SlideShare a Scribd company logo
Mesh Reduction Methods BEM MRM XXXI 1st Edition C.
A. (Editor) Brebbia - Downloadable PDF 2025
https://ebookfinal.com/download/mesh-reduction-methods-bem-mrm-xxxi-1st-
edition-c-a-editor-brebbia/
Visit ebookfinal.com today to download the complete set of
ebooks or textbooks
Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Boundary Elements and Other Mesh Reduction Methods XXXII
Wit Transactions on Modelling and Simulation 1st Edition
C. A. (Editor) Brebbia
https://ebookfinal.com/download/boundary-elements-and-other-mesh-
reduction-methods-xxxii-wit-transactions-on-modelling-and-
simulation-1st-edition-c-a-editor-brebbia/
Air Pollution XVI Wit Transactions on Ecology and the
Environment 1st Edition C. A. Brebbia
https://ebookfinal.com/download/air-pollution-xvi-wit-transactions-on-
ecology-and-the-environment-1st-edition-c-a-brebbia/
Advances in Photochemistry Volume 29 1st Edition Douglas
C. Neckers
https://ebookfinal.com/download/advances-in-photochemistry-
volume-29-1st-edition-douglas-c-neckers/
Modelling in Medicine and Biology VIII Wit Transactions on
Biomedicine and Health 1st Edition C. A. Brebbia
https://ebookfinal.com/download/modelling-in-medicine-and-biology-
viii-wit-transactions-on-biomedicine-and-health-1st-edition-c-a-
brebbia/
Methods for Reliability Improvement and Risk Reduction
Michael Todinov
https://ebookfinal.com/download/methods-for-reliability-improvement-
and-risk-reduction-michael-todinov/
Vagabond Vol 29 29 Inoue
https://ebookfinal.com/download/vagabond-vol-29-29-inoue/
Monitoring Simulation Prevention and Remediation of Dense
and Debris Flow III Wit Transactions on Engineering
Sciences 1st Edition C. A. (Editors) Brebbia
https://ebookfinal.com/download/monitoring-simulation-prevention-and-
remediation-of-dense-and-debris-flow-iii-wit-transactions-on-
engineering-sciences-1st-edition-c-a-editors-brebbia/
Midwest Studies in Philosophy Volume XXXI Philosophy and
the Empirical 1st Edition Peter A. French
https://ebookfinal.com/download/midwest-studies-in-philosophy-volume-
xxxi-philosophy-and-the-empirical-1st-edition-peter-a-french/
Security in Wireless Mesh Networks 1st Edition Yan Zhang
https://ebookfinal.com/download/security-in-wireless-mesh-
networks-1st-edition-yan-zhang/
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Mesh Reduction Methods BEM MRM XXXI 1st Edition
C. A. (Editor) Brebbia Digital Instant Download
Author(s): C. A. (Editor) Brebbia
ISBN(s): 9781845641979, 1845641973
Edition: 1
File Details: PDF, 7.42 MB
Year: 2009
Language: english
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
THIRTY-FIRST WORLD CONFERENCE ON BOUNDARY ELEMENTS
AND OTHER MESH REDUCTION METHODS
INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE
Organised by
Wessex Institute of Technology, UK
Sponsored by
International Journal of Engineering Analysis with
Boundary Elements (EABE)
J-T. Chen
A.H-D. Cheng
G. De Mey
V.G. DeGiorgi
E. Divo
J. Dominguez
G. Fasshauer
A.N. Galybin
L. Gaul
G.S. Gipson
M.S. Ingber
D.B. Ingham
M. Kanoh
A.J. Kassab
J.T. Katsikadelis
V. Leitao
G-R. Liu
G.D. Manolis
W.J. Mansur
T. Matsumoto
K. Onishi
D. Poljak
V. Popov
H. Power
P. Prochazka
J.J. Rencis
T.J. Rudolphi
B. Sarler
E. Schnack
A.P.S. Selvadurai
L. Ĺ kerget
V. Sladek
S. Syngellakis
A. Tadeu
J. Trevelyan
W.S. Venturini
O. von Estorff
L.C. Wrobel
T. Wu
B. Yeigh
S-P. Zhu
BEM/MRM XXXI
CONFERENCE CHAIRMAN
C.A. BREBBIA
Wessex Institute of Technology, UK
WIT Transactions
Editorial Board
Transactions Editor
Carlos Brebbia
Wessex Institute of Technology
Ashurst Lodge, Ashurst
Southampton SO40 7AA, UK
Email: carlos@wessex.ac.uk
B Abersek University of Maribor, Slovenia
Y N Abousleiman University of Oklahoma,
USA
P LAguilar University of Extremadura, Spain
K S Al Jabri Sultan Qaboos University, Oman
E Alarcon Universidad Politecnica de Madrid,
Spain
AAldama IMTA, Mexico
C Alessandri Universita di Ferrara, Italy
D Almorza Gomar University of Cadiz,
Spain
B Alzahabi Kettering University, USA
J A C Ambrosio IDMEC, Portugal
A M Amer Cairo University, Egypt
S AAnagnostopoulos University of Patras,
Greece
M Andretta Montecatini, Italy
E Angelino A.R.P.A. Lombardia, Italy
H Antes Technische Universitat Braunschweig,
Germany
M AAtherton South Bank University, UK
A GAtkins University of Reading, UK
D Aubry Ecole Centrale de Paris, France
H Azegami Toyohashi University of
Technology, Japan
A F M Azevedo University of Porto, Portugal
J Baish Bucknell University, USA
J M Baldasano Universitat Politecnica de
Catalunya, Spain
J G Bartzis Institute of Nuclear Technology,
Greece
A Bejan Duke University, USA
M P Bekakos Democritus University of
Thrace, Greece
G Belingardi Politecnico di Torino, Italy
R Belmans Katholieke Universiteit Leuven,
Belgium
C D Bertram The University of New South
Wales, Australia
D E Beskos University of Patras, Greece
S K Bhattacharyya Indian Institute of
Technology, India
E Blums Latvian Academy of Sciences, Latvia
J Boarder Cartref Consulting Systems, UK
B Bobee Institut National de la Recherche
Scientifique, Canada
H Boileau ESIGEC, France
J J Bommer Imperial College London, UK
M Bonnet Ecole Polytechnique, France
C A Borrego University of Aveiro, Portugal
A R Bretones University of Granada, Spain
J A Bryant University of Exeter, UK
F-G Buchholz Universitat Gesanthochschule
Paderborn, Germany
M B Bush The University of Western
Australia, Australia
F Butera Politecnico di Milano, Italy
J Byrne University of Portsmouth, UK
W Cantwell Liverpool University, UK
D J Cartwright Bucknell University, USA
P G Carydis National Technical University of
Athens, Greece
J J Casares Long Universidad de Santiago de
Compostela, Spain
M A Celia Princeton University, USA
A Chakrabarti Indian Institute of Science,
India
A H-D Cheng University of Mississippi, USA
J Chilton University of Lincoln, UK
C-L Chiu University of Pittsburgh, USA
H Choi Kangnung National University, Korea
A Cieslak Technical University of Lodz,
Poland
S Clement Transport System Centre, Australia
M W Collins Brunel University, UK
J J Connor Massachusetts Institute of
Technology, USA
M C Constantinou State University of New
York at Buffalo, USA
D E Cormack University of Toronto, Canada
M Costantino Royal Bank of Scotland, UK
D F Cutler Royal Botanic Gardens, UK
W Czyczula Krakow University of
Technology, Poland
M da Conceicao Cunha University of
Coimbra, Portugal
A Davies University of Hertfordshire, UK
M Davis Temple University, USA
A B de Almeida Instituto Superior Tecnico,
Portugal
E R de Arantes e Oliveira Instituto Superior
Tecnico, Portugal
L De Biase University of Milan, Italy
R de Borst Delft University of Technology,
Netherlands
G De Mey University of Ghent, Belgium
A De Montis Universita di Cagliari, Italy
A De Naeyer Universiteit Ghent, Belgium
W P De Wilde Vrije Universiteit Brussel,
Belgium
L Debnath University of Texas-Pan American,
USA
N J Dedios Mimbela Universidad de
Cordoba, Spain
G Degrande Katholieke Universiteit Leuven,
Belgium
S del Giudice University of Udine, Italy
G Deplano Universita di Cagliari, Italy
I Doltsinis University of Stuttgart, Germany
M Domaszewski Universite de Technologie
de Belfort-Montbeliard, France
J Dominguez University of Seville, Spain
K Dorow Pacific Northwest National
Laboratory, USA
W Dover University College London, UK
C Dowlen South Bank University, UK
J P du Plessis University of Stellenbosch,
South Africa
R Duffell University of Hertfordshire, UK
A Ebel University of Cologne, Germany
E E Edoutos Democritus University of
Thrace, Greece
G K Egan Monash University, Australia
K M Elawadly Alexandria University, Egypt
K-H Elmer Universitat Hannover, Germany
D Elms University of Canterbury, New Zealand
M E M El-Sayed Kettering University, USA
D M Elsom Oxford Brookes University, UK
A El-Zafrany Cranfield University, UK
F Erdogan Lehigh University, USA
F P Escrig University of Seville, Spain
D J Evans Nottingham Trent University, UK
J W Everett Rowan University, USA
M Faghri University of Rhode Island, USA
R A Falconer Cardiff University, UK
M N Fardis University of Patras, Greece
P Fedelinski Silesian Technical University,
Poland
H J S Fernando Arizona State University,
USA
S Finger Carnegie Mellon University, USA
J I Frankel University of Tennessee, USA
D M Fraser University of Cape Town, South
Africa
M J Fritzler University of Calgary, Canada
U Gabbert Otto-von-Guericke Universitat
Magdeburg, Germany
G Gambolati Universita di Padova, Italy
C J Gantes National Technical University of
Athens, Greece
L Gaul Universitat Stuttgart, Germany
A Genco University of Palermo, Italy
N Georgantzis Universitat Jaume I, Spain
P Giudici Universita di Pavia, Italy
F Gomez Universidad Politecnica de Valencia,
Spain
R Gomez Martin University of Granada,
Spain
D Goulias University of Maryland, USA
K G Goulias Pennsylvania State University,
USA
F Grandori Politecnico di Milano, Italy
W E Grant Texas A & M University, USA
S Grilli University of Rhode Island, USA
R H J Grimshaw Loughborough University,
UK
D Gross Technische Hochschule Darmstadt,
Germany
R Grundmann Technische Universitat
Dresden, Germany
A Gualtierotti IDHEAP, Switzerland
R C Gupta National University of Singapore,
Singapore
J M Hale University of Newcastle, UK
K Hameyer Katholieke Universiteit Leuven,
Belgium
C Hanke Danish Technical University,
Denmark
K Hayami National Institute of Informatics,
Japan
Y Hayashi Nagoya University, Japan
L Haydock Newage International Limited, UK
A H Hendrickx Free University of Brussels,
Belgium
C Herman John Hopkins University, USA
S Heslop University of Bristol, UK
I Hideaki Nagoya University, Japan
D A Hills University of Oxford, UK
W F Huebner Southwest Research Institute,
USA
J A C Humphrey Bucknell University, USA
M Y Hussaini Florida State University, USA
W Hutchinson Edith Cowan University,
Australia
T H Hyde University of Nottingham, UK
M Iguchi Science University of Tokyo, Japan
D B Ingham University of Leeds, UK
L Int Panis VITO Expertisecentrum IMS,
Belgium
N Ishikawa National Defence Academy, Japan
J Jaafar UiTm, Malaysia
W Jager Technical University of Dresden,
Germany
Y Jaluria Rutgers University, USA
C M Jefferson University of the West of
England, UK
P R Johnston Griffith University, Australia
D R H Jones University of Cambridge, UK
N Jones University of Liverpool, UK
D Kaliampakos National Technical
University of Athens, Greece
N Kamiya Nagoya University, Japan
D L Karabalis University of Patras, Greece
M Karlsson Linkoping University, Sweden
T Katayama Doshisha University, Japan
K L Katsifarakis Aristotle University of
Thessaloniki, Greece
J T Katsikadelis National Technical
University of Athens, Greece
E Kausel Massachusetts Institute of
Technology, USA
H Kawashima The University of Tokyo,
Japan
B A Kazimee Washington State University,
USA
S Kim University of Wisconsin-Madison, USA
D Kirkland Nicholas Grimshaw & Partners
Ltd, UK
E Kita Nagoya University, Japan
A S Kobayashi University of Washington,
USA
T Kobayashi University of Tokyo, Japan
D Koga Saga University, Japan
A Konrad University of Toronto, Canada
S Kotake University of Tokyo, Japan
A N Kounadis National Technical University
of Athens, Greece
W B Kratzig Ruhr Universitat Bochum,
Germany
T Krauthammer Penn State University, USA
C-H Lai University of Greenwich, UK
M Langseth Norwegian University of Science
and Technology, Norway
B S Larsen Technical University of Denmark,
Denmark
F Lattarulo Politecnico di Bari, Italy
A Lebedev Moscow State University, Russia
L J Leon University of Montreal, Canada
D Lewis Mississippi State University, USA
S lghobashi University of California Irvine,
USA
K-C Lin University of New Brunswick,
Canada
AA Liolios Democritus University of Thrace,
Greece
S Lomov Katholieke Universiteit Leuven,
Belgium
J W S Longhurst University of the West of
England, UK
G Loo The University of Auckland, New
Zealand
J Lourenco Universidade do Minho, Portugal
J E Luco University of California at San
Diego, USA
H Lui State Seismological Bureau Harbin,
China
C J Lumsden University of Toronto, Canada
L Lundqvist Division of Transport and
Location Analysis, Sweden
T Lyons Murdoch University, Australia
Y-W Mai University of Sydney, Australia
M Majowiecki University of Bologna, Italy
D Malerba UniversitĂ  degli Studi di Bari, Italy
G Manara University of Pisa, Italy
B N Mandal Indian Statistical Institute, India
Ü Mander University of Tartu, Estonia
H A Mang Technische Universitat Wien,
Austria
G D Manolis Aristotle University of
Thessaloniki, Greece
W J Mansur COPPE/UFRJ, Brazil
N Marchettini University of Siena, Italy
J D M Marsh Griffith University, Australia
J F Martin-Duque Universidad Complutense,
Spain
T Matsui Nagoya University, Japan
G Mattrisch DaimlerChrysler AG, Germany
F M Mazzolani University of Naples
“Federico II”, Italy
K McManis University of New Orleans, USA
A C Mendes Universidade de Beira Interior,
Portugal
R A Meric Research Institute for Basic
Sciences, Turkey
J Mikielewicz Polish Academy of Sciences,
Poland
N Milic-Frayling Microsoft Research Ltd,
UK
R A W Mines University of Liverpool, UK
C A Mitchell University of Sydney, Australia
K Miura Kajima Corporation, Japan
A Miyamoto Yamaguchi University, Japan
T Miyoshi Kobe University, Japan
G Molinari University of Genoa, Italy
T B Moodie University of Alberta, Canada
D B Murray Trinity College Dublin, Ireland
G Nakhaeizadeh DaimlerChrysler AG,
Germany
M B Neace Mercer University, USA
D Necsulescu University of Ottawa, Canada
F Neumann University of Vienna, Austria
S-I Nishida Saga University, Japan
H Nisitani Kyushu Sangyo University, Japan
B Notaros University of Massachusetts, USA
P O’Donoghue University College Dublin,
Ireland
R O O’Neill Oak Ridge National Laboratory,
USA
M Ohkusu Kyushu University, Japan
G Oliveto UniversitĂĄ di Catania, Italy
R Olsen Camp Dresser & McKee Inc., USA
E OĂąate Universitat Politecnica de Catalunya,
Spain
K Onishi Ibaraki University, Japan
P H Oosthuizen Queens University, Canada
E L Ortiz Imperial College London, UK
E Outa Waseda University, Japan
A S Papageorgiou Rensselaer Polytechnic
Institute, USA
J Park Seoul National University, Korea
G Passerini Universita delle Marche, Italy
B C Patten University of Georgia, USA
G Pelosi University of Florence, Italy
G G Penelis Aristotle University of
Thessaloniki, Greece
W Perrie Bedford Institute of Oceanography,
Canada
R Pietrabissa Politecnico di Milano, Italy
H Pina Instituto Superior Tecnico, Portugal
M F Platzer Naval Postgraduate School, USA
D Poljak University of Split, Croatia
V Popov Wessex Institute of Technology, UK
H Power University of Nottingham, UK
D Prandle Proudman Oceanographic
Laboratory, UK
M Predeleanu University Paris VI, France
M R I Purvis University of Portsmouth, UK
I S Putra Institute of Technology Bandung,
Indonesia
Y A Pykh Russian Academy of Sciences,
Russia
F Rachidi EMC Group, Switzerland
M Rahman Dalhousie University, Canada
K R Rajagopal Texas A & M University, USA
T Rang Tallinn Technical University, Estonia
J Rao Case Western Reserve University, USA
A M Reinhorn State University of New York
at Buffalo, USA
A D Rey McGill University, Canada
D N Riahi University of Illinois at Urbana-
Champaign, USA
B Ribas Spanish National Centre for
Environmental Health, Spain
K Richter Graz University of Technology,
Austria
S Rinaldi Politecnico di Milano, Italy
F Robuste Universitat Politecnica de
Catalunya, Spain
J Roddick Flinders University, Australia
A C Rodrigues Universidade Nova de Lisboa,
Portugal
F Rodrigues Poly Institute of Porto, Portugal
C W Roeder University of Washington, USA
J M Roesset Texas A & M University, USA
W Roetzel Universitaet der Bundeswehr
Hamburg, Germany
V Roje University of Split, Croatia
R Rosset Laboratoire d’Aerologie, France
J L Rubio Centro de Investigaciones sobre
Desertificacion, Spain
T J Rudolphi Iowa State University, USA
S Russenchuck Magnet Group, Switzerland
H Ryssel Fraunhofer Institut Integrierte
Schaltungen, Germany
S G Saad American University in Cairo, Egypt
M Saiidi University of Nevada-Reno, USA
R San Jose Technical University of Madrid,
Spain
F J Sanchez-Sesma Instituto Mexicano del
Petroleo, Mexico
B Sarler Nova Gorica Polytechnic, Slovenia
S A Savidis Technische Universitat Berlin,
Germany
A Savini Universita de Pavia, Italy
G Schmid Ruhr-Universitat Bochum, Germany
R Schmidt RWTH Aachen, Germany
B Scholtes Universitaet of Kassel, Germany
W Schreiber University of Alabama, USA
A P S Selvadurai McGill University, Canada
J J Sendra University of Seville, Spain
J J Sharp Memorial University of
Newfoundland, Canada
Q Shen Massachusetts Institute of Technology,
USA
X Shixiong Fudan University, China
G C Sih Lehigh University, USA
L C Simoes University of Coimbra, Portugal
A C Singhal Arizona State University, USA
P Skerget University of Maribor, Slovenia
J Sladek Slovak Academy of Sciences,
Slovakia
V Sladek Slovak Academy of Sciences,
Slovakia
A C M Sousa University of New Brunswick,
Canada
H Sozer Illinois Institute of Technology, USA
D B Spalding CHAM, UK
P D Spanos Rice University, USA
T Speck Albert-Ludwigs-Universitaet Freiburg,
Germany
C C Spyrakos National Technical University
of Athens, Greece
I V Stangeeva St Petersburg University,
Russia
J Stasiek Technical University of Gdansk,
Poland
G E Swaters University of Alberta, Canada
S Syngellakis University of Southampton, UK
J Szmyd University of Mining and Metallurgy,
Poland
S T Tadano Hokkaido University, Japan
H Takemiya Okayama University, Japan
I Takewaki Kyoto University, Japan
C-L Tan Carleton University, Canada
M Tanaka Shinshu University, Japan
E Taniguchi Kyoto University, Japan
S Tanimura Aichi University of Technology,
Japan
J L Tassoulas University of Texas at Austin,
USA
M A P Taylor University of South Australia,
Australia
A Terranova Politecnico di Milano, Italy
E Tiezzi University of Siena, Italy
A G Tijhuis Technische Universiteit
Eindhoven, Netherlands
T Tirabassi Institute FISBAT-CNR, Italy
S Tkachenko Otto-von-Guericke-University,
Germany
N Tosaka Nihon University, Japan
T Tran-Cong University of Southern
Queensland, Australia
R Tremblay Ecole Polytechnique, Canada
I Tsukrov University of New Hampshire, USA
R Turra CINECA Interuniversity Computing
Centre, Italy
S G Tushinski Moscow State University,
Russia
J-L Uso Universitat Jaume I, Spain
E Van den Bulck Katholieke Universiteit
Leuven, Belgium
D Van den Poel Ghent University, Belgium
R van der Heijden Radboud University,
Netherlands
R van Duin Delft University of Technology,
Netherlands
P Vas University of Aberdeen, UK
W S Venturini University of Sao Paulo, Brazil
R Verhoeven Ghent University, Belgium
A Viguri Universitat Jaume I, Spain
Y Villacampa Esteve Universidad de
Alicante, Spain
F F V Vincent University of Bath, UK
S Walker Imperial College, UK
G Walters University of Exeter, UK
B Weiss University of Vienna, Austria
H Westphal University of Magdeburg,
Germany
J R Whiteman Brunel University, UK
Z-Y Yan Peking University, China
S Yanniotis Agricultural University of Athens,
Greece
A Yeh University of Hong Kong, China
J Yoon Old Dominion University, USA
K Yoshizato Hiroshima University, Japan
T X Yu Hong Kong University of Science &
Technology, Hong Kong
M Zador Technical University of Budapest,
Hungary
K Zakrzewski Politechnika Lodzka, Poland
M Zamir University of Western Ontario,
Canada
R Zarnic University of Ljubljana, Slovenia
G Zharkova Institute of Theoretical and
Applied Mechanics, Russia
N Zhong Maebashi Institute of Technology,
Japan
H G Zimmermann Siemens AG, Germany
Editor
C.A. Brebbia
Wessex Institute of Technology, UK
M
M
M
M
Mesh
esh
esh
esh
esh R
R
R
R
Reduction
eduction
eduction
eduction
eduction M
M
M
M
Methods
ethods
ethods
ethods
ethods
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
Published by
WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com
For USA, Canada and Mexico
Computational Mechanics Inc
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com
British Library Cataloguing-in-Publication Data
A Catalogue record for this book is available
from the British Library
ISBN: 978-1-84564-197-9
ISSN: (print) 1746-4064
ISSN: (on-line) 1743-355X
The texts of the papers in this volume were set
individually by the authors or under their supervision.
Only minor corrections to the text may have been carried
out by the publisher.
No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or
damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions or ideas contained in the
material herein. The Publisher does not necessarily endorse the ideas held, or views expressed
by the Editors or Authors of the material contained in its publications.
Š WIT Press 2009
Printed in Great Britain by Athenaeum Press Ltd
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the Publisher.
Editor:
C.A. Brebbia
Wessex Institute of Technology, UK
Preface
The success and vitality of Boundary Element research continues to surprise not
only all newcomers to the technique but even researchers like myself who have
been deeply committed to its development since the very beginning.
