Maximizing the Efficiency of 
Condensing Boilers
Presented by

Matt Napolitan, P.E., CPMP, LEED AP BD+C
& 
Brent Weigel, Ph.D., P.E., LEED AP BD+C

1
Introduction
• Condensing boilers are commonly specified 
and installed in buildings today for efficiency 
benefit.

2
Introduction
• Condensing boilers are commonly specified 
and installed in buildings today for efficiency 
benefit.
– System selection and setpoints are key to 
achieving rated efficiency!!!

3
Introduction
• The concepts and recommendations in this 
presentation are applicable to . . .

4
Introduction
• The concepts and recommendations in this 
presentation are applicable to . . .
– Both new construction and existing buildings.
– Both commercial and residential buildings.

5
Introduction
• The concepts and recommendations in this 
presentation are applicable to . . .
– Both new construction and existing buildings.
– Both commercial and residential buildings.

• $0 capital cost opportunities!!!

6
Introduction
• Learning Objective #1: 
– Be able to explain the impact of hot water 
temperature on condensing boiler efficiency.
– Understanding efficiency ratings.

• Learning Objective #2:
– Be able to explain the relationship between 
outdoor air temperature, heating load, and 
heating hot water temperature.
7
Introduction
• Learning Objective #3:
– Be able to estimate hot water temperature reset 
setpoints that maximize condensing hours and 
satisfy heating loads.

• Learning Objective #4:
– Be able to size terminal heating equipment for 
maximum condensing hours.

8
Introduction
• Learning Objective #5:
– Describe operation of indirect DHW
– Relate boiler HW temperature back to efficiency
– Describe non‐heating season impacts.

9
Condensing Boiler Basics
• Learning Objective #1: 
– Be able to explain the impact of hot water 
temperature on condensing boiler efficiency.
– Understanding efficiency ratings.

10
Boiler Efficiency Ratings
• All boilers are not rated equally
Boiler 
Capacity
(BTU/H)

Rating Method
(%)

<300,000

AFUE – Annual Fuel Use Efficiency
According to ASHRAE Standard 103

300,000 < 
Efficiency
2,500,000 Thermalto ANSI Z21
According

>2,500,000 Combustion Efficiency
According to ANSI Z21

11
Condensing Boilers ‐ 101
• Hot water, not steam
• Typically used with Nat Gas or Propane
• Up to 15% more efficient than a non‐
condensing boiler.
• The lower the return water temperature, the 
more efficient the boiler.

12
Condensing Boilers ‐ 101
• What makes it “condensing” and why is this 
more efficient?
Basic Hydrocarbon Combustion Equation:

FUEL + O2

+
13

STUFF + H2O
STUFF +
Condensing Boilers ‐ 101
Water vapor contains a 
LOT of energy.
• 1 LB of water requires:
– 1 BTU to raise the 
temperature 1 ○F

• 1 LB of water requires:
– 970 BTUs to turn it into 
steam (with no 
temperature change)
Photo by Scott Akerman

14
Condensing Boilers ‐ 101
• Burning fuel makes water 
vapor (steam).
• This cannot be avoided.
• Turning that steam into 
water (CONDENSING) 
releases energy back into 
the process.
970 BTU / lb
15
Condensing Boilers ‐ 101
Non‐condensing boiler thermal flowchart
Wasted Heat

Energy Input
Useful Heat

Boiler
16
Condensing Boilers ‐ 101
Condensing boiler thermal flowchart
Wasted Heat

Energy Input

Useful Heat

Boiler
17
Condensing Boilers ‐ 101
• Vapor from natural gas combustion begins to 
condense at roughly  130 ○F.
• It’s NOT all or nothing.

18
Condensing Boilers ‐ 101

19
Condensing Boilers ‐ 101
• Notes on boiler construction
• Different materials require different water 
treatment.
• Cast Aluminum, Stainless Steel, Possibly Cast Iron
• pH, Chlorides, alkalinity, cleanliness, etc.

