SlideShare a Scribd company logo
Slide 1Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Ansgar Scherp
Mining and Managing
Large-scale Linked Open Data
GVDB, Nörten-Hardenberg, May 25, 2016
Thanks to: Chifumi Nishioka, Renata Dividino, Thomas Gottron,
and many more …
Slide 2Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Team Knowledge Discovery @
Ansgar
Scherp
Ahmed
Saleh
Chifumi
Nishioka
Falk
Böschen
Mohammad
Abdel-Qader
Till Blume
Anke
Koslowski
(Secretariat)
Henrik
Schmidt
(Engineer)
Lukas
Galke
Florian
Mai
&
Slide 3Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Linked Open Data (LOD) Cloud
• Publishing and interlinking data on the web
• Different quality, purpose, and sources
• Using the Resource Description Framework(RDF)
World Wide Web LOD Cloud
Documents Data
Hyperlinks via <a> Typed Links
HTML RDF
Addresses (URIs) Addresses (URIs)
Slide 4Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Relevance of Linked Data?
Slide 5Prof. Ansgar Scherp – asc@informatik.uni-kiel.de1000+ Datasets, 50+ Billion Triples
Media
Geographic
Publications
Web 2.0
eGovernment
Cross-Domain
Life
Sciences
Linked Data: May ‘07  August ‘14
Source: http://lod-cloud.net
Social Networking
Slide 6Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
LOD on One Slide: Example Graph
biglynx:matt-briggs
foaf:Person
rdf:type
Fully qualified URI using vocabulary prefixes:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix biglynx: <http://biglynx.co.uk/people/> .
Object
Predicate
Subject
RDF Triple
Slide 7Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
LOD on One Slide: Example Graph
biglynx:matt-briggs
foaf:Person
rdf:type
Fully qualified URI using vocabulary prefixes:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix biglynx: <http://biglynx.co.uk/people/> .
biglynx:Director
rdf:type …
…
Slide 8Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
LOD on One Slide: Example Graph
biglynx:matt-briggs
foaf:Person
biglynx:dave-smith
biglynx:Director
rdf:type
foaf:knows
rdf:type
_1:point
wgs84:
lat
wgs84:
long
dp:London
foaf:based_near
……
…
…
ex:loc
“-0.118”
“51.509”
Types
Properties
Entity
Slide 9Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Motivation for the SchemEX Index
• Single entry point to query the LOD cloud
• Search for data sources containing entities like
– ‘Persons, who are Politicians and Actors’
– ‘Research data sets’
– ‘Scientific publications’
Query
SELECT ?x
FROM …
WHERE {
?x rdf:type ex:Actor .
?x rdf:type ex:Politician . }
Index1
2
2
2
Slide 10Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Input Data for SchemEX
• Quads: <subject> <predicate> <object> <context>
• Example:
<http://biglynx.co.uk/people/matt-briggs>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>
<http://biglynx.co.uk/people/matt-briggs.rdf>
<http://biglynx.co.uk/people/
matt-briggs.rdf>
rdf:type
biglynx:
matt-briggs
foaf:
Person
LOD Cloud
Dataset 𝑋
Slide 11Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
SchemEX Idea
• Schema-level index SchemEX
• Assign RDF entities to graph patterns
• Map graph patterns to data sources (context)
• Defined over entities, but store the context
• Construction of schema-level index
• Stream-based for scalability
• Stratified bi-simulation for detecting patterns
• Little loss of accuracy
[KGS+12]
Slide 12Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Building the Index from a Stream
• Stream of quads coming from a LD crawler
… Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1
FiFo
4
3
2
1
1
6
2
3
4
5
C3
C2
C2
C1
+ Reasonable accuracy at cache size of 50k
Slide 13Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Full BTC 2011Data Set: 2.17 Bn Triples
Cache size: 50 k
Winner
BTC’11
+ Linear runtime with respect to number of triples
+ Memory consumption scales with window size
Slide 14Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
[GSK+13] Generalization
Specialization
Result list with
examples
Inspired by
Google
Slide 15Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
LODatio Under the Hood
SPARQL
Snippets
Generalize
Retrieve
Data Sources
Query
translation
Rank
Specialize
Count
Select
Select
• Hybrid database with off-the-shelf components
Slide 16Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
LOD on One Slide: Recap
biglynx:matt-briggs
foaf:Person
biglynx:dave-smith
biglynx:Director
rdf:type
foaf:knows
rdf:type
_1:point
wgs84:
lat
wgs84:
long
dp:London
foaf:based_near
……
…
…
ex:loc
“-0.118”
“51.509”
Type Set (TS)
Property Set (PS)
Information theoretic analyses of LOD
• How much information is encoded in TS and PS?
• … information encoded, once TS or PS is known?
• … to which degree are TS and PS redundant?
• Example: 20% of PLDs do not need TS (6% for PS)
[GKS15]
Slide 17Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
• 29 weekly LOD snapshots of ~100 Mio triples
• Still running since May 2012 (now 200+ weeks)
Käfer et al.’s Temporal Analysis of LOD
• Data on the cloud changes a lot
[Käfer et al., 2013] T. Käfer, A. Abdelrahman, J. Umbrich, P. O'Byrne, A. Hogan: Observing Linked
Data Dynamics. ESWC 2013: 213-227
Changes?
• But vocabularies defining RDF types and
properties are highly static, e.g., RDF, FOAF
LOD cloud ~2012 LOD cloud ~2014
Slide 18Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
𝐻(𝑃𝑆|𝑇𝑆=𝑡𝑠)
𝐻(𝑇𝑆|𝑃𝑆=𝑝𝑠)
But:DoChangesOccurinPS and TS?
