Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
Mesh Reduction Methods BEM MRM XXXI 1st Edition C. A. (Editor) Brebbia
1. Mesh Reduction Methods BEM MRM XXXI 1st Edition C.
A. (Editor) Brebbia - Downloadable PDF 2025
https://ebookfinal.com/download/mesh-reduction-methods-bem-mrm-xxxi-1st-
edition-c-a-editor-brebbia/
Visit ebookfinal.com today to download the complete set of
ebooks or textbooks
2. Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Boundary Elements and Other Mesh Reduction Methods XXXII
Wit Transactions on Modelling and Simulation 1st Edition
C. A. (Editor) Brebbia
https://ebookfinal.com/download/boundary-elements-and-other-mesh-
reduction-methods-xxxii-wit-transactions-on-modelling-and-
simulation-1st-edition-c-a-editor-brebbia/
Air Pollution XVI Wit Transactions on Ecology and the
Environment 1st Edition C. A. Brebbia
https://ebookfinal.com/download/air-pollution-xvi-wit-transactions-on-
ecology-and-the-environment-1st-edition-c-a-brebbia/
Advances in Photochemistry Volume 29 1st Edition Douglas
C. Neckers
https://ebookfinal.com/download/advances-in-photochemistry-
volume-29-1st-edition-douglas-c-neckers/
Modelling in Medicine and Biology VIII Wit Transactions on
Biomedicine and Health 1st Edition C. A. Brebbia
https://ebookfinal.com/download/modelling-in-medicine-and-biology-
viii-wit-transactions-on-biomedicine-and-health-1st-edition-c-a-
brebbia/
3. Methods for Reliability Improvement and Risk Reduction
Michael Todinov
https://ebookfinal.com/download/methods-for-reliability-improvement-
and-risk-reduction-michael-todinov/
Vagabond Vol 29 29 Inoue
https://ebookfinal.com/download/vagabond-vol-29-29-inoue/
Monitoring Simulation Prevention and Remediation of Dense
and Debris Flow III Wit Transactions on Engineering
Sciences 1st Edition C. A. (Editors) Brebbia
https://ebookfinal.com/download/monitoring-simulation-prevention-and-
remediation-of-dense-and-debris-flow-iii-wit-transactions-on-
engineering-sciences-1st-edition-c-a-editors-brebbia/
Midwest Studies in Philosophy Volume XXXI Philosophy and
the Empirical 1st Edition Peter A. French
https://ebookfinal.com/download/midwest-studies-in-philosophy-volume-
xxxi-philosophy-and-the-empirical-1st-edition-peter-a-french/
Security in Wireless Mesh Networks 1st Edition Yan Zhang
https://ebookfinal.com/download/security-in-wireless-mesh-
networks-1st-edition-yan-zhang/
5. Mesh Reduction Methods BEM MRM XXXI 1st Edition
C. A. (Editor) Brebbia Digital Instant Download
Author(s): C. A. (Editor) Brebbia
ISBN(s): 9781845641979, 1845641973
Edition: 1
File Details: PDF, 7.42 MB
Year: 2009
Language: english
7. THIRTY-FIRST WORLD CONFERENCE ON BOUNDARY ELEMENTS
AND OTHER MESH REDUCTION METHODS
INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE
Organised by
Wessex Institute of Technology, UK
Sponsored by
International Journal of Engineering Analysis with
Boundary Elements (EABE)
J-T. Chen
A.H-D. Cheng
G. De Mey
V.G. DeGiorgi
E. Divo
J. Dominguez
G. Fasshauer
A.N. Galybin
L. Gaul
G.S. Gipson
M.S. Ingber
D.B. Ingham
M. Kanoh
A.J. Kassab
J.T. Katsikadelis
V. Leitao
G-R. Liu
G.D. Manolis
W.J. Mansur
T. Matsumoto
K. Onishi
D. Poljak
V. Popov
H. Power
P. Prochazka
J.J. Rencis
T.J. Rudolphi
B. Sarler
E. Schnack
A.P.S. Selvadurai
L. Ĺ kerget
V. Sladek
S. Syngellakis
A. Tadeu
J. Trevelyan
W.S. Venturini
O. von Estorff
L.C. Wrobel
T. Wu
B. Yeigh
S-P. Zhu
BEM/MRM XXXI
CONFERENCE CHAIRMAN
C.A. BREBBIA
Wessex Institute of Technology, UK
8. WIT Transactions
Editorial Board
Transactions Editor
Carlos Brebbia
Wessex Institute of Technology
Ashurst Lodge, Ashurst
Southampton SO40 7AA, UK
Email: carlos@wessex.ac.uk
B Abersek University of Maribor, Slovenia
Y N Abousleiman University of Oklahoma,
USA
P LAguilar University of Extremadura, Spain
K S Al Jabri Sultan Qaboos University, Oman
E Alarcon Universidad Politecnica de Madrid,
Spain
AAldama IMTA, Mexico
C Alessandri Universita di Ferrara, Italy
D Almorza Gomar University of Cadiz,
Spain
B Alzahabi Kettering University, USA
J A C Ambrosio IDMEC, Portugal
A M Amer Cairo University, Egypt
S AAnagnostopoulos University of Patras,
Greece
M Andretta Montecatini, Italy
E Angelino A.R.P.A. Lombardia, Italy
H Antes Technische Universitat Braunschweig,
Germany
M AAtherton South Bank University, UK
A GAtkins University of Reading, UK
D Aubry Ecole Centrale de Paris, France
H Azegami Toyohashi University of
Technology, Japan
A F M Azevedo University of Porto, Portugal
J Baish Bucknell University, USA
J M Baldasano Universitat Politecnica de
Catalunya, Spain
J G Bartzis Institute of Nuclear Technology,
Greece
A Bejan Duke University, USA
M P Bekakos Democritus University of
Thrace, Greece
G Belingardi Politecnico di Torino, Italy
R Belmans Katholieke Universiteit Leuven,
Belgium
C D Bertram The University of New South
Wales, Australia
D E Beskos University of Patras, Greece
S K Bhattacharyya Indian Institute of
Technology, India
E Blums Latvian Academy of Sciences, Latvia
J Boarder Cartref Consulting Systems, UK
B Bobee Institut National de la Recherche
Scientifique, Canada
H Boileau ESIGEC, France
J J Bommer Imperial College London, UK
M Bonnet Ecole Polytechnique, France
C A Borrego University of Aveiro, Portugal
A R Bretones University of Granada, Spain
J A Bryant University of Exeter, UK
F-G Buchholz Universitat Gesanthochschule
Paderborn, Germany
M B Bush The University of Western
Australia, Australia
F Butera Politecnico di Milano, Italy
J Byrne University of Portsmouth, UK
W Cantwell Liverpool University, UK
D J Cartwright Bucknell University, USA
P G Carydis National Technical University of
Athens, Greece
J J Casares Long Universidad de Santiago de
Compostela, Spain
M A Celia Princeton University, USA
A Chakrabarti Indian Institute of Science,
India
A H-D Cheng University of Mississippi, USA
9. J Chilton University of Lincoln, UK
C-L Chiu University of Pittsburgh, USA
H Choi Kangnung National University, Korea
A Cieslak Technical University of Lodz,
Poland
S Clement Transport System Centre, Australia