The term Boundary Elements was coined in 1977 together with the methodology
presented in a paper that I wrote with Jose Dominguez and which was published in
the International Journal of Applied Mathematical Modelling. The paper was the
culmination of an effort to link the then recent developments in finite elements
with the boundary integral theory. This work set up the basis for the boundary
element method as we know it, even providing the notation now widespread in the
literature. It also consolidated a series of ideas related to mixed type variational
statements, which were essential to pave the way for applications of boundary
integral equations beyond the limitations of linearity.
Boundary integral techniques were able to expand their range of applications through
their interpretation in terms of BEM. This was the result of cross fertilisation
between the Russian school, the mixed principles developed at MIT and the
computational advances of the UK Group.
The simplicity and elegance of BEM led to our awareness of the potentialities of
the method and the realisation that integral equations were also open to
experimentation and approximations.
This was conducive to a new type of development, typical of which was the Dual
Reciprocity Method, a totally different conceptual approach. DRM not only applied
the novel idea of using localised particular solutions but also allowed for them to
be approximated. The fortunate discovery that they worked well with radial basis
functions was also of great importance for the development of a whole new
generation of meshless methods.
In parallel to the DRM developments, work was proceeding in other ways to transfer
internal effects to the boundary using exact solutions, i.e. the Green’s functions
themselves. The generalisation of that concept led to the development of the Multiple
Reciprocity Method. The beauty of this method is that it led not just to meshless
domains but that also bypassed the need to have any internal nodes as in the case of
DRM. The limitation of requiring analytical expression for the internal terms led
however to lack of sustained interest in the MRM, which was seen as less versatile
than DRM.
Many other approaches have been put forward following those basic ideas as
evidenced by the numerous papers on meshless methods that continue to be
published in the International Journal of Engineering Analysis with Boundary
Elements.
The next stage will be for one or more of the meshless methods to achieve maturity
and become a practical tool, in much the same way as classical BEM. The papers
published in this book dealing with mesh reduction methods demonstrate their
continuous evolution and the possibility of having reliable and robust meshless
techniques in engineering practice in the future.
It is always a source of personal pleasure for me to see the way in which the original
BEM ideas continue to develop in the hands of new researchers as well as our
senior colleagues.
The quality and originality of the papers cited in this book is a demonstration of the
continuous evolution of BEM research.
As Editor of this Volume, I am grateful to all contributors for the quality of their
papers as well as to those colleagues who helped to review them.
Carlos A. Brebbia
New Forest, 2009
Contents
Section 1: Advanced formulations
Multipole expansion BEM for simultaneous Poisson's equations
T. Matsumoto, T. Takahashi & S. Taniguchi....................................................... 3
Numerical Green’s function for a two-dimensional
diffusion equation
C. A. B. Vasconcellos, M. A. C. Ferro, W. J. Mansur, F. S. Loureiro
& J. P. L. Santos................................................................................................ 13
Equivalence between the Trefftz method and the method of
fundamental solutions for Green’s function of concentric spheres
using the addition theorem and image concept
J. T. Chen, H. C. Shieh, J. J. Tsai & J. W. Lee .................................................. 23
On stress reconstruction in composite domains from discrete data on
principal directions
A. N. Galybin ..................................................................................................... 35
The boundary element method for the determination of nonlinear
boundary conditions in heat conduction
D. Lesnic, T. T. M. Onyango & D. B. Ingham ................................................... 45
FEM type method for reconstruction of plane stress tensors from
limited data on principal directions
J. IrĹĄa & A. N. Galybin...................................................................................... 57
Section 2: Advanced meshless and mesh reduction methods
Meshless implementations of local integral equations
V. Sladek, J. Sladek & Ch. Zhang...................................................................... 71
Local and virtual RBF meshless method for high-speed flows
S. Gerace, K. Erhart, E. Divo & A. Kassab....................................................... 83
The radial basis integral equation method for
convection-diffusion problems
T. T. Bui & V. Popov ......................................................................................... 95
A method of fundamental solution without fictitious boundary
W. Chen & F. Z. Wang .................................................................................... 105
Extending the local radial basis function collocation
methods for solving semi-linear partial differential equations
G. Gutierrez, O. R. Baquero, J. M. Valencia & W. F. Florez.......................... 117
Three-dimensional unsteady heat conduction analysis by the
triple-reciprocity boundary element method
Y. Ochiai & Y. Kitayama ................................................................................. 129
Radial basis integral equation method for Navier-Stokes equations
T. T. Bui & V. Popov ....................................................................................... 141
Efficient Boundary Element Method for a focused domain
S. Takiguchi, K. Amaya & Y. Onishi................................................................ 151
Performance of GMRES for the MFS
A. Karageorghis & Y.-S. Smyrlis..................................................................... 163
Section 3: Computational methods
On the use of integrated radial basis function schemes in weighted
residual statements for elliptic problems
N. Mai-Duy & T. Tran-Cong ........................................................................... 175
A time domain Galerkin boundary element method for a heat
conduction interface problem
R. Vodička........................................................................................................ 187
Hierarchical matrices and adaptive cross approximation applied to
the boundary element method with multi-domain governed by
iterative coupling
T. Grytsenko & A. Peratta ............................................................................... 199
Section 4: Advanced structural applications
Boundary element modelling of non-linear buckling for
symmetrically laminated plates
S. Syngellakis & N. Cherukunnath................................................................... 211
Effective properties of fibers with various ratios of phase stiffness
P. ProchĂĄzka.................................................................................................... 223
Hybrid finite element method in supersonic flutter analysis of
circular cylindrical shells
F. Sabri, A. A. Lakis & M. H. Toorani............................................................. 233
Section 5: Damage mechanics and fracture
Cohesive crack propagation using a boundary element formulation
with a tangent operator
E. D. Leonel & W. S. Venturini........................................................................ 247
Stress field in the Antarctic tectonic plate: elastic and plastic models
P. Haderka, A. N. Galybin & Sh. A. Mukhamediev ......................................... 257
Section 6: Dynamics and vibrations
Velocity-based boundary integral equation formulation in the
time domain
G. D. Manolis & C. G. Panagiotopoulos......................................................... 271
Trefftz collocation for frequency domain elastodynamic problems
V. M. A. LeitĂŁo, B. Sensale & B. S. Rodriguez ................................................ 281
On the breathing frequencies computation using the Reissner and
the Mindlin model
L. Palermo Jr................................................................................................... 293
Free vibration analysis of a circular plate with multiple circular holes
by using the addition theorem and direct BIEM
W. M. Lee & J. T. Chen ................................................................................... 303
Free vibration analysis of thin circular plates by the indirect
Trefftz method
A. Ghannadi-Asl & A. Noorzad ....................................................................... 317
Section 7: Fluid flow
Meshless, BE, FE and FD methods analysis of the flow and
concentration in a water reservoir
K. Sakamoto, M. Kanoh & T. Kuroki............................................................... 331
Natural convection around a 3D hotstrip simulated by BEM
J. Ravnik & L. Ĺ kerget..................................................................................... 343
Boundary integral method for Stokes flow with linear slip flow
conditions in curved surfaces
C. Nieto, M. Giraldo & H. Power.................................................................... 353
Development of a Boundary Element Method-based numerical
wave tank technique for the prediction of nonlinear wave kinematics
and dynamics around offshore structures
H. G. Sung ....................................................................................................... 363
Section 8: Electrical engineering and electromagnetics
Motion of nanoscale contaminant particle in air bearings under
electrostatic charges: a case study
B. W. Yeigh, R. H. Polwort & G. S. Gipson..................................................... 377
Boundary element modeling of horizontal grounding electrodes using
the set of generalized telegrapher’s equations
D. Poljak, K. El Khamlici Drissi & R. Goic .................................................... 387
Provisional study on the 3-D Cauchy condition surface method for
fusion plasma shape identification
M. Itagaki, T. Maeda, A. Wakasa & K. Watanabe........................................... 397
Author Index.................................................................................................. 405
Section 1
Advanced formulations
This page intentionally left blank
Multipole expansion BEM for simultaneous
Poisson’s equations
T. Matsumoto, T. Takahashi & S. Taniguchi
Department of Mechanical Science and Engineering,
Nagoya University, Japan
Abstract
A boundary element method for simultaneous Poisson’s equations is presented to
solve large scale problems governed by Poisson’s equation using multipole expan-
sions of the fundamental solutions. Original Poisson’s equation is approximated a
set of Poisson’s equations and an integral representation for the set of differential
equations is derived. The fundamental solutions of the coupled Poisson equations
consist of the fundamental solution of Laplace’s equation, biharmonic function,
and triharmonic function. Multipole expansions of these fundamental solutions
are used in the evaluation of the boundary integral equations. The effectiveness of
the present formulation is demonstrated through a numerical example.
Keywords: Poisson’s equation, fundamental solution, multipole expansion, source
distribution.
1 Introduction
Poisson’s equation is a good starting point for analyses of potential problems with
inhomogeneous material parameters [1]. The integral representation of Poisson’s
equation has a domain integral term originated from the source term. To avoid the
domain discretization, the domain integral can be converted to boundary integrals
by means of the dual reciprocity method (DRM) [2] or the multiple reciprocity
method (MRM) [3]. In the DRM, the value of the source term at an arbitrary point
in the domain is approximated with a linear combination of radial basis functions
(RBF) whose collocation points are placed in the domain and on the boundary. In
order to convert the domain integral term originated from the source term of Pois-
son’s equation, particular solutions corresponding to the radial basis function are
required. Also, the coefficients of the source term approximation have to be deter-
Mesh Reduction Methods 3
Š 2009 WIT Press
WIT Transactions on Modelling and Simulation, Vol 49,
www.witpress.com, ISSN 1743-355X (on-line)
doi:10.2495/BE090011
mined in advance by collocation method which requires fully populated matrix to
solve and is unstable for large scale problems. On the other hand, MRM requires
particular solutions for the sources corresponding to a series of fundamental solu-
tions. By using these particular solutions, the original domain integral term can
be converted to a series of boundary integrals and a domain integral. Ochiai pro-
posed a variant of MRM, called triple reciprocity BEM [4, 5], which applies the
reciprocity formulation only three times. In this method, instead of using the cor-
rect values of the derivatives of the source, they are roughly estimated to be zero.
The error of the derivative of the source on the boundary is modified by using the
values of the source at collocation points in the domain instead.
For large-scaled problems, the fast multipole methods (FMM) may also be uti-
lized for those governed by Poisson’s equation. To circumvent the evaluation of the
domain integrals in applying FMM for Poisson’s equation, MRM based approach
is more straight-forward in applying FMM, because only the multipole expan-
sions of the higher order fundamental solutions found in the boundary integrals
are required in the process.
In this study, we consider Poisson’s equation and approximate the source term in
terms of simultaneous coupled Poisson’s equations. Using the fundamental solu-
tions of the simultaneous Poisson’s equations, a set of boundary integral equations,
equivalent to those proposed by Ochiai, is derived. The fundamental solutions of
the coupled Poisson equations consist of the fundamental solution of Laplace’s
equation, biharmonic function, and triharmonic function. Multipole expansions of
them are used in the evaluation of the boundary integral equations. The resulting
set of boundary integral equations are evaluated numerically by using the mul-
tipole expansions of the fundamental solutions. The effectiveness of the present
formulation is demonstrated through a simple numerical example.
2 A boundary only integral formulation for Poisson’s equation
Consider a potential problem governed by Poisson’s equation
∇2
φ1(x) + φ2(x) = 0, x ∈ V (1)
with the boundary condition
φ1(x) = φ̄1(x), x ∈ Sφ, (2)
q1(x) =
∂φ1(x)
∂n
= q̄1(x), x ∈ Sq, (3)
where V is the domain and S = Sφ ∪ Sq is its boundary, φ1(x) denotes the poten-
tial and φ2(x) the source term. Also, q1(x) = ∂φ1(x)/∂n is the outward normal
derivative of φ1(x) to the boundary; φ̄1 and q̄1 are given functions prescribed on
the specified boundaries, respectively.
We assume that the source term φ2(x) is also assumed to be known both in V
and on S.
4 Mesh Reduction Methods
Š 2009 WIT Press
WIT Transactions on Modelling and Simulation, Vol 49,
www.witpress.com, ISSN 1743-355X (on-line)
Another Random Scribd Document
with Unrelated Content
409 Aussaat: 'S O 'S : Erde gleich nach der Ernte oder im
April säen, in letzterem Falle <:iif n="" mnunt="" vorher=""
stratificieren.="" x="" s="" zeigen="" oft="" abweichungen=""
von="" der="" matt-riijlaiize="" indem="" selbst="" wilde=""
arten="" leicht="" bastarde="" bilden.="" aussaat="" am=""
besten="" sofort="" nach="" ernte="" da="" die="" samen=""
sehr="" schnell="" keimkraft="" verlieren.="" beim="" mit=""
etwas="" sand="" zu="" vermischen.="" s.="" nigra="" ist=""
sowohl="" zier-="" als="" obststrauch="" und="" tuird="" auch=""
medicinisch="" venvendet.="" aller="" d="" nur="" schwach=""
bedeckt="" iverden.="" sie="" werden="" entweder="" gleich=""
im="" herbst="" ges="" oder="" besser="" stratificiert=""
folgenden="" fr="" in="" leichte="" erde="" lieben="" frischen=""
boden="" schatten.="" bei="" uns="" kallhauspflanze="" sch=""
grevillea="" baum="" dessen="" bl="" einen="" starken=""
pfeffergeruch="" entwickeln.="" besonders="" japanische=""
conifev="" .="" nadeln.="" stets="" schattig="" halten.="" t=""
heriiir:irh.ii.="" aher="" sp="" unbedingt="" auspflanzen.=""
liebt="" kr="" sandige="" hoidr.t="" um="" f="" feuchtigkeit.=""
jmmergr="" reich="" stacheln="" bewehrte="" kletterpflanzen=""
an="" b="" niedrigen="" mauern="" ziehen.="" k="" den="" w=""
lagen="" freien="" gezogen="" werden.="" das="" freie=""
japonica="" geeignet.="" herrlicher="" zierlichen="" gefiederten=""
reichen="" nicht="" vor="" april-mai="" stunden="" wasser=""
einweichen.="" kleine="" wie="" aucuparia="" behandeln=""
verwenden.="" americana="" hat="" dunklere="" gr="" beeren.=""
hybrida="" intermedia="" samenpflanzen="" daher="" art="" zur=""
schm="" laubholzgeb="" auf="" kalkboden="" durch="" seine=""
unterhalb="" weissen="" grossen="" verdient="" so="" mehr=""
ani="" er="" trockenem="" steinigem="" noch="" gut=""
gedeiht.="" aucuparia.="" ziert="" korallenrothen="" vogelberen=""
welche="" vielen="" v="" hochwild="" nahrung="" dienen.=""
april="" december="" straf="" ificiertem="" h="" giessen.=""
wird="" hier="" fruchtbaum="" be-ionders="" weinbergen=""
angebaut="" gleicht="" gemeinen="" eberesche="" sind=""
welcher="" vorz="" nutzholz="" m="" liefert="" mispelartigen=""
geniessbar="" sind.="" hochrothe="" herbstf="" reichbl=""
gegen="" empfindlicher="" strauch="" warme="" lage="" una=""
trockenen="" boden.="" gew="" erde.="" vergl.="" genista.=""/>
410 Familie. a 2 ü Obst: d S 's p: i-l 3 o tß .£ bö 3 C cn Zj
ÂŤ'S Namen. 'S ÂŁ P5 o c o 'S o n CO 'S s 1 2 3 4 5 6 7 8 9 10 11 12 13
Spiraea Rosaceae X X X Staphylea, Pimpernuss Celastrineae X X
Sterculia Bombaceae X X X Styrax Styraceae X X X X Symphoriearpus
Caprifoliaceae X X - — Ssrringa, Flieder Oleaceae X X Tamarix,
Tamariske Tamariscineae X X X Taxodium, Snmpfcypresse und ) Eil
)encypresse / Coniferae X X X X X Taxus, Eibenbaum n X X X Thuja
und Biota, Lebensbaum. . . . n X X X X Thujopsis )) X X X "Tilia,
Linde Tiliaceae X X Torreya Coniferae X X X X Ulex, Stechginster
Papilionaceae X X X Ulmus, Ulme, RĂźster Ulmaceae X
411 Aussaat: o a a -Ö O •-^ 3"" |IH Eignet sich: 'S a p 5 S
in das Land 5 o 1 « Ca s 'S S "3 a & ■ o 2 'S "u s Besondere
Bemerkungen. 14 15 16 17 18 19 20 21 22 X X i-8 X X Die.se.
Gattung ist reich an schĂśnhlĂźhenden Arten. Viele Arten eignen sich
zu Zierhecken. Einige, z. B. lanceolata, sind WintergrĂźn. Um sich
schĂśn zu enttrickein, verlangen viele S. nahrhaften, dabei lockeren
Boden und Schatten, so z. B. callosa, conjmhosa, ariaefolia,
sorhifoUa. Andere ivie S. cana, hypericifolia, Thunhergi, gedeihen
auch auf trockenen Lagen. Aussaat am besten im April in leichter
Erde, mit einer dünnen Schicht Haideerde bedecken. X X 5—6 X X X
SchÜn blßhende hohe Sträucher, welche in jedem Boden gedeihen.
St. colchica ist eine gute Treibpflanze. Bei grĂśsserem Betriebe
werden die Samen im October stratificiert und erst im zweiten
Frßhjahr ausgesäet. X X X Im Sßden ein schÜner Baum von der
Tracht einer Platane, kann nĂśrdlicher nur im Kalthause gezogen
werden. Verlangt jährliches Verpflanzen, sehr nahrhaften Boden und
während der Vegetation sehr reichliche Bewässerung. Aussaat im
April, gegen Spätfröste zu schützen. X X 5— (3 Zärtliche Sträucher
oder kleine Bäume, welche nur in den wärmsten Lagen von
Mitteleuropa im Freien aushalten. X X X Sehr verbreitete
Farksträucher, welche ohne jede Pflege gedeihen. Zieren besonders
durch die iveissen, bei einigen Species rothen FrĂźchte, welche sich
den ganzen Winter hindurch halten. S. mexicana (montana) verlangt
Bedeckung im Winter. X 5—6 X X X Lieben kräftigen Bode7i und
gedeihen sowohl im Schatten wie der vollen Sonne ausgesetzt. Das
Treiben der S., besonders S. vulgaris purpurea bildet die Specialität
einiger grossstädtischeii Gärtnereien. Zur Aussaat stratificiert man
den Samen sofort nach der Ernte und säet im folgenden März. X X 8-
9 X Fein belaubte, schÜn blßhende Sträucher, welche besonders auf
feuchtem Sandboden gut gedeihen tuid sich dem Schnitt willig
unterwerfen. Der feine Samen darf nur schwach bedeckt werden. X
X X Theils Blätter abwerfend (T. distichum) , theils Wintergrßn (T.
sempervirens) . Ersterer gedeiht am besten auf nassem Boden und
ist winterhart, letzterer, Taxusähnlich, leidet oft von der Kälte.
Aussaat in gute Haideerde, oft leicht bespritzen. X X X X X Die T.
sind die härtesten und in Bezug auf Boden und Lage mit wenigen
Ausnahmen anspruchslosesten Coniferen. Bei grossem Betrieb
stratificiert man den Sam.en gleich nach der Ernte und säet im
zweiten FrĂźhjahr danach. Aussaat gegen VĂśgel schĂźtzen. X X X X X
Die nordamerikanischen Arten, von denen einige grosse Bäume
bilden, sind ganz winterhart, die zur Gattung Biota gehĂśrenden
orientalischen L. leiden mitunter in kalte7i Wintern. Die zahlreichen
Varietäten erzeugen sich nicht immer echt aus Samen. Viele nur
strauchartig. T. occidentalis giebt prächtige Hecken. Aussaat in
leichte Erde, schattig halten, häufig spritzen, gegen VÜgel schßtzen.
Verql. §. 2.35. X X X HÜchst ornamentale, in einigermassen
geschĂźtzter Lage harte Coniferen von leichter Cultur. Lieben leichte,
durchlassende, dabei nahrhafte Erdmischung und fĂźrchten qrosse
Feuchtigkeit. Aussaat -wie bei Thuja. X X 6-7 X X X Die Samen der
Linden brauchen lange Zeit zum Keimen. In leichte Erde säen, fßr
grossen Betrieb erst im zweiten, der Einschichtung im Septeviher
folgenden Frßh jähr. Junge Sämlinge nicht nur gegen SpätfrÜste,
sondern auch gegen einen sehr kleinen Pilz, welcher sich auf die
Blättchen setzt, schßtzen. Letzteres geschieht bei trockenem,
sonnigem Wetter durch Bestreuen der Pflänzchen mit
Schivefelblßlhe. X X Ausser T. grandis ziemlich harte kleine Bäume,
theils aus Nordamerika, theils aus Japan. Sie gedeihen nicht gut in
TĂśpfen, am besten im Schutz und Schatten grĂśsserer
Nadelholzbäume. Man behandelt die grossen Samen, welche schnell
die Keimkraft einbĂźssen und lange liegen, wie bei Cedrus Deodara
(S. SflO) angegeben. X X 2-4 6—7 X X Auf Sand in der Nähe der
KĂźsten wild wachsend oder zu Hecken angepflanzt, erfriert U. doch
oft in harten Wintern bis zum Boden oder an einzelnen Aesten. FĂźr
abschĂźssige Terrains und trockene, sterile Boden besonders nĂźtzlich.
Aussaat nicht vor Ajiril-Mni in Icifhte Erde. X 3 4 X X Entwickelt sich
lK.s,i,ii/rr.s .srlU',, auf gutem, tiefem, feuchtem Boden. Der Samen
reift schon im Mai und Juni und wird am besten dann spätestens Juli
- August in gute, leichte Erde gesäet, nur schwach bedeckt und stets
feucht gehalten.
412 Familie. e s c Obst: 3: a 5 o II p Namen. o 5 o o 'S o c
1 2 3 4 5 6 7 8 9 10 11 12 13 Ungnadia Hippocastaneae X X X i
Vaccinium macrocarpum, Cran-^ beere, amerikanische Moos-j beere
| Ericeae X X X X Myrtillis, Heidelbeere, Bickbeere n X X X i
Oxycoccos, Moosbeere n X X X Vitis idaea, Preisseibeere, Krons-
beere / V X X X X amerikanische Arten Âť X X X Viburniim,
Wasserholder, Schnee-) ball ; Caprifoliaceae X X Virgilia (Cladrastis),
f4elbholz .... Papilionaceae X X X Vitex, Keuschbaum Verbenaceae X
X X Vitis vinifera, Weinstock Ampelidcac X X X X X X X X andere
Arten n X X Weigelia (Diervilla) Caprifoliaceae X X Wellingtonia
gijiantea (Sequojal . Coniferae X Zanthoxylum, Gelbholz,
Zahnwehholz Zanthoxyleac X X X X X X Zizjrplius volubilis
(Berchemia), ^ (Jujuba) / Rhamneae X X X X
413 Aussaat: o ■Ö o 3 ö Eignet sich: 0 a p (3 s in das Land
o a 6 h 'S a S 'S B o, . AM u ÂŤ 0-% i5 IS o Besondere Bemerkungen.
