterative method 130-2 1 27 a i y = ln , k is a constant ii y = k(x + 1) d 1 + 5 x + 11 x 2 + 17 x 3, |x| < 4 k − 2x cos (A ± B) 55 flow diagram 12 8 128 1024 derivative of 93-5 functions, mapping as 8-11 Laplace Transforms 158 1 x 2 (2 x − 3) e 3 + 3 x + 9 x 2 + 15 x 3, |x| < 1 iii y = ke 6 iv y = sin-1 (ketan x) domains and ranges 40 limits of integral 172 2 4 8 double angle formulae 60-1 general solution 262, 263, 264, 268 logarithm 84 2 1 − 1 nx + 1 n(n − 1)x 2 − 1 n(x − 1)(n − 2)x 3, |x| < 3 b i y = ⎛ x + 1⎞ ⎜ 2 ⎟ ii y = 10 x + 1 2 graph of 40 geometry of the sphere 207 logarithmic function (ln x) 84 10 a 3 18 162 ⎝ 4 ⎠ 2 345 344
  • 177. Index differentiation 102 Pascal's triangle 180, 181, 182 sphere, volume of 249 equations involving ex and 86 percentage errors 219 standard forms lowest common denominator 2 polygon law 278 chain rule in reverse 226-7 position vector 282-3 integration using 224, 232 magnitude of vector 276 distance between two points 282 standard integrals 224 many-to-many function 9 midpoint of a line 283 standard trigonometric results many-to-one function 9, 10 principal value 50, 51, 74 42-4 inverse 16 product rule 104-5, 108, 114-15, 194 straight line mapping 8-11 proper fraction 148 cartesian equation 290 maximum 11, 95 Pythagoras’ theorem 42, 43, 276 intersection 291-2 method of equating coefficients 148 vector equation 290-2 method of substitution 149 quadratic formula 26 stretching functions 28, 29, 30, 31 minimum 11, 95 quotient rule 106-8, 114-15 substitution, method of 149 modulus 22 subtraction equations and inequalities, range 8-11 algebraic fractions 2 solving 26 rate of change 206-7 numerical fractions 2 function 22-4 reciprocal 16 of vectors 277-8 vector 276 multiplying by 3 multiplication trigonometric functions 40-4 tangent algebraic fractions 2-3 reflections 28, 29, 31 derivative of 93-5 numerical fractions 2 repeated linear factor 152 domains and ranges 41 by reciprocal 3 resultant 278 double angle formula 60 natural (Naperian) logarithm 84 resultant vector 278 formula 43, 168-9 C3/C4 negative vector 277 root 122, 124-6 graph of 41 number line 22 roulette 199 half angle formula 62 numerical equivalent 153 positive values 47 scalar 276 standard results 42 one-to-many function 9 scalar multiple 277 tan (A ± B) 55 inverse 16 scalar product 286-7 transformation of graphs of one-to-one function 9, 10 secant (sec) 40 functions 28-31 inverse 16 domains and ranges 40 translations 28, 29, 30, 31 order of transformations 28, 29 graph of 40 trapezium rule 218-19 ordinate 218 sec x 94 triangle law 278 standard results 42 trigonometric equations 46-7 parabola 161 self-inverse 35 differentiation of 92-5 parallelogram law 278 separating the variables 264, 265 parameter 160 simultaneous equations 166 unit vector 276-7, 279 parametric equations sine curve sketching and 160-2 derivative of 93-5 vector curves with 250-1 domains and ranges 41 applications in geometry 282-3 differentiation 168-9, 198 double angle formula 60-1 basic definitions and notations integration 172-3 graph of 41 276-9 partial fractions 148-58 half angle formula 62-3 equation of straight line 290-2 binomial series 184 sin (A ± B) 54, 93 vertical asymptote 21, 40 integration using 238, 246 standard results 42 volume of revolution 248-51 separating 148-50 skew 291 particular solution 262, 263-4, 268 special triangles 55 zero vector 276 346