SlideShare a Scribd company logo
KTU PREVIOUS YEAR QUESTIONS
SOLUTIONS
Module-wise / 2016 scheme / 2019 scheme
Krishnendu Sivadas
Course Introduction
Examination pattern and mark distribution (2016 and 2019 scheme)
Solutions to KTU University question papers 2016 and 2019 scheme
• EST 100 - Dec 2019
• BE-100 – May 2019
• BE- 100 – July 2018
Module-wise coverage (2019 syllabus)
KRISHNENDU SIVADAS 2
Krishnendu Sivadas
Examination Pattern – 2019 scheme
EST100
Krishnendu Sivadas
Examination Pattern – 2016 scheme
BE100
PREVIOUS YEAR QUESTIONS
Module 2
Friction – sliding friction - Coulomb’s laws of friction – analysis of single bodies –
wedges, ladder- analysis of connected bodies . Parallel coplanar forces – couple -
resultant of parallel forces – centre of parallel forces – equilibrium of parallel forces
– Simple beam subject to concentrated vertical loads. General coplanar force
system - resultant and equilibrium equations.
Question 1
KRISHNENDU SIVADAS 6
KRISHNENDU SIVADAS 7
KRISHNENDU SIVADAS 8
R1
R2
R3
W
P
𝝁R1
𝝁R3
KRISHNENDU SIVADAS 9
QUESTION 1 : SOLUTION WEDGE ANALYSIS
Question 2
KRISHNENDU SIVADAS 10
4 m
A B
3 m
2 m
1m
10 N 6 N 4 N
RA RB
QUESTION 2 : SOLUTION
SIMPLE BEAM
Consider free body diagram of the beam
Equilibrium conditions :
σ 𝐹𝑣 = 0,
σ 𝑀 = 0,
Applying σ 𝐹𝑣 = 0,
RA + RB -10-6-4 =0
RA + RB = 20……..(i)
Applying σ 𝑀 = 0,
Taking moment about A =0,
(10x1) + (6x2) + (4x3) – (RB x4) =0
RB =34/4 = 8.5 N……..(ii)
Therefore RA = 20 - 8.5 = 11.5 N
KRISHNENDU SIVADAS 11
Question 3
KRISHNENDU SIVADAS 12
30 N
𝜶
6 N
30 N
𝜶
P
smooth inclined plane
rough inclined plane
QUESTION 3 : SOLUTION
ANALYSIS OF SINGLE BODIES
Case 1: Consider the body of weight 30 N placed on a smooth
Inclined plane with angle 𝛼 and load 6 N
Resolving forces along the inclined plane:
6 cos 30 – 30 sin 𝛼 = 0
𝜶 = 9.974
Case 2: Consider the body of weight 30 N placed on a rough
inclined plane with an inclination 𝛼=9.974
Resolving perpendicular to the inclined plane:
R- 30 cos 9.974 = 0
R= 29.54 N
Resolving along inclined plane
P-0.3R-30 sin 9.974 =0
P= (0.3R)+(30sin9.974) =14.06 N
KRISHNENDU SIVADAS 13
30 N
𝜶
6 N
𝟑𝟎
6 cos 30
6 sin 30
30 N
𝟗. 𝟗𝟕𝟒
P
R
R
Question 4
KRISHNENDU SIVADAS 14
Krishnendu Sivadas
QUESTION 4 : SOLUTION
SIMPLE BEAM
sin𝜃=1/2