14 15 16 17 18 19 20 21 22 X X 7-8 WeissliehhlĂźheiifl mit
gefiederten Blättern u?id von schÜnem Wuchs, hei uns jedoch sich
iiirhl roll entwickelnd. Liebt lockere, dabei nahrhafte Erde. X X 5— G
Ein BoäciistrKuch , welcher Aehnlichkeit mit der Preissei-
undMoosheere hat. Die grossen, lange haltbaren FrĂźchte Ăźbertreffen
an Wohlgeschmack die einheimischen Arten. KĂśnnen nur auf
hewässerharen Plätzen in Humuserde gezogen werden. Die Aussaat
dieser MoorbeetX 5—6 Bekannter kleiner Strauch, welcher nur auf
Waldboden gezogen werden kann. X 5—6 Die Moosbeere, welche
auf sandigem Moorboden, besonders an Grabenrändern wächst und
an solchen in sonniger Lage gezogen werden kann, Ăźbertrifft die
ähnliche Preisseibeere an Wohlgeschmack. in Haideerde zu
geschehen, analog den in §§. 224-228 geX 5—6 Kann auf
Sandboden in lichten Nadelwäldern, besonders hoch im Gebirge
gezogen werden. Verlangt Luft und Sonne , um ihre Beeren zu
reifen. gebenen Andeutungen. X X 5—6 Als Zierpflanzeri angebaute
V. sind in den Gärten selten, und daher ivenig erprobt. Sie verlangen
ein Moorbeet, einige Arten Cultur im Kalthause. X X 5—6 X X
Beliebte, herrlich blßhende Sträucher, auch fßr Schatten und
Unterholz geeignet. Gedeihen in jedem etwas frischen Boden. Die
schÜnste Art ist V. pUcatum, als welcher auch fälschlich V. dentatum
vorkommt. Die aus China stammenden Species verlangen leichte
Bedeckung im Winter. V. Tinus s. S. 3GG. FĂźr Aussaaten in
grĂśsserem Massstabe stratificiert man den Samen unmittelbar nach
der Ernte und säet erst im zweitfolgenden Frßhjahr. X X 6-7 X Bei
uns noch ungenĂźgend bekannter, sehr empfehlenswerther schĂśner
kleiner Baum mit grossen, akazienähnlichen Blättern und grossen,
weissen Bliithen in hängeriden Trauben. Liebt guten kräftigen Boden.
Aussaat im April bis Mai in guter Gartenerde. X X 7-9 X Erfrieren bei
uns oft bis zum Boden und verpflanzen sich schwer. Warme Lage,
sandige Erde. Aussaat im April. X X X Aussaat ergiebt meistens
frĂźher reifende Trauben, als sie die Mutterpflanze liefert. Man
verwendet nur Samen gutgeformter Beeren von mustergiltigen
Trauben. Zur FrĂźhjahrsaussaat legt man die reinen Samen vorher 1
bis 2 Tage in Wasser. Die Freilandsaat wird, um die Feuchtigkeit zu
erhalten, leicht mit Stroh bedeckt. Die Sämlinge einzeln in TÜpfe
oder in die sonnigste Lage des Gartens verpflanzen und jährlich
beschneiden. Von gewissen Sorten gewonnen, kĂśnnen dieselben
schon im 4. Jahre tragen, oft dauert dies jedoch 8 — 10 .Jahre.
Vergl. §. 2.36. X X Unter den nordamerikanischen wilden Reben sind
sehr schĂśne, zum Theil mit essbaren Beeren; sie eignen sich
vorzßglich fßr Wände, Spaliere und Lauben und an einzeln stehende
Bäume. V. riparia mit sehr wohlriechenden IJlßthrn. X X 5-7 X X Die
W. gehÜren zu den prächtigsten Blßthensträuchern, welche indessen
m luiinrlien Gegenden durch frĂźhe FrĂśste leiden. Sie lassen sich, in
TĂśpfe i/rbnichf, gut treiben. Lieben lockeren, ziemlich nahrhaften
Boden. Aussaat März- April. Durch häufiges Spritzen stets feucht
erhalten. W. (Calyptrostigma) Middendorfiana ist zärtlicher und muss
erst im Topfe erstarken. X — X X X An vielen Orten erfrierend, hat
sich dieser schÜne Baum doch an aiideren selbst in den kältesten
Wintern gut erhalten und bildet in einigen Gegenden bereits hohe
Bäume. Bedeckung nßtzt wenig. Aussaat wie bei Retinospora.
Verpflanzt sich nur gut, wenn mit starkem Baken versehen, liebt
lockeren, sandigen, dabei nahrhaften Boden. In TĂśpfen heranziehen.
X X Wenig cultivirt , dicke, fnit Stacheln besetzte Zweige und
eschenähnliche Blätter. Lieben kräftigen, feuchten Boden. X J X In
Sßd-Europa häufig anzutreffender Baum mit essbaren Frßchten.
Liebt leichten sandigen Boden und verlanrjt im Freien die sĂźdlichste
Lage. Die Samen sind sehr hart und liegen ein Jahr in der Erde,
wenn sie nicht ebenso lange stratificiert werden.
The text on this page is estimated to be only 29.24%
accurate
Alphabetisches Register. Die in starker Schrift o"edruckten
Artikel sind besonders behandelt. A. Seite Abelia 344 Abies s. Pinus
404 Abobra 268 Abronia 2G8 Absinth 199 Abutilou 344 Acacia 344,
384 11 s. Kobinia 408 Acanthus 268 Acer 384 Achillea 78, 268
Achimeues (Gesiieriaceae) . . 333 AckerrĂźben 119 Acouitum 268
Acroclinium 268 Acrocomia (^Paltuac) 339 Acrosticlium (Farrn) . ...
331 Actaea 268 Adansonia 344 Adenopliora 268 Adiaiitiim (Fami)
331 Adlumia 268 Adouis 268 Aeelimea (Bromeliaccae) . . 322
Aerides (Orchideae) 338 Aeschyuautlius 344 Aescuius 384
Aethionema 268 Aethusa 193 Agapanthiis ' . 344 Agaricus edulis 201
Agarista s. Andromeda . . . 386 Agave 344 Ageratum 268, 270
AgroBtenima 270 AgTOstis 73, 270 Ahlkirsche s. Prunus 406 Ahorn
s. Acer 3B4 Allauthus 384 Akelei s. Aquilegia 272 Alant 185, 209
Alisnia (Wasserpflanzen) . . 342 Alkekengi . . • 207 Allauianda 344
Alliuin 136, 270 Alnus 384 Alocasia (Aroideae) 319 AloĂź 344 Alonsoa
270 Alopecurus 77 AlĂźvsia s.Vorbena citriodora 366 Alpenveilchen s.
Cyclanien . 330 Alsine 270 Alsophila (Farm) 331 Alstroemeria 270
Althaea rosea fl. pl. . . . 222 Alvssiun 270 Amarantus 205, 223
Amaryllis 318 Amelancliicr 384 Aniuiobiuiu 270 Auiorpha 384
Amorphophallus 344 Seite Atupelopsis 384 Ampfer 148 Amygdakis
384, 386 Anagallis 270 Ananassa (Bromeliaceae) . . 322 Anarrhinum
270 Anchusa 270 Andorn 207, 209 Andromeda 386 Andropogon 270
Androsaee 270 Anemone 270 Ang-elika 186, 209 AuKelunia 344 Al.-
i(JlJteri^^ (Farrn) 331 Anis 186, 209 Auuuellen, Aussaat der . 213
Anomatheca 270 Anona 344, 386 Antennaria 270 Authemis 270, 272
Anthericum 272, 344 Anthoxanthnm 77, 272 Aniburiuni (Aroideae)
.... 319 Aiitigouon 344 Autirrhinum 2"24 Apfelbaum s. Pirus 404
Aphelaudra 344 Apocynum 272 Aponogeton (Wasserpflanze) 342
Aprikose s. Prunus 404 Aquilegia 272 Arabis 272 Arachis 189 Aralia
344, 386 Araucaria 386 Arbuse 158, 211 Arbutus 386 Arctostaphylos
386 Aretotis 272 Ardisia 344 Areca (Palmae) 339 Arenaria 272
Argemoue 272 Aristolochia 344, 386 Armeuiaca .s. Prunus 404
AruuTia 272 Aroideeu des Wanuliauses 319 Aronia s. l'irus 404
Arteuiisia 189, 199, 272 Arthrota.Kis 386 Artischockeu 176, 209
Arum (Aroideae) 319 Arundinaria 344 Arundo 272 Asclepias ~ 272,
344 11 s. Hoya 352 Asimina s. Anona 386 Asperula 198, 272
Asphodelus 272 Aspidium (Farrn) 331 Aspleuium (Farrn) 331 Aster
225, 272 Seite Astrantia 272 Athanasia 272 Atriplcx 148, 272 Atropa
82 Aubrietia 272 Aucuba 344 Aurikel 257 Avena 77, 272 Azalea 335,
386 B. Bactris (Palmae) 3:?9 Bärlauch 13'.l Balantium (Farrn) 331
Baldrian 79, 206, 209 Balsamiue 247 BamiKisa 344 Banksia 346
Baptisia 274 Barbarea 274 Bartnelken s. Dianthus . . 282 Bartonia
274 Basella 205 Basilienkraut 186 Basilikum 186, 209 Bastardklee 78
Bauhinia 346 Baumkohl 101 Baumwolle s. Gossypium . .• 352
BaumwĂźrger s. Celastrus . . 390 Bazille 206 Beaucarnea 346
Beerenobst, Aussaat . . . 376 Beete 119, 212 Begrouia 320 Beifuss
199 Beisskohl 146, 211 Bejaria 370 Bellis 274 Benincasa 274
Benthamia 386 Benzoin s. Laurus 354 Berberis 386 Berchemia s.
Zizyphus. . . . 412 Bertolonia 346 Beschorneria 346 Beta 274
Hetouiea 274 BetuUi ;386 Bi
415 Seite Blaseiistraucli s. Colutea • • 390 BUuikohl 100,
209 Blaukraut 95 Hleclmum (Farrii) 331 l'leifhrusen 67, 7Ăś
JSk'ieliselleric 114, 212 Jilituiii 205, 274 Blumenkohl 90, 209 Bocfoiiia
274, 346 Bocksdorn s. Lycium 400 Boehmeria 346 Boerskohl 98, 212
Bohnen 166, 209 Bohnenkraut 187, 209 Bomarea s. Alstroemeria . .
270 Bonapartea (Bromeliaceae) . 322 Borassus (Palmae) 339
Boretsch 187, 209 Boronia 346 Bossiaea 346 Bougain'illea 346
Bouvardia 346 Brachycome 274 Brachyseina 346 Brahea (Palinac) ■ .
. . 339 Brassica cliincnsis 205 Braunkohl 100 Briza 274 BrizDiiyruni
274 Brockoli 94, 209 Brombeere 376 Bronielia (Bromeliaceae) . . .
822 Bromeliaceen 822 Bronuis 274 Brouss(jnetia 388 Browallia 274
BrĂźsselerSprossenkohl 99 Brugmansia s. Patura ..... 350
Brunnenkresse. . . . 131, 210 Brunsfelsia s. Franciscea. . . 352
Bryonia 274 Bryouopsis 274 Buche s. Fagus 394 Buddleya 388
Buchsbaum s. Buxus 388 Bunias 205, 209 Buphthalnium 274
Bupleurum 388 Bulterkohl 101 Buxus 388 c. Cacalia 274 Cacteen
322 Cajophora 274 Caladium (Aroideae) 319 Calamintha 274
Calampelis 274 Calanius (Paluiae) 339 Calaiidrinia 274 Calantlie
(Oreliideae) 338 Calceolaria 276, 324 ÂŤ'alendnla 200, 209, 276
416 Seite Ovdoiiia 392 Cymbidium {Orcliideae) ... 338
Cynoglo.ssum 280 C'vnosurus 75, 280 Cyperiis 189, 34.8 Cypresse s.
Cupressus .... 392 Cypripediuui (Orehideae) . . 338 Cyrtauthera 350
Cyrtomium (Farm) 331 ( 'vstopteris (Farrn) 331 Cytisus ä50, 394 D.
Dactylis 77 Dahlia 240 Daleehanipia 350 Dammara 394 Daphne 394
Dasylirion (Bromeliaeeae) . . 322 Batisca 280 Dattelpflaume s.
Diospyros . 394 Datlira 280, 350 Dauliciit(jnia 350 I)a allia ( Farm)
331 Delphinium 341, 280 Dendrobium (Orehideae) . . 8;38
Desmanthus (Wasserpflanze) S42 Desmodium 350, 394 Deutzia 394
Dianella 350 Dianthus 243, 282 Dicksonia (Farm) 331 Dictamnus 282
Dicyrta (Gesneriaceae) .... 333 Didymocarpiis s. Streptocarpus 304
DiefTenbachia (Aroideae). . . 319 Dielytra 282 Diervilla 394, 412
Digitalis 80, 282 Dill 188, 210 Dimorphanthiis s. Aralia . . 386 Dioclea
850 Diosma 350 Diospyros 394 Diotis 350 Diplazium (Farm) 331
Diplotemium (Paliuae) .... 339 Dirceae (Gesneriaceae) .... 333 Disa
(Orehideae) 338 Disemma 350 Dodecatheou 282 Dolichos 174, 282
Dorn s. Crataegus. . . . 380, 392 Doronicum 282 Dorschen 103
Doryanthes 350 Doryopteris (Farm) 831 Dracaena 350
Dracocephalnin 282 Dragun 189, 210 Dryas 282 Drynionia
(Gesneriaceae) . . 333 Dttngrung- "23 I>yckia (Hroiiieliaceae) ....
322 E. Eberesche s. Sorbus 408 Eecremocarpus s. Calanipelis 274
Echeveria 350 Echinacea 282 Echinocystis 282 Echinops 282 Echium
282 Edwardsia 350 Ehrenpreis s. Veronica 312, i36Ăź Eibenbauiu s.
Taxus 410 Seite Eiche s. Qiiereus 406 Eierfrucht I.SS, 210 Einjälirig'e
Pflanzen, Aussaat der 213 Eiskraut 147, 210 Elaeagnus 394 Elaeis
(Palmae) 339 Eleusine 282 Elichrysuni 284 Eisbeere s. Sorbus 408
Elsholzia 284 Elymus 284 Emilia s. Cacalia 274 Endivien 126, 128,
210 Engelwurz 186, 209 Enzian s. Gentiana 286 Eopepon 284
Epacris 386 Ephedra 394 Epheu s. Hedera 398 Epidendrum
(Orehideae) . . . 888 Epilobium 284 Episcia (Gesneriaceae) .... 333
Eragrostis 284 Eranthemuin 350 Erbsen 161, 210 Erl)seubauin s.
Caragana . . 388 Erdbeeren 200 Erdbeerbaum s. Arbutus . . 386
Erdbeerspinat 205, 212 Erde 18 Erdmandel 189, 210 Erdnuss 189,
210 Eremostaehys 284 Eremurus 284 Erianthus 284 .Erica 337, 394
Erigeron 284 •, s. Stenactis 308 Erinus 284 Eriobotrj'a s. Mespilus. . .
. 402 Eriogonum 284 Eriostemou 350 Erle s. Alnus 384 Erodium 284
Erpetion 284 Eryngium 284 Erysimum 284 Erythraea 284 Erythrina
350 Escallonia 350 Esche s. Fraxinus 396 Esdragfon 189, 210
Eschseholtzia 284 Esparsette 78 Espe s. Populus 404 Eucalyptus 350
Eucharidiuni 284 Euchlaena 284 Eucnide 284 Eucodonia
(Gesneriaceae) . . 333 Eugenia 350 Eulalia 284 Euiiatorium 284
Euphorbia 286, 350 Eurvale (Wasserpflanze) . . . 342 Euterpe
(Palmae) 339 Eutoca 286 Evonymus 394 Exaeum 350 F. Fabricia 352
Fagus 394 Farrnkräuter 33L Federgras s. Stipa 308 Fedcnielkeu s.
Dianthus . . 282 Seite Fedia 286 Feigenbaum s. Ficus 369 Feldsalat
130, 211 Fenchel 135, 190, 210 Fenzlia 286 Ferdinauda 352 Ferraria
s. Tigridia 308 Ferula 286 Festuca 75—77, 280 Fichte s. Pinus 404
Ficus 352, 396 Fingerhut s. Digitalis . . 80, 282 Fioringras 75 Fisolen
166, 209 Fitzroya 396 Flammenblume s. Phlox 255, 3(X) Flieder s.
Syringa 410 FlĂźgelerbse 165 FlĂźgelnuss s. Pterocarya . . 406
Fontanesia 3% Forsy thia 3% FĂśhre s. Pinus 404 Fragaria iudica 286
Franciscea 352 Fraxinus 396 Fremontia 396 Freuela 396 Fritillaria
286 Fuchsia 332, 396 Fuchsschwanz 223 ■j Wiesen- 77 Funkia 286
Furcraea (Bromeliaeeae) . . . 322 FutterkĂźhle 101 FutterrĂźben 121
G. Gaillardia 286 Galega 286 Gamolepis 286 Gänseblßmchen s.
Bellis. . . 274 Gardenia 352 Gardoquia 286 Oartenbohnen 166
Gartengleisse 193 Gartenkresse 133, 210 Gartenmelde 148, 211
Gartenrasen 67—76 Gartensalat 122, 212 Gauklerblume s. Mimulus .
250 Gaultheria 396 Gaura 286 Gazania 352 Geisblatt s. Lonieera 400
GekrĂśsekohl 97 GelbhĂźlz s. Virgilia 412 '1 s. Zauthoxvlou .... 412
Gelbe Rüben . . . '. 104 Gelbe Wurzeln 104, 2Ü9 Gemseuhoru 207,
211 (ieiiista •■552, 396 Gentiana 286 Geonoma (Palmae) :539
Georg-ine 240 Gcruniuui 286, iUl (icrlicrstrauch s. Coriaria . . 392
Gesneria (Gesneriaceae) . . . 333 Gesneriaceeu 333 Geum 286
GewĂźrzstrauch s.Calycanthus 388 Gilia 286 Gingko s. Salisburia 408
Ginster s. (xenista 396 Glaskohlrabi 102 Gladiolus 286 Glaucium 286,
288 Glaziova (Palmae) 339
417 Seite Gleditschia 396 Gleichenia (Farrn) 331 Globularia
288 Glockenblume 228 Gloriosa 352 Gloxinia (Gesneriaceae) . . . 333
Glvcine 396 Gnaphalium 288, 352 Godetia 288 Goldknoblauch 139
Goldlack 238 Goldregen s. Cytisus 394 Goldwurzel 111, 210 Gombo
206 Gomplirena 288 Goodia 352 Gossypium 352 Grahamia 288
Grammanthes 288 Granate s. Punica . 360 Graslauch 139
Grasmischung'eu 73 Grevillea 352 Greyia 352 Grindelia 288 GrĂźnkohl
100 Gummibaum s. Ficus elastica 352 Gurken 149, 210 Gurkenkraut
187, 209 Gurkenmelone 157 Gunnera 288 Guzmannia
(Bromeliaceae) . 322 Gymnocladus 396 Gymnogramma (Farrn) . . .
331 Gymnopsis 288 Gymnothrix 288 Gyneriiun 288 Gvpsophila 288 ,,
s. Tuniea 810 H. Haargi'as 75 Hal>ranthus s. Amaryllis . 318
Habrotliamnus 252 Haferschlehe s. Prunus . . . 406 Haferwurzel 107,
210 Hahnenkamni 229 Haide s. Erica 337 " s. Calluna 394 Hainbuche
s. Carpinus .... 388 Hakea 352 Halesia 396 HaUmodendron 396
Hamamehs 396 Hanf s. Cannabis 276 Hardenbergia s. Kennedya .
354 Hartriegel s. Cornus 392 Haselnuss s. Corylus ... 392
Hebeclinum s. Conoclinium 348 Hedera 398 Hedychium 352
Hedysarum 78, 288 Heidelbeere s. Vaccinium . . 412 Helenium 288
Helianthemum 288 Helianthus 288 HeliophĂźa 288 Heliotropium 352
Helipterum 290 Helleborus 290 Hemerocallis 290 Heracleum 290
Herbstniben 119 Herlitze s. Cornus 392 Herzkohl 98 Hesperis 290
Hexacentris s. Thunbergia . 366 Seite Hibiscus .... 206, 290, 352,
398 Hickorj'baum s. Carj^a .... 888 Hieracium 290 Himbeere 376
Hippophae 398 Hirschhomsalat 1.36 Holcus 77 Hollunder s.
Sambucus . . . 408 Honiggras 77 Hopfen 207, 210 Hopfenbuche s.
Ostrya. . . . 402 Hopfeuklee 78 Hordeum 290 Hortensia s.
Hydrangea. . . 398 Hoya 3.Ö2 Hiiinea 290 Humulus 207
Hundspetersilie 193 Hunuemannia 290 Husarenknopf 208
Hyacinthus 290 Hydrangea 398 Hydrocharis (Wasserpflanze) 342
Hydrolea (Wasserpflanze) . . 342 Hymenoxis 290 Hyophorbe
(Palmae) 339 Hyoscvamus 79 Hypericum 290, 398 Hysopus 190
Iberis Idesia s. Polycarpa Hex Illiciuni Imantophyllum s. Clivia. . .
Immortelleti Impatieus 290, Iiupatiens Balsamiua Incarnatklee
Incarvillea Indigofera 352, Inga Inida 185, Involucraria Ipomoea
290, Ipomopsis Iris Ismene s. Pancratium . . . . Isolepis Isoloma
(Gesneriaceae) . . . . Isop 190, Isotoma Ixia Ixora 290 404 398 352
348 220 352 247 78 352 398 354 209 290 354 290 292 358 354 333
210 292 354 354 Jacaranda 354 Jambosa s. Eugenia 350 Jasione
292 Jasminum 354, 398 Jasmin, wilder, s. Philadelphus 402 Jatropha
354 Jelängerjelieber s. Lonicera 400 Jochroma 354 Johannisbeere
376 Johannisbrodbaum s. Ceratonia 390 Jonopsidium 292 Jubaea
(Palmae) 339 Judasbaum s. Cercis 390 Judenbart s. Saxifraga. . . .
