SlideShare a Scribd company logo
Models of neuronal populations


 Anton V. Chizhov

 Ioffe Physico-Technical Institute of RAS,
 St.-Petersburg




Definitions:

Population is a great number of similar neurons
receiving similar input

Population activity (=population firing rate) is the
number of spikes per unit time per total number of
neurons
Neurons




Neuronal populations




Large-scale simulations
  (NMM & FR-models
    for EEG & MRI)
Overview
• Experimental evidences of population firing rate coding

• Conductance-based neuron model

• Probability Density Approach (PDA)

• Conductance-Based Refractory Density approach (CBRD)

                - threshold neuron
                - t*-parameterization
                - Hazard-function for white noise
                - Hazard-function for colored noise

• Simulations of coupled populations

• Firing-Rate model

• Hierarchy of visual cortex models
• What can be modeled on population level?

• Which details are important?

• What kinds of population models do exist?

• Which one to choose?
Commonly information
                                                                is coded by firing rate




                                                      [R.M.Bruno, B.Sakmann // Science 312:1622-1627, 2006]
                                                      Population PSTH of thalamic neurons’
                                                      responses to a 2-Hz sinusoidal deflection of their
[E.Aksay,   R.Baker,    H.S.Seung,    D.W.Tank   
                               Activity of a
J.Neurophysiol. 84:1035-1049, 2000]
                                                      respective principal whiskers (n = 40 cells).
position    neuron    during    spontaneous
saccades and fixations in the dark. A:
horizontal eye position (top 2 traces),
extracellular recording (middle), and firing
rate (bottom) of an area I position neuron
during a scanning pattern of horizontal eye
movements.
Commonly populations are
localized in cortical space




                              Whole-cell (WC) recording of a layer
                              2/3 neuron of the C2 cortical barrel
                              column was performed simultaneously
                              with      measurement      of    VSD
                              fluorescence under conventional optics
                              in a urethane anesthetized mouse.
Pure population events
observed in experiments:

• Evoked responses




• Oscillations




•Traveling waves




                           Voltage-sensitive Dye Optical Imaging
                                       [W.Tsau, L.Guan, J.-Y.Wu, 1999]
• What can be modeled on population level?

• Which details are important?

• What kinds of population models do exist?

• Which one to choose?
Synaptic
                                                                conductance
                                                                kinetics
GABA-IPSC                 AMPA-EPSC
                                      AMPA-EPSC             GABA-IPSC
                                                                     Membrane
GABA-IPSP                 AMPA-EPSP                                  equations
                                      AMPA-EPSP             GABA-IPSP
               PSP
                                                    PSP
                                                          Threshold criterium
               Spike
                                                    Spike




                                                          Population model
            Firing rate
                                                  Firing rate

                                                        Eq. for spatial
                                                        connections
• ionic channel kinetics
• input signal is 2-d                              Model of a pyramidal neuron
      dV
 C         = − I Na − I DR − I A − I M − I H − I L − I AHP − s(t ) (V − V0 ) + u(t ) + η (t )
       dt
                                                             u(t ) = ∑S g S (t ) (VS − V0 ) + I electrode (t )
 I ... = g... x p (t ) y q (t ) (V (t ) − V... )             s(t ) = ∑S g S (t )
 dx x∞ (U ) − x
    =           ,
 dt   τ x (U )
 dy y∞ (U ) − y
    =
 dt   τ y (U )
Approximations for
I Na , I DR , I A , I M , I H
                         are
from [L.Graham, 1999];                                          EXPЕRIМЕNТ
IAHP is from [N.Kopell et al., 2000]

                                                                    MODEL
Color noise model
(Ornstein-Uhlenbeck
process):



     dη
 τ      = −η + 2τ σξ (t )
     dt
• synaptic channel kinetics
• neuron is spatially distributed                                                                                     A

                      2-comp. neuron with synaptic currents at somas
                                                                    15
             0                                                                             B
                                                     PSC, exp.
                                                     PSP, exp.                                                                                  Vd
           -50                                       PSP, model 2   10
                                                     PSP, model 1




                                                                         PSP, mV
PSC, pA




                                                                                                            Vd
          -100
                                                                                                                 Vs                              Is
                                                                    5
          -150