20
Condensing Boilers ‐ 101
• “Partial” 
condensing boilers 
have stricter 
return water 
temperature 
limitations.

21
Putting this Knowledge to Work
• Keep your return water temperatures as low 
as you can for as long as you can.
• How?
– Make informed decisions about hot water 
temperature control
– Make informed decisions about heat producing 
terminal devices.

22
Relationship Between OAT, Load, and 
HWT
• Learning Objective #2:
– Be able to explain the relationship between 
outdoor air temperature, heating load, and 
heating hot water temperature.

23
Relationship Between OAT, Load, and 
HWT
• To keep return water “as low as you can for as 
long as you can,” the hot water temperature 
(HWT) should be matched to the heating load. 
• The heating load may be measured in terms of 
the outdoor air temperature (OAT), which may 
serve as a controlling parameter for HWT.
24
Relationship Between OAT, Load, and 
HWT
• Condensing boiler HWT control is based on 
the relationship between HWT, OAT, and the 
heating load.

25
Relationship Between OAT, Load, and 
HWT
• Condensing boiler HWT control is based on 
the relationship between HWT, OAT, and the 
heating load.
OAT
60°F

‐10°F
Load
26
Relationship Between OAT, Load, and 
HWT
• Condensing boiler HWT control is based on 
the relationship between HWT, OAT, and the 
heating load.
OAT
60°F

• Q = ∆T x k
‐10°F
Load
27
Relationship Between OAT, Load, and 
HWT

Qconduction

Qinfiltration
28
Relationship Between OAT, Load, and 
HWT

Qconduction
Qexfiltration
29

Qinfiltration
Relationship Between OAT, Load, and 
HWT

Qconduction
Qinfiltration
30
Relationship Between OAT, Load, and 
HWT

Qload
Qload = Qconduction + Qinfiltration

31
Relationship Between OAT, Load, and 
HWT

Qload
OAT
‐10˚F
32

∆T

IAT
70˚F
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration

33
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)

34
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)

35
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload =
U =
A =
∆T= 
CFM =
1.08 =
36
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U =
A =
∆T= 
CFM =
1.08 =
37
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U = Overall heat transfer coefficient (BTUH/ft2‐ ˚∆T)
A =
∆T= 
CFM =
1.08 =
38
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U = Overall heat transfer coefficient (BTUH/ft2‐ ˚∆T)
A = Envelope area (ft2)
∆T= 
CFM =
1.08 =
39
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U = Overall heat transfer coefficient (BTUH/ft2‐ ˚∆T)
A = Envelope area (ft2)
∆T= Difference between space temperature and outdoor air 
temperature
CFM =
1.08 =
40
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U = Overall heat transfer coefficient (BTUH/ft2‐ ˚∆T)
A = Envelope area (ft2)
∆T= Difference between space temperature and outdoor air 
temperature
CFM = Infiltration airflow (ft3/minute)
1.08 =
41
Relationship Between OAT, Load, and 
HWT
Qload = Qconduction + Qinfiltration
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Where:
Qload = Heating Load (BTUH)
U = Overall heat transfer coefficient (BTUH/ft2‐ ˚∆T)
A = Envelope area (ft2)
∆T= Difference between space temperature and outdoor air 
temperature
CFM = Infiltration airflow (ft3/minute)
1.08 = Air heat capacitance and unit conversion (BTUH‐min/ft3‐hr‐°F)
42
Relationship Between OAT, Load, and 
HWT
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)

43
Relationship Between OAT, Load, and 
HWT
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Qload = (U x A x ∆T) + (1.08 x CFM x ∆T)

44
Relationship Between OAT, Load, and 
HWT
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Qload = (U x A x ∆T) + (1.08 x CFM x ∆T)
Qload = ∆T[(U x A) + (1.08 x CFM)]

45
Relationship Between OAT, Load, and 
HWT
Qconduction = (U x A x ∆T)
Qinfiltration = (1.08 x CFM x ∆T)
Qload = (U x A x ∆T) + (1.08 x CFM x ∆T)
Qload = ∆T[(U x A) + (1.08 x CFM)]