• Analysis: expected conditional entropy over time
• 𝐻(𝑃𝑆|𝑇𝑆 = 𝑡𝑠): entropy of 𝑃𝑆 given 𝑇𝑆 is known
• Observation: types become less important
• Changes in the use of TS and PS ? !
Slide 19Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Changes over Time
• Extended characteristic sets: ECS = PS ∪ TS
# of ECS
Avg.: 83.898 ECS per week
# of ECS
[DSG+13]
• Avg. 73% of ECS re-occur next week (orange)
• Avg. 35% of ECS remain unchanged (blue)
• Avg. 20% of entity sets of ECS change / week
[Neumann and Moerkotte, 2011] Thomas Neumann, Guido Moerkotte: Characteristic sets:
Accurate cardinality estimation for RDF queries with multiple joins. ICDE 2011: 984-994
[Neumann and
Moerkotte, 2011]
Slide 20Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Temporal Dynamics of the Entities?
• Notion of entity motivated by ECS: entity is a
set of triples 𝑋 sharing the same subject URI 𝑠
• Example:
–1 entity
–4 triples
w.l.o.g.
• Useful to keep LOD caches up-to-date?
• Can we predict when LOD sources will change?
Slide 21Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Dynamics Function Θ
• Definition of Θ over change rate function 𝑐(𝑋𝑡)
Time
X
𝑡𝑖 𝑡𝑗
Θ
Θ 𝑡 𝑖
𝑋 = Θ(𝑋𝑡 𝑗
) − Θ(𝑋𝑡 𝑖
) = 𝑡 𝑖
𝑡 𝑗
𝑐 𝑋𝑡 d𝑡
[DGS+14]
𝑡𝑗
≈
𝑘=𝑖+1
𝑗
𝛿(𝑋𝑡 𝑘−1
, 𝑋𝑡 𝑘
)
• Approximation as step function over changes
Monotone,
non-negative
c
Slide 22Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Update Strategies for LOD Sources
• Apply strategies from keeping caches of WWW
documents up-to-date to maintain LOD caches
• Assumptions
–LOD is fetched from various sources
–Sources are scored and prioritized based on
strategy
–Data of a source is fetched only when the
operation can be entirely executed
Slide 23Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Scheduling Update Strategies
a) HTTP Header [Dividino et al., 2014a]
b) Age or Last Visited [Dasdan et al., 2009, Cho and
Garcia-Molina, 2000]
c) PageRank [Page et al., 1999, Boldi et al., 2004,
Baeza-Yates et al., 2005]
d) LOD Sources Size
e) Change Ratio [Douglis et al., 1997, Cho et al., 2002.
Tan et al., 2007]
f) Change Rate [Olston et al., 2002, Ntoulas et al.,
2004, Dividino et al., 2013]
g) History Information: Dynamics [Dividino et al., 2014b]
We borrow strategies developed for the WWW and
metrics for data change analysis in the LOD cloud.
Slide 24Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Ranking
Sources which
changed (most)
Sources that not
changed/less changesTimeti tj
e) Change Ratio
• Captures the change
frequency of the data
(freshness)
• Percentage of data items
in the cache that are up-to-date
Slide 25Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
f) Change Rate
• Data from sources which are less similar which their
previous update (snapshot) should be updated first
• Comparison of two RDF data sets
– 𝑋 : Set of triple statements
– 𝛿 : Numeric expression (distance)
𝛿𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑋1, 𝑋2 =
1 −
𝑋1 ∩ 𝑋2
𝑋1 ∪ 𝑋2
0,¥[ )
Time𝑡𝑖 𝑡𝑗
𝛿
Example:
Slide 26Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
g) History Information: Dynamics
• Data from sources which most evolve in a given
period of time should be updated first
• Uses both history information and change rate
Θ(𝑋𝑡 𝑗
) − Θ(𝑋𝑡 𝑖
) = 𝑡 𝑖
𝑡 𝑗
𝑐 𝑋𝑡 d𝑡
Time
X
𝑡𝑖 𝑡𝑗
Θ
c
≈
𝑘=𝑖+1
𝑗
𝛿(𝑋𝑡 𝑘−1
, 𝑋𝑡 𝑘
)
Slide 27Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Evaluation
 Idea: simulation of limitations of available
computational resources (network bandwidth,
computation time)
Time
100%
𝑡𝑖 𝑡𝑖+1
Slide 28Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Evaluation: Single Step Update
Time
100%
15%
5%40%
75%
95%60%
𝑡𝑖 𝑡𝑖+1
Slide 29Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Evaluation: Iterative Updates
Time
. . .
15%
5%40%
75%
95%60%
15%
5%40%
75%
95%60%
100%
𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2
Slide 30Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Dataset
• Dynamic Linked Data Observatory
• Weekly snapshots, 14 M triples
 154 snapshots (approx. 3 years)
 590 data sources (PLD)
Top 10 largest data sources Average size
dbpedia.org 3,406,364.5
edgarwrap.ontologycentral.com 982,631.0
dbtune.org 864,107.6
dbtropes.org 787,299.9
data.linkedct.org 498,986.3
aims.fao.org 416,708.9
www.legislation.gov.uk 399,601.6
kent.zpr.fer.hr 387,034.8
identi.ca 278,316.2
webenemasuno.linkeddata.es 250,557.9
Slide 31Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Metrics:Precision & Recall
• Precision: portion of cached data that are
actually up-to-date
• Recall: portion of data in the LOD cloud that
is identical to the cached data
Cached data
Actual data on the LOD cloud
(w.r.t. to the 590 sources considered)
Slide 32Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Single Step Update
Time
t jti
100% 15%
5%40%
75%
95%60%
Slide 33Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Iterative Updates
Time
tjti tj
. . .