          -200                                                      0
                 0                  5     10
                                        t, ms
                                                        15                                 C
Two boundary problems:            ∂V                   ∂V                                               g=Id/(Vd-Vrev)                  Vd
A) current-clamp to register PSP: ∂X       = R Gs  V +    ;
                                      X =0             ∂T 
B) voltage-clamp to register PSC: V (T ,0) = 0;                                                              Vd
 ∂V
                                                          Vd                                                                                     Is
                     = R I S (T )                                                                                Vs
     ∂X     X =L
                                                V0                                                                                         [F.Pouille,
 ∂V ∂ V                2                                                                                                                   M.Scanziani
     −      +V = 0                                                                                                                         //Nature, 2004]
 ∂T ∂X 2
                                   X=0                                             X=L     Figure Transient activation of somatic and delayed
Solution:                                                                                  activation of dendritic inhibitory conductances in
   dV                                  I                            [A.V.Chizhov //
τm     = −(V − V rest ) + ρ (Vd − V ) − S                           Biophysics 2004]
                                                                                           experiment (solid lines) and in the model (small circles).
   dt                                  Gs                                                  A, Experimental configuration.
   dV                                          1                         ∂I d            B, Responses to alveus stimulation without (left) and with
τ m d = −(Vd − V rest ) − (2 + ρ )(Vd − V ) −                           τ m
                                                                               + 3I d 
                                                                                          (right) somatic V-clamp.
    dt                                        ρ Gs                          ∂t           C, In a different cell, responses to dynamic current injection
Parameters of the model:                                                                   in the dendrite; conductance time course (g) in green, 5-nS
τm= 33 ms, ρ = 3.5, Gs= 6 nS in B and 2.4 nS in C                                          peak amplitude, Vrev=-85 mV.
• spatial structure of connections




                                                                                            1 mm

                                                               Эксперимент. Зрительная кора. Карта
                                                               ориентационной избирательности
                                                               активности нейронов.




                                    Модель “Pinwheels” карты
                                    ориентационной
                                    избирательности входных
                                    сигналов.
Модель. Ответ зрительной коры на полосу горизонтальной,
а затем вертикальной ориентации.
• What can be modeled on population level?

• Which details are important?

• What kinds of population models do exist?

• Which one to choose?
Population models

•   Definition
    A population is a set of similar neurons
    receiving a common input and dispersed due
    to noise and intrinsic parameter distribution.




•   Common assumptions:
    –   Input – synaptic current (+conductance)
    –   Infinite number of neurons
    –   Output – population firing rate                  (4000)



                             1 nact (t; t + ∆t )
          ν (t ) = lim lim
                  ∆t →0 N →∞ ∆t        N
Direct Monte-Carlo simulation
of individual neurons:                                       Types of population models
  ∂V
C     = I − g L (V − VL ) + σ I ξ (t )
   ∂t
если V > V T , т V = Vreset и спайк
           1 nact ( t + ∆t )
ν (t ) =
           ∆t       N
Firing-rate:
ν (t ) = f ( I (t ))                      f    “f-I-curve”
            dν
or       τ         = −ν + f ( I (t ))
             dt
             dU
or         C       = I − g L (U − VL ),
              dt                                         I
           ν (t ) = ~(U (t ))
                    f
Assumption. Neurons are de-synchronized.
Probability Density Approach (PDA):
                                                                                          (4000)
RD модель :
∂ρ ∂ρ
   +          = − ρH
∂t ∂t *
  ∂U ∂U 
C        +       = I − g L (U − VL )
  ∂t ∂t * 
                   1
H (U ( t , t*)) = ( A(U ) + B(U , dU / dt ))
                 τm
                   ∞
v (t ) = ρ (t ,0) = ∫ ρ H dt *
                   +0
Idea of Probability Density Approach (PDA)
         Single neuron equation (e.g. H-H model)
                         r
                        dX
                           = F(X ) + S
                             r r     r
                        dt
              r
        where F is the common deterministic part,
              r
              S is the noisy term.
                                    X = (V , m, h, n )
                                    r
        For classical H-H:


                                            ρ ( X , t)
                                                r
         Eq. for neural density

              ∂ρ
              ∂t
                 =−
                     ∂
                    ∂X
                          r r
                                (   ∂
                      r ⋅ F(X ) ρ + r
                                   ∂X
                                           )             t ∂ρ 
                                                      ⋅ W r 
                                                         ∂X             [B.Knight 1972]
                                                              
                          t                                   r
         where the matrix W represents the influence of noise S

         Problem! The equation is multi-dimensional.
         Particular cases are                                    [A.Omurtag et al. 2000]
                      X ≡V          - membrane potential         [D.Nykamp, D.Tranchina 2000]
                                                                 [N.Brunel, V.Hakim 1999], …

                      X ≡ t*        - time passed since the last spike [J.Eggert, JL.Hemmen 2001]
                                                                        [А.Чижов, А.Турбин 2003]

                      X ≡τ          - time till the next spike      [A.Turbin 2003]
ρ
                     Simplest 1-d PDAs
•     Kolmogorov-Fokker-Planck eq. for ρ(t,V)
                                                                                                Hz
      Leaky Integrate-and-Fire (LIF) neuron:

  dV
τm    = −V + RI (t ) + η (t ),
   dt
if V > V T then V = Vreset                                                                      0    Vreset   VT