M W Collins Brunel University, UK
J J Connor Massachusetts Institute of
Technology, USA
M C Constantinou State University of New
York at Buffalo, USA
D E Cormack University of Toronto, Canada
M Costantino Royal Bank of Scotland, UK
D F Cutler Royal Botanic Gardens, UK
W Czyczula Krakow University of
Technology, Poland
M da Conceicao Cunha University of
Coimbra, Portugal
A Davies University of Hertfordshire, UK
M Davis Temple University, USA
A B de Almeida Instituto Superior Tecnico,
Portugal
E R de Arantes e Oliveira Instituto Superior
Tecnico, Portugal
L De Biase University of Milan, Italy
R de Borst Delft University of Technology,
Netherlands
G De Mey University of Ghent, Belgium
A De Montis Universita di Cagliari, Italy
A De Naeyer Universiteit Ghent, Belgium
W P De Wilde Vrije Universiteit Brussel,
Belgium
L Debnath University of Texas-Pan American,
USA
N J Dedios Mimbela Universidad de
Cordoba, Spain
G Degrande Katholieke Universiteit Leuven,
Belgium
S del Giudice University of Udine, Italy
G Deplano Universita di Cagliari, Italy
I Doltsinis University of Stuttgart, Germany
M Domaszewski Universite de Technologie
de Belfort-Montbeliard, France
J Dominguez University of Seville, Spain
K Dorow Pacific Northwest National
Laboratory, USA
W Dover University College London, UK
C Dowlen South Bank University, UK
J P du Plessis University of Stellenbosch,
South Africa
R Duffell University of Hertfordshire, UK
A Ebel University of Cologne, Germany
E E Edoutos Democritus University of
Thrace, Greece
G K Egan Monash University, Australia
K M Elawadly Alexandria University, Egypt
K-H Elmer Universitat Hannover, Germany
D Elms University of Canterbury, New Zealand
M E M El-Sayed Kettering University, USA
D M Elsom Oxford Brookes University, UK
A El-Zafrany Cranfield University, UK
F Erdogan Lehigh University, USA
F P Escrig University of Seville, Spain
D J Evans Nottingham Trent University, UK
J W Everett Rowan University, USA
M Faghri University of Rhode Island, USA
R A Falconer Cardiff University, UK
M N Fardis University of Patras, Greece
P Fedelinski Silesian Technical University,
Poland
H J S Fernando Arizona State University,
USA
S Finger Carnegie Mellon University, USA
J I Frankel University of Tennessee, USA
D M Fraser University of Cape Town, South
Africa
M J Fritzler University of Calgary, Canada
U Gabbert Otto-von-Guericke Universitat
Magdeburg, Germany
G Gambolati Universita di Padova, Italy
C J Gantes National Technical University of
Athens, Greece
L Gaul Universitat Stuttgart, Germany
A Genco University of Palermo, Italy
N Georgantzis Universitat Jaume I, Spain
P Giudici Universita di Pavia, Italy
F Gomez Universidad Politecnica de Valencia,
Spain
R Gomez Martin University of Granada,
Spain
D Goulias University of Maryland, USA
K G Goulias Pennsylvania State University,
USA
F Grandori Politecnico di Milano, Italy
W E Grant Texas A & M University, USA
S Grilli University of Rhode Island, USA
10. R H J Grimshaw Loughborough University,
UK
D Gross Technische Hochschule Darmstadt,
Germany
R Grundmann Technische Universitat
Dresden, Germany
A Gualtierotti IDHEAP, Switzerland
R C Gupta National University of Singapore,
Singapore
J M Hale University of Newcastle, UK
K Hameyer Katholieke Universiteit Leuven,
Belgium
C Hanke Danish Technical University,
Denmark
K Hayami National Institute of Informatics,
Japan
Y Hayashi Nagoya University, Japan
L Haydock Newage International Limited, UK
A H Hendrickx Free University of Brussels,
Belgium
C Herman John Hopkins University, USA
S Heslop University of Bristol, UK
I Hideaki Nagoya University, Japan
D A Hills University of Oxford, UK
W F Huebner Southwest Research Institute,
USA
J A C Humphrey Bucknell University, USA
M Y Hussaini Florida State University, USA
W Hutchinson Edith Cowan University,
Australia
T H Hyde University of Nottingham, UK
M Iguchi Science University of Tokyo, Japan
D B Ingham University of Leeds, UK
L Int Panis VITO Expertisecentrum IMS,
Belgium
N Ishikawa National Defence Academy, Japan
J Jaafar UiTm, Malaysia
W Jager Technical University of Dresden,
Germany
Y Jaluria Rutgers University, USA
C M Jefferson University of the West of
England, UK
P R Johnston Griffith University, Australia
D R H Jones University of Cambridge, UK
N Jones University of Liverpool, UK
D Kaliampakos National Technical
University of Athens, Greece
N Kamiya Nagoya University, Japan
D L Karabalis University of Patras, Greece
M Karlsson Linkoping University, Sweden
T Katayama Doshisha University, Japan
K L Katsifarakis Aristotle University of
Thessaloniki, Greece
J T Katsikadelis National Technical
University of Athens, Greece
E Kausel Massachusetts Institute of
Technology, USA
H Kawashima The University of Tokyo,
Japan
B A Kazimee Washington State University,
USA
S Kim University of Wisconsin-Madison, USA
D Kirkland Nicholas Grimshaw & Partners
Ltd, UK
E Kita Nagoya University, Japan
A S Kobayashi University of Washington,
USA
T Kobayashi University of Tokyo, Japan
D Koga Saga University, Japan
A Konrad University of Toronto, Canada
S Kotake University of Tokyo, Japan
A N Kounadis National Technical University
of Athens, Greece
W B Kratzig Ruhr Universitat Bochum,
Germany
T Krauthammer Penn State University, USA
C-H Lai University of Greenwich, UK
M Langseth Norwegian University of Science
and Technology, Norway
B S Larsen Technical University of Denmark,
Denmark
F Lattarulo Politecnico di Bari, Italy
A Lebedev Moscow State University, Russia
L J Leon University of Montreal, Canada
D Lewis Mississippi State University, USA
S lghobashi University of California Irvine,
USA
K-C Lin University of New Brunswick,
Canada
AA Liolios Democritus University of Thrace,
Greece
S Lomov Katholieke Universiteit Leuven,
Belgium
J W S Longhurst University of the West of
England, UK
G Loo The University of Auckland, New
Zealand
J Lourenco Universidade do Minho, Portugal
11. J E Luco University of California at San
Diego, USA
H Lui State Seismological Bureau Harbin,
China
C J Lumsden University of Toronto, Canada