15%
5%40%
75%
95%60%
15%
5%
40%
75%
95%60%
100%
Slide 34Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Iterative Updates
Time
tjti tj
. . .
15%
5%40%
75%
95%60%
15%
5%
40%
75%
95%60%
100%
Slide 35Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Iterative Updates
Time
tjti tj
. . .
15%
5%40%
75%
95%60%
15%
5%
40%
75%
95%60%
100%
Slide 36Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Summary
 Best strategies: ones which
capture the change
behaviour over time
 Specially for low relative
bandwidth
Slide 37Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Dynamics Function Θ: Revisited
Time
X
𝑡𝑖 𝑡𝑗
c
• Can we predict when LOD sources will change?
• Notion of dynamics to compute periodicities!
• Dynamics as vector of changes:
< 𝛿(𝑋𝑡1
, 𝑋𝑡2
), … , 𝛿(𝑋𝑡 𝑁−1
, 𝑋𝑡 𝑁
) >
Slide 38Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Temporal Clustering of Entities
• Dynamics as vector: < 𝛿(𝑋𝑡1
, 𝑋𝑡2
), … , 𝛿(𝑋𝑡 𝑁−1
, 𝑋𝑡 𝑁
) >
Time
Change(logscale)
[NS15]
• Clustering with
k-means++ to
find patterns
• 165 snapshots
• 65,044 entities
• 7 patterns (after
optimizing 𝑘)
Slide 39Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Periodicity of Entity Dynamics
• Examples: < 0, 3, 2, 0, 3, 2, 0 >, < 1, 2, 1, 2, 1, 2 >
# of
entities
Most likely
periodicity
C1 12,982 66
C2 168 23
C3 35 1
C4 12 1
C5 1 1
C6 1,541 56
C7 30 37
CS 50,725
[Elfeky et al., 2005] Mohamed G. Elfeky, Walid G. Aref, Ahmed K. Elmagarmid:
Periodicity Detection in Time Series Databases. IEEE Trans. Knowl. Data Eng.
17(7): 875-887 (2005)
• Convolution-based algorithm
[Elfeky et al. 2005]
• Entities of legislation.gov.uk
found in several clusters
(C1,C3,C4,C5,C6)
• No changes (CS): 77.29%
• CS: entities from w3.org and
ontologydesignpatterns.org
Slide 40Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Application Areas: More than One!
• Searching for LOD sources
[GSK+13,KGS+12]
• Strategies for updating data caches [DGS15]
• Programming queries against LOD [SSS12]
• Recommending LOD vocabularies [SGS16]
 Foundation for Future Data-driven Applications
Slide 41Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Summary: KDD in Social Media & DL
How to deal with the vast amount of content related to
research and innovation?
• H2020 INSO-4 project, duration: 04/2016-03/2019
• Data mining & visualization tools enabling information
professionals to deal with large corpora
• Website: http://www.moving-project.eu/
New
Slide 42Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Got Interested?
Knowledge Discovery at ZBW
Contact me!
Prof. Dr. Ansgar Scherp
• Email: a.scherp@zbw.eu
• Twitter: https://twitter.com/ansgarscherp
• Slideshare: http://de.slideshare.net/ascherp
• KD-Website:
http://www.zbw.eu/en/research/knowledge-discovery/
http://www.kd.informatik.uni-kiel.de/en/
Slide 43Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
References
[DGS15] R. Dividino, T. Gottron, A. Scherp: Strategies for Efficiently Keeping Local
Linked Open Data Caches Up-To-Date. International Semantic Web Conference (2)
2015: 356-373
[DGS+14] R. Dividino, T. Gottron, A. Scherp, G. Gröner: From Changes to Dynamics:
Dynamics Analysis of Linked Open Data Sources. PROFILES@ESWC 2014
[GKS15] T. Gottron, M. Knauf, A. Scherp: Analysis of schema structures in the Linked
Open Data graph based on unique subject URIs, pay-level domains, and vocabulary
usage. Distributed and Parallel Databases 33(4): 515-553 (2015)
[DSG+13] R. Dividino, A. Scherp, G. Gröner, T. Gottron: Change-a-LOD: Does the
Schema on the Linked Data Cloud Change or Not? COLD 2013
[GSK+13] T. Gottron, A. Scherp, B. Krayer, A. Peters: LODatio: using a schema-level
index to support users in finding relevant sources of linked data. K-CAP 2013: 105-108
[KGS+12] M. Konrath, T. Gottron, S. Staab, A. Scherp: SchemEX - Efficient construction
of a data catalogue by stream-based indexing of linked data. J. Web Sem. 16: 52-58
(2012)
[NS15] C. Nishioka, A Scherp: Temporal Patterns and Periodicity of Entity Dynamics in
the Linked Open Data Cloud. K-CAP 2015.
[SGS16] J. Schaible, T. Gottron, and A. Scherp: TermPicker Enabling the Reuse of
Vocabulary Terms by Exploiting Data from the Linked Open Data Cloud, ESWC,
Springer, 2016.
[SSS12] S. Scheglmann, A. Scherp, S. Staab: Declarative Representation of
Programming Access to Ontologies. ESWC 2012: 659-673
Slide 44Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
a) HTTP Header
• Data from sources which have been changed
since the last update should be updated first
HTTP Response
HEADER
…
Last-Modified: Tue, 15 Nov 1994 12:45:26
GMT
CONTENT
Slide 45Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
b) Age or Last Visited
• Time elapsed from last
update (the difference
between query time and
last update time)
• It guarantees that every
source is updated after a
period
Ranking
Sources that have been
at longer time updated
Sources that have
been recently updated
Slide 46Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
c) PageRank and d) Source Size
• PageRank captures popularity/
importance of the LOD source
• Data from sources with highest
PageRank are updated first
• LOD source size: data from the
biggest/smallest LOD sources
should be updated first
Ranking
Sources with
higher PR
Sources with
lower PR
Slide 47Prof. Ansgar Scherp – asc@informatik.uni-kiel.de
Results: Single Step Update
Time
t jti
100% 15%
5%40%
75%
95%60%

More Related Content

PPTX
SchemEX - Creating the Yellow Pages for the Linked Open Data Cloud
PPTX
Formalization and Preliminary Evaluation of a Pipeline for Text Extraction Fr...