Qload = ∆T x k
46
Relationship Between OAT, Load, and 
HWT
Qload = ∆T x k
Where:
k = constant

47
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat + Qheat_gain

48
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat + Qheat_gain

49
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat
Q = ∆T x k

50
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat
Q = ∆T x k
k = Q / ∆T

51
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat
Q = ∆T x k
k = Q / ∆T
• Solve for k, using load on design day

52
Relationship Between OAT, Load, and 
HWT
Tiers 
Steam 
Encl. 
and  Mounting  215°F 
Catalog 
Fin 
Fin 
Depth and  Centers  Height 
Factor 
Tube Size Designation Fin Size per ft. Thickness Height (in.) (in.)
(in.)
1.00
3‐1/4" 
3/4"
C3/4‐33
SQ.
32
0.020"
14A
1
18‐7/16
1050

53

200°F
0.86
900

Hot Water (Avg.)
190°F 180°F 170°F 160°F
Factor
0.78
0.69
0.61
0.53
820

720

640

560

150°F
0.45
470
Relationship Between OAT, Load, and 
HWT

Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

54

BTUH/LF

1050

900

820

720

640

560

470
Relationship Between OAT, Load, and 
HWT

Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

55

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700
Relationship Between OAT, Load, and 
HWT

Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

56

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700
Relationship Between OAT, Load, and 
HWT
Qload = Qterminal_heat
Q = ∆T x k
k = Q / ∆T
K = (6,400 BTUH) / (70°F – (‐10°F))
K = 80 [BTUH/Δ°F]

57
Relationship Between OAT, Load, and 
HWT
Q = ∆T x k
Use value of k to calculate Q at 60°F OAT.

58
Relationship Between OAT, Load, and 
HWT
Q = ∆T x k
Use value of k to calculate Q at 60°F OAT.
Q = (70°F – (60°F)) x (80 BTUH/Δ°F)
Q = 800 BTUH

59
Relationship Between OAT, Load, and 
HWT
Q = 800 BTUH
Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

60

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700
Relationship Between OAT, Load, and 
HWT
OAT

Load

60°F

‐10°F

61

Q
Relationship Between OAT, Load, and 
HWT
OAT

Load

HWT

60°F

130°F

‐10°F

170°F

62

Q
Relationship Between OAT, Load, and 
HWT
OAT

Load
Capacity

HWT

60°F

130°F

‐10°F

170°F

63

Q
Controls – Determining the Right Reset 
Schedule
• Learning Objective #3:
– Be able to estimate hot water temperature reset 
setpoints that maximize condensing hours and 
satisfy heating loads.

64
Determining the Right Reset Schedule
• What is a “reset schedule”?
– Means of controlling the Hot Water Supply Temp 
(HWST) based on the Outdoor Air Temp (OAT)

• Example of Typical Reset Schedule
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

65

0
60

HWSTMIN

120
Determining the Right Reset Schedule
1 – Initial Reset Schedule

1

Condensing begins at 
40 deg OAT

66
Determining the Right Reset Schedule
• Burlington VT has 6,995 hours per year below 65 
degrees (TMY3).
• Previous reset schedule example only results in 3,650 
hours per year of condensing in Burlington, VT. (52% 
of possible hours)
• Let’s do better….

67
Determining the Right Reset Schedule
• Initial reset schedule used 0 deg OAT as a design condition –
maximum HWST.
OAT
HWST
OATMIN

0

HWSTMAX

180

OATMAX

60

HWSTMIN

120

• Revise to reflect the actual OAT design condition
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

68

‐11
60

HWSTMIN

120
Determining the Right Reset Schedule
1 – Initial Reset Schedule
2 – MIN OAT from 0 to ‐11

1
2
Condensing begins at 
36 deg OAT

69
Determining the Right Reset Schedule
• Changing the OAT design condition increases 
condensing hours from 3,650 to 4,160 per year
• 59% of possible hours
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