L Lundqvist Division of Transport and
Location Analysis, Sweden
T Lyons Murdoch University, Australia
Y-W Mai University of Sydney, Australia
M Majowiecki University of Bologna, Italy
D Malerba UniversitĂ degli Studi di Bari, Italy
G Manara University of Pisa, Italy
B N Mandal Indian Statistical Institute, India
Ă Mander University of Tartu, Estonia
H A Mang Technische Universitat Wien,
Austria
G D Manolis Aristotle University of
Thessaloniki, Greece
W J Mansur COPPE/UFRJ, Brazil
N Marchettini University of Siena, Italy
J D M Marsh Griffith University, Australia
J F Martin-Duque Universidad Complutense,
Spain
T Matsui Nagoya University, Japan
G Mattrisch DaimlerChrysler AG, Germany
F M Mazzolani University of Naples
âFederico IIâ, Italy
K McManis University of New Orleans, USA
A C Mendes Universidade de Beira Interior,
Portugal
R A Meric Research Institute for Basic
Sciences, Turkey
J Mikielewicz Polish Academy of Sciences,
Poland
N Milic-Frayling Microsoft Research Ltd,
UK
R A W Mines University of Liverpool, UK
C A Mitchell University of Sydney, Australia
K Miura Kajima Corporation, Japan
A Miyamoto Yamaguchi University, Japan
T Miyoshi Kobe University, Japan
G Molinari University of Genoa, Italy
T B Moodie University of Alberta, Canada
D B Murray Trinity College Dublin, Ireland
G Nakhaeizadeh DaimlerChrysler AG,
Germany
M B Neace Mercer University, USA
D Necsulescu University of Ottawa, Canada
F Neumann University of Vienna, Austria
S-I Nishida Saga University, Japan
H Nisitani Kyushu Sangyo University, Japan
B Notaros University of Massachusetts, USA
P OâDonoghue University College Dublin,
Ireland
R O OâNeill Oak Ridge National Laboratory,
USA
M Ohkusu Kyushu University, Japan
G Oliveto UniversitĂĄ di Catania, Italy
R Olsen Camp Dresser & McKee Inc., USA
E OĂąate Universitat Politecnica de Catalunya,
Spain
K Onishi Ibaraki University, Japan
P H Oosthuizen Queens University, Canada
E L Ortiz Imperial College London, UK
E Outa Waseda University, Japan
A S Papageorgiou Rensselaer Polytechnic
Institute, USA
J Park Seoul National University, Korea
G Passerini Universita delle Marche, Italy
B C Patten University of Georgia, USA
G Pelosi University of Florence, Italy
G G Penelis Aristotle University of
Thessaloniki, Greece
W Perrie Bedford Institute of Oceanography,
Canada
R Pietrabissa Politecnico di Milano, Italy
H Pina Instituto Superior Tecnico, Portugal
M F Platzer Naval Postgraduate School, USA
D Poljak University of Split, Croatia
V Popov Wessex Institute of Technology, UK
H Power University of Nottingham, UK
D Prandle Proudman Oceanographic
Laboratory, UK
M Predeleanu University Paris VI, France
M R I Purvis University of Portsmouth, UK
I S Putra Institute of Technology Bandung,
Indonesia
Y A Pykh Russian Academy of Sciences,
Russia
F Rachidi EMC Group, Switzerland
M Rahman Dalhousie University, Canada
K R Rajagopal Texas A & M University, USA
T Rang Tallinn Technical University, Estonia
J Rao Case Western Reserve University, USA
A M Reinhorn State University of New York
at Buffalo, USA
12. A D Rey McGill University, Canada
D N Riahi University of Illinois at Urbana-
Champaign, USA
B Ribas Spanish National Centre for
Environmental Health, Spain
K Richter Graz University of Technology,
Austria
S Rinaldi Politecnico di Milano, Italy
F Robuste Universitat Politecnica de
Catalunya, Spain
J Roddick Flinders University, Australia
A C Rodrigues Universidade Nova de Lisboa,
Portugal
F Rodrigues Poly Institute of Porto, Portugal
C W Roeder University of Washington, USA
J M Roesset Texas A & M University, USA
W Roetzel Universitaet der Bundeswehr
Hamburg, Germany
V Roje University of Split, Croatia
R Rosset Laboratoire dâAerologie, France
J L Rubio Centro de Investigaciones sobre
Desertificacion, Spain
T J Rudolphi Iowa State University, USA
S Russenchuck Magnet Group, Switzerland
H Ryssel Fraunhofer Institut Integrierte
Schaltungen, Germany
S G Saad American University in Cairo, Egypt
M Saiidi University of Nevada-Reno, USA
R San Jose Technical University of Madrid,
Spain
F J Sanchez-Sesma Instituto Mexicano del
Petroleo, Mexico
B Sarler Nova Gorica Polytechnic, Slovenia
S A Savidis Technische Universitat Berlin,
Germany
A Savini Universita de Pavia, Italy
G Schmid Ruhr-Universitat Bochum, Germany
R Schmidt RWTH Aachen, Germany
B Scholtes Universitaet of Kassel, Germany
W Schreiber University of Alabama, USA
A P S Selvadurai McGill University, Canada
J J Sendra University of Seville, Spain
J J Sharp Memorial University of
Newfoundland, Canada
Q Shen Massachusetts Institute of Technology,
USA
X Shixiong Fudan University, China
G C Sih Lehigh University, USA
L C Simoes University of Coimbra, Portugal
A C Singhal Arizona State University, USA
P Skerget University of Maribor, Slovenia
J Sladek Slovak Academy of Sciences,
Slovakia
V Sladek Slovak Academy of Sciences,
Slovakia
A C M Sousa University of New Brunswick,
Canada
H Sozer Illinois Institute of Technology, USA
D B Spalding CHAM, UK
P D Spanos Rice University, USA
T Speck Albert-Ludwigs-Universitaet Freiburg,
Germany
C C Spyrakos National Technical University
of Athens, Greece
I V Stangeeva St Petersburg University,
Russia
J Stasiek Technical University of Gdansk,
Poland
G E Swaters University of Alberta, Canada
S Syngellakis University of Southampton, UK
J Szmyd University of Mining and Metallurgy,
Poland
S T Tadano Hokkaido University, Japan
H Takemiya Okayama University, Japan
I Takewaki Kyoto University, Japan
C-L Tan Carleton University, Canada
M Tanaka Shinshu University, Japan
E Taniguchi Kyoto University, Japan
S Tanimura Aichi University of Technology,
Japan
J L Tassoulas University of Texas at Austin,
USA
M A P Taylor University of South Australia,
Australia
A Terranova Politecnico di Milano, Italy
E Tiezzi University of Siena, Italy
A G Tijhuis Technische Universiteit
Eindhoven, Netherlands
T Tirabassi Institute FISBAT-CNR, Italy
S Tkachenko Otto-von-Guericke-University,
Germany
N Tosaka Nihon University, Japan
