SlideShare a Scribd company logo
4.1   4.2
                       .



                   .


2010/10/12




             4.1   4.2
AGENDA




    1

    2
.
    3



.
    4

.




.                4.1   4.2
AGENDA




    1

    2
.
    3



.
    4

.




.                4.1   4.2
4
1

2




                .

                .

    4.1   4.2
AGENDA




    1

    2
.
    3



.
    4

.




.                4.1   4.2
(classification categorization)




                             4.1   4.2
2




SVM




          4.1   4.2
AGENDA




    1

    2
.
    3



.
    4
.




.                4.1   4.2
d               P(c|d)                        c∈C
            P(c|d)
        1


                                             P(c)P(d|c)
                                P(c|d) =
                                                 P(d)
    .
        2            P(d)                                           P(c)P(d|c)
                                    c max
.
                                                 P(c)P(d|c)
                            c max    = arg max
                                             c    P(d)
                                     = arg max P(c)P(d|c)
                                             c



    .                                                         4.1    4.2
P(d|c)

    d
            d
          d
        P(d|c)




                     d
-
-


                         4.1   4.2
AGENDA




    1

    2
.
    3



.
    4
.




.                4.1   4.2
-

     P(d|c)


d
                         ∏      δ
              P(d|c) =         pw,c (1 − pw,c )1−δw,d
                                 w,d


                         w∈V

V

w

pc
       P(c)                                  pw,c       pc          2

 δ
pw,c (1 − pw,c )1−δw,d
  w,d


               c                                        w          d

                                                             4.1   4.2
-




                        ∏      δ
      P(c)P(d|c) = pc         pw,c (1 − pw,c )1−δw,d
                                w,d


                        w∈V

               c
                                   pw,c
           P(d|c)
P(d|c)
    pw,c   1




                                                       4.1   4.2
D

                 D         = {(d(1) , c(1) ), (d(2) , c(2) ), ..., (d|D| , c|D| )}



                  ∑
log P( D)    =              log P(d, c)
                 (d,c)∈D
                                                           
                  ∑              ∏ δw,d
                                                           
                                                            
                                                           
             =              log  pc
                                
                                
                                    pw,c (1 − pw,c )1−δw,d 
                                                            
                                                            
                                                            
                 (d,c)∈D            w∈V
                                                                           
                  ∑ 
                             ∑                                             
                                                                            
                    
                    log pc +                                               
             =      
                    
                               (δw,d log pw,c + (1 − ww,d ) log(1 − pw,c ))
                                                                            
                                                                            
                                                                            
                 (d,c)∈D                 w∈V
                 ∑                       ∑∑                          ∑∑
             =            N c log pc +             Nw,c log pw,c +           (N c − Nw,c ) log(1 − pw,c )
                  c                       c w∈V                      c w∈V



    Nc :         c
    Nw,c :            c                        w

                                                                                      4.1   4.2
pc



               max .     log P(D)
                         ∑
                 s.t.        pc = 1.
                          c




               L(θ, λ)

                                 ∑       
                                 
                                 
                                         
                                          
                                 
          L(θ, λ) = log P(D) + λ 
                                   pc − 1
                                          
                                          
                                          
                                       c


     θ:                        { pw,c }winV,c∈C , {pc } c∈C
                                                   4.1   4.2
∂L(θ, λ)
           = 0
 ∂ pw,c
∂L(θ, λ)
           = 0
  ∂ pc
∂L(θ, λ)
           = 0
  ∂λ




                 4.1   4.2

∂L(θ, λ)        ∂      ∑
                       
                       
                                       ∑∑
           =           
                       
                         N c log pc +    Nw,c log pw,c
 ∂pw,c         ∂pw,c   
                          c                   c w∈V
                   ∑∑                                          ∑       
                                                               
                                                                       
                                                                        
               +              (N c − Nw,c ) log(1 − pw,c ) + λ 
                                                               
                                                               
                                                                       
                                                                  pc − 1
                                                                        
                                                                        
                                                                         
                   c w∈V                                      c
                                          ∂(1− pw,c )
               Nw,c                         ∂ pw,c
           =           + (N c − Nw,c )
               pw,c                   (1 − pw,c )
               Nw,c      (N c − Nw,c )
           =       −
               pw,c   1 − pw,c
                  
∂L(θ, λ)          ∑
                ∂ 
                  
                                  ∑∑
           =      
                  
                    N c log pc +         Nw,c log pw,c
  ∂pc             
               ∂pc c                c w∈V
                 ∑∑                                   ∑       
                                                      
                                                              
                                                               
               +                                      
                                                      
                     (N c − Nw,c ) log(1 − pw,c ) + λ 
                                                              
                                                         pc − 1
                                                               
                                                               
                                                                
                   c w∈V                                      c
               Nc
           =      +λ
               pc