70

‐11
60

HWSTMIN

120
Determining the Right Reset Schedule
• It gets colder than ‐11.  ‐20 is more likely the actual 
condition for which the system was designed.
• Increases condensing hours from 3,650 to 4,580 per 
year.
• 66% of possible hours
OAT
HWST
OATMIN

HWSTMAX

180

OATMAX

71

‐20
60

HWSTMIN

120
Determining the Right Reset Schedule
1 – Initial Reset Schedule
2 – MIN OAT from 0 to ‐11
3 – MIN OAT from ‐11 to ‐20

1
2
3
Condensing begins at 
33 deg OAT

72
Determining the Right Reset Schedule
• Went from 52% to 66% of possible hours by 
simply changing the MIN OAT to the actual 
design OAT.

73
Determining the Right Reset Schedule
• Went from 52% to 66% of possible hours by 
simply changing the MAX OAT to the actual 
design OAT.
• Next step – are 120 HWST and 60 OAT  right?
• 120 HWST results in a return temp of between 
100.
• Most condensing boilers will accept an 80 degree 
or lower entering water temp.
• Use 100 deg F HWST.
74
Determining the Right Reset Schedule
• Next step – are 120 HWST and 60 OAT  right?
• 120 HWST results in a return temp of between 
100 and 110.
• Most condensing boilers will accept an 80 degree 
entering water temp.
• Use 100 deg F HWST.

• What about 60 OAT?

75
Determining the Right Reset Schedule
• Example – 10 ft x 14 ft office with an 8 ft
ceiling. 
• Heating Load = 2,100 BTUH
• 70 deg indoor, ‐20 deg outdoor

• Designed with 4 ft of active finned tube 
radiation.
• At design conditions we need 525 BTUH/LF

76
Determining the Right Reset Schedule
• Finned tube output needed ‐ 525 BTUH/LF
AWT

180 170 160 150 140 130 120 110 100 90

BTUH/LF

652 576 501 425 378 312 246 189 142 104

• 170 deg AWT satisfied the load.
• This selection satisfies design heat loss 
conditions using 180 deg HWST.
77
Determining the Right Reset Schedule
• Earlier we decided to use a minimum 100 deg
HWST.
AWT
180 170 160 150 140 130 120 110 100 90
BTUH/LF

652 576 501 425 378 312 246 189 142 104

• Finned tube output at 100 deg HWST or 90 
deg AWT = 104 BTUH/LF
• 4 Feet            416 BTUH capacity.
78
Determining the Right Reset Schedule
• Earlier we decided to use a minimum 100 deg
HWST.
AWT
180 170 160 150 140 130 120 110 100 90
BTUH/LF

652 576 501 425 378 312 246 189 142 104

• Finned tube output at 100 deg HWST or 90 
deg AWT = 104 BTUH/LF
• 4 Feet            416 BTUH capacity.
• At what OAT does the output match the load?
79
Determining the Right Reset Schedule
•
•
•
•
•

80

416 BTUH capacity at 90 deg AWT
Earlier we concluded Q = k x ∆T
Q = 2,100 BTUH
∆T = 70 (indoor temp) – (‐20 outdoor temp) = 90 oF
k = 23.33
Determining the Right Reset Schedule
•
•
•
•
•
•

81

416 BTUH capacity at 90 deg AWT
Earlier we concluded Q = k x ∆T
Q = 2,100 BTUH
∆T = 70 – (‐20) = 90
k = 23.33
Use this k to find ∆T  based on matching 416 
BTUH capacity to heating load.
Determining the Right Reset Schedule
•
•
•
•

82

Q = k x ∆T
We’re assuming that at 
65 degrees OAT, the 
Q = 416 BTUH and k = 23.33 
heating load to maintain 
70 deg IAT is exactly zero.
416 / 23.33 = 18 deg ∆T
65 OAT – 18 deg ∆T = 47 deg OAT
Determining the Right Reset Schedule
•
•
•
•

Q = k x ∆T
Q = 416 BTUH and k = 23.33 
416 / 23.33 = 18 deg
65 – 18 = 47 deg OAT

Capacity of finned tube at 90 deg AWT will 
satisfy the building load at 47 deg OAT.