T Tran-Cong University of Southern
Queensland, Australia
R Tremblay Ecole Polytechnique, Canada
I Tsukrov University of New Hampshire, USA
13. R Turra CINECA Interuniversity Computing
Centre, Italy
S G Tushinski Moscow State University,
Russia
J-L Uso Universitat Jaume I, Spain
E Van den Bulck Katholieke Universiteit
Leuven, Belgium
D Van den Poel Ghent University, Belgium
R van der Heijden Radboud University,
Netherlands
R van Duin Delft University of Technology,
Netherlands
P Vas University of Aberdeen, UK
W S Venturini University of Sao Paulo, Brazil
R Verhoeven Ghent University, Belgium
A Viguri Universitat Jaume I, Spain
Y Villacampa Esteve Universidad de
Alicante, Spain
F F V Vincent University of Bath, UK
S Walker Imperial College, UK
G Walters University of Exeter, UK
B Weiss University of Vienna, Austria
H Westphal University of Magdeburg,
Germany
J R Whiteman Brunel University, UK
Z-Y Yan Peking University, China
S Yanniotis Agricultural University of Athens,
Greece
A Yeh University of Hong Kong, China
J Yoon Old Dominion University, USA
K Yoshizato Hiroshima University, Japan
T X Yu Hong Kong University of Science &
Technology, Hong Kong
M Zador Technical University of Budapest,
Hungary
K Zakrzewski Politechnika Lodzka, Poland
M Zamir University of Western Ontario,
Canada
R Zarnic University of Ljubljana, Slovenia
G Zharkova Institute of Theoretical and
Applied Mechanics, Russia
N Zhong Maebashi Institute of Technology,
Japan
H G Zimmermann Siemens AG, Germany
14. Editor
C.A. Brebbia
Wessex Institute of Technology, UK
M
M
M
M
Mesh
esh
esh
esh
esh R
R
R
R
Reduction
eduction
eduction
eduction
eduction M
M
M
M
Methods
ethods
ethods
ethods
ethods
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
BEM/MRM XXXI
15. Published by
WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com
For USA, Canada and Mexico
Computational Mechanics Inc
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com
British Library Cataloguing-in-Publication Data
A Catalogue record for this book is available
from the British Library
ISBN: 978-1-84564-197-9
ISSN: (print) 1746-4064
ISSN: (on-line) 1743-355X
The texts of the papers in this volume were set
individually by the authors or under their supervision.
Only minor corrections to the text may have been carried
out by the publisher.
No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or
damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions or ideas contained in the
material herein. The Publisher does not necessarily endorse the ideas held, or views expressed
by the Editors or Authors of the material contained in its publications.
Š WIT Press 2009
Printed in Great Britain by Athenaeum Press Ltd
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the Publisher.
Editor:
C.A. Brebbia
Wessex Institute of Technology, UK
16. Preface
The success and vitality of Boundary Element research continues to surprise not
only all newcomers to the technique but even researchers like myself who have
been deeply committed to its development since the very beginning.
The term Boundary Elements was coined in 1977 together with the methodology
presented in a paper that I wrote with Jose Dominguez and which was published in
the International Journal of Applied Mathematical Modelling. The paper was the
culmination of an effort to link the then recent developments in finite elements
with the boundary integral theory. This work set up the basis for the boundary
element method as we know it, even providing the notation now widespread in the
literature. It also consolidated a series of ideas related to mixed type variational
statements, which were essential to pave the way for applications of boundary
integral equations beyond the limitations of linearity.
Boundary integral techniques were able to expand their range of applications through
their interpretation in terms of BEM. This was the result of cross fertilisation
between the Russian school, the mixed principles developed at MIT and the
computational advances of the UK Group.
The simplicity and elegance of BEM led to our awareness of the potentialities of
the method and the realisation that integral equations were also open to
experimentation and approximations.
This was conducive to a new type of development, typical of which was the Dual
Reciprocity Method, a totally different conceptual approach. DRM not only applied
the novel idea of using localised particular solutions but also allowed for them to
be approximated. The fortunate discovery that they worked well with radial basis
functions was also of great importance for the development of a whole new
generation of meshless methods.
17. In parallel to the DRM developments, work was proceeding in other ways to transfer
internal effects to the boundary using exact solutions, i.e. the Greenâs functions
themselves. The generalisation of that concept led to the development of the Multiple
Reciprocity Method. The beauty of this method is that it led not just to meshless
domains but that also bypassed the need to have any internal nodes as in the case of
DRM. The limitation of requiring analytical expression for the internal terms led
however to lack of sustained interest in the MRM, which was seen as less versatile
than DRM.
Many other approaches have been put forward following those basic ideas as
evidenced by the numerous papers on meshless methods that continue to be
published in the International Journal of Engineering Analysis with Boundary
Elements.
The next stage will be for one or more of the meshless methods to achieve maturity
and become a practical tool, in much the same way as classical BEM. The papers
published in this book dealing with mesh reduction methods demonstrate their
continuous evolution and the possibility of having reliable and robust meshless
techniques in engineering practice in the future.
It is always a source of personal pleasure for me to see the way in which the original
BEM ideas continue to develop in the hands of new researchers as well as our
senior colleagues.