                                                                  4.1   4.2
pw,c


            Nw,c       (N c − Nw,c )
                   −                 = 0
              pw,c      1 − pw,c
(1 − pw,c )Nw,c − pw,c (N c − Nw,c ) = 0
         pw,c (N c − Nw,c + Nw,c ) = Nw,c
                                     Nw,c
                             pw,c =
                                      Nc




                                           4.1   4.2
pc

     Nc
        +λ =          0
     pc
                          Nc
            pc    =   −
                          λ
     ∑
          pc     =    1
      c
    1∑
−       Nc       =    1
    λ c
                          ∑
            λ =       −        Nc
                          c

                 Nc   Nc
pc    =     −      = ∑
                 λ     c Nc

                                    4.1   4.2
c       w
pw,c =
             c
         c
 pc =




                     4.1   4.2
4.1

P                      3


    d(1)       =           ”good bad good good”
    d(2)       =           ”exciting exciting”
    d(3)       =           ”good good exciting boring”

    N                      3


        d(4)       =       ”bad boring boring boring”
        d(5)       =       ”bad good bad”
        d(6)       =       ”bad bad boring exciting”

               P                            N



                                                         4.1   4.2
4.1


                       V    =    {bad, boring, exciting, good}



N P = 3,     N N = 3,     N bad,P = 1,   N bad,N = 3,
N boring,P = 1,   N boring,N = 2,    Nexciting,P = 2,              Nexciting,N = 1,
N good,P = 2,    N good,N = 1,



           NP                                     NN
pP =    N P +N N
                   = 3+3 = 0.50
                         3
                                         pN = N p+NN = 3+3 = 0.50
                                                                3

             N bad,P                                N bad,N
pbad,P = N P = 1 = 0.33    3
                                         pbad,N = NN = 3 = 1.00   3
                N boring,P                                    N bof ing,N
pboring,P = N P = 3 = 0.33      1
                                             pbof ing,N = NN = 2 =        3
                                                                               0.67
                  Nexciting,P
pexciting,P = N P = 2 = 0.67       3
                   Nexciting,N 1
pexciting,N =          =       3
                                  = 0.33
              N good,P                                  N good,N
pgood,P = N P = 2 = 0.67     3
                                          pgood,N = NN = 1 = 0.33      3
                                                                              4.1   4.2
4.2

4.1                                                      d


                  d = ”good good bad boring”

      pP pd|P     pN pd|N


pP pd|P    =     pP × pbad,P × pboring,P × (1 − pexciting,P ) × pgood,P
           =     0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.67 = 0.012
pN pd|N    =     pN × pbad,N × pboring,N × (1 − pexciting,N ) × pgood,N
           =     0.5 × 1.00 × 0.67 × (1 − 0.33) × 0.33 = 0.074


           4.1                                                           d   N



                                                             4.1   4.2
4.2

4.1                                                      d


                  d = ”good good bad boring”

      pP pd|P     pN pd|N


pP pd|P    =     pP × pbad,P × pboring,P × (1 − pexciting,P ) × pgood,P
           =     0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.67 = 0.012
pN pd|N    =     pN × pbad,N × pboring,N × (1 − pexciting,N ) × pgood,N
           =     0.5 × 1.00 × 0.67times(1 − 0.33) × 0.33 = 0.074


           4.1                                                           d   N



                                                             4.1   4.2
4.3




4.1       d(1)

      d(1) = ”good bad good good fine”


                                d


      d = ”bad bad boring boring fine”




                                        4.1   4.2
4.3


                “fine”                      fine


              N f ine,P                                   N f ine,N
p f ine,P =     NP
                          =   1
                              3
                                  = 0.33    p f ine,N =     NN
                                                                      =   0
                                                                          3
                                                                              = 0.00




pP pd|P   =       pP × pbad,P × pboring,P × (1 − pexciting,P ) × p f ine,P × (1 − pgood,P )
          =       0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.33 × (1 − 0.67) = 0.002
pN pd|N   =       pN × pbad,N × pboring,N × (1 − pexciting,N ) × p f ine,N × (1 − pgood,N )
          =       0.5 × 1.00 × 0.67 × (1 − 0.33) × 0.00 × 0.67 = 0.00


                                  P


                                                                               4.1   4.2
4.3


   d               “bad”     ”boring”                          ”good”
”exciting”                                    P


  p f ine,N = 0.00
       N                                          pN pd|N = 0.00



               0



                                        MAP




                                                   4.1   4.2
MAP


                                                           0.00



MAP

                                  ∏       ∏                      
                                                                       ∑
                                  
                                          
                                          ×
                                      α−1 
                                               ( α−1               )
                                                                α−1 
log P(θ) + log P(D)     =         
                                  
                                  
                              log         
                                     pc   
                                              pw,c (1 − pw,c )
                                                                    