362 Jugians 398 Jujuba s. Zizyphus 412 Juncus (Wasserpflanze) . . .
342 Jungfernwein s. Ampelopsis 384 Seite Juniperus 398 Justicia
354 K. KafTeebaum s. Coffea 348 Kalmia 398 Kamille 80 Kammgras
75 Kapernstrauch 206, 210 Kappus 95, 210 Kapuzinerbart 133
Kapuzinerkresse 135, 210 i> s. Tropaeolum 310 Kartoffel 82
KartofFelzwiebel 139 Kastania s. Aesculus 384 11 s. Castanea 388
Katzenminze 193 Kaulfussia 292 Kellerhals s. Daphne 394 Kennedya
3,54 Kentia (Palmae) 339 Kerbel (KĂśrbel) 190 KerbelrĂźbe 107, 210
Kermesstaude 208 Kerria 398 Keuschbaum s. Yitex 412 Kichererbse
165 Kiefer s. Pinus 404 Kirsche s. Cerasus 890 Kirschlorbeer s.
Primus. . . 406 Kirschpflaume s. Prunus . . 406 Klee 78 Klette,
japanische 207 KnauIgTas 77 Knoblauch 139 Knolleugrewächse des
freien I.andes, Aussaat der 219 Knollensellerie . . . 113, 212 Kochia
s. Chenopodium . . . 278 Koeleria 278 Koellicheria (Gesneriaceae).
333 Koelreuteria 398 Kohlarten 90 Kohlmalve 207, 211 Kohlrabi 102,
210 KohlrĂźben 103, 210 Kopfklee 78 Kopfkohl 95, 210 Kopfsalat 122,
212 Kornblume s. Centaurea . . 276 Komelkirsche s. Cornus. . . 392
Krauseminze 193 Krauskohl 100 Kraut 95, 210 Kresse, amerikanische
Winter- .... 135, 210 n Brimnen- 131, 210 11 Garten- 133, 210 n
Kapuziner-. . . . 135, 210 11 11 s. Tropaeolum . 310 11 Stauden-
135 Kreuzkraut s. Senecio. 306, 362 Kruppbohnen 166 Kuhkohl 101
Kumstkraut 96 Kßchenkräuter 185 Kßmmel 80 Kßrbisse 158, 211 L.
Iiack 238 Laelia (Orchideae) 338 Lärche s. Pinus Larix .... 404
Lagenaria 292 Lagerstroemia 354 27
418 Seite Lasurus 292 Lainarkia s. Chrysurus. . . . 278
Laiitana 354 Lapageria 354 Lajjpa ediilis 207 Larix s. Piuus 404
Lasiagrostis 292 Lasiauclra 354 Lasthenia. 292 Lastraea (Farrn) 331
Latania ( Palinae) 3;?9 Latliyrus 292 Iiatticlisalat 122 Iiaubbäume
und Sträuclier, Aussaat der . . . 368 Laucli 140, 211 Lauras 354, 898
•• s. Vibumum 366 Lavatera 292, 354 Iiavendel 191, 211 Layia 292
Lederbaum s. Ptelea 406 Ledum 400 Lein, rotliblĂźli. s. Linum 294
Leonitis 354 Leptoe-hbia 292 Lcptnsiphdu 292 I>ept(j>peruium 354
Leptusyne 292 Lespedeza 400 Leucadendron 354 Leucantheiuum
292 Leucopogoii 354 LeueothĂśe s. Andromeda . 386 Iievkoyen 231
Levcesteria 400 Liiitris 292 Libocedrus 400 Libonia 356 Licuala (
Palmae) 339 lietoesapfel 197, 212 Liebesliaiu s. Nemophila 296
Liebstuck 192, 211 Lietzia ((jesneriaceae) .... 333 Ligustrura 400
Lilium 292 Lima-Bohue 174 Limnanthes 292 Linaria 292 Linde s.
TiUa 410 Linse, spanische 165 Linum 294 Lippia s. Verbena
citriodora 366 Liiiuidambar 400 Liriodendron 400 Lisianthiis 356
Littonia 3.56 Livistona (Palmae) 339 Loasa s. Cajophora 294 IiObelia
249 Locbcria i (Jesneriaceae) . . . 333 LĂśffelkraut 134, 211
Lr,veiiiiuud 224 IiĂśweuzahn 134, 211 Loliuiu 73, 75, 77 Loniaria
(Farrn) 331 Lomatia 356 Lonas s. Athanasia 272 Lonicera 400
Lophospernium 356 Lorbeer s. Laiirus. . . . 354, 398 Lotus 78, 294
Liiculia 356 LulTa 294 Limaria 294 Lupinus 294 Luzerne 78 Seite
Lvcaste (Orchideae) 338 Lychnis 294 lA'Cium 400 Lyonia s.
Andromeda .... 386 Ijysimachia 294 Lytbrum 294 M. Maclura 400
Madia . . 294 Magnolia 400 Magydaris 294 Mabonia s. Berberis 386
^Maiblume s. Convallaria. . . 280 Mais 81 " s. Zea 312 Majoran 192,
211 Malaga-Erbse 165 Malope 294 >Ialus s. Pirus 404 Malva 207,
211, 294, 356 Malve, gefüllte 222 •• schwarze 81 Mandel s.
Amygdalus 384 Mandevillea . .' 356 Mangold 145, 211 Mariendistel s.
Carduus . . 276 Markkohl 101 Marrubium 207, 2()9 Marshallia 294
Martinezia (Palmae) 339 Martyuia 207, 211, 294 IMasdevallia
(Orchideae) . . . 338 Matthiola 296 •• s. Cheiranthus 231 Matricaria
80, 296 Mauerpfeffer s. Sedum 208, 306 Maulbeerbaum s. Morus. . .
402 Maurandia 296 iSIauritia (Palmae) 339 Maxillaria (Orchideae) ....
338 Medeola 356 Medicago 78 Mediniila .356 Medizinische
HandelsFflauzen 79 Meerfenchel 206 Meerkohl 183, 211 :Mehlbirne
s. Sorbus 408 Melaleuca 356 Melastoma 356 Melde 148, 211 Melia
400 Melianthus 356 Melica 296 Melisse 193, 211 Melonen 153, 211
Mentha 193, 211, 296 Mesembryanthemum 147, 296, 356 Mespilus"
400, 402 Methonica s. Gloriosa 352 Metrosideros 356 Michauxia 296
Mikania 356 Miltonia (Orchideae) 338 Mimosa 356 Mimulus 250
IMinze 193, 211 MinĂźjelle s. Pruiuis 404 Mirabilis 296 Mispel s.
Mespilus 400 Mitraria (Gesueriaceae) . . . 333 Mohn s. Papaver 298,
300 Älomordica 296 Monarda 296 Monatsrettig' 143, 211
Montagnaeu 356 Seite Montbretia 356 MoorrĂźben 104 Moorwurzeln
108, 211 Moo,sbeere s. Vacciaium . . 412 Moraea s. Pardauthus ....
300 Morina. 296 Morus 402 Moschuspflanze s. Mimulus 251
ISIottenkraut s. Plectranthus 360 MĂśhren 104, 209 Muehlenbeckia
356 Mukia 296 Musa 358 INIuscari 296 Muschia 358 Myojjonmi 358
Myosotis 251 Myrica 402 Myrsiphyllum s. Medeola 356 MjTtus 358,
402 N. Nachtkerze s. Oenothera 109, 298 Nacht viole s. Hesperis. . .
. 290 Naegelia (Gesneriaceae) . . . 333 Nandina. . 358 Narcissus 296
XTelken 243 Nelumbium (Wasserpflanze) 342 Nemesia 296
Nemophila 296 Nepenthes 358 Nepeta 193, 296 Nephrolepis (Farm)
331 Nerium 358 Nertera 358 Nicotiana 81, 296, 358 Nidularium
(Bromeliaceae) . 322 Nierembergia 296 Nigella 207, 298 Niphaea
(Gesneriaceae) . . . 333 Nolana 298 Nuesschen s. Eabinschen. . 130
Nuphar (Wasserpflanze) . . 342 Nijssbaum s. Inglaus 398 Nusskraut
206 Nycteriuia 298 Nvmphaea (Wasserpflanze) 342 Nyssa 402 o.
Obeliscaria 298 Obrrkoblrabi 102, 210 Obstbäume, Aussaat der 374
Ocinuun 186, 298 Odontoglossum (Orchideae) 33.8 Oekonomische,
medizinische u. technische Handelspflanzen . . 79 Oelwoidc s.
Klaeagnus .... 3;Âť4 Oenothera 109, 298 Okra 206 Olea 402 Oleander
s. Nerium 358 Olivenbaum s. Olea 402 Oncidium (Orchideae) 338
Ononis 298 Onopordou 298 Orchideen, Freiland- . . . 298 1.
tropische 338 Oreodaphne 402 Oreodoxa (Palmae) 339
Ornithogalum 298 Orobus 298 Osbeckia 358 Osniauthus s. Olea 402
Osmunda (Farrn) 331
419 Seite Ostrvii 402 Oxalis 298 Oxylobium 358
Oxydeiidrum s. Andromeda 386 Oxypetalum s. Tweedia . . . 366 P.
Paeonia 298, 402 Pak-Choi 205 Palafoxia 298 Palava 298 Paliurus
402 Palmbaumkohl 101 Palmen 339 Pampasgras s. Gynerium . . 288
Pancratium 358 Pandanus 339 Panicum 298, 358 Papaver 298, 300
Papierniaulbeerbaiim s. Broussonetia 388 Pappel s. Populus 404 11
schwarze (Malve) ... 81 Paprika 194 Papyrus (Wasserpflanze) . . 342
Parakresse 208 Pardanthus 300 Paspalum 300 Passiflora 300, 358
Passionsblume s. Passiflora 358 Pastinakwurzel. . . 108, 211
Paulownia 402 Pelarg-onium 341 Penuisetuin 30O Pensee s. Viola . .
264 Pentstemon 300 Peperomia 358 Perennirende Pflanzen, Aussaat
der 218 Perilhi 30O Periploea 402 Perlzwiebel 139 PerrĂźckenstrauch
s. Rhus . . 406 Persica s. Amygdalus 386 Petersilie 193, 211
Petersilienwurzel 109, 211 Pei-Tsai 205 Petunia 253 PfaflenhĂźtcheu
s. Evonymus 394 Pfeiler, spanischer . . . 194, 211 Pfefterkraut 187,
209 PfeiferkĂźmmel 206, 211 Pfefferminze 193 Pfeifenstrauchs.
Aristolochia 386 - s. Philadelphus ... 402 Pferdebohne 175
Pfingstrose s. Paeouia . 298, 402 Pfirsiche s. Amygdalus. . . . 386
Pflaume s. Prunus . .... 404 Pflaumenschlehe s. Prunus . 406
PflUcksalat 128 Phacelia 800 Phajus (Orchideae) 338 Phalacraea 300
Phalaenopsis (Orchideae) . 338 Phalangium s. Anthericum . 344
Phalaris 300 Phaseolus 166, 174, 300 11 Caracalla 358 Phegopteris
(Farrn) 331 Philadelphus 402 Phillyrea 4f)2 Philodendron (Aroideae)
. . . 319 Phleum 77 Phlomis s. Eremostachys . 284 Phlox Drummondi
. . . 255 •• ausdauernde 300 Seite Phoenix (Palniae) 339 Phorniiura
358 Photinia 404 Phvgelius 358 Phvllanthus 358 Phvsalis 207
Phvteuma 300 Phytolaca 208, 300 Picea s. Pinus 404 Pieris s.
Andromeda 386 Pilea 358 Pinielea 358 Piment-Pfeffer 194
Pimpernuss s. Staphylea 410 Pinipinelle 195, 211 Pinceneetitia
(Beaucarnea) . 346 Pinus 404 Piper 358 Pirus 404 1, s. Cydonia 392
Pissenlit 134 Pistacia 404 Pistia (Wasserpflanze) .... 342 Pitcairnea
(^Bromeliaceae) . . 322 Pittosporum 358 Plantago 136 Platanus 404
Platterbse 165 Platycerium (Farm) 331 Platvcodon s. Wahlenbergia
312 Platygonia 300 Platystemon 302 Plectojxiina (Gesneriaceae) .
333 Pleetranthus 358 Plumagekohl 101 Phimbago. . . .' 358 Poa 73-
77, 302 Podocarpus 404 Podolepis 302 Poineiana 358 Poinsettia 358
Polei 193 Polemonium 302 Polycarpa 404 Polvcolvmna 302 Polygala
358 Polygonum 302 Polvpodiura (Farrn) 331 Polystiehum (Farrn) 331
Poiitederia (Wasserpflanze) . 342 Populus .404 Porree 140, 211
Portulaca g'randiflora 'JĂśii Portulak, .Suppen- . . l!iri, 211
Potaiuogeton (Wasserpflanze) 342 Potentilla 302, 404 Pourretia
(Bromeliaceae) 322 Preissellieere s. Vacciniuni 412 Primula 257
Pritehardia (Palmae) 339 Protea 358 Prunella 302 Prunus 404, 406
Psidium 358 Ptelea 406 Pteris (Farm) 331 Pterocarya 406
Ptychosperma (Palmae) . . . 339 PufFtaohne 175, 211 Pulmonaria
.302 Pultenaea 358 Punica 358 Puva (Bromeliaceae) 322 Pvi-ethrum
302 Q. Seite Quecke 77 Quercus 406 Quitte s. Cydonia 392
Quittenmispel s. Cotoneaster 392 R. Rabinschen 130, 211 Badies
14::?, 211 Raigras 75 — 77 Raiufarrn 208 Rain weide s. Ligustrum. .
. 4(X) Rainondia 302 Rankenspinat 205 Rauuneulus 302 Rajibanus
caudatus 144 Raiiliiolepis 358 Rapunzel (Rabinschen). . . . 130
Bapunzelwurzel . 110, 211 Rapontikawtirzel 109, 211 Uaseiikanten-
lNIisehuiig. ... 76 Basenpflauzen 67 Rauke 136 Raute 199 Ravenala
358 Reidia 358 Reisspinat 149 Reseda 261 Retinospoi'a 406 Rettig-
142, 211 Rhabarber 116, 211 ■. s. RLeum 302 Rhaumus 406 Rhapis
(Palmae) 339 Rheuni 115, 302 Rliodanthe 302 Rhodochiton 358
Rhododendron 337 Rhodora 406 Rhodotypus 406 Rhus 406
Rhyiiehncariia 302 Rhyiulios]ieriuu)n 358 RhyditdphyUum
(Gesneriaceae) 333 Ribes 408 Richardia 362 Ricinus 302 Riesenkohl
101 Ringelblume S.Calendula 206, 276 Rili|jenkohl . . 97
Rippenuiangold 146 Rispengras 7.5 — 77 Rittersporn s.Delphinium
241, 280 Rivina 362 Robinia 408 Rocambol 139 Rochea 862 Rogiera
362 Romneva 302 Rondeletia 362 Rosauowia (Gesneriaceae) . . 333
Rosen, deren Anzucht aus Samen 378 Rosenkohl 99, 212 Itosmarin
195, 212 Kosskastanie s. Aesculus 384 Rothe RĂźben 119 Rotbkraut
95 RĂśmischer Salat 126 RĂśniischkohl 146, 211 Rubus 408 Ruchgras
77 Rudbeckia 302 Ruellia 362 Rumex 149, 304 Runkeln 121 27*
420 Seite Ruscus 408 Russelia 362 Rutabaga 103 Buben
117—119, 212 Rübstiel 119 Rüster s. Ulmus 410 s. Sabal (Palmae)
339 Sabbatia 304 Saccharum 804 Saccolabium (Orchideae) . . 338
Säckelbluuie s. Ceanothus . 390 Sagittaria (Wassei'iiflanze) . . 342
Satjus (Palmae) 339 Salat 122, 126, 212 SalatrĂźben 119, 212 Salbei
196, 212 .1 s. Salvia 304, 362 Salisburia 408 Salix 408 Salpittlossis
304 Salvia 196, 304, 362 Sambucus 408 Samuitveilcheu s. Viola . . .
264 Sauddorn s. Hipijophae . . . 398 Sauguisorba 304 Santolina 350,
362 Sanvitalia 304 Saponaria 304 Sarothamuus s. Genista . 396
Sarraeenia ( W^asserpflanze) . 342 Saturei 187 Saul)0bne 175
Sauerampfer 148, 212 Saueribini s. Berberis .... 386 Sauerklee s.
Oxalis 298 Sauerkraut 95 Sauroniatum (Aroideae) . . . 319
Savoyerkohl 98, 212 Saxifraga 304, 362 Scabiosa 304 Schafgarbe 78
Schafmäulchcn 130, 211 Selialotteii 139, 212 Seheeria
(Gesueriaceae) . . . 333 Schief blatt s. Begonia .... 320 Schinus 408
Schizauthus 304 Schiz
421 Seite Torenia 366 Torreya 410 Tournefortia 308
Trachelium 310 Trachyraene 310 Tradescautia 310, SfjG Ti-apa
(Wasserpflanze) .... 842 Traubenbirne s. Amelancbier 384
Traubenkirsche s. Prunus . 406 Treibsalate 126 Tricholaena 310
Trichopilia (Orchideae) . . . . 338 Trichosanthes 310 Tricyrtis 310
Trifolium 76, 310 Tripmadam 208 Tripsacum 810 Tristania 366
Triticum repens 77 Tritoma 366 TrolUus 310 Trompetenbaum s.
Catalpa . 388 Troncliuda-Kohl 97 Tropaeolum 135, 310, 366 TiĂźipa
310 Tulpenbaum s. Liriodendron 400 Tunica 310 Tupa 366 Tumera
366 Tweedia 366 Tydaea (Gesneriaceae) .... 333 u. Ulex 410 Ulmus
410 Umbilicus 310 Unform s. Amorpha 884 Ungnadia 412 Uniola 310
Unterlcohlrabi 103, 210 Urania s. Eavenala 366 V. Vaccinium 412
Valeriana 79, 310 Vallisneria (Wasserpflanze) . 342 Vanda
(Orchideae) 338 Vanilla (Orchideae) 338 Veilchen s. Viola odorata. .
312 Veltheimia 366 Venidium 310 Veratrum 310 Verbascum 312
Seite Verbena 262, 366 Verbesina 366 Vergissmeinnicht 251
Veronica 312, 366 Verschaffeltia (Palmae) .... 339 Viburnum 366,
412 Vicia 312 Victoria (Wasserpflanze). . . 342 Vietsbohne 166
Villarsia (AVasserpflanze) . . 342 Viminaria 366 Vinca 366 Viola 264,
312 VirgUia 412 Viscaria 312 Vitex 412 Vitis 412 Vogelbeere s.
Sorbus 408 Vriesia (BromeUaceae) .... 322 w. Wacholder s.
Juniperus . . . 398 Wahlen bergia 312 Waitzia 312 Waldmeister 198,
212 Waldrebe s. Clematis 390 Walnuss s. Juglans regia . 398
Washingtonia (Palmae) . . . 339 Wasserpflanzen, Aussaat der 342
Wassermelonen . . 158, 211 WasserrĂźben 119 Wegdorn s. Rhamnus
406 Wegebreit 78 Weichsel s. Cerasus 390 11 s. Prunus 406 Weide
s. SaUx 408 Weidegräser 76 Weigelia 412 Weihnachtsrose s.
Helleborus 290 Weinstock s. Vitis 412 Weinraute 199, 212 Wein,
wilder, s. Ampelopsis 384 Weissdorn 380 Weissbuche s. Carpinus . . .
388 Weisse ßüben 117 Weissklee 76 Weisskraut 95 Weisswurzel 107
Wellingtonia 412 Welsche Zwiebel 139 Wermuth 199, 212 Whitlavia
312 Seite Wiesen 67 Wiesenfuchsschwanz 77 Wiesengräser 76
Wicken, wohlriech., s. Lathyrus 292 Wigandia 366 Winde s.
Convolvulus . 280, 348 " s. Ipomoea. . . . 290, 354
Winterheckezwiebel 139 Winterkohl 100 Winterkresse 135, 210
Wintersalat 122 Wiaterspinat 149 Winterzwiebel 139 Wirsing- 98,
212 Wistaria s. Glycine 396 Woodwardia (Farm) 331 AVruckeu 103,
210 Wulfenia 312 Wunderbaum s. Ricinus . . . 302 Wunderblume s.
MirabUis . 296 Wurm kraut 208 Wurzeln und Rllben . . 104 X.
Xeranthemum 312 Y. Yucca 366 z. Zanthoxylum 412 Zaubernuss s.
Hamamelis . . 396 Zauschneria 312 Zea 81, 312 Zenoljia s.
Andromeda .... 386 Zierg-räser, Aussaat der . 220 Zierkohle 101
Zinnia 266 Zipolle 136 Zittergras s. Briza 274 Zizyphus 412
ZuckerrĂźben 121 Zuckerwurzel 112, 212 ZĂźrgelbaum s. Celtis 390
Zweijährig-e Pflanzen, Aussaat der 216—218 Zwetsche s. Prunus
404 Zwiebel 136, 139, 212 Zwiebel- und KnollenGewächse des freien
Iiandes, Aussaat . 219—220 Zygopetalum (Orchideae) . . 338
The text on this page is estimated to be only 27.82%
accurate
422 Druckfehler und Verbesserungen. Seite Zeile 22 6 von
unten, zu lesen : zersetzbaren statt versetzbaren. 29 8 „ oben, ^ „
beigesellt statt bei.gestellt. 46 16 n V, „ V Spargelsaat statt
Spargelsalat. 47 16 11 unten, ^ - §. 35 statt 3G. 60 19 „ » n V
Nacktschuecken statt Nachtschnecken. 67 5 Âť oben, Âť v %. 8 statt
9. 71 19 )i unten, •• r> sind statt ist. 132 2 n oben,
The text on this page is estimated to be only 14.22%
accurate
Old ^ kk Date S I" ■U- Iid I Ui I O fo. 1 i'.--'!' CO. r'•£'
AGRICULTURE FORESTRY LIBRARY k::ii X 1 Lt.i 1 .(•-1 f.... TUE
UNIVERSITY OF BRITISH COLIiMBIA t L L .. I
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Welcome to our website – the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
ebookfinal.com

More Related Content

PDF
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
PDF
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
PDF
Coastal Processes III 1st Edition G. R Rodriguez
PDF
The Sustainable World 1st Edition C A Brebbia
PDF
Island Sustainability Wit Transactions on Ecology and the Environment 1st Edi...
PDF
Coastal Processes Iii 1st Edition G R Rodriguez C A Brebbia Eds
PDF
Air Pollution Xvi Wit Transactions On Ecology And The Environment 1st Edition...
PDF
Coastal Processes III 1st Edition G. R Rodriguez
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Coastal Processes III 1st Edition G. R Rodriguez
The Sustainable World 1st Edition C A Brebbia
Island Sustainability Wit Transactions on Ecology and the Environment 1st Edi...
Coastal Processes Iii 1st Edition G R Rodriguez C A Brebbia Eds
Air Pollution Xvi Wit Transactions On Ecology And The Environment 1st Edition...
Coastal Processes III 1st Edition G. R Rodriguez

Similar to Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia (20)

PDF
Air Pollution Xix Transactions On Ecology And The Environment Wit Transaction...
PDF
Advances In Fluid Mechanics Vii Matiur Rahman C A Brebbia
PDF
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
PDF
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
PDF
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
PDF
Underground Spaces Design Engineering And Environmental Aspects Wit Transacti...
PDF
Computers in Railways XII Computer System Design and Operation in Railways an...