PPTX
Mining and Managing Large-scale Linked Open Data
PPTX
A Comparison of Different Strategies for Automated Semantic Document Annotation
PDF
Introduction to Big Data
PDF
Mining Big Data Streams with APACHE SAMOA
PDF
Signals from outer space
PDF
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...
SchemEX - Creating the Yellow Pages for the Linked Open Data Cloud
Formalization and Preliminary Evaluation of a Pipeline for Text Extraction Fr...
Mining and Managing Large-scale Linked Open Data
A Comparison of Different Strategies for Automated Semantic Document Annotation
Introduction to Big Data
Mining Big Data Streams with APACHE SAMOA
Signals from outer space
OSDC 2016 - Chronix - A fast and efficient time series storage based on Apach...

What's hot (20)

PDF
Working with HDF and netCDF Data in ArcGIS: Tools and Case Studies
PDF
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
PDF
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
PDF
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
PPTX
Deep Learning on Aerial Imagery: What does it look like on a map?
PPTX
Python at Warp Speed
PDF
Dynamic Community Detection for Large-scale e-Commerce data with Spark Stream...
PDF
A Fast and Efficient Time Series Storage Based on Apache Solr
PDF
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
PDF
Efficient and Fast Time Series Storage - The missing link in dynamic software...
PDF
MOA for the IoT at ACML 2016
PDF
Artificial intelligence and data stream mining
PDF
Chronix Poster for the Poster Session FAST 2017
PPTX
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
PPTX
Exploring Titan and Spark GraphX for Analyzing Time-Varying Electrical Networks
PDF
The new time series kid on the block
PDF
Geo exploration simplified with Elastic Maps
PPTX
Introduction to Generalised Low-Rank Model and Missing Values
PPTX
Applying Machine Learning using H2O
PDF
Realtime Data Analysis Patterns
Working with HDF and netCDF Data in ArcGIS: Tools and Case Studies
Strata NYC 2015: Sketching Big Data with Spark: randomized algorithms for lar...
LesFurets.com: From 0 to Cassandra on AWS in 30 days - Tsunami Alerting Syste...
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
Deep Learning on Aerial Imagery: What does it look like on a map?
Python at Warp Speed
Dynamic Community Detection for Large-scale e-Commerce data with Spark Stream...
A Fast and Efficient Time Series Storage Based on Apache Solr
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Efficient and Fast Time Series Storage - The missing link in dynamic software...
MOA for the IoT at ACML 2016
Artificial intelligence and data stream mining
Chronix Poster for the Poster Session FAST 2017
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Exploring Titan and Spark GraphX for Analyzing Time-Varying Electrical Networks
The new time series kid on the block
Geo exploration simplified with Elastic Maps
Introduction to Generalised Low-Rank Model and Missing Values
Applying Machine Learning using H2O
Realtime Data Analysis Patterns
Ad

Viewers also liked (6)

PDF
TRECVID 2016 POSTER CERTH-ITI
PDF
TRECVID 2016 Ad-hoc Video Search task, CERTH-ITI
PDF
Including financial criteria in the strategic planning of knowledge repositor...
PDF
Information theoritic analysis of entity dynamics on the linked open data cloud
PDF
VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH I...
PPTX
Profiling vs. Time vs. Content: What does Matter for Top-k Publication Recomm...
TRECVID 2016 POSTER CERTH-ITI
TRECVID 2016 Ad-hoc Video Search task, CERTH-ITI
Including financial criteria in the strategic planning of knowledge repositor...
Information theoritic analysis of entity dynamics on the linked open data cloud
VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH I...
Profiling vs. Time vs. Content: What does Matter for Top-k Publication Recomm...
Ad

Similar to Mining and Managing Large-scale Linked Open Data (20)

PPT
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
PPT
On the need for a W3C community group on RDF Stream Processing
PDF
Chronix: A fast and efficient time series storage based on Apache Solr
PDF
Real-Time Analytics with Apache Cassandra and Apache Spark
PDF
Real-Time Analytics with Apache Cassandra and Apache Spark,
PDF
Knowledge Discovery in Social Media and Scientific Digital Libraries
PPTX
Data Stream Algorithms in Storm and R
PDF
Spark Under the Hood - Meetup @ Data Science London
PDF
Maximize Impact: Learn from the Dual Pillars of Open-Source Energy Planning T...
PDF
Using the Open Science Data Cloud for Data Science Research
PDF
Materials Project computation and database infrastructure
PDF
RISELab:Enabling Intelligent Real-Time Decisions
PDF
RISELab: Enabling Intelligent Real-Time Decisions keynote by Ion Stoica
PDF
Chronix Time Series Database - The New Time Series Kid on the Block
PDF
Leveraging the Power of Solr with Spark
PDF
Leveraging the Power of Solr with Spark: Presented by Johannes Weigend, QAware
PDF
Apache Solr as a compressed, scalable, and high performance time series database
PDF
Big data distributed processing: Spark introduction
PPTX
Design Pattern of HBase Configuration
PPTX
Big data at experimental facilities
OrdRing 2013 keynote - On the need for a W3C community group on RDF Stream Pr...