𝜃 = sin-1 ½
𝜃 = 26.56
KRISHNENDU SIVADAS 15
100 sin45
100 cos45
RAV
RAH
150
RD
RD sin26.56
RD cos26.56
1.5 m
1.5 m
1 m
1 m
Consider free body diagram of the beam,
Equilibrium conditions:
σ 𝐹𝑉 = 0,
σ 𝐹𝐻 = 0,
σ 𝑀 = 0,
σ 𝐹𝑉 = 0,
RAV + RD cos26.56-100sin45-150 = 0……..(i)
KRISHNENDU SIVADAS 16
σ 𝐹𝐻 = 0,
RAH +100 cos45- RD sin26.56 = 0……..(ii)
σ 𝑀 = 0, Taking moment about A,
(100sin45 x 1) + (150 x3.5) – (RD cos26.56 x5) = 0
RD =133.19 kN
Substituting value of RD in eqn (ii), we get;
RAH +100 cos45- RD sin26.56 = 0……..(ii)
RAH = -100 cos45+ RD sin26.56 = -11.15 kN
KRISHNENDU SIVADAS 17
Substituting value of RD in eqn (ii), we get;
RAV + RD cos26.56-100sin45-150 = 0……..(i)
RAV = - RD cos26.56+100sin45+150 = 101.57 kN
Therefore resultant reaction at A = σ 𝑅𝐴𝐻
2
+ σ 𝑅𝐴𝐻
2
= 11.152 + 101.572 = 102.18 kN
Inclination = tan-1 (σ 𝑅𝐴𝑉/ σ 𝑅𝐴𝐻)
= 83.73 with horizontal or 90-83.73 =6.26 with vertical
Reaction at D= RD =133.19 kN
KRISHNENDU SIVADAS 18
Question 5
KRISHNENDU SIVADAS 19
Question 5
QUESTION 5 : SOLUTION
LADDER FRICTION
Free body diagram:
Given data:
Length of ladder = 4 m
Weight of ladder W=200 N
𝜇w= 0.25
𝜇f= 0.35
Inclination of ladder with floor = 60
Load at top = 1000 N
To find:
a) Horizontal force P to prevent
slipping
b)Minimum inclination to prevent
slipping if P is not applied.
200 N
1000 N
P
Rf
Rw
KRISHNENDU SIVADAS 20
4 m
60
0.25Rw
0.35Rf
Consider the equilibrium of ladder:
σ 𝐹𝑥 = 0,
P +0.35 Rf – Rw = 0…..(i)
σ 𝐹𝑦 = 0,
Rf +0.25Rw – 200 -1000 =0
Rf +0.25Rw =1200…..(ii)
σ 𝑀 = 0, Taking moment about A,
(200x2cos60) +(1000 x 4cos60) – (0.25Rw x 4cos60)
-(Rw x 4sin 60) = 0
200 + 2000 – 0.5 Rw -3.464 Rw = 0
2200 = (0.5+3.464) Rw
Rw = 554.98 N
From (ii), Rf = 1200 -0.25 Rw = 1061.26 N
From (i), P = Rw -0.35 Rf = 183.5 N
KRISHNENDU SIVADAS 21
200 N
1000 N
P
Rf
Rw
4 m
60
0.25Rw
0.35Rf
Consider the equilibrium of ladder:
σ 𝐹𝑥 = 0,
0.35 Rf – Rw = 0
Rw = 0.35 Rf …..(i)
σ 𝐹𝑦 = 0,
Rf +0.25Rw – 200 -1000 =0
Rf +0.25Rw =1200
Rf +0.25x0.35 Rf =1200
Rf=1103.45 N
Rw = 0.35 x 1103.45 = 386.2 N
σ 𝑀 = 0, Taking moment about A,
(200x2cos𝜃) +(1000 x 4cos𝜃) – (0.25Rw x 4cos𝜃)
-(Rw x 4sin 𝜃) = 0
cos𝜃(400 + 4000- 0.25x4x386.2) = 4x386.2sin 𝜃
𝜽=68.95
KRISHNENDU SIVADAS 22
200 N
1000 N
Rf
Rw
4 m
𝜃
0.25Rw
0.35Rf
Question 6