                                                                    +
                                                                    
                                                                        log P(d, c) + (const.)
                                                                   
                                      c                w,c                          (d,c)∈D
                                          ∑                       ∑(                         )
                        =     (α − 1)            log pc + (α − 1)   log pw,c + log(1 − pw,c )
                                             c                    w,c
                                                                               
                                   ∑              ∏ δw,d
                                                                               
                                                                                
                                                                               
                              +              log  pc
                                                 
                                                 
                                                     ( pw,c (1 − pw,c )1−δw,d ) + (const.)
                                                                                
                                                                                
                                                                                
                                  (d,c)∈ D           w∈V

           ∑
               c   p(c) = 1



                                                                                     4.1   4.2
MAP




                                      ∑       
                                      
                                      
                                              
                                               
                                      
   L(θ, λ) = log P(θ) + log P( D) + λ 
                                        pc − 1
                                               
                                               
                                               
                                         c




∂L(θ, λ)       (α − 1)    (α − 1)    Nw,c   N c − Nw,c
           =           +−          +      −
 ∂ pw,c          pw,c     1 − pw,c   pw,c    1 − pw,c
∂L(θ, λ)       (α − 1) N c
           =           +    +λ
  ∂pc             pc     pc


                                              4.1   4.2
MAP



    ∑
0       c   pc = 1


                     Nw,c + (α − 1)
    pw,c =
                          Nc + 2
                         Nc + 1
        pc =         ∑
                         c   N c + |C|


                                 α




                                          4.1   4.2
4.4

4.3
                              MAP
                             α=1
      P                  3


          d(1)       =       ”good bad good good fine”
          d(2)       =       ”exciting exciting”
          d(3)       =       ”good good exciting boring”

          N                  3


              d(4)   =       ”bad boring boring boring”
              d(5)
                     =       ”bad good bad”
              d(6)   =       ”bad bad boring exciting”


                                                           4.1   4.2
4.4



Table:
                        MAP                                         MAP
       pP        0.50     0.50             pN          0.50           0.50
     pbad,P      0.33     0.40           pbad,N        1.00           0.80
    pboring,P    0.33     0.40          pboring,N      0.67           0.60
   pexciting,P   0.67     0.60         pexciting,N     0.33           0.40
     p f ine,P   0.33     0.40           p f ine,N     0.00           0.20
     pgood,P     0.67     0.60           pgood,N       0.33           0.40


                                 MAP

                                                smoothing


                        MAP



                                                              4.1    4.2
AGENDA




    1

    2
.
    3



.
    4
.




.                4.1   4.2
V           1                       |d|

P(d|c)
d            w               nw,d

                    ∑       (∑ n )! ∏
               
                           
                                w w,d
    P(d|c) = P  K =
                      nw,d  ∏
                                               nw,d
               
                           
                                              qw,c
                     w          w∈V nw,d ! w∈V


K:
 (   ∑      )            ∑
P K = w nw,d :             w   nw,d



                                               4.1   4.2
c

                            ∑        (∑ n )! ∏
                            
                                    
                                         w w,d
                       pc P 
                               nw,d  ∏
                                                        nw,d
       P(c)P(d|c) =         
                                    
                                                       qw,c
                              w          w∈V nw,d ! w∈V




                                  ∑         (∑ n )! ∏
                                  
                                           
                                                w w,d
arg max P(c)P(d|c) = arg max pc P 
                                      nw,d  ∏
                                                              n
                                  
                                           
                                                             q w,d
     c                    c
                                    w           w∈V nw,d ! w∈V w,c
                                ∏
                                      nw
                   = arg max pc     qw,c
                              c
                                    w∈V
                                                        ∏            nw
                         c                         pc         w∈V   qw,c

                                                        4.1   4.2
2




    4.1   4.2
∑
log P( D) =              log P(d, c)
              (d,c)∈ D
                                                   
               ∑              p(|d|)|d|!
                                            ∏ n   
                             
                                               w,d 
         =               log  ∏
                             
                                         pc  qw,c 
                                                    
                                                    
              (d,c)∈ D            w∈Vn !  w,d     w∈V
               ∑           P(|d|)|d|!      ∑                 ∑ ∑
         =             log ∏           +          log pc +             nw,d log qw,c
              (d,c)∈ D      w∈V nw,d !   (d,c)∈ D          (d,c)∈D w∈V
                ∑          P(|d|)|d|!    ∑                 ∑∑
         =             log ∏           +      log nc pc +           nw,c log qw,c
              (d,c)∈ D      w∈V nw,d !     c                 c w∈V



                         max.           log P( D)
                                        ∑
                           s.t.             pc = 1.
                                        c∈C
                                        ∑
                                              qw,c = 1; ∀c ∈ C
                                        w∈V
                                                                 4.1   4.2
                       
                          ∑        ∑
                                             
                                                   ∑
                                                            
                                                             
                                   
