SlideShare a Scribd company logo
filannim@cs.man.ac.uk 
School of Computer Science 
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 
Mining temporal 
footprints from Wikipedia 
Michele Filannino, Goran Nenadic
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
introduction 
■ Temporal information is crucial for organising 
structured and unstructured data 
■ Several temporal information extraction (TIE) 
systems are nowadays available 
● thanks to TempEval challenge series 
2
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
ManTIME 
URL: http://www.cs.man.ac.uk/~filannim/mantime.html 
3
Test with long text 4 / 23
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
temporal footprint 
A temporal footprint is a 
continuous period on the time-line 
that temporally defines the 
existence of a particular concept. 
Immanuel Kant, Paul Guyer, and Allen W Wood. 1998. Critique of pure reason. Cambridge 
University Press. 
5
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
problem 
Can we predict temporal footprints from 
encyclopaedic descriptions of concepts? 
■ input: textual description of a concept 
■ output: prediction of a temporal 
interval
Web 
Cellphone 
Computer 
Car 
Richard Feynman 
Bicycle 
Carl Friedrich Gauss 
French revolution 
Age of Enlightenment 
Galileo Galilei 
Leonardo Da Vinci 
Christopher Columbus 
Renaissance 
Arming sword 
High Middle Ages 
Gengis Khan 
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 
Object Person Historical period 
Examples of temporal footprints 7 / 23
8 / 23
8 / 23
8 / 23
8 / 23
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
methodology 
1. date mention extraction 
2. outlier filtering 
3. normal distribution fitting 
4. prediction 
9
presentation 1st AHA! Workshop, COLING 2014 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
Dublin, 23/08/2014 / 25 
date mentions extraction 
0.050 
0.038 
freq 
0.025 
0.013 
0.000 
time (in years) 
10
presentation 1st AHA! Workshop, COLING 2014 
outlier filtering 
γ param. 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
Dublin, 23/08/2014 / 25 
freq 
0.050 
0.038 
0.025 
0.013 
0.000 
time (in years) 
Gamma parameter controls the outlier region’s boundaries. 
11
presentation 1st AHA! Workshop, COLING 2014 
normal distribution fitting 
0.050 
0.038 
freq 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
12 Dublin, 23/08/2014 / 25 
0.025 
0.013 
0.000 
time (in years) 
Alpha and Beta parameters control the size and offset of the gaussian bell. 
α param.
presentation 1st AHA! Workshop, COLING 2014 
normal distribution fitting 
0.050 
0.038 
freq 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
12 Dublin, 23/08/2014 / 25 
0.025 
0.013 
0.000 
time (in years) 
Alpha and Beta parameters control the size and offset of the gaussian bell. 
α param.
presentation 1st AHA! Workshop, COLING 2014 
normal distribution fitting 
β param. 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
Dublin, 23/08/2014 / 25 
freq 
0.050 
0.038 
0.025 
0.013 
0.000 
time (in years) 
Alpha and Beta parameters control the size and offset of the gaussian bell. 
13
presentation 1st AHA! Workshop, COLING 2014 
normal distribution fitting 
β param. 
1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 
Dublin, 23/08/2014 / 25 
freq 
0.050 
0.038 
0.025 
0.013 
0.000 
time (in years) 
Alpha and Beta parameters control the size and offset of the gaussian bell. 
13
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
error measure 
gold 
prediction 
Fatima De Carvalho. 1996. Histogrammes et indices de proximite ́en analyse donne és 
symboliques. Acyes de l’e ćole d’e t́e ́sur l’analyse des donne és symboliques. LISE-CEREMADE, 
Universite ́de Paris IX Dauphine, pages 101–127. 
14 
union overlap
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
error measure 