PDF
Monitoring Simulation Prevention And Remediation Of Dense And Debris Flow Iii...
PDF
Environmental Economics and Investment Assessment III 1st Edition K. Aravossis
PDF
Sustainable Chemistry Wit Transactions On Ecology And The Environment G Reniers
PDF
Disaster Management And Human Health Risk Iii Reducing Risk Improving Outcome...
PDF
Disaster Management And Human Health Risk Iii Reducing Risk Improving Outcome...
PDF
Materials Characterisation Iv Computational Methods And Experiments Wit Trans...
PDF
Energy And Sustainability 2 Wit Transactions On Ecology And The Environment 1...
PDF
Electrochemical Process Simulation Iii 1st Edition C A Brebbia
PDF
Sustainable Development And Planning V C A Brebbia E Beriatos
PDF
Energy And Sustainability Iii 1st Edition Y Villacampa A A Mammoli
PDF
Sustainable Irrigation Management Technologies And Policies Ii Y Villacampa E...
PDF
Computational Methods in Multiphase Flow IV 1st Edition A. A. Mammoli
PDF
Design Management Process and Information Issues Iced Issues v 1st Edition S....
Air Pollution Xix Transactions On Ecology And The Environment Wit Transaction...
Advances In Fluid Mechanics Vii Matiur Rahman C A Brebbia
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition...
Underground Spaces Design Engineering And Environmental Aspects Wit Transacti...
Computers in Railways XII Computer System Design and Operation in Railways an...
Monitoring Simulation Prevention And Remediation Of Dense And Debris Flow Iii...
Environmental Economics and Investment Assessment III 1st Edition K. Aravossis
Sustainable Chemistry Wit Transactions On Ecology And The Environment G Reniers
Disaster Management And Human Health Risk Iii Reducing Risk Improving Outcome...
Disaster Management And Human Health Risk Iii Reducing Risk Improving Outcome...
Materials Characterisation Iv Computational Methods And Experiments Wit Trans...
Energy And Sustainability 2 Wit Transactions On Ecology And The Environment 1...
Electrochemical Process Simulation Iii 1st Edition C A Brebbia
Sustainable Development And Planning V C A Brebbia E Beriatos
Energy And Sustainability Iii 1st Edition Y Villacampa A A Mammoli
Sustainable Irrigation Management Technologies And Policies Ii Y Villacampa E...
Computational Methods in Multiphase Flow IV 1st Edition A. A. Mammoli
Design Management Process and Information Issues Iced Issues v 1st Edition S....
Ad

Recently uploaded (20)

PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Computer Architecture Input Output Memory.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Trump Administration's workforce development strategy
PDF
International_Financial_Reporting_Standa.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
Paper A Mock Exam 9_ Attempt review.pdf.
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Computer Architecture Input Output Memory.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
Environmental Education MCQ BD2EE - Share Source.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
HVAC Specification 2024 according to central public works department
What if we spent less time fighting change, and more time building what’s rig...
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Trump Administration's workforce development strategy
International_Financial_Reporting_Standa.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
TNA_Presentation-1-Final(SAVE)) (1).pptx
Introduction to pro and eukaryotes and differences.pptx
Ad

Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia

  • 1. Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia - Downloadable PDF 2025 https://ebookfinal.com/download/mesh-reduction-methods-bem-mrm-xxxi-1st- edition-c-a-editor-brebbia/ Visit ebookfinal.com today to download the complete set of ebooks or textbooks
  • 2. Here are some recommended products that we believe you will be interested in. You can click the link to download. Boundary Elements and Other Mesh Reduction Methods XXXII Wit Transactions on Modelling and Simulation 1st Edition C. A. (Editor) Brebbia https://ebookfinal.com/download/boundary-elements-and-other-mesh- reduction-methods-xxxii-wit-transactions-on-modelling-and- simulation-1st-edition-c-a-editor-brebbia/ Air Pollution XVI Wit Transactions on Ecology and the Environment 1st Edition C. A. Brebbia https://ebookfinal.com/download/air-pollution-xvi-wit-transactions-on- ecology-and-the-environment-1st-edition-c-a-brebbia/ Advances in Photochemistry Volume 29 1st Edition Douglas C. Neckers https://ebookfinal.com/download/advances-in-photochemistry- volume-29-1st-edition-douglas-c-neckers/ Modelling in Medicine and Biology VIII Wit Transactions on Biomedicine and Health 1st Edition C. A. Brebbia https://ebookfinal.com/download/modelling-in-medicine-and-biology- viii-wit-transactions-on-biomedicine-and-health-1st-edition-c-a- brebbia/
  • 3. Methods for Reliability Improvement and Risk Reduction Michael Todinov https://ebookfinal.com/download/methods-for-reliability-improvement- and-risk-reduction-michael-todinov/ Vagabond Vol 29 29 Inoue https://ebookfinal.com/download/vagabond-vol-29-29-inoue/ Monitoring Simulation Prevention and Remediation of Dense and Debris Flow III Wit Transactions on Engineering Sciences 1st Edition C. A. (Editors) Brebbia https://ebookfinal.com/download/monitoring-simulation-prevention-and- remediation-of-dense-and-debris-flow-iii-wit-transactions-on- engineering-sciences-1st-edition-c-a-editors-brebbia/ Midwest Studies in Philosophy Volume XXXI Philosophy and the Empirical 1st Edition Peter A. French https://ebookfinal.com/download/midwest-studies-in-philosophy-volume- xxxi-philosophy-and-the-empirical-1st-edition-peter-a-french/ Security in Wireless Mesh Networks 1st Edition Yan Zhang https://ebookfinal.com/download/security-in-wireless-mesh- networks-1st-edition-yan-zhang/
  • 5. Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia Digital Instant Download Author(s): C. A. (Editor) Brebbia ISBN(s): 9781845641979, 1845641973 Edition: 1 File Details: PDF, 7.42 MB Year: 2009 Language: english
  • 7. THIRTY-FIRST WORLD CONFERENCE ON BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE Organised by Wessex Institute of Technology, UK Sponsored by International Journal of Engineering Analysis with Boundary Elements (EABE) J-T. Chen A.H-D. Cheng G. De Mey V.G. DeGiorgi E. Divo J. Dominguez G. Fasshauer A.N. Galybin L. Gaul G.S. Gipson M.S. Ingber D.B. Ingham M. Kanoh A.J. Kassab J.T. Katsikadelis V. Leitao G-R. Liu G.D. Manolis W.J. Mansur T. Matsumoto K. Onishi D. Poljak V. Popov H. Power P. Prochazka J.J. Rencis T.J. Rudolphi B. Sarler E. Schnack A.P.S. Selvadurai L. Ĺ kerget V. Sladek S. Syngellakis A. Tadeu J. Trevelyan W.S. Venturini O. von Estorff L.C. Wrobel T. Wu B. Yeigh S-P. Zhu BEM/MRM XXXI CONFERENCE CHAIRMAN C.A. BREBBIA Wessex Institute of Technology, UK
  • 8. WIT Transactions Editorial Board Transactions Editor Carlos Brebbia Wessex Institute of Technology Ashurst Lodge, Ashurst Southampton SO40 7AA, UK Email: carlos@wessex.ac.uk B Abersek University of Maribor, Slovenia Y N Abousleiman University of Oklahoma, USA P LAguilar University of Extremadura, Spain K S Al Jabri Sultan Qaboos University, Oman E Alarcon Universidad Politecnica de Madrid, Spain AAldama IMTA, Mexico C Alessandri Universita di Ferrara, Italy D Almorza Gomar University of Cadiz, Spain B Alzahabi Kettering University, USA J A C Ambrosio IDMEC, Portugal A M Amer Cairo University, Egypt S AAnagnostopoulos University of Patras, Greece M Andretta Montecatini, Italy E Angelino A.R.P.A. Lombardia, Italy H Antes Technische Universitat Braunschweig, Germany M AAtherton South Bank University, UK A GAtkins University of Reading, UK D Aubry Ecole Centrale de Paris, France H Azegami Toyohashi University of Technology, Japan A F M Azevedo University of Porto, Portugal J Baish Bucknell University, USA J M Baldasano Universitat Politecnica de Catalunya, Spain J G Bartzis Institute of Nuclear Technology, Greece A Bejan Duke University, USA M P Bekakos Democritus University of Thrace, Greece G Belingardi Politecnico di Torino, Italy R Belmans Katholieke Universiteit Leuven, Belgium C D Bertram The University of New South Wales, Australia D E Beskos University of Patras, Greece S K Bhattacharyya Indian Institute of Technology, India E Blums Latvian Academy of Sciences, Latvia J Boarder Cartref Consulting Systems, UK B Bobee Institut National de la Recherche Scientifique, Canada H Boileau ESIGEC, France J J Bommer Imperial College London, UK M Bonnet Ecole Polytechnique, France C A Borrego University of Aveiro, Portugal A R Bretones University of Granada, Spain J A Bryant University of Exeter, UK F-G Buchholz Universitat Gesanthochschule Paderborn, Germany M B Bush The University of Western Australia, Australia F Butera Politecnico di Milano, Italy J Byrne University of Portsmouth, UK W Cantwell Liverpool University, UK D J Cartwright Bucknell University, USA P G Carydis National Technical University of Athens, Greece J J Casares Long Universidad de Santiago de Compostela, Spain M A Celia Princeton University, USA A Chakrabarti Indian Institute of Science, India A H-D Cheng University of Mississippi, USA
  • 9. J Chilton University of Lincoln, UK C-L Chiu University of Pittsburgh, USA H Choi Kangnung National University, Korea A Cieslak Technical University of Lodz, Poland S Clement Transport System Centre, Australia M W Collins Brunel University, UK J J Connor Massachusetts Institute of Technology, USA M C Constantinou State University of New York at Buffalo, USA D E Cormack University of Toronto, Canada M Costantino Royal Bank of Scotland, UK D F Cutler Royal Botanic Gardens, UK W Czyczula Krakow University of Technology, Poland M da Conceicao Cunha University of Coimbra, Portugal A Davies University of Hertfordshire, UK M Davis Temple University, USA A B de Almeida Instituto Superior Tecnico, Portugal E R de Arantes e Oliveira Instituto Superior Tecnico, Portugal L De Biase University of Milan, Italy R de Borst Delft University of Technology, Netherlands G De Mey University of Ghent, Belgium A De Montis Universita di Cagliari, Italy A De Naeyer Universiteit Ghent, Belgium W P De Wilde Vrije Universiteit Brussel, Belgium L Debnath University of Texas-Pan American, USA N J Dedios Mimbela Universidad de Cordoba, Spain G Degrande Katholieke Universiteit Leuven, Belgium S del Giudice University of Udine, Italy G Deplano Universita di Cagliari, Italy I Doltsinis University of Stuttgart, Germany M Domaszewski Universite de Technologie de Belfort-Montbeliard, France J Dominguez University of Seville, Spain K Dorow Pacific Northwest National Laboratory, USA W Dover University College London, UK C Dowlen South Bank University, UK J P du Plessis University of Stellenbosch, South Africa R Duffell University of Hertfordshire, UK A Ebel University of Cologne, Germany E E Edoutos Democritus University of Thrace, Greece G K Egan Monash University, Australia K M Elawadly Alexandria University, Egypt K-H Elmer Universitat Hannover, Germany D Elms University of Canterbury, New Zealand M E M El-Sayed Kettering University, USA D M Elsom Oxford Brookes University, UK A El-Zafrany Cranfield University, UK F Erdogan Lehigh University, USA F P Escrig University of Seville, Spain D J Evans Nottingham Trent University, UK J W Everett Rowan University, USA M Faghri University of Rhode Island, USA R A Falconer Cardiff University, UK M N Fardis University of Patras, Greece P Fedelinski Silesian Technical University, Poland H J S Fernando Arizona State University, USA S Finger Carnegie Mellon University, USA J I Frankel University of Tennessee, USA D M Fraser University of Cape Town, South Africa M J Fritzler University of Calgary, Canada U Gabbert Otto-von-Guericke Universitat Magdeburg, Germany G Gambolati Universita di Padova, Italy C J Gantes National Technical University of Athens, Greece L Gaul Universitat Stuttgart, Germany A Genco University of Palermo, Italy N Georgantzis Universitat Jaume I, Spain P Giudici Universita di Pavia, Italy F Gomez Universidad Politecnica de Valencia, Spain R Gomez Martin University of Granada, Spain D Goulias University of Maryland, USA K G Goulias Pennsylvania State University, USA F Grandori Politecnico di Milano, Italy W E Grant Texas A & M University, USA S Grilli University of Rhode Island, USA
  • 10. R H J Grimshaw Loughborough University, UK D Gross Technische Hochschule Darmstadt, Germany R Grundmann Technische Universitat Dresden, Germany A Gualtierotti IDHEAP, Switzerland R C Gupta National University of Singapore, Singapore J M Hale University of Newcastle, UK K Hameyer Katholieke Universiteit Leuven, Belgium C Hanke Danish Technical University, Denmark K Hayami National Institute of Informatics, Japan Y Hayashi Nagoya University, Japan L Haydock Newage International Limited, UK A H Hendrickx Free University of Brussels, Belgium C Herman John Hopkins University, USA S Heslop University of Bristol, UK I Hideaki Nagoya University, Japan D A Hills University of Oxford, UK W F Huebner Southwest Research Institute, USA J A C Humphrey Bucknell University, USA M Y Hussaini Florida State University, USA W Hutchinson Edith Cowan University, Australia T H Hyde University of Nottingham, UK M Iguchi Science University of Tokyo, Japan D B Ingham University of Leeds, UK L Int Panis VITO Expertisecentrum IMS, Belgium N Ishikawa National Defence Academy, Japan J Jaafar UiTm, Malaysia W Jager Technical University of Dresden, Germany Y Jaluria Rutgers University, USA C M Jefferson University of the West of England, UK P R Johnston Griffith University, Australia D R H Jones University of Cambridge, UK N Jones University of Liverpool, UK D Kaliampakos National Technical University of Athens, Greece N Kamiya Nagoya University, Japan D L Karabalis University of Patras, Greece M Karlsson Linkoping University, Sweden T Katayama Doshisha University, Japan K L Katsifarakis Aristotle University of Thessaloniki, Greece J T Katsikadelis National Technical University of Athens, Greece E Kausel Massachusetts Institute of Technology, USA H Kawashima The University of Tokyo, Japan B A Kazimee Washington State University, USA S Kim University of Wisconsin-Madison, USA D Kirkland Nicholas Grimshaw & Partners Ltd, UK E Kita Nagoya University, Japan A S Kobayashi University of Washington, USA T Kobayashi University of Tokyo, Japan D Koga Saga University, Japan A Konrad University of Toronto, Canada S Kotake University of Tokyo, Japan A N Kounadis National Technical University of Athens, Greece W B Kratzig Ruhr Universitat Bochum, Germany T Krauthammer Penn State University, USA C-H Lai University of Greenwich, UK M Langseth Norwegian University of Science and Technology, Norway B S Larsen Technical University of Denmark, Denmark F Lattarulo Politecnico di Bari, Italy A Lebedev Moscow State University, Russia L J Leon University of Montreal, Canada D Lewis Mississippi State University, USA S lghobashi University of California Irvine, USA K-C Lin University of New Brunswick, Canada AA Liolios Democritus University of Thrace, Greece S Lomov Katholieke Universiteit Leuven, Belgium J W S Longhurst University of the West of England, UK G Loo The University of Auckland, New Zealand J Lourenco Universidade do Minho, Portugal
  • 11. J E Luco University of California at San Diego, USA H Lui State Seismological Bureau Harbin, China C J Lumsden University of Toronto, Canada L Lundqvist Division of Transport and Location Analysis, Sweden T Lyons Murdoch University, Australia Y-W Mai University of Sydney, Australia M Majowiecki University of Bologna, Italy D Malerba UniversitĂ  degli Studi di Bari, Italy G Manara University of Pisa, Italy B N Mandal Indian Statistical Institute, India Ü Mander University of Tartu, Estonia H A Mang Technische Universitat Wien, Austria G D Manolis Aristotle University of Thessaloniki, Greece W J Mansur COPPE/UFRJ, Brazil N Marchettini University of Siena, Italy J D M Marsh Griffith University, Australia J F Martin-Duque Universidad Complutense, Spain T Matsui Nagoya University, Japan G Mattrisch DaimlerChrysler AG, Germany F M Mazzolani University of Naples “Federico II”, Italy K McManis University of New Orleans, USA A C Mendes Universidade de Beira Interior, Portugal R A Meric Research Institute for Basic Sciences, Turkey J Mikielewicz Polish Academy of Sciences, Poland N Milic-Frayling Microsoft Research Ltd, UK R A W Mines University of Liverpool, UK C A Mitchell University of Sydney, Australia K Miura Kajima Corporation, Japan A Miyamoto Yamaguchi University, Japan T Miyoshi Kobe University, Japan G Molinari University of Genoa, Italy T B Moodie University of Alberta, Canada D B Murray Trinity College Dublin, Ireland G Nakhaeizadeh DaimlerChrysler AG, Germany M B Neace Mercer University, USA D Necsulescu University of Ottawa, Canada F Neumann University of Vienna, Austria S-I Nishida Saga University, Japan H Nisitani Kyushu Sangyo University, Japan B Notaros University of Massachusetts, USA P O’Donoghue University College Dublin, Ireland R O O’Neill Oak Ridge National Laboratory, USA M Ohkusu Kyushu University, Japan G Oliveto UniversitĂĄ di Catania, Italy R Olsen Camp Dresser & McKee Inc., USA E OĂąate Universitat Politecnica de Catalunya, Spain K Onishi Ibaraki University, Japan P H Oosthuizen Queens University, Canada E L Ortiz Imperial College London, UK E Outa Waseda University, Japan A S Papageorgiou Rensselaer Polytechnic Institute, USA J Park Seoul National University, Korea G Passerini Universita delle Marche, Italy B C Patten University of Georgia, USA G Pelosi University of Florence, Italy G G Penelis Aristotle University of Thessaloniki, Greece W Perrie Bedford Institute of Oceanography, Canada R Pietrabissa Politecnico di Milano, Italy H Pina Instituto Superior Tecnico, Portugal M F Platzer Naval Postgraduate School, USA D Poljak University of Split, Croatia V Popov Wessex Institute of Technology, UK H Power University of Nottingham, UK D Prandle Proudman Oceanographic Laboratory, UK M Predeleanu University Paris VI, France M R I Purvis University of Portsmouth, UK I S Putra Institute of Technology Bandung, Indonesia Y A Pykh Russian Academy of Sciences, Russia F Rachidi EMC Group, Switzerland M Rahman Dalhousie University, Canada K R Rajagopal Texas A & M University, USA T Rang Tallinn Technical University, Estonia J Rao Case Western Reserve University, USA A M Reinhorn State University of New York at Buffalo, USA
  • 12. A D Rey McGill University, Canada D N Riahi University of Illinois at Urbana- Champaign, USA B Ribas Spanish National Centre for Environmental Health, Spain K Richter Graz University of Technology, Austria S Rinaldi Politecnico di Milano, Italy F Robuste Universitat Politecnica de Catalunya, Spain J Roddick Flinders University, Australia A C Rodrigues Universidade Nova de Lisboa, Portugal F Rodrigues Poly Institute of Porto, Portugal C W Roeder University of Washington, USA J M Roesset Texas A & M University, USA W Roetzel Universitaet der Bundeswehr Hamburg, Germany V Roje University of Split, Croatia R Rosset Laboratoire d’Aerologie, France J L Rubio Centro de Investigaciones sobre Desertificacion, Spain T J Rudolphi Iowa State University, USA S Russenchuck Magnet Group, Switzerland H Ryssel Fraunhofer Institut Integrierte Schaltungen, Germany S G Saad American University in Cairo, Egypt M Saiidi University of Nevada-Reno, USA R San Jose Technical University of Madrid, Spain F J Sanchez-Sesma Instituto Mexicano del Petroleo, Mexico B Sarler Nova Gorica Polytechnic, Slovenia S A Savidis Technische Universitat Berlin, Germany A Savini Universita de Pavia, Italy G Schmid Ruhr-Universitat Bochum, Germany R Schmidt RWTH Aachen, Germany B Scholtes Universitaet of Kassel, Germany W Schreiber University of Alabama, USA A P S Selvadurai McGill University, Canada J J Sendra University of Seville, Spain J J Sharp Memorial University of Newfoundland, Canada Q Shen Massachusetts Institute of Technology, USA X Shixiong Fudan University, China G C Sih Lehigh University, USA L C Simoes University of Coimbra, Portugal A C Singhal Arizona State University, USA P Skerget University of Maribor, Slovenia J Sladek Slovak Academy of Sciences, Slovakia V Sladek Slovak Academy of Sciences, Slovakia A C M Sousa University of New Brunswick, Canada H Sozer Illinois Institute of Technology, USA D B Spalding CHAM, UK P D Spanos Rice University, USA T Speck Albert-Ludwigs-Universitaet Freiburg, Germany C C Spyrakos National Technical University of Athens, Greece I V Stangeeva St Petersburg University, Russia J Stasiek Technical University of Gdansk, Poland G E Swaters University of Alberta, Canada S Syngellakis University of Southampton, UK J Szmyd University of Mining and Metallurgy, Poland S T Tadano Hokkaido University, Japan H Takemiya Okayama University, Japan I Takewaki Kyoto University, Japan C-L Tan Carleton University, Canada M Tanaka Shinshu University, Japan E Taniguchi Kyoto University, Japan S Tanimura Aichi University of Technology, Japan J L Tassoulas University of Texas at Austin, USA M A P Taylor University of South Australia, Australia A Terranova Politecnico di Milano, Italy E Tiezzi University of Siena, Italy A G Tijhuis Technische Universiteit Eindhoven, Netherlands T Tirabassi Institute FISBAT-CNR, Italy S Tkachenko Otto-von-Guericke-University, Germany N Tosaka Nihon University, Japan T Tran-Cong University of Southern Queensland, Australia R Tremblay Ecole Polytechnique, Canada I Tsukrov University of New Hampshire, USA
  • 13. R Turra CINECA Interuniversity Computing Centre, Italy S G Tushinski Moscow State University, Russia J-L Uso Universitat Jaume I, Spain E Van den Bulck Katholieke Universiteit Leuven, Belgium D Van den Poel Ghent University, Belgium R van der Heijden Radboud University, Netherlands R van Duin Delft University of Technology, Netherlands P Vas University of Aberdeen, UK W S Venturini University of Sao Paulo, Brazil R Verhoeven Ghent University, Belgium A Viguri Universitat Jaume I, Spain Y Villacampa Esteve Universidad de Alicante, Spain F F V Vincent University of Bath, UK S Walker Imperial College, UK G Walters University of Exeter, UK B Weiss University of Vienna, Austria H Westphal University of Magdeburg, Germany J R Whiteman Brunel University, UK Z-Y Yan Peking University, China S Yanniotis Agricultural University of Athens, Greece A Yeh University of Hong Kong, China J Yoon Old Dominion University, USA K Yoshizato Hiroshima University, Japan T X Yu Hong Kong University of Science & Technology, Hong Kong M Zador Technical University of Budapest, Hungary K Zakrzewski Politechnika Lodzka, Poland M Zamir University of Western Ontario, Canada R Zarnic University of Ljubljana, Slovenia G Zharkova Institute of Theoretical and Applied Mechanics, Russia N Zhong Maebashi Institute of Technology, Japan H G Zimmermann Siemens AG, Germany
  • 14. Editor C.A. Brebbia Wessex Institute of Technology, UK M M M M Mesh esh esh esh esh R R R R Reduction eduction eduction eduction eduction M M M M Methods ethods ethods ethods ethods BEM/MRM XXXI BEM/MRM XXXI BEM/MRM XXXI BEM/MRM XXXI BEM/MRM XXXI
  • 15. Published by WIT Press Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com For USA, Canada and Mexico Computational Mechanics Inc 25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com British Library Cataloguing-in-Publication Data A Catalogue record for this book is available from the British Library ISBN: 978-1-84564-197-9 ISSN: (print) 1746-4064 ISSN: (on-line) 1743-355X The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher. No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. The Publisher does not necessarily endorse the ideas held, or views expressed by the Editors or Authors of the material contained in its publications. Š WIT Press 2009 Printed in Great Britain by Athenaeum Press Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. Editor: C.A. Brebbia Wessex Institute of Technology, UK
  • 16. Preface The success and vitality of Boundary Element research continues to surprise not only all newcomers to the technique but even researchers like myself who have been deeply committed to its development since the very beginning. The term Boundary Elements was coined in 1977 together with the methodology presented in a paper that I wrote with Jose Dominguez and which was published in the International Journal of Applied Mathematical Modelling. The paper was the culmination of an effort to link the then recent developments in finite elements with the boundary integral theory. This work set up the basis for the boundary element method as we know it, even providing the notation now widespread in the literature. It also consolidated a series of ideas related to mixed type variational statements, which were essential to pave the way for applications of boundary integral equations beyond the limitations of linearity. Boundary integral techniques were able to expand their range of applications through their interpretation in terms of BEM. This was the result of cross fertilisation between the Russian school, the mixed principles developed at MIT and the computational advances of the UK Group. The simplicity and elegance of BEM led to our awareness of the potentialities of the method and the realisation that integral equations were also open to experimentation and approximations. This was conducive to a new type of development, typical of which was the Dual Reciprocity Method, a totally different conceptual approach. DRM not only applied the novel idea of using localised particular solutions but also allowed for them to be approximated. The fortunate discovery that they worked well with radial basis functions was also of great importance for the development of a whole new generation of meshless methods.