KRISHNENDU SIVADAS 23
Krishnendu Sivadas
Question 7
KRISHNENDU SIVADAS 24
QUESTION 7 : SOLUTION
SIMPLE BEAM
KRISHNENDU SIVADAS 25
RA RB
30x6=180 kN 45 kN 90 kN
1.5 m
2.5 m
2 m
3 m
3 m
Consider the free body diagram of the beam AB
Equilibrium conditions:
σ 𝐹𝑉 = 0,
σ 𝑀 = 0,
σ 𝐹𝑉 = 0,
RA+RB -180-45-90 =0
RA+RB =315 kN…..(i)
KRISHNENDU SIVADAS 26
σ 𝑀 = 0, Taking moment about A
(180 x 3) + (45x8) +(90x10.5) – (RB x12) =0
RB =153.75 kN
From eqn. (i)
RA=315 - RB = 315-153.75 =161.25 kN
KRISHNENDU SIVADAS 27
Question 8
KRISHNENDU SIVADAS 28
QUESTION 8 : SOLUTION
LADDER FRICTION
Free body diagram:
Given data:
Length of ladder = 3 m
Weight of ladder W=180 N
𝜇w= 0.25
𝜇f= 0.35
Inclination of ladder with floor = 60
Load at top = 900 N
To find:
Minimum horizontal force P to
prevent slipping
KRISHNENDU SIVADAS 29
180 N
900 N
P
Rf
Rw
3 m
60
0.25Rw
0.35Rf
Consider the equilibrium of ladder:
σ 𝐹𝑥 = 0,
P +0.35 Rf – Rw = 0…..(i)
σ 𝐹𝑦 = 0,
Rf +0.25Rw – 180 -900 =0
Rf +0.25Rw =1080…..(ii)
σ 𝑀 = 0, Taking moment about A,
(180x1.5cos60) +(900 x 3cos60) – (0.25Rw x 3cos60)
-(Rw x 3sin 60) = 0
135 + 1350 – 0.375 Rw -2.59 Rw = 0
1485 = (0.375+2.59) Rw
Rw = 500.84 N
From (ii), Rf = 1080 -0.25 Rw = 954.79 N
From (i), P = Rw -0.35 Rf = 166.6 N
KRISHNENDU SIVADAS 30
180 N
900 N
P
Rf
Rw
3 m
60
0.25Rw
0.35Rf
Question 9
KRISHNENDU SIVADAS 31
Krishnendu Sivadas
KRISHNENDU SIVADAS 32
QUESTION 9 : SOLUTION BEAM SUPPORTS
Question 10
KRISHNENDU SIVADAS 33
Characteristics of dry friction
 Co-efficient of friction (𝜇)
 Angle of friction (𝜙)
 Angle of repose (𝛼)
 Cone of friction
Co-efficient of friction
Limiting friction is proportional to the normal reaction at the contact surface
𝐹max ∝ 𝑅𝑁
𝐹max = 𝜇𝑅𝑁
𝜇 = co-efficient of friction at contact surface
Angle of friction:
It is the angle between the normal reaction at the contact surface and the resultant of normal reaction and
limiting friction. Denoted by 𝜙
KRISHNENDU SIVADAS 34
QUESTION 10 : SOLUTION COULOMB FRICTION
𝑅𝑁 =
𝐹max
𝜇
tan 𝜙 =
𝐹
= 𝜇𝑅𝑁
= 𝜇
𝑅𝑁 𝑅𝑁
Angle of Repose:
It is the maximum inclination of a plane on which a body can rest/repose without applying external force
Cone of Friction
If the resultant reaction is rotated about normal reaction force, it will form a cone which is known as cone
of friction.