Fatima De Carvalho. 1996. Histogrammes et indices de proximite ́en analyse donne és 
symboliques. Acyes de l’e ćole d’e t́e ́sur l’analyse des donne és symboliques. LISE-CEREMADE, 
Universite ́de Paris IX Dauphine, pages 101–127. 
15 
union 
gold 
prediction
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
strategies 
A. RegEx 
B. RegEx + Filtering 
C. RegEx + Filtering + Gaussian fitting 
D. HeidelTime + Filtering + Gaussian fitting 
16
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
evaluation 
■ subject: people 
■ lived from 1000 AD to 2014 
● text from Wikipedia web pages 
● year of birth and death from DBpedia 
■ 228,824 people collected 
■ simple definition of temporal footprint 
● birth and death dates 
17
#people 
500 
400 
300 
200 
100 
0 
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 
#words 
People per textual length 1 8 / 23
presentation 1st AHA! Workshop, COLING 2014 
Dublin, 23/08/2014 / 25 
aggregate results 
19 
Strategy 
Mean 
Distance 
Error 
Standard 
Deviation 
RegEx 0.2636 0.3409 
RegEx + Filtering 0.2596 0.3090 
RegEx + Filtering + Gaussian fitting 0.3503 0.2430 
HeidelTime + Filtering + Gaussian fitting 0.5980 0.2470
presentation 1st AHA! Workshop, COLING 2014 
1112 3336 5560 7785 10009 12233 14458 16682 18906 21131 23355 25579 27804 
Dublin, 23/08/2014 / 25 
results 
1.0 
0.8 
0.6 
MDE 
0.4 
0.2 
0.0 
#words 
20 RegEx RegEx + Filtering 
HeidelTime + Filtering + Gaussian fitting RegEx + Filtering + Gaussian fitting
presentation 1st AHA! Workshop, COLING 2014 
1112 3336 5560 7785 10009 12233 14458 16682 18906 21131 23355 25579 27804 
Dublin, 23/08/2014 / 25 
results 
1.0 
0.8 
0.6 
MDE 
0.4 
0.2 
0.0 
#words 
20 RegEx RegEx + Filtering 
HeidelTime + Filtering + Gaussian fitting RegEx + Filtering + Gaussian fitting
presentation 1st AHA! Workshop, COLING 2014 
results 
■ Galileo Galilei (1564-1642), prediction: 1556-1654 
Dublin, 23/08/2014 / 25 
E: 0.204 
21
presentation 1st AHA! Workshop, COLING 2014 
results 
■ Robin Williams (1951 - 2014), prediction: 1953-2006 
Dublin, 23/08/2014 / 25 
E: 0.159 
22
presentation 1st AHA! Workshop, COLING 2014 
other types of temporal footprint? 
■ Christopher Columbus will die in 2057 ?! 
Dublin, 23/08/2014 / 25 
Prediction: 1366-2057 (1451-1506), E: 0.92 
23
presentation 1st AHA! Workshop, COLING 2014 
other types of temporal footprint? 
■ Christopher Columbus will die in 2057 ?! 
Dublin, 23/08/2014 / 25 
Prediction: 1366-2057 (1451-1506), E: 0.92 
23
presentation 1st AHA! Workshop, COLING 2014 
other types of temporal footprint? 
■ Christopher Columbus will die in 2057 ?! 
Dublin, 23/08/2014 / 25 
Prediction: 1366-2057 (1451-1506), E: 0.92 
23
presentation 1st AHA! Workshop, COLING 2014 
other types of temporal footprint? 
■ Christopher Columbus will die in 2057 ?! 
Dublin, 23/08/2014 / 25 
Prediction: 1366-2057 (1451-1506), E: 0.92 
23 
AHA!
presentation 1st AHA! Workshop, COLING 2014 
physical existence vs. social coverage 
■ Anne Frank’s footprint is shifted in the future 
24 
Dublin, 23/08/2014 / 25
presentation 1st AHA! Workshop, COLING 2014 
physical existence vs. social coverage 
■ Anne Frank’s footprint is shifted in the future 
24 
Dublin, 23/08/2014 / 25
presentation 1st AHA! Workshop, COLING 2014 
physical existence vs. social coverage 
■ Anne Frank’s footprint is shifted in the future 
24 
Dublin, 23/08/2014 / 25
presentation 1st AHA! Workshop, COLING 2014 
conclusions 
■ how the methodology behaves on different 
Dublin, 23/08/2014 / 25 
languages? how on different sources? 
■ oracle-like side-effect behaviour: 
• Apple Inc. will be closed down this year 
• Stanford University will be closed down in 2029 
■ Future works 
• mixture of normal distributions 
25
Thank you.
? QUESTIONS 
Contact: 
filannim@cs.man.ac.uk 
! 
Visit: 
tinyurl.com/temporal-footprints