                                                          
L(θ, β, γ) = log P(D) +         βc 
                                   
                                     qw,c − 1 + γ 
                                              
                                              
                                                   
                                                    
                                                      pc − 1
                                                             
                                                             
                                                             
                          c∈C      w∈V               c∈C




                    ∂L(θ, β, γ)
                                     = 0
                      ∂qw,c
                    ∂L(θ, β, γ)
                                     = 0
                       ∂ pc
                    ∂L(θ, β, γ)
                                     = 0
                       ∂β
                    ∂L(θ, β, γ)
                                     = 0
                          ∂γ
                                                   4.1   4.2

∂L(θ, β, γ)        ∂    ∑
                       
                                     P(|d|)|d|!    ∑             ∑∑
              =        
                       
                                log ∏            +   nc log pc +
                       
                                                                       nw,c log qw,c
  ∂qw,c           ∂qw,c  (d,c)∈D       w∈V nw,d !   c             c w∈V
                                                  
                  ∑      ∑            ∑           
                                                  
                                                  
                                                  
                    βc (      −1) + γ(     pc − 1)
                                                  
                                                  
                  c∈C     w∈V        c∈C
                  nw,c
              =          + βc = 0
                  qw,c
                  nw,c
       qw,c   =
                  βc




                                                                     4.1   4.2
βc
       ∑
             qw,c = 1
       w∈V
     1 ∑
             nw,c = 1
     β c w∈V
                          1
              βc =    ∑
                        w∈V   nw,c



                     nw,c
         qw,c =     ∑
                     w nw,c

pc

                                     4.1   4.2
c            w
qw,c =
         c



         c           w
pw,c =
                 c




                         4.1   4.2
MAP




                                                               0.00
                                                               MAP

MAP
                                       ∏       ∏       
                                                              ∑
                                       
                                               
                                                        
                                                          
log P(θ) + log P(D)        ∝       log 
                                       
                                               
                                          pα−1  × 
                                                 
                                                          
                                                     qα−1  +
                                                          
                                          c        w,c 
                                                               log P(d, c)
                                        c          w,c           (d,c)∈D
                                                                                                
                                           ∑
                                           
                                           
                                                       ∑          
                                                                  
                                                                  
                                                                      ∑      P(|d|)|d|!
                                                                            
                                                                            
                                                                                            ∏ n 
                                                                                               w,d 
                                                                                                   
                           =               
                                   (α − 1) 
                                             log pc +   log qw,c  +
                                                                  
                                                                       log  ∏
                                                                            
                                                                                        pc  qw,c 
                                                                                                   
                                                                                 n !            
                                              c          w,c           (d,c)∈D         w∈V   w,d   w∈V

        ∑                  ∑
            c   p(c) = 1       w   qw,c = 1




                                                                                 4.1   4.2
MAP



L(θ, β, γ) = log P(θ) + log P(D)
                                               
               ∑ ∑               
                                        ∑
                                                 
                                                  
                                               
             +     βc 
                      
                      
                          pw,c − 1 + γ 
                                   
                                   
                                        
                                         
                                           pc − 1
                                                  
                                                  
                                                  
                   c∈C       w∈V                     c∈C




        ∂L(θ, β, γ)              (α − 1) nw,c
                         =              +      + βc
          ∂qw,c                    qw,c   qw,c
          ∑
0            w∈V   qw,c = 1

                                 nw,c + (α − 1)
          qw,c =         ∑
                             w   nw,c + |W|(α − 1)


                                                           4.1   4.2
AGENDA




    1

    2
.
    3



.
    4
.




.                4.1   4.2
d


MAP




          4.1   4.2
(               )




Ml for nlp chapter 4




                           4.1   4.2
4.1   4.2

More Related Content

PDF
A Commutative Alternative to Fractional Calculus on k-Differentiable Functions
PDF
Kumegawa russia
PDF
Hierarchical matrices for approximating large covariance matries and computin...
PDF
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
PPTX
Temporal graph
PDF
Bayesian Inference and Uncertainty Quantification for Inverse Problems
PDF
SPU Optimizations-part 1
PDF
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...
A Commutative Alternative to Fractional Calculus on k-Differentiable Functions
Kumegawa russia
Hierarchical matrices for approximating large covariance matries and computin...
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Temporal graph
Bayesian Inference and Uncertainty Quantification for Inverse Problems
SPU Optimizations-part 1
bayesImageS: Bayesian computation for medical Image Segmentation using a hidd...