KRISHNENDU SIVADAS 35
Question 11
KRISHNENDU SIVADAS 36
QUESTION 11 : SOLUTION
SIMPLE BEAM
KRISHNENDU SIVADAS 37
30sin45
30cos45
20 x 2 =40kN
3 m 2 m 1 m 2 m
40kNm
RAH
RAV RB
Consider the free body diagram of the beam;
Equilibrium conditions:
Equilibrium conditions:
σ 𝐹𝑉 = 0,
σ 𝐹𝐻 = 0,
σ 𝑀 = 0,
σ 𝐹𝑉 = 0,
RAV + RB -30sin45-40 = 0……..(i)
KRISHNENDU SIVADAS 38
σ 𝐹𝐻 = 0,
RAH – 30cos45 = 0
RAH = 30cos45 = 21.213 kN
σ 𝑀 = 0, Taking moment about A,
(40) + (30sin45 x5) –(RBx 6)+(40 x 7) = 0
RB =71.01 kN
Substituting value of RD in eqn (i), we get;
RAV + RB -30sin45-40 = 0……..(i)
RAV = - RB +30sin45+40 = -9.79kN
KRISHNENDU SIVADAS 39
Therefore resultant reaction at A = σ 𝑅𝐴𝐻
2
+ σ 𝑅𝐴𝐻
2
= 21.212 + 9.792 = 23.36 kN
Inclination = tan-1 (σ 𝑅𝐴𝑉/ σ 𝑅𝐴𝐻)
= 24.77 with horizontal or 90-24.77 =65.223 with vertical
KRISHNENDU SIVADAS 40
Question 12
KRISHNENDU SIVADAS 41
KRISHNENDU SIVADAS 42
F
F
F
F
RN
RN
RN
RN
R
R
R
R
QUESTION 12 : SOLUTION WEDGE FRICTION
Consider the block to the right
σ 𝐹𝑦 = 0,
R1 cos 15 – R2 sin15 -100 =0……(i)
σ 𝐹𝑥 = 0,
R2 cos15- R1 sin 15 -2.5 = 0…..(ii) Solving we get, R1 =112.28 kN and R2 =32.67kN
KRISHNENDU SIVADAS 43
R
R
R
R
15
15
15
15
15
QUESTION 12 : SOLUTION WEDGE FRICTION
Consider the block to the right
σ 𝐹𝑥 = 0,
R3 cos 30 = R2 cos15
R3 = (32.67 cos15)/cos 30 = 36.44 kN
σ 𝐹𝑦 = 0,
R2 sin15+ R3 sin 30 –P = 0
P= R2 sin15+ R3 sin 30 = 32.67 sin15+ 36.44 sin 30 =26.67 kN
KRISHNENDU SIVADAS 44
R
R
R
R
15
15
15
15
15
QUESTION 12 : SOLUTION WEDGE FRICTION
THANK YOU
KRISHNENDU SIVADAS 45
Krishnendu Sivadas

More Related Content

PDF
Ebrd presentation october 2015 innovation bootcamp (1)
PDF
Autel AL301 User Manual
PDF
Capítulo 04 carga e análise de tensão
PDF
Shi20396 ch04
PPTX
Shear force and bending moment diagram for simply supported beam _1P
DOCX
Ejericio analisis
PDF
Stiffness matrix method for beam , examples ce525
PDF
chapter-2-shear-force-and-bending-moment.pdf
Ebrd presentation october 2015 innovation bootcamp (1)
Autel AL301 User Manual
Capítulo 04 carga e análise de tensão
Shi20396 ch04
Shear force and bending moment diagram for simply supported beam _1P
Ejericio analisis
Stiffness matrix method for beam , examples ce525
chapter-2-shear-force-and-bending-moment.pdf

Similar to mod of cae (20)

DOCX
Robby mekban (recovered)
PDF
Shi20396 ch16
PDF
DOCX
6. forces, density and pressure examples
PPTX
PPT
Mechanics.ppt
PPT
Mechanics.
PPTX
mhs torque.pptx
PDF
Rotation of rigid boksdkfjkdfsdfdies.pdf
PPT
Lecture Notes For Section 4.5
PPT
Forces
PDF
Ch27 ssm
PPT
PDF
Chapter 15
PDF
Capítulo 11 mancais de contato rolante
PDF
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
PPT
Translation, Rotation and Transformation in Robotics.ppt
PPTX
III - resultant of non-concurrent forces
PPTX
Presentation on Regression Analysis
Robby mekban (recovered)
Shi20396 ch16
6. forces, density and pressure examples
Mechanics.ppt
Mechanics.
mhs torque.pptx
Rotation of rigid boksdkfjkdfsdfdies.pdf
Lecture Notes For Section 4.5
Forces
Ch27 ssm
Chapter 15
Capítulo 11 mancais de contato rolante
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Translation, Rotation and Transformation in Robotics.ppt
III - resultant of non-concurrent forces
Presentation on Regression Analysis
Ad

Recently uploaded (20)

PPTX
ChemistrGenetic MaterCytoplasm and cell organekojljmlilles8.pptial.ppty of Li...