83
Determining the Right Reset Schedule
• Lets look at the new reset schedule
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

84

‐20 (0)
47 (60)

HWSTMIN

100 (120)
Determining the Right Reset Schedule
1 – Initial Reset Schedule
2 – MIN OAT from 0 to ‐11
3 – MIN OAT from ‐11 to ‐20
4 – MIN HWST revised, MAX 
OAT matched.

1
2

3
4

85

Condensing begins at 
14 deg OAT
Determining the Right Reset Schedule
• This revised reset schedule results in 
condensing operation 93% of the heating 
hours in Burlington VT.
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

86

‐20
47

HWSTMIN

100
Determining the Right Reset Schedule
Overview
1. Adjust for real OAT 
design condition.

3. Calculate “k” and use to 
determine OAT at which 
load is satisfied by lowest 
hot water temp.

87

2. Use the lowest 
possible water temp 
during the warmest 
conditions.
Determining the Right Reset Schedule
Summary
• No change to boiler or selected finned tube.
• Used simple approach to determine the 
optimal reset schedule.
• Result:

88
Determining the Right Reset Schedule
Summary
• No change to boiler or selected finned tube.
• No change in MAX HWST
• Used simple approach to determine the 
optimal reset schedule.
• Result:

Increase in condensing hours from 
52% to 93% at no additional first cost.
89
Adjusting an Existing Reset Schedule
• Approach is the same but design conditions 
and FTR capacity may not be known.
• Use a step wise, iterative process to change 
the various parameters.

90
Adjusting an Existing Reset Schedule
• Step 1 – Lower the lowest HWST.
• Step 2 – Lower the MAX OAT 3 to 5 degrees at a 
time, over a period of days or weeks.
• Step 3 – Lower the MIN OAT using what you know 
about your building.
– The last time it was ‐10 or ‐15 outside, was your building 
satisfied?
OAT

HWST

OATMIN

HWSTMAX

180

OATMAX

91

‐20
47

HWSTMIN

100
Designing for Optimal Condensing 
Operation
• Learning Objective #4:
– Be able to size terminal heating equipment for 
maximum condensing hours.

92
Fin‐Tube Selection
Qload = 6,400 BTUH

Catalog 
Designation

Steam 
215°F 
Factor 
1.00

C3/4‐33

10,500

AWT = 130˚F
93

200°F

Hot Water (Avg.)
190°F 180°F 170°F 160°F
Factor

150°F

0.86

0.78

0.69

0.61

0.53

0.45

9,000

8,200

7,200

6,400

5,600

4,700
Fin‐Tube Selection
Qrated = Q215˚F x CFAWT x CFw_flow x Cfheight
Where:
Q215˚F
CFAWT
CFw_flow
Cfheight
94

= Catalog capacity
= Correction factor for average water 
temperature
= Correction factor for water flow 
rate
= Correction fact for mounting height
95
96
Fin‐Tube Selection
Qrated = Q215˚F x CFAWT_EAT x CFw_flow x Cfheight
Qrated = (10,500 BTUH) x (0.33) x CFw_flow x Cfheight

97
98
99
100
Fin‐Tube Selection
Qrated = Q215˚F x CFAWT_EAT x CFw_flow x Cfheight
Qrated = (10,500 BTUH) x (0.33) x (0.931) x Cfheight

101
Fin‐Tube Selection
Qrated = (10,500 BTUH) x (0.33) x (0.931)
Qrated = 3,226 BTUH

102
Fin‐Tube Selection
Qload = 6,400 BTUH
Qrated = 3,226 BTUH (130˚F AWT, 10 ft of fin‐tube)
Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

103

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700
Fin‐Tube Selection
Qload = 6,400 BTUH
Qrated = 3,226 BTUH (130˚F AWT, 10 ft of fin‐tube)
Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700