< η (t ) >= 0, < η (t ) η (t ' ) >= τ m σ 2 δ (t − t ' )                                        ν

   ∂ρ   ∂                  σ 2 ∂2ρ
τm    =   [(V − RI ) ρ ] +         + ν ⋅ δ (V − Vreset )
   ∂t ∂V                    2 ∂V 2                       Hz
              σ 2 ∂ρ                           Problem! Voltage can not
ν (t ) =                                       uniquely characterize
                2 ∂V          V =V T           neuron’s state.                                  0             t
•     Refractory density ρ(t,t*) for SRM - neurons
 ∂ρ ∂ρ                                                                  ∞
   + ∗ = −ρ H                               ρ (t ,0) ≡ ν (t ) =     ∫       ρ (t , t * ) dt *
 ∂t ∂t                                                                0

H = H (U (t , t*), V T )
      Spike Response Model (SRM):

 U (t , t * ) = η (t * ) + ∫ k (t * , t ') I (t ' ) dt '
                              t*
                                                           [W.Gerstner, W.Kistler, 2002]
                             0
1-D Refractory Density
        Approach for conductance-
         based neurons (CBRD)
[A.V.Chizhov, L.J.Graham // Phys. Rev. E 2007, 2008]



 1. Threshold single-neuron model

 2. Refractory density approach (t* -
    parameterization)

 3. Hazard-function                                        t* is the time since the last spike;
                       H ≈ A+ B                           ∂ρ ∂ρ
                                                            +     = −ρ H
                                                          ∂t ∂t ∗
                                                         ∂U ∂U 
                                                       C     + *  = − I DR − I A − I M − I H − I L − I AHP − I i
 H(U) = ‘frozen stationary’ + ‘self-similar’             ∂t   ∂t 
 solutions of Kolmogorov-Fokker-Planck eq.                ∂x ∂x     x (U ) − x
                                                             + * = ∞             ,                ∞
                                                          ∂t ∂t       τ x (U )
 for I&F neuron with white or color                                                      v (t ) = ρ H dt *
                                                                                                    ∫
 noise-current                                            ∂y ∂y     y ∞ (U ) − y
                                                             +    =                               +0
                                                          ∂t ∂t *      τ y (U )
1. Threshold neuron model
  Full single neuron model                              dV
                                                    C      = − I Na − I DR − I A − I M − I H − I L − I AHP − I i
                                                        dt
  Approximations for I Na , I DR , I A , I M , I H are taken from [L.Graham, 1999]; IAHP is from [N.Kopell et al., 2000]

  Threshold model                                       dU
                                                    C       = − I Na − I DR − I A − I M − I H − I L − I AHP − I i
                                                        dt
                                                        dx x∞ (U ) − x            dy y∞ (U ) − y
                                                           =               ,          =
                                                        dt     τ x (U )           dt      τ y (U )
                                                        if   U > V T then U = U reset = −40 mV
                                                                 for   I DR : x = x reset = 0.262,     y = y reset = 0.473;
                                                                 for   IA :   x = x reset = 0.743,    y = y reset = 0.691;
                                                                 for   IH :    y = y reset = 0.002;
                                                                 for   IM :   x = x + ∆ x reset , ∆ x reset = 0.18 (1 − x );
                                                                 for   I AHP : w = w + ∆ w reset , ∆ w reset = 0.018 (1 − w).
Models of neuronal populations
2. Refractory density approach (t* - parameterization)
 t* is the time since the last spike;
 ρ = ρ (t , t * ), U = U (t , t * ), x = x (t , t * ),                              y = y (t , t * )

  ∂ρ ∂ρ                                                           d • ∂ • dt * ∂ • ∂ • ∂ •
    + ∗ = −ρ H                                                       =   +        =   +
                                                                       ∂t dt ∂t * ∂t ∂t *
  ∂t ∂t
                                                                  dt

   ∂U ∂U 
 C    + *  = − I DR − I A − I M − I H − I L − I AHP − I i
   ∂t ∂t 
 ∂x ∂x x∞ (U ) − x
    + *=             ,
 ∂t ∂t     τ x (U )        I ... = g ... x y (U − V... )
                            for I DR , I A , I M , I H , I AHP
 ∂y ∂y y∞ (U ) − y
    +    =
 ∂t ∂t *   τ y (U )
 H (U ) = 1 τ m ( A(U ) + B (U , dU dt ) )                   -- Hazard function
 τ m = C /( g DR (t , t * ) + g A (t , t * ) + g M (t , t * ) + g H (t, t * ) + g L + g AHP (t , t * ))
                                                                                                                            Boundary conditions:
  A(U ) = exp(6.1 ⋅ 10−3 − 1.12 T − 0.257 T 2 − 0.072 T 3 − 0.0117 T 4 ).                                                                ∞