  • 17. In parallel to the DRM developments, work was proceeding in other ways to transfer internal effects to the boundary using exact solutions, i.e. the Green’s functions themselves. The generalisation of that concept led to the development of the Multiple Reciprocity Method. The beauty of this method is that it led not just to meshless domains but that also bypassed the need to have any internal nodes as in the case of DRM. The limitation of requiring analytical expression for the internal terms led however to lack of sustained interest in the MRM, which was seen as less versatile than DRM. Many other approaches have been put forward following those basic ideas as evidenced by the numerous papers on meshless methods that continue to be published in the International Journal of Engineering Analysis with Boundary Elements. The next stage will be for one or more of the meshless methods to achieve maturity and become a practical tool, in much the same way as classical BEM. The papers published in this book dealing with mesh reduction methods demonstrate their continuous evolution and the possibility of having reliable and robust meshless techniques in engineering practice in the future. It is always a source of personal pleasure for me to see the way in which the original BEM ideas continue to develop in the hands of new researchers as well as our senior colleagues. The quality and originality of the papers cited in this book is a demonstration of the continuous evolution of BEM research. As Editor of this Volume, I am grateful to all contributors for the quality of their papers as well as to those colleagues who helped to review them. Carlos A. Brebbia New Forest, 2009
  • 18. Contents Section 1: Advanced formulations Multipole expansion BEM for simultaneous Poisson's equations T. Matsumoto, T. Takahashi & S. Taniguchi....................................................... 3 Numerical Green’s function for a two-dimensional diffusion equation C. A. B. Vasconcellos, M. A. C. Ferro, W. J. Mansur, F. S. Loureiro & J. P. L. Santos................................................................................................ 13 Equivalence between the Trefftz method and the method of fundamental solutions for Green’s function of concentric spheres using the addition theorem and image concept J. T. Chen, H. C. Shieh, J. J. Tsai & J. W. Lee .................................................. 23 On stress reconstruction in composite domains from discrete data on principal directions A. N. Galybin ..................................................................................................... 35 The boundary element method for the determination of nonlinear boundary conditions in heat conduction D. Lesnic, T. T. M. Onyango & D. B. Ingham ................................................... 45 FEM type method for reconstruction of plane stress tensors from limited data on principal directions J. IrĹĄa & A. N. Galybin...................................................................................... 57 Section 2: Advanced meshless and mesh reduction methods Meshless implementations of local integral equations V. Sladek, J. Sladek & Ch. Zhang...................................................................... 71
  • 19. Local and virtual RBF meshless method for high-speed flows S. Gerace, K. Erhart, E. Divo & A. Kassab....................................................... 83 The radial basis integral equation method for convection-diffusion problems T. T. Bui & V. Popov ......................................................................................... 95 A method of fundamental solution without fictitious boundary W. Chen & F. Z. Wang .................................................................................... 105 Extending the local radial basis function collocation methods for solving semi-linear partial differential equations G. Gutierrez, O. R. Baquero, J. M. Valencia & W. F. Florez.......................... 117 Three-dimensional unsteady heat conduction analysis by the triple-reciprocity boundary element method Y. Ochiai & Y. Kitayama ................................................................................. 129 Radial basis integral equation method for Navier-Stokes equations T. T. Bui & V. Popov ....................................................................................... 141 Efficient Boundary Element Method for a focused domain S. Takiguchi, K. Amaya & Y. Onishi................................................................ 151 Performance of GMRES for the MFS A. Karageorghis & Y.-S. Smyrlis..................................................................... 163 Section 3: Computational methods On the use of integrated radial basis function schemes in weighted residual statements for elliptic problems N. Mai-Duy & T. Tran-Cong ........................................................................... 175 A time domain Galerkin boundary element method for a heat conduction interface problem R. Vodička........................................................................................................ 187 Hierarchical matrices and adaptive cross approximation applied to the boundary element method with multi-domain governed by iterative coupling T. Grytsenko & A. Peratta ............................................................................... 199
  • 20. Section 4: Advanced structural applications Boundary element modelling of non-linear buckling for symmetrically laminated plates S. Syngellakis & N. Cherukunnath................................................................... 211 Effective properties of fibers with various ratios of phase stiffness P. ProchĂĄzka.................................................................................................... 223 Hybrid finite element method in supersonic flutter analysis of circular cylindrical shells F. Sabri, A. A. Lakis & M. H. Toorani............................................................. 233 Section 5: Damage mechanics and fracture Cohesive crack propagation using a boundary element formulation with a tangent operator E. D. Leonel & W. S. Venturini........................................................................ 247 Stress field in the Antarctic tectonic plate: elastic and plastic models P. Haderka, A. N. Galybin & Sh. A. Mukhamediev ......................................... 257 Section 6: Dynamics and vibrations Velocity-based boundary integral equation formulation in the time domain G. D. Manolis & C. G. Panagiotopoulos......................................................... 271 Trefftz collocation for frequency domain elastodynamic problems V. M. A. LeitĂŁo, B. Sensale & B. S. Rodriguez ................................................ 281 On the breathing frequencies computation using the Reissner and the Mindlin model L. Palermo Jr................................................................................................... 293 Free vibration analysis of a circular plate with multiple circular holes by using the addition theorem and direct BIEM W. M. Lee & J. T. Chen ................................................................................... 303 Free vibration analysis of thin circular plates by the indirect Trefftz method A. Ghannadi-Asl & A. Noorzad ....................................................................... 317
  • 21. Section 7: Fluid flow Meshless, BE, FE and FD methods analysis of the flow and concentration in a water reservoir K. Sakamoto, M. Kanoh & T. Kuroki............................................................... 331 Natural convection around a 3D hotstrip simulated by BEM J. Ravnik & L. Ĺ kerget..................................................................................... 343 Boundary integral method for Stokes flow with linear slip flow conditions in curved surfaces C. Nieto, M. Giraldo & H. Power.................................................................... 353 Development of a Boundary Element Method-based numerical wave tank technique for the prediction of nonlinear wave kinematics and dynamics around offshore structures H. G. Sung ....................................................................................................... 363 Section 8: Electrical engineering and electromagnetics Motion of nanoscale contaminant particle in air bearings under electrostatic charges: a case study B. W. Yeigh, R. H. Polwort & G. S. Gipson..................................................... 377 Boundary element modeling of horizontal grounding electrodes using the set of generalized telegrapher’s equations D. Poljak, K. El Khamlici Drissi & R. Goic .................................................... 387 Provisional study on the 3-D Cauchy condition surface method for fusion plasma shape identification M. Itagaki, T. Maeda, A. Wakasa & K. Watanabe........................................... 397 Author Index.................................................................................................. 405
  • 24. Multipole expansion BEM for simultaneous Poisson’s equations T. Matsumoto, T. Takahashi & S. Taniguchi Department of Mechanical Science and Engineering, Nagoya University, Japan Abstract A boundary element method for simultaneous Poisson’s equations is presented to solve large scale problems governed by Poisson’s equation using multipole expan- sions of the fundamental solutions. Original Poisson’s equation is approximated a set of Poisson’s equations and an integral representation for the set of differential equations is derived. The fundamental solutions of the coupled Poisson equations consist of the fundamental solution of Laplace’s equation, biharmonic function, and triharmonic function. Multipole expansions of these fundamental solutions are used in the evaluation of the boundary integral equations. The effectiveness of the present formulation is demonstrated through a numerical example. Keywords: Poisson’s equation, fundamental solution, multipole expansion, source distribution. 1 Introduction Poisson’s equation is a good starting point for analyses of potential problems with inhomogeneous material parameters [1]. The integral representation of Poisson’s equation has a domain integral term originated from the source term. To avoid the domain discretization, the domain integral can be converted to boundary integrals by means of the dual reciprocity method (DRM) [2] or the multiple reciprocity method (MRM) [3]. In the DRM, the value of the source term at an arbitrary point in the domain is approximated with a linear combination of radial basis functions (RBF) whose collocation points are placed in the domain and on the boundary. In order to convert the domain integral term originated from the source term of Pois- son’s equation, particular solutions corresponding to the radial basis function are required. Also, the coefficients of the source term approximation have to be deter- Mesh Reduction Methods 3 Š 2009 WIT Press WIT Transactions on Modelling and Simulation, Vol 49, www.witpress.com, ISSN 1743-355X (on-line) doi:10.2495/BE090011
  • 25. mined in advance by collocation method which requires fully populated matrix to solve and is unstable for large scale problems. On the other hand, MRM requires particular solutions for the sources corresponding to a series of fundamental solu- tions. By using these particular solutions, the original domain integral term can be converted to a series of boundary integrals and a domain integral. Ochiai pro- posed a variant of MRM, called triple reciprocity BEM [4, 5], which applies the reciprocity formulation only three times. In this method, instead of using the cor- rect values of the derivatives of the source, they are roughly estimated to be zero. The error of the derivative of the source on the boundary is modified by using the values of the source at collocation points in the domain instead. For large-scaled problems, the fast multipole methods (FMM) may also be uti- lized for those governed by Poisson’s equation. To circumvent the evaluation of the domain integrals in applying FMM for Poisson’s equation, MRM based approach is more straight-forward in applying FMM, because only the multipole expan- sions of the higher order fundamental solutions found in the boundary integrals are required in the process. In this study, we consider Poisson’s equation and approximate the source term in terms of simultaneous coupled Poisson’s equations. Using the fundamental solu- tions of the simultaneous Poisson’s equations, a set of boundary integral equations, equivalent to those proposed by Ochiai, is derived. The fundamental solutions of the coupled Poisson equations consist of the fundamental solution of Laplace’s equation, biharmonic function, and triharmonic function. Multipole expansions of them are used in the evaluation of the boundary integral equations. The resulting set of boundary integral equations are evaluated numerically by using the mul- tipole expansions of the fundamental solutions. The effectiveness of the present formulation is demonstrated through a simple numerical example. 2 A boundary only integral formulation for Poisson’s equation Consider a potential problem governed by Poisson’s equation ∇2 φ1(x) + φ2(x) = 0, x ∈ V (1) with the boundary condition φ1(x) = φ̄1(x), x ∈ Sφ, (2) q1(x) = ∂φ1(x) ∂n = q̄1(x), x ∈ Sq, (3) where V is the domain and S = Sφ ∪ Sq is its boundary, φ1(x) denotes the poten- tial and φ2(x) the source term. Also, q1(x) = ∂φ1(x)/∂n is the outward normal derivative of φ1(x) to the boundary; φ̄1 and q̄1 are given functions prescribed on the specified boundaries, respectively. We assume that the source term φ2(x) is also assumed to be known both in V and on S. 4 Mesh Reduction Methods Š 2009 WIT Press WIT Transactions on Modelling and Simulation, Vol 49, www.witpress.com, ISSN 1743-355X (on-line)
  • 26. Another Random Scribd Document with Unrelated Content
  • 27. 409 Aussaat: 'S O 'S : Erde gleich nach der Ernte oder im April säen, in letzterem Falle <:iif n="" mnunt="" vorher="" stratificieren.="" x="" s="" zeigen="" oft="" abweichungen="" von="" der="" matt-riijlaiize="" indem="" selbst="" wilde="" arten="" leicht="" bastarde="" bilden.="" aussaat="" am="" besten="" sofort="" nach="" ernte="" da="" die="" samen="" sehr="" schnell="" keimkraft="" verlieren.="" beim="" mit="" etwas="" sand="" zu="" vermischen.="" s.="" nigra="" ist="" sowohl="" zier-="" als="" obststrauch="" und="" tuird="" auch="" medicinisch="" venvendet.="" aller="" d="" nur="" schwach="" bedeckt="" iverden.="" sie="" werden="" entweder="" gleich="" im="" herbst="" ges="" oder="" besser="" stratificiert="" folgenden="" fr="" in="" leichte="" erde="" lieben="" frischen="" boden="" schatten.="" bei="" uns="" kallhauspflanze="" sch="" grevillea="" baum="" dessen="" bl="" einen="" starken="" pfeffergeruch="" entwickeln.="" besonders="" japanische="" conifev="" .="" nadeln.="" stets="" schattig="" halten.="" t="" heriiir:irh.ii.="" aher="" sp="" unbedingt="" auspflanzen.="" liebt="" kr="" sandige="" hoidr.t="" um="" f="" feuchtigkeit.="" jmmergr="" reich="" stacheln="" bewehrte="" kletterpflanzen="" an="" b="" niedrigen="" mauern="" ziehen.="" k="" den="" w="" lagen="" freien="" gezogen="" werden.="" das="" freie="" japonica="" geeignet.="" herrlicher="" zierlichen="" gefiederten="" reichen="" nicht="" vor="" april-mai="" stunden="" wasser="" einweichen.="" kleine="" wie="" aucuparia="" behandeln="" verwenden.="" americana="" hat="" dunklere="" gr="" beeren.="" hybrida="" intermedia="" samenpflanzen="" daher="" art="" zur="" schm="" laubholzgeb="" auf="" kalkboden="" durch="" seine="" unterhalb="" weissen="" grossen="" verdient="" so="" mehr="" ani="" er="" trockenem="" steinigem="" noch="" gut="" gedeiht.="" aucuparia.="" ziert="" korallenrothen="" vogelberen="" welche="" vielen="" v="" hochwild="" nahrung="" dienen.="" april="" december="" straf="" ificiertem="" h="" giessen.="" wird="" hier="" fruchtbaum="" be-ionders="" weinbergen="" angebaut="" gleicht="" gemeinen="" eberesche="" sind=""
  • 28. welcher="" vorz="" nutzholz="" m="" liefert="" mispelartigen="" geniessbar="" sind.="" hochrothe="" herbstf="" reichbl="" gegen="" empfindlicher="" strauch="" warme="" lage="" una="" trockenen="" boden.="" gew="" erde.="" vergl.="" genista.=""/>
  • 29. 410 Familie. a 2 Ăź Obst: d S 's p: i-l 3 o tß .ÂŁ bĂś 3 C cn Zj ÂŤ'S Namen. 'S ÂŁ P5 o c o 'S o n CO 'S s 1 2 3 4 5 6 7 8 9 10 11 12 13 Spiraea Rosaceae X X X Staphylea, Pimpernuss Celastrineae X X Sterculia Bombaceae X X X Styrax Styraceae X X X X Symphoriearpus Caprifoliaceae X X - — Ssrringa, Flieder Oleaceae X X Tamarix, Tamariske Tamariscineae X X X Taxodium, Snmpfcypresse und ) Eil )encypresse / Coniferae X X X X X Taxus, Eibenbaum n X X X Thuja und Biota, Lebensbaum. . . . n X X X X Thujopsis )) X X X "Tilia, Linde Tiliaceae X X Torreya Coniferae X X X X Ulex, Stechginster Papilionaceae X X X Ulmus, Ulme, RĂźster Ulmaceae X
  • 30. 411 Aussaat: o a a -Ö O •-^ 3"" |IH Eignet sich: 'S a p 5 S in das Land 5 o 1 ÂŤ Ca s 'S S "3 a & ■ o 2 'S "u s Besondere Bemerkungen. 14 15 16 17 18 19 20 21 22 X X i-8 X X Die.se. Gattung ist reich an schĂśnhlĂźhenden Arten. Viele Arten eignen sich zu Zierhecken. Einige, z. B. lanceolata, sind WintergrĂźn. Um sich schĂśn zu enttrickein, verlangen viele S. nahrhaften, dabei lockeren Boden und Schatten, so z. B. callosa, conjmhosa, ariaefolia, sorhifoUa. Andere ivie S. cana, hypericifolia, Thunhergi, gedeihen auch auf trockenen Lagen. Aussaat am besten im April in leichter Erde, mit einer dĂźnnen Schicht Haideerde bedecken. X X 5—6 X X X SchĂśn blĂźhende hohe Sträucher, welche in jedem Boden gedeihen. St. colchica ist eine gute Treibpflanze. Bei grĂśsserem Betriebe werden die Samen im October stratificiert und erst im zweiten FrĂźhjahr ausgesäet. X X X Im SĂźden ein schĂśner Baum von der Tracht einer Platane, kann nĂśrdlicher nur im Kalthause gezogen werden. Verlangt jährliches Verpflanzen, sehr nahrhaften Boden und während der Vegetation sehr reichliche Bewässerung. Aussaat im April, gegen SpätfrĂśste zu schĂźtzen. X X 5— (3 Zärtliche Sträucher oder kleine Bäume, welche nur in den wärmsten Lagen von Mitteleuropa im Freien aushalten. X X X Sehr verbreitete Farksträucher, welche ohne jede Pflege gedeihen. Zieren besonders durch die iveissen, bei einigen Species rothen FrĂźchte, welche sich den ganzen Winter hindurch halten. S. mexicana (montana) verlangt Bedeckung im Winter. X 5—6 X X X Lieben kräftigen Bode7i und gedeihen sowohl im Schatten wie der vollen Sonne ausgesetzt. Das Treiben der S., besonders S. vulgaris purpurea bildet die Specialität einiger grossstädtischeii Gärtnereien. Zur Aussaat stratificiert man den Samen sofort nach der Ernte und säet im folgenden März. X X 8- 9 X Fein belaubte, schĂśn blĂźhende Sträucher, welche besonders auf feuchtem Sandboden gut gedeihen tuid sich dem Schnitt willig unterwerfen. Der feine Samen darf nur schwach bedeckt werden. X X X Theils Blätter abwerfend (T. distichum) , theils WintergrĂźn (T. sempervirens) . Ersterer gedeiht am besten auf nassem Boden und ist winterhart, letzterer, Taxusähnlich, leidet oft von der Kälte. Aussaat in gute Haideerde, oft leicht bespritzen. X X X X X Die T.
  • 31. sind die härtesten und in Bezug auf Boden und Lage mit wenigen Ausnahmen anspruchslosesten Coniferen. Bei grossem Betrieb stratificiert man den Sam.en gleich nach der Ernte und säet im zweiten FrĂźhjahr danach. Aussaat gegen VĂśgel schĂźtzen. X X X X X Die nordamerikanischen Arten, von denen einige grosse Bäume bilden, sind ganz winterhart, die zur Gattung Biota gehĂśrenden orientalischen L. leiden mitunter in kalte7i Wintern. Die zahlreichen Varietäten erzeugen sich nicht immer echt aus Samen. Viele nur strauchartig. T. occidentalis giebt prächtige Hecken. Aussaat in leichte Erde, schattig halten, häufig spritzen, gegen VĂśgel schĂźtzen. Verql. §. 2.35. X X X HĂśchst ornamentale, in einigermassen geschĂźtzter Lage harte Coniferen von leichter Cultur. Lieben leichte, durchlassende, dabei nahrhafte Erdmischung und fĂźrchten qrosse Feuchtigkeit. Aussaat -wie bei Thuja. X X 6-7 X X X Die Samen der Linden brauchen lange Zeit zum Keimen. In leichte Erde säen, fĂźr grossen Betrieb erst im zweiten, der Einschichtung im Septeviher folgenden FrĂźh jähr. Junge Sämlinge nicht nur gegen SpätfrĂśste, sondern auch gegen einen sehr kleinen Pilz, welcher sich auf die Blättchen setzt, schĂźtzen. Letzteres geschieht bei trockenem, sonnigem Wetter durch Bestreuen der Pflänzchen mit SchivefelblĂźlhe. X X Ausser T. grandis ziemlich harte kleine Bäume, theils aus Nordamerika, theils aus Japan. Sie gedeihen nicht gut in TĂśpfen, am besten im Schutz und Schatten grĂśsserer Nadelholzbäume. Man behandelt die grossen Samen, welche schnell die Keimkraft einbĂźssen und lange liegen, wie bei Cedrus Deodara (S. SflO) angegeben. X X 2-4 6—7 X X Auf Sand in der Nähe der KĂźsten wild wachsend oder zu Hecken angepflanzt, erfriert U. doch oft in harten Wintern bis zum Boden oder an einzelnen Aesten. FĂźr abschĂźssige Terrains und trockene, sterile Boden besonders nĂźtzlich. Aussaat nicht vor Ajiril-Mni in Icifhte Erde. X 3 4 X X Entwickelt sich lK.s,i,ii/rr.s .srlU',, auf gutem, tiefem, feuchtem Boden. Der Samen reift schon im Mai und Juni und wird am besten dann spätestens Juli - August in gute, leichte Erde gesäet, nur schwach bedeckt und stets feucht gehalten.