PPTX
SEAFOOD IRRADIATION – TECHNOLOGY AND APPLICATION.pptx
PPTX
SOYBEAN PRODUCTION TECHNOLOGIES In the Philippines.pptx
PPTX
HEALTHY EATING HABITS A BRIEF PRESENTATION
PPTX
Arunish chawla 23212AGC218 B.Sc. Ag. THIRD YEAR (2).pptx
PDF
plating appetizers and hors d'oeuvres...
DOC
Millersville毕业证学历认证,奥古斯塔娜大学毕业证全套证件文凭
PDF
Understanding the Appeal and Cultural Influence of Burgers Around the World
PDF
Brown-Illustrative-Abstract-Group-Project-Presentation-1.pdf
PDF
Wendy’s Menu Canada – Complete Guide 2025
PPT
french classical menu for hotel management students .ppt
PPTX
FST-401 lecture # 10 food chemistry.pptx
PDF
Importance of Usa Food & Beverage Industry Email List
PPTX
COMPONENTS OF FOOD jgjtgjjgjgjgjgjgjgjg
PDF
Parasitology Tables is read to to delete a hite
PDF
Custom Gifts in Charlotte NC: How to Choose BBQ Date Gifts
PPT
Food Chain and Food Web in the world.ppt
PDF
Agricultural_Census_Main_Findings_Report.pdf
PPT
pathophysiology-140119084712-phpapp01.ppt
PPT
PRODUCTION PRACTICES FOR ANNUAL CROPS.ppt
ChemistrGenetic MaterCytoplasm and cell organekojljmlilles8.pptial.ppty of Li...
SEAFOOD IRRADIATION – TECHNOLOGY AND APPLICATION.pptx
SOYBEAN PRODUCTION TECHNOLOGIES In the Philippines.pptx
HEALTHY EATING HABITS A BRIEF PRESENTATION
Arunish chawla 23212AGC218 B.Sc. Ag. THIRD YEAR (2).pptx
plating appetizers and hors d'oeuvres...
Millersville毕业证学历认证,奥古斯塔娜大学毕业证全套证件文凭
Understanding the Appeal and Cultural Influence of Burgers Around the World
Brown-Illustrative-Abstract-Group-Project-Presentation-1.pdf
Wendy’s Menu Canada – Complete Guide 2025
french classical menu for hotel management students .ppt
FST-401 lecture # 10 food chemistry.pptx
Importance of Usa Food & Beverage Industry Email List
COMPONENTS OF FOOD jgjtgjjgjgjgjgjgjgjg
Parasitology Tables is read to to delete a hite
Custom Gifts in Charlotte NC: How to Choose BBQ Date Gifts
Food Chain and Food Web in the world.ppt
Agricultural_Census_Main_Findings_Report.pdf
pathophysiology-140119084712-phpapp01.ppt
PRODUCTION PRACTICES FOR ANNUAL CROPS.ppt
Ad

mod of cae

  • 1. KTU PREVIOUS YEAR QUESTIONS SOLUTIONS Module-wise / 2016 scheme / 2019 scheme Krishnendu Sivadas
  • 2. Course Introduction Examination pattern and mark distribution (2016 and 2019 scheme) Solutions to KTU University question papers 2016 and 2019 scheme • EST 100 - Dec 2019 • BE-100 – May 2019 • BE- 100 – July 2018 Module-wise coverage (2019 syllabus) KRISHNENDU SIVADAS 2 Krishnendu Sivadas
  • 3. Examination Pattern – 2019 scheme EST100 Krishnendu Sivadas
  • 4. Examination Pattern – 2016 scheme BE100
  • 5. PREVIOUS YEAR QUESTIONS Module 2 Friction – sliding friction - Coulomb’s laws of friction – analysis of single bodies – wedges, ladder- analysis of connected bodies . Parallel coplanar forces – couple - resultant of parallel forces – centre of parallel forces – equilibrium of parallel forces – Simple beam subject to concentrated vertical loads. General coplanar force system - resultant and equilibrium equations.
