This document summarizes an investigation of using a dual tree algorithm and space partitioning trees to approximate matrix multiplication more efficiently than the naive O(MDN) approach under certain conditions. It presents an algorithm that organizes the row vectors of the left matrix and column vectors of the right matrix into ball trees, then performs a dual tree comparison to estimate the product matrix entries. For this to provide better complexity than naive multiplication, the vectors must fall into clusters proportional to D^τ for some τ > 0. However, uniformly distributed vectors would result in exponentially small expected cluster sizes, limiting the practical applicability of this approach. Future work is needed to address this issue.