What's hot (20)

PDF
OPTEX Mathematical Modeling and Management System
PDF
Volume and edge skeleton computation in high dimensions
PDF
SPU Optimizations - Part 2
PDF
GPU Accelerated Domain Decomposition
PDF
Practical Spherical Harmonics Based PRT Methods
PDF
Low-rank tensor approximation (Introduction)
PDF
YaPingPresentation
PDF
A Note on TopicRNN
PDF
PDF
A Note on Latent LSTM Allocation
PDF
Codes and Isogenies
PDF
스코프와 실행문맥
PPTX
Gpu workshop cluster universe: scripting cuda
PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
PPTX
Aaex7 group2(中英夾雜)
PDF
OPTEX MATHEMATICAL MODELING AND MANAGEMENT SYSTEM
PDF
Graph for Coulomb damped oscillation
PDF
Triggering patterns of topology changes in dynamic attributed graphs
PPT
Processing Reachability Queries with Realistic Constraints on Massive Network...
PDF
M. Haack - Nernst Branes in Gauged Supergravity
OPTEX Mathematical Modeling and Management System
Volume and edge skeleton computation in high dimensions
SPU Optimizations - Part 2
GPU Accelerated Domain Decomposition
Practical Spherical Harmonics Based PRT Methods
Low-rank tensor approximation (Introduction)
YaPingPresentation
A Note on TopicRNN
A Note on Latent LSTM Allocation
Codes and Isogenies
스코프와 실행문맥
Gpu workshop cluster universe: scripting cuda
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Aaex7 group2(中英夾雜)
OPTEX MATHEMATICAL MODELING AND MANAGEMENT SYSTEM
Graph for Coulomb damped oscillation
Triggering patterns of topology changes in dynamic attributed graphs
Processing Reachability Queries with Realistic Constraints on Massive Network...
M. Haack - Nernst Branes in Gauged Supergravity
Ad

Viewers also liked (20)

PDF
Japan r2 lt_yokkuns
PDF
Japan r2 opening
PDF
Japan r2 tokyor
PDF
Japanr01
PDF
Tokyowebmining07 初めてでも分かるヘッジファンド入門
PDF
Tokyor22 selection bias
PDF
エンジニアサポート新年会2012 データマイニングcross 第1部
PDF
Tokyor14 - R言語でユニットテスト
PDF
Tokyor39 yokkuns
PDF
Tokyor10 opening
PDF
Complex network ws_percolation
PDF
第3回Japan rパネルディスカッション
PDF
Tokyor24 yokkuns
PDF
20131206 japan r
PDF
Tokyor13 - YjdnJlpパッケージとTokyo.R翻訳プロジェクトの紹介
PDF
EasyHtmlReportの紹介
PDF
Tokyor26 data fusion
PDF
Sakuteki02 yokkuns
PDF
Rでレポートメール
PDF
Tokyowebmining19 data fusion
Japan r2 lt_yokkuns
Japan r2 opening
Japan r2 tokyor
Japanr01
Tokyowebmining07 初めてでも分かるヘッジファンド入門
Tokyor22 selection bias
エンジニアサポート新年会2012 データマイニングcross 第1部
Tokyor14 - R言語でユニットテスト
Tokyor39 yokkuns
Tokyor10 opening
Complex network ws_percolation
第3回Japan rパネルディスカッション
Tokyor24 yokkuns
20131206 japan r
Tokyor13 - YjdnJlpパッケージとTokyo.R翻訳プロジェクトの紹介
EasyHtmlReportの紹介
Tokyor26 data fusion
Sakuteki02 yokkuns
Rでレポートメール
Tokyowebmining19 data fusion
Ad

Similar to Ml4nlp04 1 (20)

PDF
Probabilistic Retrieval
PDF
Probabilistic Retrieval TFIDF
PDF
3 grechnikov
PDF
近似ベイズ計算によるベイズ推定
PDF
Algorithm Design and Complexity - Course 11
PDF
Trilinear embedding for divergence-form operators
PDF
PPTX
Class 28: Entropy
PDF
分類器 (ナイーブベイズ)
PDF
Python Performance 101
PDF
R. Jimenez - Fundamental Physics from Astronomical Observations
PDF
Cosmin Crucean: Perturbative QED on de Sitter Universe.
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Yampa AFRP Introduction
PDF
Comparing estimation algorithms for block clustering models
PDF
Introduction to modern Variational Inference.
PDF
brain gate
PPTX
Class 18: Measuring Cost
PDF
fauvel_igarss.pdf
Probabilistic Retrieval
Probabilistic Retrieval TFIDF
3 grechnikov
近似ベイズ計算によるベイズ推定
Algorithm Design and Complexity - Course 11
Trilinear embedding for divergence-form operators
Class 28: Entropy
分類器 (ナイーブベイズ)
Python Performance 101
R. Jimenez - Fundamental Physics from Astronomical Observations
Cosmin Crucean: Perturbative QED on de Sitter Universe.
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Yampa AFRP Introduction
Comparing estimation algorithms for block clustering models
Introduction to modern Variational Inference.
brain gate
Class 18: Measuring Cost
fauvel_igarss.pdf

More from Yohei Sato (16)