  • 9. KRISHNENDU SIVADAS 9 QUESTION 1 : SOLUTION WEDGE ANALYSIS
  • 10. Question 2 KRISHNENDU SIVADAS 10 4 m A B 3 m 2 m 1m 10 N 6 N 4 N RA RB
  • 11. QUESTION 2 : SOLUTION SIMPLE BEAM Consider free body diagram of the beam Equilibrium conditions : σ 𝐹𝑣 = 0, σ 𝑀 = 0, Applying σ 𝐹𝑣 = 0, RA + RB -10-6-4 =0 RA + RB = 20……..(i) Applying σ 𝑀 = 0, Taking moment about A =0, (10x1) + (6x2) + (4x3) – (RB x4) =0 RB =34/4 = 8.5 N……..(ii) Therefore RA = 20 - 8.5 = 11.5 N KRISHNENDU SIVADAS 11
  • 12. Question 3 KRISHNENDU SIVADAS 12 30 N 𝜶 6 N 30 N 𝜶 P smooth inclined plane rough inclined plane
  • 13. QUESTION 3 : SOLUTION ANALYSIS OF SINGLE BODIES Case 1: Consider the body of weight 30 N placed on a smooth Inclined plane with angle 𝛼 and load 6 N Resolving forces along the inclined plane: 6 cos 30 – 30 sin 𝛼 = 0 𝜶 = 9.974 Case 2: Consider the body of weight 30 N placed on a rough inclined plane with an inclination 𝛼=9.974 Resolving perpendicular to the inclined plane: R- 30 cos 9.974 = 0 R= 29.54 N Resolving along inclined plane P-0.3R-30 sin 9.974 =0 P= (0.3R)+(30sin9.974) =14.06 N KRISHNENDU SIVADAS 13 30 N 𝜶 6 N 𝟑𝟎 6 cos 30 6 sin 30 30 N 𝟗. 𝟗𝟕𝟒 P R R
  • 14. Question 4 KRISHNENDU SIVADAS 14 Krishnendu Sivadas
  • 15. QUESTION 4 : SOLUTION SIMPLE BEAM sin𝜃=1/2 𝜃 = sin-1 ½ 𝜃 = 26.56 KRISHNENDU SIVADAS 15 100 sin45 100 cos45 RAV RAH 150 RD RD sin26.56 RD cos26.56 1.5 m 1.5 m 1 m 1 m
  • 16. Consider free body diagram of the beam, Equilibrium conditions: σ 𝐹𝑉 = 0, σ 𝐹𝐻 = 0, σ 𝑀 = 0, σ 𝐹𝑉 = 0, RAV + RD cos26.56-100sin45-150 = 0……..(i) KRISHNENDU SIVADAS 16
  • 17. σ 𝐹𝐻 = 0, RAH +100 cos45- RD sin26.56 = 0……..(ii) σ 𝑀 = 0, Taking moment about A, (100sin45 x 1) + (150 x3.5) – (RD cos26.56 x5) = 0 RD =133.19 kN Substituting value of RD in eqn (ii), we get; RAH +100 cos45- RD sin26.56 = 0……..(ii) RAH = -100 cos45+ RD sin26.56 = -11.15 kN KRISHNENDU SIVADAS 17
  • 18. Substituting value of RD in eqn (ii), we get; RAV + RD cos26.56-100sin45-150 = 0……..(i) RAV = - RD cos26.56+100sin45+150 = 101.57 kN Therefore resultant reaction at A = σ 𝑅𝐴𝐻 2 + σ 𝑅𝐴𝐻 2 = 11.152 + 101.572 = 102.18 kN Inclination = tan-1 (σ 𝑅𝐴𝑉/ σ 𝑅𝐴𝐻) = 83.73 with horizontal or 90-83.73 =6.26 with vertical Reaction at D= RD =133.19 kN KRISHNENDU SIVADAS 18