On the need for a W3C community group on RDF Stream Processing
Chronix: A fast and efficient time series storage based on Apache Solr
Real-Time Analytics with Apache Cassandra and Apache Spark
Real-Time Analytics with Apache Cassandra and Apache Spark,
Knowledge Discovery in Social Media and Scientific Digital Libraries
Data Stream Algorithms in Storm and R
Spark Under the Hood - Meetup @ Data Science London
Maximize Impact: Learn from the Dual Pillars of Open-Source Energy Planning T...
Using the Open Science Data Cloud for Data Science Research
Materials Project computation and database infrastructure
RISELab:Enabling Intelligent Real-Time Decisions
RISELab: Enabling Intelligent Real-Time Decisions keynote by Ion Stoica
Chronix Time Series Database - The New Time Series Kid on the Block
Leveraging the Power of Solr with Spark
Leveraging the Power of Solr with Spark: Presented by Johannes Weigend, QAware
Apache Solr as a compressed, scalable, and high performance time series database
Big data distributed processing: Spark introduction
Design Pattern of HBase Configuration
Big data at experimental facilities

More from MOVING Project (20)

PDF
Opening up education through digitization. Remarks on recent developments in ...
PDF
MOVING: Applying digital science methodology for TVET
PDF
Learning analytics for reflective learning
PDF
Challenges in Developing Automatic Learning Guidance in Relation to an Inform...
PDF
Unesco mobileweek 2019_frontier_tech_oer-final
PDF
Inferring knowledge acquisition through Web navigation behaviour
PDF
ITI-CERTH participation in TRECVID 2018
PDF
Wissenschaft 2.0 und offene Forschungsmethoden vermitteln– Der MOOC "Science ...
PPTX
Wissenschaft 2.0 und offene Forschungsmethoden vermitteln: Der MOOC Science 2...
PDF
VERGE: A Multimodal Interactive Search Engine for Video Browsing and Retrieval
PDF
Temporal Lecture Video Fragmentation using Word Embeddings
PDF
The Impact of Blocking and Name-Matching on Author Disambiguation.
PPTX
Effective Unsupervised Author Disambiguation with Relative Frequencies
PDF
What to read next? Challenges and Preliminary Results in Selecting Represen...
PDF
Qualitative Analysis of Vocabulary Evolution on the Linked Open Data Cloud
PDF
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
PDF
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
PPTX
Deep Multi-task Learning with Label Correlation Constraint for Video Concept ...
PPTX
Generic to Specific Recognition Models for Membership Analysis in Group Videos
PDF
MOVING the Industry 4.0
Opening up education through digitization. Remarks on recent developments in ...
MOVING: Applying digital science methodology for TVET
Learning analytics for reflective learning
Challenges in Developing Automatic Learning Guidance in Relation to an Inform...
Unesco mobileweek 2019_frontier_tech_oer-final
Inferring knowledge acquisition through Web navigation behaviour
ITI-CERTH participation in TRECVID 2018
Wissenschaft 2.0 und offene Forschungsmethoden vermitteln– Der MOOC "Science ...
Wissenschaft 2.0 und offene Forschungsmethoden vermitteln: Der MOOC Science 2...
VERGE: A Multimodal Interactive Search Engine for Video Browsing and Retrieval
Temporal Lecture Video Fragmentation using Word Embeddings
The Impact of Blocking and Name-Matching on Author Disambiguation.
Effective Unsupervised Author Disambiguation with Relative Frequencies
What to read next? Challenges and Preliminary Results in Selecting Represen...
Qualitative Analysis of Vocabulary Evolution on the Linked Open Data Cloud
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
Keeping Linked Open Data Caches Up-to-date by Predicting the Life-time of RDF...
Deep Multi-task Learning with Label Correlation Constraint for Video Concept ...
Generic to Specific Recognition Models for Membership Analysis in Group Videos
MOVING the Industry 4.0

Recently uploaded (20)

PPTX
Spectroscopy.pptx food analysis technology
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
KodekX | Application Modernization Development
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Cloud computing and distributed systems.
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPT
Teaching material agriculture food technology
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Programs and apps: productivity, graphics, security and other tools
Spectroscopy.pptx food analysis technology
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Electronic commerce courselecture one. Pdf
Spectral efficient network and resource selection model in 5G networks
KodekX | Application Modernization Development
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Reach Out and Touch Someone: Haptics and Empathic Computing
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
NewMind AI Weekly Chronicles - August'25 Week I
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Cloud computing and distributed systems.
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Per capita expenditure prediction using model stacking based on satellite ima...
Teaching material agriculture food technology
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Programs and apps: productivity, graphics, security and other tools

Mining and Managing Large-scale Linked Open Data

  • 1. Slide 1Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Ansgar Scherp Mining and Managing Large-scale Linked Open Data GVDB, Nörten-Hardenberg, May 25, 2016 Thanks to: Chifumi Nishioka, Renata Dividino, Thomas Gottron, and many more …
  • 2. Slide 2Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Team Knowledge Discovery @ Ansgar Scherp Ahmed Saleh Chifumi Nishioka Falk Böschen Mohammad Abdel-Qader Till Blume Anke Koslowski (Secretariat) Henrik Schmidt (Engineer) Lukas Galke Florian Mai &
  • 3. Slide 3Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Linked Open Data (LOD) Cloud • Publishing and interlinking data on the web • Different quality, purpose, and sources • Using the Resource Description Framework(RDF) World Wide Web LOD Cloud Documents Data Hyperlinks via <a> Typed Links HTML RDF Addresses (URIs) Addresses (URIs)
  • 4. Slide 4Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Relevance of Linked Data?