More Related Content

PDF
Nonlinear component analysis as a kernel eigenvalue problem
PDF
Detecting novel associations in large data sets
PDF
Serendipity module in Item Recommender System
PDF
Temporal expressions identification in biomedical texts
PPTX
6k De Berg Leon
PPTX
Orchestrazione di risorse umane nel BPM: Gestione dinamica feature-based dell...
PDF
Orchestrazione delle risorse umane nel BPM
KEY
SWOP project and META software
Nonlinear component analysis as a kernel eigenvalue problem
Detecting novel associations in large data sets
Serendipity module in Item Recommender System
Temporal expressions identification in biomedical texts
6k De Berg Leon
Orchestrazione di risorse umane nel BPM: Gestione dinamica feature-based dell...
Orchestrazione delle risorse umane nel BPM
SWOP project and META software

Viewers also liked (11)

PDF
Using machine learning to predict temporal orientation of search engines’ que...
PDF
My research taster project
KEY
Tecniche fuzzy per l'elaborazione del linguaggio naturale
KEY
Algoritmo di text-similarity per l'annotazione semantica di Web Service
PPS
Femmes M D
PDF
Sviluppo di un algoritmo di similarità a supporto dell'annotazione semantica ...
PDF
Temporal information extraction in the general and clinical domain
PDF
Can computers understand time?
KEY
Semantic Web Service Annotation
PDF
Modulo di serendipità in un Item Recommender System
PPSX
Funny Management Stories
Using machine learning to predict temporal orientation of search engines’ que...
My research taster project
Tecniche fuzzy per l'elaborazione del linguaggio naturale
Algoritmo di text-similarity per l'annotazione semantica di Web Service
Femmes M D
Sviluppo di un algoritmo di similarità a supporto dell'annotazione semantica ...
Temporal information extraction in the general and clinical domain
Can computers understand time?
Semantic Web Service Annotation
Modulo di serendipità in un Item Recommender System
Funny Management Stories
Ad

Similar to Mining temporal footprints from Wikipedia (20)

PPTX
Detecting and Describing Historical Periods in a Large Corpora
PDF
Temporal Web Dynamics: Implications from Search Perspective
PDF
Searching the Temporal Web: Challenges and Current Approaches
PDF
Simple semantics in topic detection and tracking
PPT
Dynamics of Web: Analysis and Implications from Search Perspective
PDF
Social genome mining for crisis prediction
PDF
IRJET- Predicting Social Network Communities Structure Changes and Detection ...
PDF
Datascience Introduction WebSci Summer School 2014
PDF
Design and prototype of a Help Desk System for EHRI: an Information Retrieval...
PDF
AUGUR: Forecasting the Emergence of New Research Topics
PDF
Efficient blocking method for a large scale citation matching
PDF
Getting Intimate with Your Data - Working Our Way out of the Lab
PPTX
Topical_Facets
PDF
Life-Cycles and Mutual Effects of Scientific Communities: ASNA 2010
PDF
Download full ebook of Doing Digital Methods Richard Rogers instant download pdf
DOCX
Discovering emerging topics in social streams via link anomaly detection
PDF
Advance Data Mining Project Report
PDF
Ph.D_slide
PDF
Improving Temporal Language Models For Determining Time of Non-Timestamped Do...
PPTX
Temporal Web Dynamics and Implications for Information Retrieval
Detecting and Describing Historical Periods in a Large Corpora
Temporal Web Dynamics: Implications from Search Perspective
Searching the Temporal Web: Challenges and Current Approaches
Simple semantics in topic detection and tracking
Dynamics of Web: Analysis and Implications from Search Perspective
Social genome mining for crisis prediction
IRJET- Predicting Social Network Communities Structure Changes and Detection ...
Datascience Introduction WebSci Summer School 2014
Design and prototype of a Help Desk System for EHRI: an Information Retrieval...
AUGUR: Forecasting the Emergence of New Research Topics
Efficient blocking method for a large scale citation matching
Getting Intimate with Your Data - Working Our Way out of the Lab
Topical_Facets
Life-Cycles and Mutual Effects of Scientific Communities: ASNA 2010
Download full ebook of Doing Digital Methods Richard Rogers instant download pdf
Discovering emerging topics in social streams via link anomaly detection
Advance Data Mining Project Report
Ph.D_slide
Improving Temporal Language Models For Determining Time of Non-Timestamped Do...
Temporal Web Dynamics and Implications for Information Retrieval
Ad

Recently uploaded (20)

PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
2Systematics of Living Organisms t-.pptx
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PPTX
famous lake in india and its disturibution and importance
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
neck nodes and dissection types and lymph nodes levels
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPTX
BIOMOLECULES PPT........................
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
2Systematics of Living Organisms t-.pptx
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
2. Earth - The Living Planet Module 2ELS
lecture 2026 of Sjogren's syndrome l .pdf
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
famous lake in india and its disturibution and importance
POSITIONING IN OPERATION THEATRE ROOM.ppt
neck nodes and dissection types and lymph nodes levels
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
6.1 High Risk New Born. Padetric health ppt
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
BIOMOLECULES PPT........................
The KM-GBF monitoring framework – status & key messages.pptx

Mining temporal footprints from Wikipedia

  • 1. filannim@cs.man.ac.uk School of Computer Science presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 Mining temporal footprints from Wikipedia Michele Filannino, Goran Nenadic
  • 2. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 introduction ■ Temporal information is crucial for organising structured and unstructured data ■ Several temporal information extraction (TIE) systems are nowadays available ● thanks to TempEval challenge series 2
  • 3. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 ManTIME URL: http://www.cs.man.ac.uk/~filannim/mantime.html 3
  • 4. Test with long text 4 / 23
  • 5. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 temporal footprint A temporal footprint is a continuous period on the time-line that temporally defines the existence of a particular concept. Immanuel Kant, Paul Guyer, and Allen W Wood. 1998. Critique of pure reason. Cambridge University Press. 5
  • 6. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 problem Can we predict temporal footprints from encyclopaedic descriptions of concepts? ■ input: textual description of a concept ■ output: prediction of a temporal interval
  • 7. Web Cellphone Computer Car Richard Feynman Bicycle Carl Friedrich Gauss French revolution Age of Enlightenment Galileo Galilei Leonardo Da Vinci Christopher Columbus Renaissance Arming sword High Middle Ages Gengis Khan 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Object Person Historical period Examples of temporal footprints 7 / 23
  • 12. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 methodology 1. date mention extraction 2. outlier filtering 3. normal distribution fitting 4. prediction 9
  • 13. presentation 1st AHA! Workshop, COLING 2014 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 Dublin, 23/08/2014 / 25 date mentions extraction 0.050 0.038 freq 0.025 0.013 0.000 time (in years) 10
  • 14. presentation 1st AHA! Workshop, COLING 2014 outlier filtering γ param. 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 Dublin, 23/08/2014 / 25 freq 0.050 0.038 0.025 0.013 0.000 time (in years) Gamma parameter controls the outlier region’s boundaries. 11
  • 15. presentation 1st AHA! Workshop, COLING 2014 normal distribution fitting 0.050 0.038 freq 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 12 Dublin, 23/08/2014 / 25 0.025 0.013 0.000 time (in years) Alpha and Beta parameters control the size and offset of the gaussian bell. α param.
  • 16. presentation 1st AHA! Workshop, COLING 2014 normal distribution fitting 0.050 0.038 freq 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 12 Dublin, 23/08/2014 / 25 0.025 0.013 0.000 time (in years) Alpha and Beta parameters control the size and offset of the gaussian bell. α param.
  • 17. presentation 1st AHA! Workshop, COLING 2014 normal distribution fitting β param. 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 Dublin, 23/08/2014 / 25 freq 0.050 0.038 0.025 0.013 0.000 time (in years) Alpha and Beta parameters control the size and offset of the gaussian bell. 13
  • 18. presentation 1st AHA! Workshop, COLING 2014 normal distribution fitting β param. 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 Dublin, 23/08/2014 / 25 freq 0.050 0.038 0.025 0.013 0.000 time (in years) Alpha and Beta parameters control the size and offset of the gaussian bell. 13