• Need twice the amount of fin‐tube!
104
Fin‐Tube Selection
Qload = 6,400 BTUH
Qrated = 3,226 BTUH (130˚F AWT, 10 ft of fin‐tube)
Hot Water (Avg.)
Steam 
200°F 190°F 180°F 170°F 160°F 150°F
215°F 
Factor
Factor 
0.86 0.78 0.69 0.61 0.53 0.45
1.00

Catalog 
Designation
C3/4‐33

BTUH

10,500

9,000 8,200 7,200 6,400 5,600 4,700

• Need twice the amount of fin‐tube!
• Gain only 510 additional hours of condensing 
operation.
105
Indirect DHW
• Learning Objective #5:
– Describe operation of indirect DHW
– Relate boiler HW temperature back to efficiency
– Describe non‐heating season impacts.

106
The Domestic Hot Water Demon

107
The Domestic Hot Water Demon
• What is “indirect” DHW?
– Heat source is used to heat an 
intermediary medium rather than the 
DHW itself.

108
The Domestic Hot Water Demon
• Physics dictates that the heat source must be 
hotter than the DHW.
• Most off‐the‐shelf controllers use 180 deg F 
source hot water
– Non‐adjustable.
– Forget about condensing.
– Need 130 deg return to START condensing.

• BMS Controlled systems have more flexibility.
– Mostly a trial and error process
109
The Domestic Hot Water Demon
Non‐Heating Season
• Burlington, VT:
• 1,765 hours where no heating is needed.
• Optimized reset schedule allows for 8,160 hours 
of condensing operation.

• BUT – You need DHW all year round.
• When the boiler makes 180 deg water you 
lose the efficiency gains we just got for free!

110
The Domestic Hot Water Demon
Non‐Heating Season
• Boiler short cycling is a known efficiency killer.
• Patterson Kelly has noted measured reductions of 
15% to 40% in efficiency attributable to short 
cycling.

• Boilers are nearly always sized for the heating 
load and not the DHW load.
• This leads to a lot of…

111
The Domestic Hot Water Demon
Short Cycling

112
The Domestic Hot Water Demon
What to Do

Separate the heating and DHW equipment.

113
The Domestic Hot Water Demon
What to Do

114
Conclusion
• System selection and control setpoints (hot 
water reset schedule) are key to achieving 
condensing boiler efficiencies.
– Keep your return water temperatures as low as 
you can for as long as you can.
– Ensure that terminal heating is sized for 
condensing temperatures.
– Separate heating boilers and DHW boilers.

115
Conclusion
• Basic math may be used to estimate optimal 
hot water reset schedule setpoints.
Q = ∆T x k

• Most of the efficiency benefit of condensing 
boilers may be achieved through optimizing 
setpoints.
– $0 capital cost!!!
116
Questions?
Matt Napolitan
matt@cx‐assoc.com
Brent Weigel
brent@cx‐assoc.com
117

More Related Content

PDF
PDF
komponen condensing unit
PPTX
The human eye
PDF
Ashrae CRC presentation doas with chilled beam
PPTX
Control of body temperature and water balance (copy)
PPT
Active Chilled Beam Technology
PPT
All water, air water systems
PPTX
Air conditioning of small buildings
komponen condensing unit
The human eye
Ashrae CRC presentation doas with chilled beam
Control of body temperature and water balance (copy)
Active Chilled Beam Technology
All water, air water systems
Air conditioning of small buildings

Similar to Maximizing the Efficiency of Condensing Boilers - Cx Associates (20)