  • 5. Slide 5Prof. Ansgar Scherp – asc@informatik.uni-kiel.de1000+ Datasets, 50+ Billion Triples Media Geographic Publications Web 2.0 eGovernment Cross-Domain Life Sciences Linked Data: May ‘07  August ‘14 Source: http://lod-cloud.net Social Networking
  • 6. Slide 6Prof. Ansgar Scherp – asc@informatik.uni-kiel.de LOD on One Slide: Example Graph biglynx:matt-briggs foaf:Person rdf:type Fully qualified URI using vocabulary prefixes: @prefix foaf: <http://xmlns.com/foaf/0.1/> . @prefix rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> . @prefix biglynx: <http://biglynx.co.uk/people/> . Object Predicate Subject RDF Triple
  • 7. Slide 7Prof. Ansgar Scherp – asc@informatik.uni-kiel.de LOD on One Slide: Example Graph biglynx:matt-briggs foaf:Person rdf:type Fully qualified URI using vocabulary prefixes: @prefix foaf: <http://xmlns.com/foaf/0.1/> . @prefix rdf: <http://w3.org/1999/02/22-rdf-syntax-ns#> . @prefix biglynx: <http://biglynx.co.uk/people/> . biglynx:Director rdf:type … …
  • 8. Slide 8Prof. Ansgar Scherp – asc@informatik.uni-kiel.de LOD on One Slide: Example Graph biglynx:matt-briggs foaf:Person biglynx:dave-smith biglynx:Director rdf:type foaf:knows rdf:type _1:point wgs84: lat wgs84: long dp:London foaf:based_near …… … … ex:loc “-0.118” “51.509” Types Properties Entity
  • 9. Slide 9Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Motivation for the SchemEX Index • Single entry point to query the LOD cloud • Search for data sources containing entities like – ‘Persons, who are Politicians and Actors’ – ‘Research data sets’ – ‘Scientific publications’ Query SELECT ?x FROM … WHERE { ?x rdf:type ex:Actor . ?x rdf:type ex:Politician . } Index1 2 2 2
  • 10. Slide 10Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Input Data for SchemEX • Quads: <subject> <predicate> <object> <context> • Example: <http://biglynx.co.uk/people/matt-briggs> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> <http://biglynx.co.uk/people/matt-briggs.rdf> <http://biglynx.co.uk/people/ matt-briggs.rdf> rdf:type biglynx: matt-briggs foaf: Person LOD Cloud Dataset 𝑋
  • 11. Slide 11Prof. Ansgar Scherp – asc@informatik.uni-kiel.de SchemEX Idea • Schema-level index SchemEX • Assign RDF entities to graph patterns • Map graph patterns to data sources (context) • Defined over entities, but store the context • Construction of schema-level index • Stream-based for scalability • Stratified bi-simulation for detecting patterns • Little loss of accuracy [KGS+12]
  • 12. Slide 12Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Building the Index from a Stream • Stream of quads coming from a LD crawler … Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1 FiFo 4 3 2 1 1 6 2 3 4 5 C3 C2 C2 C1 + Reasonable accuracy at cache size of 50k
  • 13. Slide 13Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Full BTC 2011Data Set: 2.17 Bn Triples Cache size: 50 k Winner BTC’11 + Linear runtime with respect to number of triples + Memory consumption scales with window size
  • 14. Slide 14Prof. Ansgar Scherp – asc@informatik.uni-kiel.de [GSK+13] Generalization Specialization Result list with examples Inspired by Google
  • 15. Slide 15Prof. Ansgar Scherp – asc@informatik.uni-kiel.de LODatio Under the Hood SPARQL Snippets Generalize Retrieve Data Sources Query translation Rank Specialize Count Select Select • Hybrid database with off-the-shelf components
  • 16. Slide 16Prof. Ansgar Scherp – asc@informatik.uni-kiel.de LOD on One Slide: Recap biglynx:matt-briggs foaf:Person biglynx:dave-smith biglynx:Director rdf:type foaf:knows rdf:type _1:point wgs84: lat wgs84: long dp:London foaf:based_near …… … … ex:loc “-0.118” “51.509” Type Set (TS) Property Set (PS) Information theoretic analyses of LOD • How much information is encoded in TS and PS? • … information encoded, once TS or PS is known? • … to which degree are TS and PS redundant? • Example: 20% of PLDs do not need TS (6% for PS) [GKS15]
  • 17. Slide 17Prof. Ansgar Scherp – asc@informatik.uni-kiel.de • 29 weekly LOD snapshots of ~100 Mio triples • Still running since May 2012 (now 200+ weeks) Käfer et al.’s Temporal Analysis of LOD • Data on the cloud changes a lot [Käfer et al., 2013] T. Käfer, A. Abdelrahman, J. Umbrich, P. O'Byrne, A. Hogan: Observing Linked Data Dynamics. ESWC 2013: 213-227 Changes? • But vocabularies defining RDF types and properties are highly static, e.g., RDF, FOAF LOD cloud ~2012 LOD cloud ~2014
  • 18. Slide 18Prof. Ansgar Scherp – asc@informatik.uni-kiel.de 𝐻(𝑃𝑆|𝑇𝑆=𝑡𝑠) 𝐻(𝑇𝑆|𝑃𝑆=𝑝𝑠) But:DoChangesOccurinPS and TS? • Analysis: expected conditional entropy over time • 𝐻(𝑃𝑆|𝑇𝑆 = 𝑡𝑠): entropy of 𝑃𝑆 given 𝑇𝑆 is known • Observation: types become less important • Changes in the use of TS and PS ? !