  • 32. 412 Familie. e s c Obst: 3: a 5 o II p Namen. o 5 o o 'S o c 1 2 3 4 5 6 7 8 9 10 11 12 13 Ungnadia Hippocastaneae X X X i Vaccinium macrocarpum, Cran-^ beere, amerikanische Moos-j beere | Ericeae X X X X Myrtillis, Heidelbeere, Bickbeere n X X X i Oxycoccos, Moosbeere n X X X Vitis idaea, Preisseibeere, Krons- beere / V X X X X amerikanische Arten Âť X X X Viburniim, Wasserholder, Schnee-) ball ; Caprifoliaceae X X Virgilia (Cladrastis), f4elbholz .... Papilionaceae X X X Vitex, Keuschbaum Verbenaceae X X X Vitis vinifera, Weinstock Ampelidcac X X X X X X X X andere Arten n X X Weigelia (Diervilla) Caprifoliaceae X X Wellingtonia gijiantea (Sequojal . Coniferae X Zanthoxylum, Gelbholz, Zahnwehholz Zanthoxyleac X X X X X X Zizjrplius volubilis (Berchemia), ^ (Jujuba) / Rhamneae X X X X
  • 33. 413 Aussaat: o ■Ö o 3 Ăś Eignet sich: 0 a p (3 s in das Land o a 6 h 'S a S 'S B o, . AM u ÂŤ 0-% i5 IS o Besondere Bemerkungen. 14 15 16 17 18 19 20 21 22 X X 7-8 WeissliehhlĂźheiifl mit gefiederten Blättern u?id von schĂśnem Wuchs, hei uns jedoch sich iiirhl roll entwickelnd. Liebt lockere, dabei nahrhafte Erde. X X 5— G Ein BoäciistrKuch , welcher Aehnlichkeit mit der Preissei- undMoosheere hat. Die grossen, lange haltbaren FrĂźchte Ăźbertreffen an Wohlgeschmack die einheimischen Arten. KĂśnnen nur auf hewässerharen Plätzen in Humuserde gezogen werden. Die Aussaat dieser MoorbeetX 5—6 Bekannter kleiner Strauch, welcher nur auf Waldboden gezogen werden kann. X 5—6 Die Moosbeere, welche auf sandigem Moorboden, besonders an Grabenrändern wächst und an solchen in sonniger Lage gezogen werden kann, Ăźbertrifft die ähnliche Preisseibeere an Wohlgeschmack. in Haideerde zu geschehen, analog den in §§. 224-228 geX 5—6 Kann auf Sandboden in lichten Nadelwäldern, besonders hoch im Gebirge gezogen werden. Verlangt Luft und Sonne , um ihre Beeren zu reifen. gebenen Andeutungen. X X 5—6 Als Zierpflanzeri angebaute V. sind in den Gärten selten, und daher ivenig erprobt. Sie verlangen ein Moorbeet, einige Arten Cultur im Kalthause. X X 5—6 X X Beliebte, herrlich blĂźhende Sträucher, auch fĂźr Schatten und Unterholz geeignet. Gedeihen in jedem etwas frischen Boden. Die schĂśnste Art ist V. pUcatum, als welcher auch fälschlich V. dentatum vorkommt. Die aus China stammenden Species verlangen leichte Bedeckung im Winter. V. Tinus s. S. 3GG. FĂźr Aussaaten in grĂśsserem Massstabe stratificiert man den Samen unmittelbar nach der Ernte und säet erst im zweitfolgenden FrĂźhjahr. X X 6-7 X Bei uns noch ungenĂźgend bekannter, sehr empfehlenswerther schĂśner kleiner Baum mit grossen, akazienähnlichen Blättern und grossen, weissen Bliithen in hängeriden Trauben. Liebt guten kräftigen Boden. Aussaat im April bis Mai in guter Gartenerde. X X 7-9 X Erfrieren bei uns oft bis zum Boden und verpflanzen sich schwer. Warme Lage, sandige Erde. Aussaat im April. X X X Aussaat ergiebt meistens frĂźher reifende Trauben, als sie die Mutterpflanze liefert. Man verwendet nur Samen gutgeformter Beeren von mustergiltigen
  • 34. Trauben. Zur FrĂźhjahrsaussaat legt man die reinen Samen vorher 1 bis 2 Tage in Wasser. Die Freilandsaat wird, um die Feuchtigkeit zu erhalten, leicht mit Stroh bedeckt. Die Sämlinge einzeln in TĂśpfe oder in die sonnigste Lage des Gartens verpflanzen und jährlich beschneiden. Von gewissen Sorten gewonnen, kĂśnnen dieselben schon im 4. Jahre tragen, oft dauert dies jedoch 8 — 10 .Jahre. Vergl. §. 2.36. X X Unter den nordamerikanischen wilden Reben sind sehr schĂśne, zum Theil mit essbaren Beeren; sie eignen sich vorzĂźglich fĂźr Wände, Spaliere und Lauben und an einzeln stehende Bäume. V. riparia mit sehr wohlriechenden IJlĂźthrn. X X 5-7 X X Die W. gehĂśren zu den prächtigsten BlĂźthensträuchern, welche indessen m luiinrlien Gegenden durch frĂźhe FrĂśste leiden. Sie lassen sich, in TĂśpfe i/rbnichf, gut treiben. Lieben lockeren, ziemlich nahrhaften Boden. Aussaat März- April. Durch häufiges Spritzen stets feucht erhalten. W. (Calyptrostigma) Middendorfiana ist zärtlicher und muss erst im Topfe erstarken. X — X X X An vielen Orten erfrierend, hat sich dieser schĂśne Baum doch an aiideren selbst in den kältesten Wintern gut erhalten und bildet in einigen Gegenden bereits hohe Bäume. Bedeckung nĂźtzt wenig. Aussaat wie bei Retinospora. Verpflanzt sich nur gut, wenn mit starkem Baken versehen, liebt lockeren, sandigen, dabei nahrhaften Boden. In TĂśpfen heranziehen. X X Wenig cultivirt , dicke, fnit Stacheln besetzte Zweige und eschenähnliche Blätter. Lieben kräftigen, feuchten Boden. X J X In SĂźd-Europa häufig anzutreffender Baum mit essbaren FrĂźchten. Liebt leichten sandigen Boden und verlanrjt im Freien die sĂźdlichste Lage. Die Samen sind sehr hart und liegen ein Jahr in der Erde, wenn sie nicht ebenso lange stratificiert werden.
  • 35. The text on this page is estimated to be only 29.24% accurate Alphabetisches Register. Die in starker Schrift o"edruckten Artikel sind besonders behandelt. A. Seite Abelia 344 Abies s. Pinus 404 Abobra 268 Abronia 2G8 Absinth 199 Abutilou 344 Acacia 344, 384 11 s. Kobinia 408 Acanthus 268 Acer 384 Achillea 78, 268 Achimeues (Gesiieriaceae) . . 333 AckerrĂźben 119 Acouitum 268 Acroclinium 268 Acrocomia (^Paltuac) 339 Acrosticlium (Farrn) . ... 331 Actaea 268 Adansonia 344 Adenopliora 268 Adiaiitiim (Fami) 331 Adlumia 268 Adouis 268 Aeelimea (Bromeliaccae) . . 322 Aerides (Orchideae) 338 Aeschyuautlius 344 Aescuius 384 Aethionema 268 Aethusa 193 Agapanthiis ' . 344 Agaricus edulis 201 Agarista s. Andromeda . . . 386 Agave 344 Ageratum 268, 270 AgroBtenima 270 AgTOstis 73, 270 Ahlkirsche s. Prunus 406 Ahorn s. Acer 3B4 Allauthus 384 Akelei s. Aquilegia 272 Alant 185, 209 Alisnia (Wasserpflanzen) . . 342 Alkekengi . . • 207 Allauianda 344 Alliuin 136, 270 Alnus 384 Alocasia (Aroideae) 319 AloĂź 344 Alonsoa 270 Alopecurus 77 AlĂźvsia s.Vorbena citriodora 366 Alpenveilchen s. Cyclanien . 330 Alsine 270 Alsophila (Farm) 331 Alstroemeria 270 Althaea rosea fl. pl. . . . 222 Alvssiun 270 Amarantus 205, 223 Amaryllis 318 Amelancliicr 384 Aniuiobiuiu 270 Auiorpha 384 Amorphophallus 344 Seite Atupelopsis 384 Ampfer 148 Amygdakis 384, 386 Anagallis 270 Ananassa (Bromeliaceae) . . 322 Anarrhinum 270 Anchusa 270 Andorn 207, 209 Andromeda 386 Andropogon 270 Androsaee 270 Anemone 270 Ang-elika 186, 209 AuKelunia 344 Al.- i(JlJteri^^ (Farrn) 331 Anis 186, 209 Auuuellen, Aussaat der . 213 Anomatheca 270 Anona 344, 386 Antennaria 270 Authemis 270, 272 Anthericum 272, 344 Anthoxanthnm 77, 272 Aniburiuni (Aroideae) .... 319 Aiitigouon 344 Autirrhinum 2"24 Apfelbaum s. Pirus 404 Aphelaudra 344 Apocynum 272 Aponogeton (Wasserpflanze) 342 Aprikose s. Prunus 404 Aquilegia 272 Arabis 272 Arachis 189 Aralia 344, 386 Araucaria 386 Arbuse 158, 211 Arbutus 386 Arctostaphylos 386 Aretotis 272 Ardisia 344 Areca (Palmae) 339 Arenaria 272 Argemoue 272 Aristolochia 344, 386 Armeuiaca .s. Prunus 404 AruuTia 272 Aroideeu des Wanuliauses 319 Aronia s. l'irus 404
  • 36. Arteuiisia 189, 199, 272 Arthrota.Kis 386 Artischockeu 176, 209 Arum (Aroideae) 319 Arundinaria 344 Arundo 272 Asclepias ~ 272, 344 11 s. Hoya 352 Asimina s. Anona 386 Asperula 198, 272 Asphodelus 272 Aspidium (Farrn) 331 Aspleuium (Farrn) 331 Aster 225, 272 Seite Astrantia 272 Athanasia 272 Atriplcx 148, 272 Atropa 82 Aubrietia 272 Aucuba 344 Aurikel 257 Avena 77, 272 Azalea 335, 386 B. Bactris (Palmae) 3:?9 Bärlauch 13'.l Balantium (Farrn) 331 Baldrian 79, 206, 209 Balsamiue 247 BamiKisa 344 Banksia 346 Baptisia 274 Barbarea 274 Bartnelken s. Dianthus . . 282 Bartonia 274 Basella 205 Basilienkraut 186 Basilikum 186, 209 Bastardklee 78 Bauhinia 346 Baumkohl 101 Baumwolle s. Gossypium . .• 352 BaumwĂźrger s. Celastrus . . 390 Bazille 206 Beaucarnea 346 Beerenobst, Aussaat . . . 376 Beete 119, 212 Begrouia 320 Beifuss 199 Beisskohl 146, 211 Bejaria 370 Bellis 274 Benincasa 274 Benthamia 386 Benzoin s. Laurus 354 Berberis 386 Berchemia s. Zizyphus. . . . 412 Bertolonia 346 Beschorneria 346 Beta 274 Hetouiea 274 BetuUi ;386 Bi
  • 37. 415 Seite Blaseiistraucli s. Colutea • • 390 BUuikohl 100, 209 Blaukraut 95 Hleclmum (Farrii) 331 l'leifhrusen 67, 7Ăś JSk'ieliselleric 114, 212 Jilituiii 205, 274 Blumenkohl 90, 209 Bocfoiiia 274, 346 Bocksdorn s. Lycium 400 Boehmeria 346 Boerskohl 98, 212 Bohnen 166, 209 Bohnenkraut 187, 209 Bomarea s. Alstroemeria . . 270 Bonapartea (Bromeliaceae) . 322 Borassus (Palmae) 339 Boretsch 187, 209 Boronia 346 Bossiaea 346 Bougain'illea 346 Bouvardia 346 Brachycome 274 Brachyseina 346 Brahea (Palinac) ■ . . . 339 Brassica cliincnsis 205 Braunkohl 100 Briza 274 BrizDiiyruni 274 Brockoli 94, 209 Brombeere 376 Bronielia (Bromeliaceae) . . . 822 Bromeliaceen 822 Bronuis 274 Brouss(jnetia 388 Browallia 274 BrĂźsselerSprossenkohl 99 Brugmansia s. Patura ..... 350 Brunnenkresse. . . . 131, 210 Brunsfelsia s. Franciscea. . . 352 Bryonia 274 Bryouopsis 274 Buche s. Fagus 394 Buddleya 388 Buchsbaum s. Buxus 388 Bunias 205, 209 Buphthalnium 274 Bupleurum 388 Bulterkohl 101 Buxus 388 c. Cacalia 274 Cacteen 322 Cajophora 274 Caladium (Aroideae) 319 Calamintha 274 Calampelis 274 Calanius (Paluiae) 339 Calaiidrinia 274 Calantlie (Oreliideae) 338 Calceolaria 276, 324 ÂŤ'alendnla 200, 209, 276
  • 38. 416 Seite Ovdoiiia 392 Cymbidium {Orcliideae) ... 338 Cynoglo.ssum 280 C'vnosurus 75, 280 Cyperiis 189, 34.8 Cypresse s. Cupressus .... 392 Cypripediuui (Orehideae) . . 338 Cyrtauthera 350 Cyrtomium (Farm) 331 ( 'vstopteris (Farrn) 331 Cytisus ä50, 394 D. Dactylis 77 Dahlia 240 Daleehanipia 350 Dammara 394 Daphne 394 Dasylirion (Bromeliaeeae) . . 322 Batisca 280 Dattelpflaume s. Diospyros . 394 Datlira 280, 350 Dauliciit(jnia 350 I)a allia ( Farm) 331 Delphinium 341, 280 Dendrobium (Orehideae) . . 8;38 Desmanthus (Wasserpflanze) S42 Desmodium 350, 394 Deutzia 394 Dianella 350 Dianthus 243, 282 Dicksonia (Farm) 331 Dictamnus 282 Dicyrta (Gesneriaceae) .... 333 Didymocarpiis s. Streptocarpus 304 DiefTenbachia (Aroideae). . . 319 Dielytra 282 Diervilla 394, 412 Digitalis 80, 282 Dill 188, 210 Dimorphanthiis s. Aralia . . 386 Dioclea 850 Diosma 350 Diospyros 394 Diotis 350 Diplazium (Farm) 331 Diplotemium (Paliuae) .... 339 Dirceae (Gesneriaceae) .... 333 Disa (Orehideae) 338 Disemma 350 Dodecatheou 282 Dolichos 174, 282 Dorn s. Crataegus. . . . 380, 392 Doronicum 282 Dorschen 103 Doryanthes 350 Doryopteris (Farm) 831 Dracaena 350 Dracocephalnin 282 Dragun 189, 210 Dryas 282 Drynionia (Gesneriaceae) . . 333 Dttngrung- "23 I>yckia (Hroiiieliaceae) .... 322 E. Eberesche s. Sorbus 408 Eecremocarpus s. Calanipelis 274 Echeveria 350 Echinacea 282 Echinocystis 282 Echinops 282 Echium 282 Edwardsia 350 Ehrenpreis s. Veronica 312, i36Ăź Eibenbauiu s. Taxus 410 Seite Eiche s. Qiiereus 406 Eierfrucht I.SS, 210 Einjälirig'e Pflanzen, Aussaat der 213 Eiskraut 147, 210 Elaeagnus 394 Elaeis (Palmae) 339 Eleusine 282 Elichrysuni 284 Eisbeere s. Sorbus 408 Elsholzia 284 Elymus 284 Emilia s. Cacalia 274 Endivien 126, 128, 210 Engelwurz 186, 209 Enzian s. Gentiana 286 Eopepon 284 Epacris 386 Ephedra 394 Epheu s. Hedera 398 Epidendrum (Orehideae) . . . 888 Epilobium 284 Episcia (Gesneriaceae) .... 333 Eragrostis 284 Eranthemuin 350 Erbsen 161, 210 Erl)seubauin s. Caragana . . 388 Erdbeeren 200 Erdbeerbaum s. Arbutus . . 386 Erdbeerspinat 205, 212 Erde 18 Erdmandel 189, 210 Erdnuss 189, 210 Eremostaehys 284 Eremurus 284 Erianthus 284 .Erica 337, 394 Erigeron 284 •, s. Stenactis 308 Erinus 284 Eriobotrj'a s. Mespilus. . .