The quality and originality of the papers cited in this book is a demonstration of the
continuous evolution of BEM research.
As Editor of this Volume, I am grateful to all contributors for the quality of their
papers as well as to those colleagues who helped to review them.
Carlos A. Brebbia
New Forest, 2009
18. Contents
Section 1: Advanced formulations
Multipole expansion BEM for simultaneous Poisson's equations
T. Matsumoto, T. Takahashi & S. Taniguchi....................................................... 3
Numerical Greenâs function for a two-dimensional
diffusion equation
C. A. B. Vasconcellos, M. A. C. Ferro, W. J. Mansur, F. S. Loureiro
& J. P. L. Santos................................................................................................ 13
Equivalence between the Trefftz method and the method of
fundamental solutions for Greenâs function of concentric spheres
using the addition theorem and image concept
J. T. Chen, H. C. Shieh, J. J. Tsai & J. W. Lee .................................................. 23
On stress reconstruction in composite domains from discrete data on
principal directions
A. N. Galybin ..................................................................................................... 35
The boundary element method for the determination of nonlinear
boundary conditions in heat conduction
D. Lesnic, T. T. M. Onyango & D. B. Ingham ................................................... 45
FEM type method for reconstruction of plane stress tensors from
limited data on principal directions
J. IrĹĄa & A. N. Galybin...................................................................................... 57
Section 2: Advanced meshless and mesh reduction methods
Meshless implementations of local integral equations
V. Sladek, J. Sladek & Ch. Zhang...................................................................... 71
19. Local and virtual RBF meshless method for high-speed flows
S. Gerace, K. Erhart, E. Divo & A. Kassab....................................................... 83
The radial basis integral equation method for
convection-diffusion problems
T. T. Bui & V. Popov ......................................................................................... 95
A method of fundamental solution without fictitious boundary
W. Chen & F. Z. Wang .................................................................................... 105
Extending the local radial basis function collocation
methods for solving semi-linear partial differential equations
G. Gutierrez, O. R. Baquero, J. M. Valencia & W. F. Florez.......................... 117
Three-dimensional unsteady heat conduction analysis by the
triple-reciprocity boundary element method
Y. Ochiai & Y. Kitayama ................................................................................. 129
Radial basis integral equation method for Navier-Stokes equations
T. T. Bui & V. Popov ....................................................................................... 141
Efficient Boundary Element Method for a focused domain
S. Takiguchi, K. Amaya & Y. Onishi................................................................ 151
Performance of GMRES for the MFS
A. Karageorghis & Y.-S. Smyrlis..................................................................... 163
Section 3: Computational methods
On the use of integrated radial basis function schemes in weighted
residual statements for elliptic problems
N. Mai-Duy & T. Tran-Cong ........................................................................... 175
A time domain Galerkin boundary element method for a heat
conduction interface problem
R. VodiÄka........................................................................................................ 187
Hierarchical matrices and adaptive cross approximation applied to
the boundary element method with multi-domain governed by
iterative coupling
T. Grytsenko & A. Peratta ............................................................................... 199
20. Section 4: Advanced structural applications
Boundary element modelling of non-linear buckling for
symmetrically laminated plates
S. Syngellakis & N. Cherukunnath................................................................... 211
Effective properties of fibers with various ratios of phase stiffness
P. ProchĂĄzka.................................................................................................... 223
Hybrid finite element method in supersonic flutter analysis of
circular cylindrical shells
F. Sabri, A. A. Lakis & M. H. Toorani............................................................. 233
Section 5: Damage mechanics and fracture
Cohesive crack propagation using a boundary element formulation
with a tangent operator
E. D. Leonel & W. S. Venturini........................................................................ 247
Stress field in the Antarctic tectonic plate: elastic and plastic models
P. Haderka, A. N. Galybin & Sh. A. Mukhamediev ......................................... 257
Section 6: Dynamics and vibrations
Velocity-based boundary integral equation formulation in the
time domain
G. D. Manolis & C. G. Panagiotopoulos......................................................... 271
Trefftz collocation for frequency domain elastodynamic problems
V. M. A. LeitĂŁo, B. Sensale & B. S. Rodriguez ................................................ 281
On the breathing frequencies computation using the Reissner and
the Mindlin model
L. Palermo Jr................................................................................................... 293
Free vibration analysis of a circular plate with multiple circular holes
by using the addition theorem and direct BIEM
W. M. Lee & J. T. Chen ................................................................................... 303
Free vibration analysis of thin circular plates by the indirect
Trefftz method
A. Ghannadi-Asl & A. Noorzad ....................................................................... 317
21. Section 7: Fluid flow
Meshless, BE, FE and FD methods analysis of the flow and
concentration in a water reservoir
K. Sakamoto, M. Kanoh & T. Kuroki............................................................... 331
Natural convection around a 3D hotstrip simulated by BEM
J. Ravnik & L. Ĺ kerget..................................................................................... 343
Boundary integral method for Stokes flow with linear slip flow
conditions in curved surfaces
C. Nieto, M. Giraldo & H. Power.................................................................... 353
Development of a Boundary Element Method-based numerical
wave tank technique for the prediction of nonlinear wave kinematics
and dynamics around offshore structures
H. G. Sung ....................................................................................................... 363
Section 8: Electrical engineering and electromagnetics
Motion of nanoscale contaminant particle in air bearings under
electrostatic charges: a case study
B. W. Yeigh, R. H. Polwort & G. S. Gipson..................................................... 377
Boundary element modeling of horizontal grounding electrodes using
the set of generalized telegrapherâs equations
D. Poljak, K. El Khamlici Drissi & R. Goic .................................................... 387
Provisional study on the 3-D Cauchy condition surface method for
fusion plasma shape identification
M. Itagaki, T. Maeda, A. Wakasa & K. Watanabe........................................... 397
Author Index.................................................................................................. 405
24. Multipole expansion BEM for simultaneous
Poissonâs equations
T. Matsumoto, T. Takahashi & S. Taniguchi
Department of Mechanical Science and Engineering,
Nagoya University, Japan
Abstract
A boundary element method for simultaneous Poissonâs equations is presented to
solve large scale problems governed by Poissonâs equation using multipole expan-
sions of the fundamental solutions. Original Poissonâs equation is approximated a
set of Poissonâs equations and an integral representation for the set of differential
equations is derived. The fundamental solutions of the coupled Poisson equations
consist of the fundamental solution of Laplaceâs equation, biharmonic function,
and triharmonic function. Multipole expansions of these fundamental solutions
are used in the evaluation of the boundary integral equations. The effectiveness of
the present formulation is demonstrated through a numerical example.