PDF
Tokyor60 r data_science_part1
PDF
Tokyor60 opening
PDF
Tokyor45 カーネル多変量解析第2章 カーネル多変量解析の仕組み
PPTX
Tokyor42_r_datamining_18
PDF
Tokyor42 ggplot2
PDF
Tokyor35 人工データの発生
PDF
ドリコムの分析環境とデータサイエンス活用事例
PDF
R言語で学ぶマーケティング分析 競争ポジショニング戦略
PDF
Rで階層ベイズモデル
PDF
Rでピボットテーブル
PDF
傾向スコア解析とUplift Modelling
PDF
異常行動検出入門(改)
PDF
Uplift Modelling 入門(1)
PDF
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
PDF
異常行動検出入門 – 行動データ時系列のデータマイニング –
PDF
Tokyo r15 異常検知入門
Tokyor60 r data_science_part1
Tokyor60 opening
Tokyor45 カーネル多変量解析第2章 カーネル多変量解析の仕組み
Tokyor42_r_datamining_18
Tokyor42 ggplot2
Tokyor35 人工データの発生
ドリコムの分析環境とデータサイエンス活用事例
R言語で学ぶマーケティング分析 競争ポジショニング戦略
Rで階層ベイズモデル
Rでピボットテーブル
傾向スコア解析とUplift Modelling
異常行動検出入門(改)
Uplift Modelling 入門(1)
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
異常行動検出入門 – 行動データ時系列のデータマイニング –
Tokyo r15 異常検知入門