  • 39. . 402 Eriogonum 284 Eriostemou 350 Erle s. Alnus 384 Erodium 284 Erpetion 284 Eryngium 284 Erysimum 284 Erythraea 284 Erythrina 350 Escallonia 350 Esche s. Fraxinus 396 Esdragfon 189, 210 Eschseholtzia 284 Esparsette 78 Espe s. Populus 404 Eucalyptus 350 Eucharidiuni 284 Euchlaena 284 Eucnide 284 Eucodonia (Gesneriaceae) . . 333 Eugenia 350 Eulalia 284 Euiiatorium 284 Euphorbia 286, 350 Eurvale (Wasserpflanze) . . . 342 Euterpe (Palmae) 339 Eutoca 286 Evonymus 394 Exaeum 350 F. Fabricia 352 Fagus 394 Farrnkräuter 33L Federgras s. Stipa 308 Fedcnielkeu s. Dianthus . . 282 Seite Fedia 286 Feigenbaum s. Ficus 369 Feldsalat 130, 211 Fenchel 135, 190, 210 Fenzlia 286 Ferdinauda 352 Ferraria s. Tigridia 308 Ferula 286 Festuca 75—77, 280 Fichte s. Pinus 404 Ficus 352, 396 Fingerhut s. Digitalis . . 80, 282 Fioringras 75 Fisolen 166, 209 Fitzroya 396 Flammenblume s. Phlox 255, 3(X) Flieder s. Syringa 410 FlĂźgelerbse 165 FlĂźgelnuss s. Pterocarya . . 406 Fontanesia 3% Forsy thia 3% FĂśhre s. Pinus 404 Fragaria iudica 286 Franciscea 352 Fraxinus 396 Fremontia 396 Freuela 396 Fritillaria 286 Fuchsia 332, 396 Fuchsschwanz 223 ■j Wiesen- 77 Funkia 286 Furcraea (Bromeliaeeae) . . . 322 FutterkĂźhle 101 FutterrĂźben 121 G. Gaillardia 286 Galega 286 Gamolepis 286 GänseblĂźmchen s. Bellis. . . 274 Gardenia 352 Gardoquia 286 Oartenbohnen 166 Gartengleisse 193 Gartenkresse 133, 210 Gartenmelde 148, 211 Gartenrasen 67—76 Gartensalat 122, 212 Gauklerblume s. Mimulus . 250 Gaultheria 396 Gaura 286 Gazania 352 Geisblatt s. Lonieera 400 GekrĂśsekohl 97 GelbhĂźlz s. Virgilia 412 '1 s. Zauthoxvlou .... 412 Gelbe RĂźben . . . '. 104 Gelbe Wurzeln 104, 2Ü9 Gemseuhoru 207, 211 (ieiiista •■552, 396 Gentiana 286 Geonoma (Palmae) :539 Georg-ine 240 Gcruniuui 286, iUl (icrlicrstrauch s. Coriaria . . 392 Gesneria (Gesneriaceae) . . . 333 Gesneriaceeu 333 Geum 286 GewĂźrzstrauch s.Calycanthus 388 Gilia 286 Gingko s. Salisburia 408 Ginster s. (xenista 396 Glaskohlrabi 102 Gladiolus 286 Glaucium 286, 288 Glaziova (Palmae) 339
  • 40. 417 Seite Gleditschia 396 Gleichenia (Farrn) 331 Globularia 288 Glockenblume 228 Gloriosa 352 Gloxinia (Gesneriaceae) . . . 333 Glvcine 396 Gnaphalium 288, 352 Godetia 288 Goldknoblauch 139 Goldlack 238 Goldregen s. Cytisus 394 Goldwurzel 111, 210 Gombo 206 Gomplirena 288 Goodia 352 Gossypium 352 Grahamia 288 Grammanthes 288 Granate s. Punica . 360 Graslauch 139 Grasmischung'eu 73 Grevillea 352 Greyia 352 Grindelia 288 GrĂźnkohl 100 Gummibaum s. Ficus elastica 352 Gurken 149, 210 Gurkenkraut 187, 209 Gurkenmelone 157 Gunnera 288 Guzmannia (Bromeliaceae) . 322 Gymnocladus 396 Gymnogramma (Farrn) . . . 331 Gymnopsis 288 Gymnothrix 288 Gyneriiun 288 Gvpsophila 288 ,, s. Tuniea 810 H. Haargi'as 75 Hal>ranthus s. Amaryllis . 318 Habrotliamnus 252 Haferschlehe s. Prunus . . . 406 Haferwurzel 107, 210 Hahnenkamni 229 Haide s. Erica 337 " s. Calluna 394 Hainbuche s. Carpinus .... 388 Hakea 352 Halesia 396 HaUmodendron 396 Hamamehs 396 Hanf s. Cannabis 276 Hardenbergia s. Kennedya . 354 Hartriegel s. Cornus 392 Haselnuss s. Corylus ... 392 Hebeclinum s. Conoclinium 348 Hedera 398 Hedychium 352 Hedysarum 78, 288 Heidelbeere s. Vaccinium . . 412 Helenium 288 Helianthemum 288 Helianthus 288 HeliophĂźa 288 Heliotropium 352 Helipterum 290 Helleborus 290 Hemerocallis 290 Heracleum 290 Herbstniben 119 Herlitze s. Cornus 392 Herzkohl 98 Hesperis 290 Hexacentris s. Thunbergia . 366 Seite Hibiscus .... 206, 290, 352, 398 Hickorj'baum s. Carj^a .... 888 Hieracium 290 Himbeere 376 Hippophae 398 Hirschhomsalat 1.36 Holcus 77 Hollunder s. Sambucus . . . 408 Honiggras 77 Hopfen 207, 210 Hopfenbuche s. Ostrya. . . . 402 Hopfeuklee 78 Hordeum 290 Hortensia s. Hydrangea. . . 398 Hoya 3.Ö2 Hiiinea 290 Humulus 207 Hundspetersilie 193 Hunuemannia 290 Husarenknopf 208 Hyacinthus 290 Hydrangea 398 Hydrocharis (Wasserpflanze) 342 Hydrolea (Wasserpflanze) . . 342 Hymenoxis 290 Hyophorbe (Palmae) 339 Hyoscvamus 79 Hypericum 290, 398 Hysopus 190 Iberis Idesia s. Polycarpa Hex Illiciuni Imantophyllum s. Clivia. . . Immortelleti Impatieus 290, Iiupatiens Balsamiua Incarnatklee Incarvillea Indigofera 352, Inga Inida 185, Involucraria Ipomoea
  • 41. 290, Ipomopsis Iris Ismene s. Pancratium . . . . Isolepis Isoloma (Gesneriaceae) . . . . Isop 190, Isotoma Ixia Ixora 290 404 398 352 348 220 352 247 78 352 398 354 209 290 354 290 292 358 354 333 210 292 354 354 Jacaranda 354 Jambosa s. Eugenia 350 Jasione 292 Jasminum 354, 398 Jasmin, wilder, s. Philadelphus 402 Jatropha 354 Jelängerjelieber s. Lonicera 400 Jochroma 354 Johannisbeere 376 Johannisbrodbaum s. Ceratonia 390 Jonopsidium 292 Jubaea (Palmae) 339 Judasbaum s. Cercis 390 Judenbart s. Saxifraga. . . . 362 Jugians 398 Jujuba s. Zizyphus 412 Juncus (Wasserpflanze) . . . 342 Jungfernwein s. Ampelopsis 384 Seite Juniperus 398 Justicia 354 K. KafTeebaum s. Coffea 348 Kalmia 398 Kamille 80 Kammgras 75 Kapernstrauch 206, 210 Kappus 95, 210 Kapuzinerbart 133 Kapuzinerkresse 135, 210 i> s. Tropaeolum 310 Kartoffel 82 KartofFelzwiebel 139 Kastania s. Aesculus 384 11 s. Castanea 388 Katzenminze 193 Kaulfussia 292 Kellerhals s. Daphne 394 Kennedya 3,54 Kentia (Palmae) 339 Kerbel (KĂśrbel) 190 KerbelrĂźbe 107, 210 Kermesstaude 208 Kerria 398 Keuschbaum s. Yitex 412 Kichererbse 165 Kiefer s. Pinus 404 Kirsche s. Cerasus 890 Kirschlorbeer s. Primus. . . 406 Kirschpflaume s. Prunus . . 406 Klee 78 Klette, japanische 207 KnauIgTas 77 Knoblauch 139 Knolleugrewächse des freien I.andes, Aussaat der 219 Knollensellerie . . . 113, 212 Kochia s. Chenopodium . . . 278 Koeleria 278 Koellicheria (Gesneriaceae). 333 Koelreuteria 398 Kohlarten 90 Kohlmalve 207, 211 Kohlrabi 102, 210 KohlrĂźben 103, 210 Kopfklee 78 Kopfkohl 95, 210 Kopfsalat 122, 212 Kornblume s. Centaurea . . 276 Komelkirsche s. Cornus. . . 392 Krauseminze 193 Krauskohl 100 Kraut 95, 210 Kresse, amerikanische Winter- .... 135, 210 n Brimnen- 131, 210 11 Garten- 133, 210 n Kapuziner-. . . . 135, 210 11 11 s. Tropaeolum . 310 11 Stauden- 135 Kreuzkraut s. Senecio. 306, 362 Kruppbohnen 166 Kuhkohl 101 Kumstkraut 96 KĂźchenkräuter 185 KĂźmmel 80 KĂźrbisse 158, 211 L. Iiack 238 Laelia (Orchideae) 338 Lärche s. Pinus Larix .... 404 Lagenaria 292 Lagerstroemia 354 27
  • 42. 418 Seite Lasurus 292 Lainarkia s. Chrysurus. . . . 278 Laiitana 354 Lapageria 354 Lajjpa ediilis 207 Larix s. Piuus 404 Lasiagrostis 292 Lasiauclra 354 Lasthenia. 292 Lastraea (Farrn) 331 Latania ( Palinae) 3;?9 Latliyrus 292 Iiatticlisalat 122 Iiaubbäume und Sträuclier, Aussaat der . . . 368 Laucli 140, 211 Lauras 354, 898 •• s. Vibumum 366 Lavatera 292, 354 Iiavendel 191, 211 Layia 292 Lederbaum s. Ptelea 406 Ledum 400 Lein, rotliblĂźli. s. Linum 294 Leonitis 354 Leptoe-hbia 292 Lcptnsiphdu 292 I>ept(j>peruium 354 Leptusyne 292 Lespedeza 400 Leucadendron 354 Leucantheiuum 292 Leucopogoii 354 LeueothĂśe s. Andromeda . 386 Iievkoyen 231 Levcesteria 400 Liiitris 292 Libocedrus 400 Libonia 356 Licuala ( Palmae) 339 lietoesapfel 197, 212 Liebesliaiu s. Nemophila 296 Liebstuck 192, 211 Lietzia ((jesneriaceae) .... 333 Ligustrura 400 Lilium 292 Lima-Bohue 174 Limnanthes 292 Linaria 292 Linde s. TiUa 410 Linse, spanische 165 Linum 294 Lippia s. Verbena citriodora 366 Liiiuidambar 400 Liriodendron 400 Lisianthiis 356 Littonia 3.56 Livistona (Palmae) 339 Loasa s. Cajophora 294 IiObelia 249 Locbcria i (Jesneriaceae) . . . 333 LĂśffelkraut 134, 211 Lr,veiiiiuud 224 IiĂśweuzahn 134, 211 Loliuiu 73, 75, 77 Loniaria (Farrn) 331 Lomatia 356 Lonas s. Athanasia 272 Lonicera 400 Lophospernium 356 Lorbeer s. Laiirus. . . . 354, 398 Lotus 78, 294 Liiculia 356 LulTa 294 Limaria 294 Lupinus 294 Luzerne 78 Seite Lvcaste (Orchideae) 338 Lychnis 294 lA'Cium 400 Lyonia s. Andromeda .... 386 Ijysimachia 294 Lytbrum 294 M. Maclura 400 Madia . . 294 Magnolia 400 Magydaris 294 Mabonia s. Berberis 386 ^Maiblume s. Convallaria. . . 280 Mais 81 " s. Zea 312 Majoran 192, 211 Malaga-Erbse 165 Malope 294 >Ialus s. Pirus 404 Malva 207, 211, 294, 356 Malve, gefĂźllte 222 •• schwarze 81 Mandel s. Amygdalus 384 Mandevillea . .' 356 Mangold 145, 211 Mariendistel s. Carduus . . 276 Markkohl 101 Marrubium 207, 2()9 Marshallia 294 Martinezia (Palmae) 339 Martyuia 207, 211, 294 IMasdevallia (Orchideae) . . . 338 Matthiola 296 •• s. Cheiranthus 231 Matricaria 80, 296 Mauerpfeffer s. Sedum 208, 306 Maulbeerbaum s. Morus. . . 402 Maurandia 296 iSIauritia (Palmae) 339 Maxillaria (Orchideae) .... 338 Medeola 356 Medicago 78 Mediniila .356 Medizinische
  • 43. HandelsFflauzen 79 Meerfenchel 206 Meerkohl 183, 211 :Mehlbirne s. Sorbus 408 Melaleuca 356 Melastoma 356 Melde 148, 211 Melia 400 Melianthus 356 Melica 296 Melisse 193, 211 Melonen 153, 211 Mentha 193, 211, 296 Mesembryanthemum 147, 296, 356 Mespilus" 400, 402 Methonica s. Gloriosa 352 Metrosideros 356 Michauxia 296 Mikania 356 Miltonia (Orchideae) 338 Mimosa 356 Mimulus 250 IMinze 193, 211 MinĂźjelle s. Pruiuis 404 Mirabilis 296 Mispel s. Mespilus 400 Mitraria (Gesueriaceae) . . . 333 Mohn s. Papaver 298, 300 Älomordica 296 Monarda 296 Monatsrettig' 143, 211 Montagnaeu 356 Seite Montbretia 356 MoorrĂźben 104 Moorwurzeln 108, 211 Moo,sbeere s. Vacciaium . . 412 Moraea s. Pardauthus .... 300 Morina. 296 Morus 402 Moschuspflanze s. Mimulus 251 ISIottenkraut s. Plectranthus 360 MĂśhren 104, 209 Muehlenbeckia 356 Mukia 296 Musa 358 INIuscari 296 Muschia 358 Myojjonmi 358 Myosotis 251 Myrica 402 Myrsiphyllum s. Medeola 356 MjTtus 358, 402 N. Nachtkerze s. Oenothera 109, 298 Nacht viole s. Hesperis. . . . 290 Naegelia (Gesneriaceae) . . . 333 Nandina. . 358 Narcissus 296 XTelken 243 Nelumbium (Wasserpflanze) 342 Nemesia 296 Nemophila 296 Nepenthes 358 Nepeta 193, 296 Nephrolepis (Farm) 331 Nerium 358 Nertera 358 Nicotiana 81, 296, 358 Nidularium (Bromeliaceae) . 322 Nierembergia 296 Nigella 207, 298 Niphaea (Gesneriaceae) . . . 333 Nolana 298 Nuesschen s. Eabinschen. . 130 Nuphar (Wasserpflanze) . . 342 Nijssbaum s. Inglaus 398 Nusskraut 206 Nycteriuia 298 Nvmphaea (Wasserpflanze) 342 Nyssa 402 o. Obeliscaria 298 Obrrkoblrabi 102, 210 Obstbäume, Aussaat der 374 Ocinuun 186, 298 Odontoglossum (Orchideae) 33.8 Oekonomische, medizinische u. technische Handelspflanzen . . 79 Oelwoidc s. Klaeagnus .... 3;Âť4 Oenothera 109, 298 Okra 206 Olea 402 Oleander s. Nerium 358 Olivenbaum s. Olea 402 Oncidium (Orchideae) 338 Ononis 298 Onopordou 298 Orchideen, Freiland- . . . 298 1. tropische 338 Oreodaphne 402 Oreodoxa (Palmae) 339 Ornithogalum 298 Orobus 298 Osbeckia 358 Osniauthus s. Olea 402 Osmunda (Farrn) 331
  • 44. 419 Seite Ostrvii 402 Oxalis 298 Oxylobium 358 Oxydeiidrum s. Andromeda 386 Oxypetalum s. Tweedia . . . 366 P. Paeonia 298, 402 Pak-Choi 205 Palafoxia 298 Palava 298 Paliurus 402 Palmbaumkohl 101 Palmen 339 Pampasgras s. Gynerium . . 288 Pancratium 358 Pandanus 339 Panicum 298, 358 Papaver 298, 300 Papierniaulbeerbaiim s. Broussonetia 388 Pappel s. Populus 404 11 schwarze (Malve) ... 81 Paprika 194 Papyrus (Wasserpflanze) . . 342 Parakresse 208 Pardanthus 300 Paspalum 300 Passiflora 300, 358 Passionsblume s. Passiflora 358 Pastinakwurzel. . . 108, 211 Paulownia 402 Pelarg-onium 341 Penuisetuin 30O Pensee s. Viola . . 264 Pentstemon 300 Peperomia 358 Perennirende Pflanzen, Aussaat der 218 Perilhi 30O Periploea 402 Perlzwiebel 139 PerrĂźckenstrauch s. Rhus . . 406 Persica s. Amygdalus 386 Petersilie 193, 211 Petersilienwurzel 109, 211 Pei-Tsai 205 Petunia 253 PfaflenhĂźtcheu s. Evonymus 394 Pfeiler, spanischer . . . 194, 211 Pfefterkraut 187, 209 PfeiferkĂźmmel 206, 211 Pfefferminze 193 Pfeifenstrauchs. Aristolochia 386 - s. Philadelphus ... 402 Pferdebohne 175 Pfingstrose s. Paeouia . 298, 402 Pfirsiche s. Amygdalus. . . . 386 Pflaume s. Prunus . .... 404 Pflaumenschlehe s. Prunus . 406 PflUcksalat 128 Phacelia 800 Phajus (Orchideae) 338 Phalacraea 300 Phalaenopsis (Orchideae) . 338 Phalangium s. Anthericum . 344 Phalaris 300 Phaseolus 166, 174, 300 11 Caracalla 358 Phegopteris (Farrn) 331 Philadelphus 402 Phillyrea 4f)2 Philodendron (Aroideae) . . . 319 Phleum 77 Phlomis s. Eremostachys . 284 Phlox Drummondi . . . 255 •• ausdauernde 300 Seite Phoenix (Palniae) 339 Phorniiura 358 Photinia 404 Phvgelius 358 Phvllanthus 358 Phvsalis 207 Phvteuma 300 Phytolaca 208, 300 Picea s. Pinus 404 Pieris s. Andromeda 386 Pilea 358 Pinielea 358 Piment-Pfeffer 194 Pimpernuss s. Staphylea 410 Pinipinelle 195, 211 Pinceneetitia (Beaucarnea) . 346 Pinus 404 Piper 358 Pirus 404 1, s. Cydonia 392 Pissenlit 134 Pistacia 404 Pistia (Wasserpflanze) .... 342 Pitcairnea (^Bromeliaceae) . . 322 Pittosporum 358 Plantago 136 Platanus 404 Platterbse 165 Platycerium (Farm) 331 Platvcodon s. Wahlenbergia 312 Platygonia 300 Platystemon 302 Plectojxiina (Gesneriaceae) . 333 Pleetranthus 358 Plumagekohl 101 Phimbago. . . .' 358 Poa 73-
  • 45. 77, 302 Podocarpus 404 Podolepis 302 Poineiana 358 Poinsettia 358 Polei 193 Polemonium 302 Polycarpa 404 Polvcolvmna 302 Polygala 358 Polygonum 302 Polvpodiura (Farrn) 331 Polystiehum (Farrn) 331 Poiitederia (Wasserpflanze) . 342 Populus .404 Porree 140, 211 Portulaca g'randiflora 'JĂśii Portulak, .Suppen- . . l!iri, 211 Potaiuogeton (Wasserpflanze) 342 Potentilla 302, 404 Pourretia (Bromeliaceae) 322 Preissellieere s. Vacciniuni 412 Primula 257 Pritehardia (Palmae) 339 Protea 358 Prunella 302 Prunus 404, 406 Psidium 358 Ptelea 406 Pteris (Farm) 331 Pterocarya 406 Ptychosperma (Palmae) . . . 339 PufFtaohne 175, 211 Pulmonaria .302 Pultenaea 358 Punica 358 Puva (Bromeliaceae) 322 Pvi-ethrum 302 Q. Seite Quecke 77 Quercus 406 Quitte s. Cydonia 392 Quittenmispel s. Cotoneaster 392 R. Rabinschen 130, 211 Badies 14::?, 211 Raigras 75 — 77 Raiufarrn 208 Rain weide s. Ligustrum. . . 4(X) Rainondia 302 Rankenspinat 205 Rauuneulus 302 Rajibanus caudatus 144 Raiiliiolepis 358 Rapunzel (Rabinschen). . . . 130 Bapunzelwurzel . 110, 211 Rapontikawtirzel 109, 211 Uaseiikanten- lNIisehuiig. ... 76 Basenpflauzen 67 Rauke 136 Raute 199 Ravenala 358 Reidia 358 Reisspinat 149 Reseda 261 Retinospoi'a 406 Rettig- 142, 211 Rhabarber 116, 211 ■. s. RLeum 302 Rhaumus 406 Rhapis (Palmae) 339 Rheuni 115, 302 Rliodanthe 302 Rhodochiton 358 Rhododendron 337 Rhodora 406 Rhodotypus 406 Rhus 406 Rhyiiehncariia 302 Rhyiulios]ieriuu)n 358 RhyditdphyUum (Gesneriaceae) 333 Ribes 408 Richardia 362 Ricinus 302 Riesenkohl 101 Ringelblume S.Calendula 206, 276 Rili|jenkohl . . 97 Rippenuiangold 146 Rispengras 7.5 — 77 Rittersporn s.Delphinium 241, 280 Rivina 362 Robinia 408 Rocambol 139 Rochea 862 Rogiera 362 Romneva 302 Rondeletia 362 Rosauowia (Gesneriaceae) . . 333 Rosen, deren Anzucht aus Samen 378 Rosenkohl 99, 212 Itosmarin 195, 212 Kosskastanie s. Aesculus 384 Rothe RĂźben 119 Rotbkraut 95 RĂśmischer Salat 126 RĂśniischkohl 146, 211 Rubus 408 Ruchgras 77 Rudbeckia 302 Ruellia 362 Rumex 149, 304 Runkeln 121 27*
  • 46. 420 Seite Ruscus 408 Russelia 362 Rutabaga 103 Buben 117—119, 212 RĂźbstiel 119 RĂźster s. Ulmus 410 s. Sabal (Palmae) 339 Sabbatia 304 Saccharum 804 Saccolabium (Orchideae) . . 338 Säckelbluuie s. Ceanothus . 390 Sagittaria (Wassei'iiflanze) . . 342 Satjus (Palmae) 339 Salat 122, 126, 212 SalatrĂźben 119, 212 Salbei 196, 212 .1 s. Salvia 304, 362 Salisburia 408 Salix 408 Salpittlossis 304 Salvia 196, 304, 362 Sambucus 408 Samuitveilcheu s. Viola . . . 264 Sauddorn s. Hipijophae . . . 398 Sauguisorba 304 Santolina 350, 362 Sanvitalia 304 Saponaria 304 Sarothamuus s. Genista . 396 Sarraeenia ( W^asserpflanze) . 342 Saturei 187 Saul)0bne 175 Sauerampfer 148, 212 Saueribini s. Berberis .... 386 Sauerklee s. Oxalis 298 Sauerkraut 95 Sauroniatum (Aroideae) . . . 319 Savoyerkohl 98, 212 Saxifraga 304, 362 Scabiosa 304 Schafgarbe 78 Schafmäulchcn 130, 211 Selialotteii 139, 212 Seheeria (Gesueriaceae) . . . 333 Schief blatt s. Begonia .... 320 Schinus 408 Schizauthus 304 Schiz
  • 47. 421 Seite Torenia 366 Torreya 410 Tournefortia 308 Trachelium 310 Trachyraene 310 Tradescautia 310, SfjG Ti-apa (Wasserpflanze) .... 842 Traubenbirne s. Amelancbier 384 Traubenkirsche s. Prunus . 406 Treibsalate 126 Tricholaena 310 Trichopilia (Orchideae) . . . . 338 Trichosanthes 310 Tricyrtis 310 Trifolium 76, 310 Tripmadam 208 Tripsacum 810 Tristania 366 Triticum repens 77 Tritoma 366 TrolUus 310 Trompetenbaum s. Catalpa . 388 Troncliuda-Kohl 97 Tropaeolum 135, 310, 366 TiĂźipa 310 Tulpenbaum s. Liriodendron 400 Tunica 310 Tupa 366 Tumera 366 Tweedia 366 Tydaea (Gesneriaceae) .... 333 u. Ulex 410 Ulmus 410 Umbilicus 310 Unform s. Amorpha 884 Ungnadia 412 Uniola 310 Unterlcohlrabi 103, 210 Urania s. Eavenala 366 V. Vaccinium 412 Valeriana 79, 310 Vallisneria (Wasserpflanze) . 342 Vanda (Orchideae) 338 Vanilla (Orchideae) 338 Veilchen s. Viola odorata. . 312 Veltheimia 366 Venidium 310 Veratrum 310 Verbascum 312 Seite Verbena 262, 366 Verbesina 366 Vergissmeinnicht 251 Veronica 312, 366 Verschaffeltia (Palmae) .... 339 Viburnum 366, 412 Vicia 312 Victoria (Wasserpflanze). . . 342 Vietsbohne 166 Villarsia (AVasserpflanze) . . 342 Viminaria 366 Vinca 366 Viola 264, 312 VirgUia 412 Viscaria 312 Vitex 412 Vitis 412 Vogelbeere s. Sorbus 408 Vriesia (BromeUaceae) .... 322 w. Wacholder s. Juniperus . . . 398 Wahlen bergia 312 Waitzia 312 Waldmeister 198, 212 Waldrebe s. Clematis 390 Walnuss s. Juglans regia . 398 Washingtonia (Palmae) . . . 339 Wasserpflanzen, Aussaat der 342 Wassermelonen . . 158, 211 WasserrĂźben 119 Wegdorn s. Rhamnus 406 Wegebreit 78 Weichsel s. Cerasus 390 11 s. Prunus 406 Weide s. SaUx 408 Weidegräser 76 Weigelia 412 Weihnachtsrose s. Helleborus 290 Weinstock s. Vitis 412 Weinraute 199, 212 Wein, wilder, s. Ampelopsis 384 Weissdorn 380 Weissbuche s. Carpinus . . . 388 Weisse ßüben 117 Weissklee 76 Weisskraut 95 Weisswurzel 107 Wellingtonia 412 Welsche Zwiebel 139 Wermuth 199, 212 Whitlavia 312 Seite Wiesen 67 Wiesenfuchsschwanz 77 Wiesengräser 76 Wicken, wohlriech., s. Lathyrus 292 Wigandia 366 Winde s. Convolvulus . 280, 348 " s. Ipomoea. . . . 290, 354 Winterheckezwiebel 139 Winterkohl 100 Winterkresse 135, 210
  • 48. Wintersalat 122 Wiaterspinat 149 Winterzwiebel 139 Wirsing- 98, 212 Wistaria s. Glycine 396 Woodwardia (Farm) 331 AVruckeu 103, 210 Wulfenia 312 Wunderbaum s. Ricinus . . . 302 Wunderblume s. MirabUis . 296 Wurm kraut 208 Wurzeln und Rllben . . 104 X. Xeranthemum 312 Y. Yucca 366 z. Zanthoxylum 412 Zaubernuss s. Hamamelis . . 396 Zauschneria 312 Zea 81, 312 Zenoljia s. Andromeda .... 386 Zierg-räser, Aussaat der . 220 Zierkohle 101 Zinnia 266 Zipolle 136 Zittergras s. Briza 274 Zizyphus 412 ZuckerrĂźben 121 Zuckerwurzel 112, 212 ZĂźrgelbaum s. Celtis 390 Zweijährig-e Pflanzen, Aussaat der 216—218 Zwetsche s. Prunus 404 Zwiebel 136, 139, 212 Zwiebel- und KnollenGewächse des freien Iiandes, Aussaat . 219—220 Zygopetalum (Orchideae) . . 338
  • 49. The text on this page is estimated to be only 27.82% accurate 422 Druckfehler und Verbesserungen. Seite Zeile 22 6 von unten, zu lesen : zersetzbaren statt versetzbaren. 29 8 „ oben, ^ „ beigesellt statt bei.gestellt. 46 16 n V, „ V Spargelsaat statt Spargelsalat. 47 16 11 unten, ^ - §. 35 statt 3G. 60 19 „ Âť n V Nacktschuecken statt Nachtschnecken. 67 5 Âť oben, Âť v %. 8 statt 9. 71 19 )i unten, •• r> sind statt ist. 132 2 n oben,
  • 50. The text on this page is estimated to be only 14.22% accurate Old ^ kk Date S I" ■U- Iid I Ui I O fo. 1 i'.--'!' CO. r'•£' AGRICULTURE FORESTRY LIBRARY k::ii X 1 Lt.i 1 .(•-1 f.... TUE UNIVERSITY OF BRITISH COLIiMBIA t L L .. I
  • 52. Welcome to our website – the ideal destination for book lovers and knowledge seekers. With a mission to inspire endlessly, we offer a vast collection of books, ranging from classic literary works to specialized publications, self-development books, and children's literature. Each book is a new journey of discovery, expanding knowledge and enriching the soul of the reade Our website is not just a platform for buying books, but a bridge connecting readers to the timeless values of culture and wisdom. With an elegant, user-friendly interface and an intelligent search system, we are committed to providing a quick and convenient shopping experience. Additionally, our special promotions and home delivery services ensure that you save time and fully enjoy the joy of reading. Let us accompany you on the journey of exploring knowledge and personal growth! ebookfinal.com