Keywords: Poissonâs equation, fundamental solution, multipole expansion, source
distribution.
1 Introduction
Poissonâs equation is a good starting point for analyses of potential problems with
inhomogeneous material parameters [1]. The integral representation of Poissonâs
equation has a domain integral term originated from the source term. To avoid the
domain discretization, the domain integral can be converted to boundary integrals
by means of the dual reciprocity method (DRM) [2] or the multiple reciprocity
method (MRM) [3]. In the DRM, the value of the source term at an arbitrary point
in the domain is approximated with a linear combination of radial basis functions
(RBF) whose collocation points are placed in the domain and on the boundary. In
order to convert the domain integral term originated from the source term of Pois-
sonâs equation, particular solutions corresponding to the radial basis function are
required. Also, the coefficients of the source term approximation have to be deter-
Mesh Reduction Methods 3
Š 2009 WIT Press
WIT Transactions on Modelling and Simulation, Vol 49,
www.witpress.com, ISSN 1743-355X (on-line)
doi:10.2495/BE090011
25. mined in advance by collocation method which requires fully populated matrix to
solve and is unstable for large scale problems. On the other hand, MRM requires
particular solutions for the sources corresponding to a series of fundamental solu-
tions. By using these particular solutions, the original domain integral term can
be converted to a series of boundary integrals and a domain integral. Ochiai pro-
posed a variant of MRM, called triple reciprocity BEM [4, 5], which applies the
reciprocity formulation only three times. In this method, instead of using the cor-
rect values of the derivatives of the source, they are roughly estimated to be zero.
The error of the derivative of the source on the boundary is modified by using the
values of the source at collocation points in the domain instead.
For large-scaled problems, the fast multipole methods (FMM) may also be uti-
lized for those governed by Poissonâs equation. To circumvent the evaluation of the
domain integrals in applying FMM for Poissonâs equation, MRM based approach
is more straight-forward in applying FMM, because only the multipole expan-
sions of the higher order fundamental solutions found in the boundary integrals
are required in the process.
In this study, we consider Poissonâs equation and approximate the source term in
terms of simultaneous coupled Poissonâs equations. Using the fundamental solu-
tions of the simultaneous Poissonâs equations, a set of boundary integral equations,
equivalent to those proposed by Ochiai, is derived. The fundamental solutions of
the coupled Poisson equations consist of the fundamental solution of Laplaceâs
equation, biharmonic function, and triharmonic function. Multipole expansions of
them are used in the evaluation of the boundary integral equations. The resulting
set of boundary integral equations are evaluated numerically by using the mul-
tipole expansions of the fundamental solutions. The effectiveness of the present
formulation is demonstrated through a simple numerical example.
2 A boundary only integral formulation for Poissonâs equation
Consider a potential problem governed by Poissonâs equation
â2
Ď1(x) + Ď2(x) = 0, x â V (1)
with the boundary condition
Ď1(x) = ĎĚ1(x), x â SĎ, (2)
q1(x) =
âĎ1(x)
ân
= qĚ1(x), x â Sq, (3)
where V is the domain and S = SĎ âŞ Sq is its boundary, Ď1(x) denotes the poten-
tial and Ď2(x) the source term. Also, q1(x) = âĎ1(x)/ân is the outward normal
derivative of Ď1(x) to the boundary; ĎĚ1 and qĚ1 are given functions prescribed on
the specified boundaries, respectively.
We assume that the source term Ď2(x) is also assumed to be known both in V
and on S.
4 Mesh Reduction Methods
Š 2009 WIT Press
WIT Transactions on Modelling and Simulation, Vol 49,
www.witpress.com, ISSN 1743-355X (on-line)
29. 410 Familie. a 2 Ăź Obst: d S 's p: i-l 3 o tĂ .ÂŁ bĂś 3 C cn Zj
ÂŤ'S Namen. 'S ÂŁ P5 o c o 'S o n CO 'S s 1 2 3 4 5 6 7 8 9 10 11 12 13
Spiraea Rosaceae X X X Staphylea, Pimpernuss Celastrineae X X
Sterculia Bombaceae X X X Styrax Styraceae X X X X Symphoriearpus
Caprifoliaceae X X - â Ssrringa, Flieder Oleaceae X X Tamarix,
Tamariske Tamariscineae X X X Taxodium, Snmpfcypresse und ) Eil
)encypresse / Coniferae X X X X X Taxus, Eibenbaum n X X X Thuja
und Biota, Lebensbaum. . . . n X X X X Thujopsis )) X X X "Tilia,
Linde Tiliaceae X X Torreya Coniferae X X X X Ulex, Stechginster
Papilionaceae X X X Ulmus, Ulme, RĂźster Ulmaceae X
30. 411 Aussaat: o a a -Ă O â˘-^ 3"" |IH Eignet sich: 'S a p 5 S
in das Land 5 o 1 ÂŤ Ca s 'S S "3 a & â o 2 'S "u s Besondere
Bemerkungen. 14 15 16 17 18 19 20 21 22 X X i-8 X X Die.se.
Gattung ist reich an schĂśnhlĂźhenden Arten. Viele Arten eignen sich
zu Zierhecken. Einige, z. B. lanceolata, sind WintergrĂźn. Um sich
schĂśn zu enttrickein, verlangen viele S. nahrhaften, dabei lockeren
Boden und Schatten, so z. B. callosa, conjmhosa, ariaefolia,
sorhifoUa. Andere ivie S. cana, hypericifolia, Thunhergi, gedeihen
auch auf trockenen Lagen. Aussaat am besten im April in leichter
Erde, mit einer dĂźnnen Schicht Haideerde bedecken. X X 5â6 X X X
SchÜn blßhende hohe Sträucher, welche in jedem Boden gedeihen.