Ml4nlp04 1

  • 1. 4.1 4.2 . . 2010/10/12 4.1 4.2
  • 2. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 3. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 4. 4 1 2 . . 4.1 4.2
  • 5. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 7. 2 SVM 4.1 4.2
  • 8. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 9. d P(c|d) c∈C P(c|d) 1 P(c)P(d|c) P(c|d) = P(d) . 2 P(d) P(c)P(d|c) c max . P(c)P(d|c) c max = arg max c P(d) = arg max P(c)P(d|c) c . 4.1 4.2
  • 10. P(d|c) d d d P(d|c) d - - 4.1 4.2
  • 11. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 12. - P(d|c) d ∏ δ P(d|c) = pw,c (1 − pw,c )1−δw,d w,d w∈V V w pc P(c) pw,c pc 2 δ pw,c (1 − pw,c )1−δw,d w,d c w d 4.1 4.2
  • 13. - ∏ δ P(c)P(d|c) = pc pw,c (1 − pw,c )1−δw,d w,d w∈V c pw,c P(d|c) P(d|c) pw,c 1 4.1 4.2
  • 14. D D = {(d(1) , c(1) ), (d(2) , c(2) ), ..., (d|D| , c|D| )} ∑ log P( D) = log P(d, c) (d,c)∈D   ∑  ∏ δw,d      = log  pc    pw,c (1 − pw,c )1−δw,d     (d,c)∈D w∈V   ∑   ∑    log pc +  =    (δw,d log pw,c + (1 − ww,d ) log(1 − pw,c ))    (d,c)∈D w∈V ∑ ∑∑ ∑∑ = N c log pc + Nw,c log pw,c + (N c − Nw,c ) log(1 − pw,c ) c c w∈V c w∈V Nc : c Nw,c : c w 4.1 4.2
  • 15. pc max . log P(D) ∑ s.t. pc = 1. c L(θ, λ) ∑        L(θ, λ) = log P(D) + λ   pc − 1    c θ: { pw,c }winV,c∈C , {pc } c∈C 4.1 4.2
  • 16. ∂L(θ, λ) = 0 ∂ pw,c ∂L(θ, λ) = 0 ∂ pc ∂L(θ, λ) = 0 ∂λ 4.1 4.2
  • 17.  ∂L(θ, λ) ∂ ∑   ∑∑ =    N c log pc + Nw,c log pw,c ∂pw,c ∂pw,c  c c w∈V ∑∑ ∑      + (N c − Nw,c ) log(1 − pw,c ) + λ      pc − 1    c w∈V c ∂(1− pw,c ) Nw,c ∂ pw,c = + (N c − Nw,c ) pw,c (1 − pw,c ) Nw,c (N c − Nw,c ) = − pw,c 1 − pw,c  ∂L(θ, λ) ∑ ∂   ∑∑ =    N c log pc + Nw,c log pw,c ∂pc  ∂pc c c w∈V ∑∑ ∑      +   (N c − Nw,c ) log(1 − pw,c ) + λ    pc − 1    c w∈V c Nc = +λ pc 4.1 4.2
  • 18. pw,c Nw,c (N c − Nw,c ) − = 0 pw,c 1 − pw,c (1 − pw,c )Nw,c − pw,c (N c − Nw,c ) = 0 pw,c (N c − Nw,c + Nw,c ) = Nw,c Nw,c pw,c = Nc 4.1 4.2
  • 19. pc Nc +λ = 0 pc Nc pc = − λ ∑ pc = 1 c 1∑ − Nc = 1 λ c ∑ λ = − Nc c Nc Nc pc = − = ∑ λ c Nc 4.1 4.2
  • 20. c w pw,c = c c pc = 4.1 4.2
  • 21. 4.1 P 3 d(1) = ”good bad good good” d(2) = ”exciting exciting” d(3) = ”good good exciting boring” N 3 d(4) = ”bad boring boring boring” d(5) = ”bad good bad” d(6) = ”bad bad boring exciting” P N 4.1 4.2
  • 22. 4.1 V = {bad, boring, exciting, good} N P = 3, N N = 3, N bad,P = 1, N bad,N = 3, N boring,P = 1, N boring,N = 2, Nexciting,P = 2, Nexciting,N = 1, N good,P = 2, N good,N = 1, NP NN pP = N P +N N = 3+3 = 0.50 3 pN = N p+NN = 3+3 = 0.50 3 N bad,P N bad,N pbad,P = N P = 1 = 0.33 3 pbad,N = NN = 3 = 1.00 3 N boring,P N bof ing,N pboring,P = N P = 3 = 0.33 1 pbof ing,N = NN = 2 = 3 0.67 Nexciting,P pexciting,P = N P = 2 = 0.67 3 Nexciting,N 1 pexciting,N = = 3 = 0.33 N good,P N good,N pgood,P = N P = 2 = 0.67 3 pgood,N = NN = 1 = 0.33 3 4.1 4.2
  • 23. 4.2 4.1 d d = ”good good bad boring” pP pd|P pN pd|N pP pd|P = pP × pbad,P × pboring,P × (1 − pexciting,P ) × pgood,P = 0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.67 = 0.012 pN pd|N = pN × pbad,N × pboring,N × (1 − pexciting,N ) × pgood,N = 0.5 × 1.00 × 0.67 × (1 − 0.33) × 0.33 = 0.074 4.1 d N 4.1 4.2
  • 24. 4.2 4.1 d d = ”good good bad boring” pP pd|P pN pd|N pP pd|P = pP × pbad,P × pboring,P × (1 − pexciting,P ) × pgood,P = 0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.67 = 0.012 pN pd|N = pN × pbad,N × pboring,N × (1 − pexciting,N ) × pgood,N = 0.5 × 1.00 × 0.67times(1 − 0.33) × 0.33 = 0.074 4.1 d N 4.1 4.2
  • 25. 4.3 4.1 d(1) d(1) = ”good bad good good fine” d d = ”bad bad boring boring fine” 4.1 4.2