  • 19. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 error measure gold prediction Fatima De Carvalho. 1996. Histogrammes et indices de proximite ́en analyse donne és symboliques. Acyes de l’e ćole d’e t́e ́sur l’analyse des donne és symboliques. LISE-CEREMADE, Universite ́de Paris IX Dauphine, pages 101–127. 14 union overlap
  • 20. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 error measure Fatima De Carvalho. 1996. Histogrammes et indices de proximite ́en analyse donne és symboliques. Acyes de l’e ćole d’e t́e ́sur l’analyse des donne és symboliques. LISE-CEREMADE, Universite ́de Paris IX Dauphine, pages 101–127. 15 union gold prediction
  • 21. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 strategies A. RegEx B. RegEx + Filtering C. RegEx + Filtering + Gaussian fitting D. HeidelTime + Filtering + Gaussian fitting 16
  • 22. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 evaluation ■ subject: people ■ lived from 1000 AD to 2014 ● text from Wikipedia web pages ● year of birth and death from DBpedia ■ 228,824 people collected ■ simple definition of temporal footprint ● birth and death dates 17
  • 23. #people 500 400 300 200 100 0 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 #words People per textual length 1 8 / 23
  • 24. presentation 1st AHA! Workshop, COLING 2014 Dublin, 23/08/2014 / 25 aggregate results 19 Strategy Mean Distance Error Standard Deviation RegEx 0.2636 0.3409 RegEx + Filtering 0.2596 0.3090 RegEx + Filtering + Gaussian fitting 0.3503 0.2430 HeidelTime + Filtering + Gaussian fitting 0.5980 0.2470
  • 25. presentation 1st AHA! Workshop, COLING 2014 1112 3336 5560 7785 10009 12233 14458 16682 18906 21131 23355 25579 27804 Dublin, 23/08/2014 / 25 results 1.0 0.8 0.6 MDE 0.4 0.2 0.0 #words 20 RegEx RegEx + Filtering HeidelTime + Filtering + Gaussian fitting RegEx + Filtering + Gaussian fitting
  • 26. presentation 1st AHA! Workshop, COLING 2014 1112 3336 5560 7785 10009 12233 14458 16682 18906 21131 23355 25579 27804 Dublin, 23/08/2014 / 25 results 1.0 0.8 0.6 MDE 0.4 0.2 0.0 #words 20 RegEx RegEx + Filtering HeidelTime + Filtering + Gaussian fitting RegEx + Filtering + Gaussian fitting
  • 27. presentation 1st AHA! Workshop, COLING 2014 results ■ Galileo Galilei (1564-1642), prediction: 1556-1654 Dublin, 23/08/2014 / 25 E: 0.204 21
  • 28. presentation 1st AHA! Workshop, COLING 2014 results ■ Robin Williams (1951 - 2014), prediction: 1953-2006 Dublin, 23/08/2014 / 25 E: 0.159 22
  • 29. presentation 1st AHA! Workshop, COLING 2014 other types of temporal footprint? ■ Christopher Columbus will die in 2057 ?! Dublin, 23/08/2014 / 25 Prediction: 1366-2057 (1451-1506), E: 0.92 23
  • 30. presentation 1st AHA! Workshop, COLING 2014 other types of temporal footprint? ■ Christopher Columbus will die in 2057 ?! Dublin, 23/08/2014 / 25 Prediction: 1366-2057 (1451-1506), E: 0.92 23
  • 31. presentation 1st AHA! Workshop, COLING 2014 other types of temporal footprint? ■ Christopher Columbus will die in 2057 ?! Dublin, 23/08/2014 / 25 Prediction: 1366-2057 (1451-1506), E: 0.92 23
  • 32. presentation 1st AHA! Workshop, COLING 2014 other types of temporal footprint? ■ Christopher Columbus will die in 2057 ?! Dublin, 23/08/2014 / 25 Prediction: 1366-2057 (1451-1506), E: 0.92 23 AHA!
  • 33. presentation 1st AHA! Workshop, COLING 2014 physical existence vs. social coverage ■ Anne Frank’s footprint is shifted in the future 24 Dublin, 23/08/2014 / 25
  • 34. presentation 1st AHA! Workshop, COLING 2014 physical existence vs. social coverage ■ Anne Frank’s footprint is shifted in the future 24 Dublin, 23/08/2014 / 25
  • 35. presentation 1st AHA! Workshop, COLING 2014 physical existence vs. social coverage ■ Anne Frank’s footprint is shifted in the future 24 Dublin, 23/08/2014 / 25
  • 36. presentation 1st AHA! Workshop, COLING 2014 conclusions ■ how the methodology behaves on different Dublin, 23/08/2014 / 25 languages? how on different sources? ■ oracle-like side-effect behaviour: • Apple Inc. will be closed down this year • Stanford University will be closed down in 2029 ■ Future works • mixture of normal distributions 25
  • 38. ? QUESTIONS Contact: filannim@cs.man.ac.uk ! Visit: tinyurl.com/temporal-footprints