St. colchica ist eine gute Treibpflanze. Bei grĂśsserem Betriebe
werden die Samen im October stratificiert und erst im zweiten
Frßhjahr ausgesäet. X X X Im Sßden ein schÜner Baum von der
Tracht einer Platane, kann nĂśrdlicher nur im Kalthause gezogen
werden. Verlangt jährliches Verpflanzen, sehr nahrhaften Boden und
während der Vegetation sehr reichliche Bewässerung. Aussaat im
April, gegen SpätfrĂśste zu schĂźtzen. X X 5â (3 Zärtliche Sträucher
oder kleine Bäume, welche nur in den wärmsten Lagen von
Mitteleuropa im Freien aushalten. X X X Sehr verbreitete
Farksträucher, welche ohne jede Pflege gedeihen. Zieren besonders
durch die iveissen, bei einigen Species rothen FrĂźchte, welche sich
den ganzen Winter hindurch halten. S. mexicana (montana) verlangt
Bedeckung im Winter. X 5â6 X X X Lieben kräftigen Bode7i und
gedeihen sowohl im Schatten wie der vollen Sonne ausgesetzt. Das
Treiben der S., besonders S. vulgaris purpurea bildet die Specialität
einiger grossstädtischeii Gärtnereien. Zur Aussaat stratificiert man
den Samen sofort nach der Ernte und säet im folgenden März. X X 8-
9 X Fein belaubte, schÜn blßhende Sträucher, welche besonders auf
feuchtem Sandboden gut gedeihen tuid sich dem Schnitt willig
unterwerfen. Der feine Samen darf nur schwach bedeckt werden. X
X X Theils Blätter abwerfend (T. distichum) , theils Wintergrßn (T.
sempervirens) . Ersterer gedeiht am besten auf nassem Boden und
ist winterhart, letzterer, Taxusähnlich, leidet oft von der Kälte.
Aussaat in gute Haideerde, oft leicht bespritzen. X X X X X Die T.
31. sind die härtesten und in Bezug auf Boden und Lage mit wenigen
Ausnahmen anspruchslosesten Coniferen. Bei grossem Betrieb
stratificiert man den Sam.en gleich nach der Ernte und säet im
zweiten FrĂźhjahr danach. Aussaat gegen VĂśgel schĂźtzen. X X X X X
Die nordamerikanischen Arten, von denen einige grosse Bäume
bilden, sind ganz winterhart, die zur Gattung Biota gehĂśrenden
orientalischen L. leiden mitunter in kalte7i Wintern. Die zahlreichen
Varietäten erzeugen sich nicht immer echt aus Samen. Viele nur
strauchartig. T. occidentalis giebt prächtige Hecken. Aussaat in
leichte Erde, schattig halten, häufig spritzen, gegen VÜgel schßtzen.
Verql. §. 2.35. X X X HÜchst ornamentale, in einigermassen
geschĂźtzter Lage harte Coniferen von leichter Cultur. Lieben leichte,
durchlassende, dabei nahrhafte Erdmischung und fĂźrchten qrosse
Feuchtigkeit. Aussaat -wie bei Thuja. X X 6-7 X X X Die Samen der
Linden brauchen lange Zeit zum Keimen. In leichte Erde säen, fßr
grossen Betrieb erst im zweiten, der Einschichtung im Septeviher
folgenden Frßh jähr. Junge Sämlinge nicht nur gegen SpätfrÜste,
sondern auch gegen einen sehr kleinen Pilz, welcher sich auf die
Blättchen setzt, schßtzen. Letzteres geschieht bei trockenem,
sonnigem Wetter durch Bestreuen der Pflänzchen mit
Schivefelblßlhe. X X Ausser T. grandis ziemlich harte kleine Bäume,
theils aus Nordamerika, theils aus Japan. Sie gedeihen nicht gut in
TĂśpfen, am besten im Schutz und Schatten grĂśsserer
Nadelholzbäume. Man behandelt die grossen Samen, welche schnell
die Keimkraft einbĂźssen und lange liegen, wie bei Cedrus Deodara
(S. SflO) angegeben. X X 2-4 6â7 X X Auf Sand in der Nähe der
KĂźsten wild wachsend oder zu Hecken angepflanzt, erfriert U. doch
oft in harten Wintern bis zum Boden oder an einzelnen Aesten. FĂźr
abschĂźssige Terrains und trockene, sterile Boden besonders nĂźtzlich.
Aussaat nicht vor Ajiril-Mni in Icifhte Erde. X 3 4 X X Entwickelt sich
lK.s,i,ii/rr.s .srlU',, auf gutem, tiefem, feuchtem Boden. Der Samen
reift schon im Mai und Juni und wird am besten dann spätestens Juli
- August in gute, leichte Erde gesäet, nur schwach bedeckt und stets
feucht gehalten.
32. 412 Familie. e s c Obst: 3: a 5 o II p Namen. o 5 o o 'S o c
1 2 3 4 5 6 7 8 9 10 11 12 13 Ungnadia Hippocastaneae X X X i
Vaccinium macrocarpum, Cran-^ beere, amerikanische Moos-j beere
| Ericeae X X X X Myrtillis, Heidelbeere, Bickbeere n X X X i
Oxycoccos, Moosbeere n X X X Vitis idaea, Preisseibeere, Krons-
beere / V X X X X amerikanische Arten Âť X X X Viburniim,
Wasserholder, Schnee-) ball ; Caprifoliaceae X X Virgilia (Cladrastis),
f4elbholz .... Papilionaceae X X X Vitex, Keuschbaum Verbenaceae X
X X Vitis vinifera, Weinstock Ampelidcac X X X X X X X X andere
Arten n X X Weigelia (Diervilla) Caprifoliaceae X X Wellingtonia
gijiantea (Sequojal . Coniferae X Zanthoxylum, Gelbholz,
Zahnwehholz Zanthoxyleac X X X X X X Zizjrplius volubilis
(Berchemia), ^ (Jujuba) / Rhamneae X X X X
33. 413 Aussaat: o â Ă o 3 Ăś Eignet sich: 0 a p (3 s in das Land
o a 6 h 'S a S 'S B o, . AM u ÂŤ 0-% i5 IS o Besondere Bemerkungen.