PDF
Controlling capital costs using a performance based design build process
PDF
Existing Buildings: Energy Efficiency
PDF
Biomass - Procuring & Contracting for Success
PDF
Following the-EXEED-methodology: data centre design
PDF
Colin Powell GCP Architecture Slides
PDF
Smart Construction by Leopardo
PPTX
High Performance Building Design Workshop
PDF
Pulse webinar: Energy Managers, Carve out Your Niche, June 2011
PPTX
Paul Southall's CP2 Presentation
PPT
2010 Training And Educational Offerings For Northern Ohio’S
PPTX
Energy Technologies for Mid-Rise Buildings - Past, Present and Future
PDF
LEED CERTIFIATTION.pdf
PDF
PDF
Getting to Net Zero Energy Buildings with Solar Energy
PDF
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
PDF
Energy Efficiency Refurbishments Clemens Richarz Christina Schulz
PPT
Energy efficiency presentation for codes and standards
PDF
PPTX
Arka lights lecture 7 partners
PPTX
Code consultation v2
Controlling capital costs using a performance based design build process
Existing Buildings: Energy Efficiency
Biomass - Procuring & Contracting for Success
Following the-EXEED-methodology: data centre design
Colin Powell GCP Architecture Slides
Smart Construction by Leopardo
High Performance Building Design Workshop
Pulse webinar: Energy Managers, Carve out Your Niche, June 2011
Paul Southall's CP2 Presentation
2010 Training And Educational Offerings For Northern Ohio’S
Energy Technologies for Mid-Rise Buildings - Past, Present and Future
LEED CERTIFIATTION.pdf
Getting to Net Zero Energy Buildings with Solar Energy
Mainstreaming Zero: Large Scale Commercial Net Zero Energy Buildings, AGC 2013
Energy Efficiency Refurbishments Clemens Richarz Christina Schulz
Energy efficiency presentation for codes and standards
Arka lights lecture 7 partners
Code consultation v2
Ad

More from Cx Associates (10)

PDF
Cx Associates - A Retrospective of Early Adoption of ASHRAE Guideline 36
PPTX
Retrocommissioning Works
PDF
Inherent Environmental Advantages of Town Living and the Role of the Burlingt...
PPTX
Establishing a Solid Project Foundation - The Inclusive OPR Process
PPTX
Opportunities for Increased Utilization of Geothermal Resources in the United...
PDF
Retrocommissioning Lessons From the Field by Eveline Killian
PDF
Calibrated Modeling - How Well Does My Building Perform? by Eveline Killian
PDF
Performance Monitoring for Efficiency
PDF
Strategies For A Meaningful Design Review by Tom Anderson
PPTX
Demand Reduction in the Forward Capacity Market
Cx Associates - A Retrospective of Early Adoption of ASHRAE Guideline 36
Retrocommissioning Works
Inherent Environmental Advantages of Town Living and the Role of the Burlingt...
Establishing a Solid Project Foundation - The Inclusive OPR Process
Opportunities for Increased Utilization of Geothermal Resources in the United...
Retrocommissioning Lessons From the Field by Eveline Killian
Calibrated Modeling - How Well Does My Building Perform? by Eveline Killian
Performance Monitoring for Efficiency
Strategies For A Meaningful Design Review by Tom Anderson
Demand Reduction in the Forward Capacity Market
Ad

Recently uploaded (20)

PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
August Patch Tuesday
DOCX
search engine optimization ppt fir known well about this
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
STKI Israel Market Study 2025 version august
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
The various Industrial Revolutions .pptx
PPT
Geologic Time for studying geology for geologist
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Getting Started with Data Integration: FME Form 101
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
Chapter 5: Probability Theory and Statistics
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Architecture types and enterprise applications.pdf
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
WOOl fibre morphology and structure.pdf for textiles
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
August Patch Tuesday
search engine optimization ppt fir known well about this
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
STKI Israel Market Study 2025 version august
Module 1.ppt Iot fundamentals and Architecture
The various Industrial Revolutions .pptx
Geologic Time for studying geology for geologist
A review of recent deep learning applications in wood surface defect identifi...
Getting Started with Data Integration: FME Form 101
Group 1 Presentation -Planning and Decision Making .pptx
Taming the Chaos: How to Turn Unstructured Data into Decisions
Chapter 5: Probability Theory and Statistics
1 - Historical Antecedents, Social Consideration.pdf
Architecture types and enterprise applications.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
Assigned Numbers - 2025 - Bluetooth® Document
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf

Maximizing the Efficiency of Condensing Boilers - Cx Associates