  • 19. Slide 19Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Changes over Time • Extended characteristic sets: ECS = PS ∪ TS # of ECS Avg.: 83.898 ECS per week # of ECS [DSG+13] • Avg. 73% of ECS re-occur next week (orange) • Avg. 35% of ECS remain unchanged (blue) • Avg. 20% of entity sets of ECS change / week [Neumann and Moerkotte, 2011] Thomas Neumann, Guido Moerkotte: Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins. ICDE 2011: 984-994 [Neumann and Moerkotte, 2011]
  • 20. Slide 20Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Temporal Dynamics of the Entities? • Notion of entity motivated by ECS: entity is a set of triples 𝑋 sharing the same subject URI 𝑠 • Example: –1 entity –4 triples w.l.o.g. • Useful to keep LOD caches up-to-date? • Can we predict when LOD sources will change?
  • 21. Slide 21Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Dynamics Function Θ • Definition of Θ over change rate function 𝑐(𝑋𝑡) Time X 𝑡𝑖 𝑡𝑗 Θ Θ 𝑡 𝑖 𝑋 = Θ(𝑋𝑡 𝑗 ) − Θ(𝑋𝑡 𝑖 ) = 𝑡 𝑖 𝑡 𝑗 𝑐 𝑋𝑡 d𝑡 [DGS+14] 𝑡𝑗 ≈ 𝑘=𝑖+1 𝑗 𝛿(𝑋𝑡 𝑘−1 , 𝑋𝑡 𝑘 ) • Approximation as step function over changes Monotone, non-negative c
  • 22. Slide 22Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Update Strategies for LOD Sources • Apply strategies from keeping caches of WWW documents up-to-date to maintain LOD caches • Assumptions –LOD is fetched from various sources –Sources are scored and prioritized based on strategy –Data of a source is fetched only when the operation can be entirely executed
  • 23. Slide 23Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Scheduling Update Strategies a) HTTP Header [Dividino et al., 2014a] b) Age or Last Visited [Dasdan et al., 2009, Cho and Garcia-Molina, 2000] c) PageRank [Page et al., 1999, Boldi et al., 2004, Baeza-Yates et al., 2005] d) LOD Sources Size e) Change Ratio [Douglis et al., 1997, Cho et al., 2002. Tan et al., 2007] f) Change Rate [Olston et al., 2002, Ntoulas et al., 2004, Dividino et al., 2013] g) History Information: Dynamics [Dividino et al., 2014b] We borrow strategies developed for the WWW and metrics for data change analysis in the LOD cloud.
  • 24. Slide 24Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Ranking Sources which changed (most) Sources that not changed/less changesTimeti tj e) Change Ratio • Captures the change frequency of the data (freshness) • Percentage of data items in the cache that are up-to-date
  • 25. Slide 25Prof. Ansgar Scherp – asc@informatik.uni-kiel.de f) Change Rate • Data from sources which are less similar which their previous update (snapshot) should be updated first • Comparison of two RDF data sets – 𝑋 : Set of triple statements – 𝛿 : Numeric expression (distance) 𝛿𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑋1, 𝑋2 = 1 − 𝑋1 ∩ 𝑋2 𝑋1 ∪ 𝑋2 0,¥[ ) Time𝑡𝑖 𝑡𝑗 𝛿 Example:
  • 26. Slide 26Prof. Ansgar Scherp – asc@informatik.uni-kiel.de g) History Information: Dynamics • Data from sources which most evolve in a given period of time should be updated first • Uses both history information and change rate Θ(𝑋𝑡 𝑗 ) − Θ(𝑋𝑡 𝑖 ) = 𝑡 𝑖 𝑡 𝑗 𝑐 𝑋𝑡 d𝑡 Time X 𝑡𝑖 𝑡𝑗 Θ c ≈ 𝑘=𝑖+1 𝑗 𝛿(𝑋𝑡 𝑘−1 , 𝑋𝑡 𝑘 )
  • 27. Slide 27Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Evaluation  Idea: simulation of limitations of available computational resources (network bandwidth, computation time) Time 100% 𝑡𝑖 𝑡𝑖+1
  • 28. Slide 28Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Evaluation: Single Step Update Time 100% 15% 5%40% 75% 95%60% 𝑡𝑖 𝑡𝑖+1
  • 29. Slide 29Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Evaluation: Iterative Updates Time . . . 15% 5%40% 75% 95%60% 15% 5%40% 75% 95%60% 100% 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2
  • 30. Slide 30Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Dataset • Dynamic Linked Data Observatory • Weekly snapshots, 14 M triples  154 snapshots (approx. 3 years)  590 data sources (PLD) Top 10 largest data sources Average size dbpedia.org 3,406,364.5 edgarwrap.ontologycentral.com 982,631.0 dbtune.org 864,107.6 dbtropes.org 787,299.9 data.linkedct.org 498,986.3 aims.fao.org 416,708.9 www.legislation.gov.uk 399,601.6 kent.zpr.fer.hr 387,034.8 identi.ca 278,316.2 webenemasuno.linkeddata.es 250,557.9
  • 31. Slide 31Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Metrics:Precision & Recall • Precision: portion of cached data that are actually up-to-date • Recall: portion of data in the LOD cloud that is identical to the cached data Cached data Actual data on the LOD cloud (w.r.t. to the 590 sources considered)
  • 32. Slide 32Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Single Step Update Time t jti 100% 15% 5%40% 75% 95%60%
  • 33. Slide 33Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Iterative Updates Time tjti tj . . . 15% 5%40% 75% 95%60% 15% 5% 40% 75% 95%60% 100%
  • 34. Slide 34Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Iterative Updates Time tjti tj . . . 15% 5%40% 75% 95%60% 15% 5% 40% 75% 95%60% 100%
  • 35. Slide 35Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Iterative Updates Time tjti tj . . . 15% 5%40% 75% 95%60% 15% 5% 40% 75% 95%60% 100%