14 15 16 17 18 19 20 21 22 X X 7-8 WeissliehhlĂźheiifl mit
gefiederten Blättern u?id von schÜnem Wuchs, hei uns jedoch sich
iiirhl roll entwickelnd. Liebt lockere, dabei nahrhafte Erde. X X 5â G
Ein BoäciistrKuch , welcher Aehnlichkeit mit der Preissei-
undMoosheere hat. Die grossen, lange haltbaren FrĂźchte Ăźbertreffen
an Wohlgeschmack die einheimischen Arten. KĂśnnen nur auf
hewässerharen Plätzen in Humuserde gezogen werden. Die Aussaat
dieser MoorbeetX 5â6 Bekannter kleiner Strauch, welcher nur auf
Waldboden gezogen werden kann. X 5â6 Die Moosbeere, welche
auf sandigem Moorboden, besonders an Grabenrändern wächst und
an solchen in sonniger Lage gezogen werden kann, Ăźbertrifft die
ähnliche Preisseibeere an Wohlgeschmack. in Haideerde zu
geschehen, analog den in §§. 224-228 geX 5â6 Kann auf
Sandboden in lichten Nadelwäldern, besonders hoch im Gebirge
gezogen werden. Verlangt Luft und Sonne , um ihre Beeren zu
reifen. gebenen Andeutungen. X X 5â6 Als Zierpflanzeri angebaute
V. sind in den Gärten selten, und daher ivenig erprobt. Sie verlangen
ein Moorbeet, einige Arten Cultur im Kalthause. X X 5â6 X X
Beliebte, herrlich blßhende Sträucher, auch fßr Schatten und
Unterholz geeignet. Gedeihen in jedem etwas frischen Boden. Die
schÜnste Art ist V. pUcatum, als welcher auch fälschlich V. dentatum
vorkommt. Die aus China stammenden Species verlangen leichte
Bedeckung im Winter. V. Tinus s. S. 3GG. FĂźr Aussaaten in
grĂśsserem Massstabe stratificiert man den Samen unmittelbar nach
der Ernte und säet erst im zweitfolgenden Frßhjahr. X X 6-7 X Bei
uns noch ungenĂźgend bekannter, sehr empfehlenswerther schĂśner
kleiner Baum mit grossen, akazienähnlichen Blättern und grossen,
weissen Bliithen in hängeriden Trauben. Liebt guten kräftigen Boden.
Aussaat im April bis Mai in guter Gartenerde. X X 7-9 X Erfrieren bei
uns oft bis zum Boden und verpflanzen sich schwer. Warme Lage,
sandige Erde. Aussaat im April. X X X Aussaat ergiebt meistens
frĂźher reifende Trauben, als sie die Mutterpflanze liefert. Man
verwendet nur Samen gutgeformter Beeren von mustergiltigen
34. Trauben. Zur FrĂźhjahrsaussaat legt man die reinen Samen vorher 1
bis 2 Tage in Wasser. Die Freilandsaat wird, um die Feuchtigkeit zu
erhalten, leicht mit Stroh bedeckt. Die Sämlinge einzeln in TÜpfe
oder in die sonnigste Lage des Gartens verpflanzen und jährlich
beschneiden. Von gewissen Sorten gewonnen, kĂśnnen dieselben
schon im 4. Jahre tragen, oft dauert dies jedoch 8 â 10 .Jahre.
Vergl. §. 2.36. X X Unter den nordamerikanischen wilden Reben sind
sehr schĂśne, zum Theil mit essbaren Beeren; sie eignen sich
vorzßglich fßr Wände, Spaliere und Lauben und an einzeln stehende
Bäume. V. riparia mit sehr wohlriechenden IJlßthrn. X X 5-7 X X Die
W. gehÜren zu den prächtigsten Blßthensträuchern, welche indessen
m luiinrlien Gegenden durch frĂźhe FrĂśste leiden. Sie lassen sich, in
TĂśpfe i/rbnichf, gut treiben. Lieben lockeren, ziemlich nahrhaften
Boden. Aussaat März- April. Durch häufiges Spritzen stets feucht
erhalten. W. (Calyptrostigma) Middendorfiana ist zärtlicher und muss
erst im Topfe erstarken. X â X X X An vielen Orten erfrierend, hat
sich dieser schÜne Baum doch an aiideren selbst in den kältesten
Wintern gut erhalten und bildet in einigen Gegenden bereits hohe
Bäume. Bedeckung nßtzt wenig. Aussaat wie bei Retinospora.
Verpflanzt sich nur gut, wenn mit starkem Baken versehen, liebt
lockeren, sandigen, dabei nahrhaften Boden. In TĂśpfen heranziehen.
X X Wenig cultivirt , dicke, fnit Stacheln besetzte Zweige und
eschenähnliche Blätter. Lieben kräftigen, feuchten Boden. X J X In
Sßd-Europa häufig anzutreffender Baum mit essbaren Frßchten.
Liebt leichten sandigen Boden und verlanrjt im Freien die sĂźdlichste
Lage. Die Samen sind sehr hart und liegen ein Jahr in der Erde,
wenn sie nicht ebenso lange stratificiert werden.
48. Wintersalat 122 Wiaterspinat 149 Winterzwiebel 139 Wirsing- 98,
212 Wistaria s. Glycine 396 Woodwardia (Farm) 331 AVruckeu 103,
210 Wulfenia 312 Wunderbaum s. Ricinus . . . 302 Wunderblume s.
MirabUis . 296 Wurm kraut 208 Wurzeln und Rllben . . 104 X.
Xeranthemum 312 Y. Yucca 366 z. Zanthoxylum 412 Zaubernuss s.
Hamamelis . . 396 Zauschneria 312 Zea 81, 312 Zenoljia s.
Andromeda .... 386 Zierg-räser, Aussaat der . 220 Zierkohle 101
Zinnia 266 Zipolle 136 Zittergras s. Briza 274 Zizyphus 412
ZuckerrĂźben 121 Zuckerwurzel 112, 212 ZĂźrgelbaum s. Celtis 390
Zweijährig-e Pflanzen, Aussaat der 216â218 Zwetsche s. Prunus
404 Zwiebel 136, 139, 212 Zwiebel- und KnollenGewächse des freien
Iiandes, Aussaat . 219â220 Zygopetalum (Orchideae) . . 338
49. The text on this page is estimated to be only 27.82%
accurate
422 Druckfehler und Verbesserungen. Seite Zeile 22 6 von
unten, zu lesen : zersetzbaren statt versetzbaren. 29 8 â oben, ^ â
beigesellt statt bei.gestellt. 46 16 n V, â V Spargelsaat statt
Spargelsalat. 47 16 11 unten, ^ - §. 35 statt 3G. 60 19 â Âť n V
Nacktschuecken statt Nachtschnecken. 67 5 Âť oben, Âť v %. 8 statt
9. 71 19 )i unten, â˘â˘ r> sind statt ist. 132 2 n oben,
50. The text on this page is estimated to be only 14.22%
accurate
Old ^ kk Date S I" â U- Iid I Ui I O fo. 1 i'.--'!' CO. r'â˘ÂŁ'
AGRICULTURE FORESTRY LIBRARY k::ii X 1 Lt.i 1 .(â˘-1 f.... TUE
UNIVERSITY OF BRITISH COLIiMBIA t L L .. I
52. Welcome to our website â the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
ebookfinal.com