  • 20. QUESTION 5 : SOLUTION LADDER FRICTION Free body diagram: Given data: Length of ladder = 4 m Weight of ladder W=200 N 𝜇w= 0.25 𝜇f= 0.35 Inclination of ladder with floor = 60 Load at top = 1000 N To find: a) Horizontal force P to prevent slipping b)Minimum inclination to prevent slipping if P is not applied. 200 N 1000 N P Rf Rw KRISHNENDU SIVADAS 20 4 m 60 0.25Rw 0.35Rf
  • 21. Consider the equilibrium of ladder: σ 𝐹𝑥 = 0, P +0.35 Rf – Rw = 0…..(i) σ 𝐹𝑦 = 0, Rf +0.25Rw – 200 -1000 =0 Rf +0.25Rw =1200…..(ii) σ 𝑀 = 0, Taking moment about A, (200x2cos60) +(1000 x 4cos60) – (0.25Rw x 4cos60) -(Rw x 4sin 60) = 0 200 + 2000 – 0.5 Rw -3.464 Rw = 0 2200 = (0.5+3.464) Rw Rw = 554.98 N From (ii), Rf = 1200 -0.25 Rw = 1061.26 N From (i), P = Rw -0.35 Rf = 183.5 N KRISHNENDU SIVADAS 21 200 N 1000 N P Rf Rw 4 m 60 0.25Rw 0.35Rf
  • 22. Consider the equilibrium of ladder: σ 𝐹𝑥 = 0, 0.35 Rf – Rw = 0 Rw = 0.35 Rf …..(i) σ 𝐹𝑦 = 0, Rf +0.25Rw – 200 -1000 =0 Rf +0.25Rw =1200 Rf +0.25x0.35 Rf =1200 Rf=1103.45 N Rw = 0.35 x 1103.45 = 386.2 N σ 𝑀 = 0, Taking moment about A, (200x2cos𝜃) +(1000 x 4cos𝜃) – (0.25Rw x 4cos𝜃) -(Rw x 4sin 𝜃) = 0 cos𝜃(400 + 4000- 0.25x4x386.2) = 4x386.2sin 𝜃 𝜽=68.95 KRISHNENDU SIVADAS 22 200 N 1000 N Rf Rw 4 m 𝜃 0.25Rw 0.35Rf
  • 23. Question 6 KRISHNENDU SIVADAS 23 Krishnendu Sivadas
  • 25. QUESTION 7 : SOLUTION SIMPLE BEAM KRISHNENDU SIVADAS 25 RA RB 30x6=180 kN 45 kN 90 kN 1.5 m 2.5 m 2 m 3 m 3 m
  • 26. Consider the free body diagram of the beam AB Equilibrium conditions: σ 𝐹𝑉 = 0, σ 𝑀 = 0, σ 𝐹𝑉 = 0, RA+RB -180-45-90 =0 RA+RB =315 kN…..(i) KRISHNENDU SIVADAS 26
  • 27. σ 𝑀 = 0, Taking moment about A (180 x 3) + (45x8) +(90x10.5) – (RB x12) =0 RB =153.75 kN From eqn. (i) RA=315 - RB = 315-153.75 =161.25 kN KRISHNENDU SIVADAS 27
  • 29. QUESTION 8 : SOLUTION LADDER FRICTION Free body diagram: Given data: Length of ladder = 3 m Weight of ladder W=180 N 𝜇w= 0.25 𝜇f= 0.35 Inclination of ladder with floor = 60 Load at top = 900 N To find: Minimum horizontal force P to prevent slipping KRISHNENDU SIVADAS 29 180 N 900 N P Rf Rw 3 m 60 0.25Rw 0.35Rf
  • 30. Consider the equilibrium of ladder: σ 𝐹𝑥 = 0, P +0.35 Rf – Rw = 0…..(i) σ 𝐹𝑦 = 0, Rf +0.25Rw – 180 -900 =0 Rf +0.25Rw =1080…..(ii) σ 𝑀 = 0, Taking moment about A, (180x1.5cos60) +(900 x 3cos60) – (0.25Rw x 3cos60) -(Rw x 3sin 60) = 0 135 + 1350 – 0.375 Rw -2.59 Rw = 0 1485 = (0.375+2.59) Rw Rw = 500.84 N From (ii), Rf = 1080 -0.25 Rw = 954.79 N From (i), P = Rw -0.35 Rf = 166.6 N KRISHNENDU SIVADAS 30 180 N 900 N P Rf Rw 3 m 60 0.25Rw 0.35Rf