  • 36. Slide 36Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Summary  Best strategies: ones which capture the change behaviour over time  Specially for low relative bandwidth
  • 37. Slide 37Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Dynamics Function Θ: Revisited Time X 𝑡𝑖 𝑡𝑗 c • Can we predict when LOD sources will change? • Notion of dynamics to compute periodicities! • Dynamics as vector of changes: < 𝛿(𝑋𝑡1 , 𝑋𝑡2 ), … , 𝛿(𝑋𝑡 𝑁−1 , 𝑋𝑡 𝑁 ) >
  • 38. Slide 38Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Temporal Clustering of Entities • Dynamics as vector: < 𝛿(𝑋𝑡1 , 𝑋𝑡2 ), … , 𝛿(𝑋𝑡 𝑁−1 , 𝑋𝑡 𝑁 ) > Time Change(logscale) [NS15] • Clustering with k-means++ to find patterns • 165 snapshots • 65,044 entities • 7 patterns (after optimizing 𝑘)
  • 39. Slide 39Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Periodicity of Entity Dynamics • Examples: < 0, 3, 2, 0, 3, 2, 0 >, < 1, 2, 1, 2, 1, 2 > # of entities Most likely periodicity C1 12,982 66 C2 168 23 C3 35 1 C4 12 1 C5 1 1 C6 1,541 56 C7 30 37 CS 50,725 [Elfeky et al., 2005] Mohamed G. Elfeky, Walid G. Aref, Ahmed K. Elmagarmid: Periodicity Detection in Time Series Databases. IEEE Trans. Knowl. Data Eng. 17(7): 875-887 (2005) • Convolution-based algorithm [Elfeky et al. 2005] • Entities of legislation.gov.uk found in several clusters (C1,C3,C4,C5,C6) • No changes (CS): 77.29% • CS: entities from w3.org and ontologydesignpatterns.org
  • 40. Slide 40Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Application Areas: More than One! • Searching for LOD sources [GSK+13,KGS+12] • Strategies for updating data caches [DGS15] • Programming queries against LOD [SSS12] • Recommending LOD vocabularies [SGS16]  Foundation for Future Data-driven Applications
  • 41. Slide 41Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Summary: KDD in Social Media & DL How to deal with the vast amount of content related to research and innovation? • H2020 INSO-4 project, duration: 04/2016-03/2019 • Data mining & visualization tools enabling information professionals to deal with large corpora • Website: http://www.moving-project.eu/ New
  • 42. Slide 42Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Got Interested? Knowledge Discovery at ZBW Contact me! Prof. Dr. Ansgar Scherp • Email: a.scherp@zbw.eu • Twitter: https://twitter.com/ansgarscherp • Slideshare: http://de.slideshare.net/ascherp • KD-Website: http://www.zbw.eu/en/research/knowledge-discovery/ http://www.kd.informatik.uni-kiel.de/en/
  • 43. Slide 43Prof. Ansgar Scherp – asc@informatik.uni-kiel.de References [DGS15] R. Dividino, T. Gottron, A. Scherp: Strategies for Efficiently Keeping Local Linked Open Data Caches Up-To-Date. International Semantic Web Conference (2) 2015: 356-373 [DGS+14] R. Dividino, T. Gottron, A. Scherp, G. Gröner: From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources. PROFILES@ESWC 2014 [GKS15] T. Gottron, M. Knauf, A. Scherp: Analysis of schema structures in the Linked Open Data graph based on unique subject URIs, pay-level domains, and vocabulary usage. Distributed and Parallel Databases 33(4): 515-553 (2015) [DSG+13] R. Dividino, A. Scherp, G. Gröner, T. Gottron: Change-a-LOD: Does the Schema on the Linked Data Cloud Change or Not? COLD 2013 [GSK+13] T. Gottron, A. Scherp, B. Krayer, A. Peters: LODatio: using a schema-level index to support users in finding relevant sources of linked data. K-CAP 2013: 105-108 [KGS+12] M. Konrath, T. Gottron, S. Staab, A. Scherp: SchemEX - Efficient construction of a data catalogue by stream-based indexing of linked data. J. Web Sem. 16: 52-58 (2012) [NS15] C. Nishioka, A Scherp: Temporal Patterns and Periodicity of Entity Dynamics in the Linked Open Data Cloud. K-CAP 2015. [SGS16] J. Schaible, T. Gottron, and A. Scherp: TermPicker Enabling the Reuse of Vocabulary Terms by Exploiting Data from the Linked Open Data Cloud, ESWC, Springer, 2016. [SSS12] S. Scheglmann, A. Scherp, S. Staab: Declarative Representation of Programming Access to Ontologies. ESWC 2012: 659-673
  • 44. Slide 44Prof. Ansgar Scherp – asc@informatik.uni-kiel.de a) HTTP Header • Data from sources which have been changed since the last update should be updated first HTTP Response HEADER … Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT CONTENT
  • 45. Slide 45Prof. Ansgar Scherp – asc@informatik.uni-kiel.de b) Age or Last Visited • Time elapsed from last update (the difference between query time and last update time) • It guarantees that every source is updated after a period Ranking Sources that have been at longer time updated Sources that have been recently updated
  • 46. Slide 46Prof. Ansgar Scherp – asc@informatik.uni-kiel.de c) PageRank and d) Source Size • PageRank captures popularity/ importance of the LOD source • Data from sources with highest PageRank are updated first • LOD source size: data from the biggest/smallest LOD sources should be updated first Ranking Sources with higher PR Sources with lower PR
  • 47. Slide 47Prof. Ansgar Scherp – asc@informatik.uni-kiel.de Results: Single Step Update Time t jti 100% 15% 5%40% 75% 95%60%