  • 26. 4.3 “fine” fine N f ine,P N f ine,N p f ine,P = NP = 1 3 = 0.33 p f ine,N = NN = 0 3 = 0.00 pP pd|P = pP × pbad,P × pboring,P × (1 − pexciting,P ) × p f ine,P × (1 − pgood,P ) = 0.5 × 0.33 × 0.33 × (1 − 0.67) × 0.33 × (1 − 0.67) = 0.002 pN pd|N = pN × pbad,N × pboring,N × (1 − pexciting,N ) × p f ine,N × (1 − pgood,N ) = 0.5 × 1.00 × 0.67 × (1 − 0.33) × 0.00 × 0.67 = 0.00 P 4.1 4.2
  • 27. 4.3 d “bad” ”boring” ”good” ”exciting” P p f ine,N = 0.00 N pN pd|N = 0.00 0 MAP 4.1 4.2
  • 28. MAP 0.00 MAP ∏  ∏  ∑     × α−1  ( α−1 ) α−1  log P(θ) + log P(D) =    log    pc      pw,c (1 − pw,c )  +   log P(d, c) + (const.)   c w,c (d,c)∈D ∑ ∑( ) = (α − 1) log pc + (α − 1) log pw,c + log(1 − pw,c ) c w,c   ∑  ∏ δw,d      + log  pc    ( pw,c (1 − pw,c )1−δw,d ) + (const.)    (d,c)∈ D w∈V ∑ c p(c) = 1 4.1 4.2
  • 29. MAP ∑        L(θ, λ) = log P(θ) + log P( D) + λ   pc − 1    c ∂L(θ, λ) (α − 1) (α − 1) Nw,c N c − Nw,c = +− + − ∂ pw,c pw,c 1 − pw,c pw,c 1 − pw,c ∂L(θ, λ) (α − 1) N c = + +λ ∂pc pc pc 4.1 4.2
  • 30. MAP ∑ 0 c pc = 1 Nw,c + (α − 1) pw,c = Nc + 2 Nc + 1 pc = ∑ c N c + |C| α 4.1 4.2
  • 31. 4.4 4.3 MAP α=1 P 3 d(1) = ”good bad good good fine” d(2) = ”exciting exciting” d(3) = ”good good exciting boring” N 3 d(4) = ”bad boring boring boring” d(5) = ”bad good bad” d(6) = ”bad bad boring exciting” 4.1 4.2
  • 32. 4.4 Table: MAP MAP pP 0.50 0.50 pN 0.50 0.50 pbad,P 0.33 0.40 pbad,N 1.00 0.80 pboring,P 0.33 0.40 pboring,N 0.67 0.60 pexciting,P 0.67 0.60 pexciting,N 0.33 0.40 p f ine,P 0.33 0.40 p f ine,N 0.00 0.20 pgood,P 0.67 0.60 pgood,N 0.33 0.40 MAP smoothing MAP 4.1 4.2
  • 33. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 34. V 1 |d| P(d|c) d w nw,d  ∑  (∑ n )! ∏     w w,d P(d|c) = P  K =  nw,d  ∏  nw,d     qw,c w w∈V nw,d ! w∈V K: ( ∑ ) ∑ P K = w nw,d : w nw,d 4.1 4.2
  • 35. c ∑  (∑ n )! ∏     w w,d pc P   nw,d  ∏  nw,d P(c)P(d|c) =     qw,c w w∈V nw,d ! w∈V ∑  (∑ n )! ∏     w w,d arg max P(c)P(d|c) = arg max pc P   nw,d  ∏  n     q w,d c c w w∈V nw,d ! w∈V w,c ∏ nw = arg max pc qw,c c w∈V ∏ nw c pc w∈V qw,c 4.1 4.2
  • 36. 2 4.1 4.2
  • 37. ∑ log P( D) = log P(d, c) (d,c)∈ D   ∑  p(|d|)|d|!  ∏ n     w,d  = log  ∏   pc qw,c    (d,c)∈ D w∈Vn ! w,d w∈V ∑ P(|d|)|d|! ∑ ∑ ∑ = log ∏ + log pc + nw,d log qw,c (d,c)∈ D w∈V nw,d ! (d,c)∈ D (d,c)∈D w∈V ∑ P(|d|)|d|! ∑ ∑∑ = log ∏ + log nc pc + nw,c log qw,c (d,c)∈ D w∈V nw,d ! c c w∈V max. log P( D) ∑ s.t. pc = 1. c∈C ∑ qw,c = 1; ∀c ∈ C w∈V 4.1 4.2
  • 38.    ∑ ∑    ∑         L(θ, β, γ) = log P(D) + βc    qw,c − 1 + γ        pc − 1    c∈C w∈V c∈C ∂L(θ, β, γ) = 0 ∂qw,c ∂L(θ, β, γ) = 0 ∂ pc ∂L(θ, β, γ) = 0 ∂β ∂L(θ, β, γ) = 0 ∂γ 4.1 4.2
  • 39.  ∂L(θ, β, γ) ∂  ∑   P(|d|)|d|! ∑ ∑∑ =    log ∏ + nc log pc +   nw,c log qw,c ∂qw,c ∂qw,c (d,c)∈D w∈V nw,d ! c c w∈V  ∑ ∑ ∑     βc ( −1) + γ( pc − 1)   c∈C w∈V c∈C nw,c = + βc = 0 qw,c nw,c qw,c = βc 4.1 4.2
  • 40. βc ∑ qw,c = 1 w∈V 1 ∑ nw,c = 1 β c w∈V 1 βc = ∑ w∈V nw,c nw,c qw,c = ∑ w nw,c pc 4.1 4.2
  • 41. c w qw,c = c c w pw,c = c 4.1 4.2
  • 42. MAP 0.00 MAP MAP ∏  ∏  ∑         log P(θ) + log P(D) ∝ log      pα−1  ×      qα−1  +   c   w,c   log P(d, c) c w,c (d,c)∈D     ∑   ∑    ∑  P(|d|)|d|!   ∏ n  w,d   =  (α − 1)   log pc + log qw,c  +   log  ∏   pc qw,c      n !  c w,c (d,c)∈D w∈V w,d w∈V ∑ ∑ c p(c) = 1 w qw,c = 1 4.1 4.2
  • 43. MAP L(θ, β, γ) = log P(θ) + log P(D)     ∑ ∑    ∑        + βc     pw,c − 1 + γ        pc − 1    c∈C w∈V c∈C ∂L(θ, β, γ) (α − 1) nw,c = + + βc ∂qw,c qw,c qw,c ∑ 0 w∈V qw,c = 1 nw,c + (α − 1) qw,c = ∑ w nw,c + |W|(α − 1) 4.1 4.2
  • 44. AGENDA 1 2 . 3 . 4 . . 4.1 4.2
  • 45. d MAP 4.1 4.2
  • 46. ( ) Ml for nlp chapter 4 4.1 4.2
  • 47. 4.1 4.2