  • 31. Question 9 KRISHNENDU SIVADAS 31 Krishnendu Sivadas
  • 32. KRISHNENDU SIVADAS 32 QUESTION 9 : SOLUTION BEAM SUPPORTS
  • 34. Characteristics of dry friction  Co-efficient of friction (𝜇)  Angle of friction (𝜙)  Angle of repose (𝛼)  Cone of friction Co-efficient of friction Limiting friction is proportional to the normal reaction at the contact surface 𝐹max ∝ 𝑅𝑁 𝐹max = 𝜇𝑅𝑁 𝜇 = co-efficient of friction at contact surface Angle of friction: It is the angle between the normal reaction at the contact surface and the resultant of normal reaction and limiting friction. Denoted by 𝜙 KRISHNENDU SIVADAS 34 QUESTION 10 : SOLUTION COULOMB FRICTION 𝑅𝑁 = 𝐹max 𝜇 tan 𝜙 = 𝐹 = 𝜇𝑅𝑁 = 𝜇 𝑅𝑁 𝑅𝑁
  • 35. Angle of Repose: It is the maximum inclination of a plane on which a body can rest/repose without applying external force Cone of Friction If the resultant reaction is rotated about normal reaction force, it will form a cone which is known as cone of friction. KRISHNENDU SIVADAS 35
  • 37. QUESTION 11 : SOLUTION SIMPLE BEAM KRISHNENDU SIVADAS 37 30sin45 30cos45 20 x 2 =40kN 3 m 2 m 1 m 2 m 40kNm RAH RAV RB
  • 38. Consider the free body diagram of the beam; Equilibrium conditions: Equilibrium conditions: σ 𝐹𝑉 = 0, σ 𝐹𝐻 = 0, σ 𝑀 = 0, σ 𝐹𝑉 = 0, RAV + RB -30sin45-40 = 0……..(i) KRISHNENDU SIVADAS 38
  • 39. σ 𝐹𝐻 = 0, RAH – 30cos45 = 0 RAH = 30cos45 = 21.213 kN σ 𝑀 = 0, Taking moment about A, (40) + (30sin45 x5) –(RBx 6)+(40 x 7) = 0 RB =71.01 kN Substituting value of RD in eqn (i), we get; RAV + RB -30sin45-40 = 0……..(i) RAV = - RB +30sin45+40 = -9.79kN KRISHNENDU SIVADAS 39
  • 40. Therefore resultant reaction at A = σ 𝑅𝐴𝐻 2 + σ 𝑅𝐴𝐻 2 = 21.212 + 9.792 = 23.36 kN Inclination = tan-1 (σ 𝑅𝐴𝑉/ σ 𝑅𝐴𝐻) = 24.77 with horizontal or 90-24.77 =65.223 with vertical KRISHNENDU SIVADAS 40
  • 43. Consider the block to the right σ 𝐹𝑦 = 0, R1 cos 15 – R2 sin15 -100 =0……(i) σ 𝐹𝑥 = 0, R2 cos15- R1 sin 15 -2.5 = 0…..(ii) Solving we get, R1 =112.28 kN and R2 =32.67kN KRISHNENDU SIVADAS 43 R R R R 15 15 15 15 15 QUESTION 12 : SOLUTION WEDGE FRICTION
  • 44. Consider the block to the right σ 𝐹𝑥 = 0, R3 cos 30 = R2 cos15 R3 = (32.67 cos15)/cos 30 = 36.44 kN σ 𝐹𝑦 = 0, R2 sin15+ R3 sin 30 –P = 0 P= R2 sin15+ R3 sin 30 = 32.67 sin15+ 36.44 sin 30 =26.67 kN KRISHNENDU SIVADAS 44 R R R R 15 15 15 15 15 QUESTION 12 : SOLUTION WEDGE FRICTION
  • 45. THANK YOU KRISHNENDU SIVADAS 45 Krishnendu Sivadas