 B (U ) = -τ m 2
                        dT ~
                           F (T ),            T=
                                                     U −U
                                                        T
                                                                 ,       ~
                                                                         F (T ) =
                                                                                        2 exp( −T )       2
                                                                                                                            ρ (t ,0) = ∫ ρ F dt ∗ ≡ ν (t )              -- firing rate
                        dt                               σ                              π 1 + erf (T )                                   +0

                                                                                                                            U (t ,0) = U reset
                                                                                                                            x (t ,0) = x reset ,   y (t ,0) = y reset      for I DR , I A , I H ;
                                                                                                              Application   x (t ,0) = x (t , t *T ) + ∆ x reset             for I M ;
                                                                                                                            w(t ,0) = w(t , t *T ) + ∆ w reset               for I AHP ;
                                                                                                                            t *T : U (t , t *T ) = U T ( dU (t , t *T ) dt ).
3. Hazard-function in the case of white noise-current
             (First-time passage problem)
                                                     A – solution in case of steady stimulation (self-similar);
Approximation:                       H ≈ A+ B
                                                     B – solution in case of abrupt excitation

                                      Single LIF neuron - Langevin equation
       dV                                                             < η (t ) > = 0
    τm    = −V + U (t ) + η (t )                                      < η (t )η (t ' ) >= σ 2 τ m δ (t − t ' )
       dt
    if     V < UT          then spike

                                                 Fokker-Planck equation
        ~ ∂
       ∂ρ                                       ~
                                            σ 2 ∂ρ 
    τm                                   ~−
          +               (U (t ) − V ) ρ 2 ∂V  = 0                  ρ (t,U T ) = 0
                                                                       ~
       ∂t ∂V                                                         ρ (t ,−∞) = 0
                                                                       ~
               σ 2 ∂ρ~
                                                                                              exp (− (V − U ) 2 σ 2 )
    H (t ) ≡ −                                                         ~                1
                                                                       ρ (0,V ) =
               2τ m ∂V V =U      T                                                     πσ

  u (t ) = (V (t ) − U (t )) σ
         ˆ
  T (t ) = (U T − U (t )) σ
         ˆ
                        ~              ~                                 ρ (t , T (t )) = 0
                                                                         ~
                     ∂ρ ∂      ~ − 1 ∂ρ  = 0
                 τm       +   −uρ                                        ρ (t ,−∞) = 0
                                                                         ~
                     ∂t ∂u        2 ∂u 
                                         
                                                                                              exp(− u 2 )
                                                                         ~              1
                                                                         ρ (0, u ) =
           ~                 1 ∂ρ ~                                                     π
  H (t ) ≡ H (t ) / τ m = −
                            2τ m ∂u u =T ( t )
Self-similar solution (T=const)
Equivalent formulation:
~
ρ ( t , u ) = ρ (t ) p (t , u )
                                                             T (t )
                                     where      ρ (t ) = ∫            ~
                                                                      ρ (t , u ) du
                                                            −∞


ρ (t ) − amplitude ,              p(t , u ) − shape
                                                                                                       p (t , T ) = 0
   ∂p ∂            1 ∂p  ~                                                  ~          1 ∂p
τm    + − u p −           = H (t ) ⋅ p                        where          H (t ) = −               p(t ,−∞) = 0
    ∂t ∂u          2 ∂u 
                                                                                        2 ∂u u = T                 exp(− u 2 )
                                                                                                                  1
                                                                                                       p(0, u ) =
   dρ       ~                                                                                                     π
τm    = − ρ H (t ),
   dt
                                                                                            ~
Assumption.               U(t)=const (or T(t)=const). Notation: A ≡ H
                                               ~
                          Then the shape of ρ , which is p(t , u) , is invariable.
            ∂        1 ∂p                                                                1 ∂p        p (t , T ) = 0
               −u p−       = A(t ) ⋅ p                        where          A(t ) = −
           ∂u        2 ∂u                                                                2 ∂u u =T   p(t ,−∞) = 0




                                                           dρ
                                                      τm      = − ρ A(T )
                                                           dt
Frozen Gaussian distribution (dT/dt = ∞)

Assumption.    T(t) decreases fast.
               The initial Gaussian distribution remains almost unchanged except
               cutting at u=T.
               The hazard function in this case is H=B(T,dT/dt).


                     dρ
                τm      = −ρ B
                                                            T (t )
                                       where   ρ (t ) = ∫            ~
                                                                     ρ (t , u ) du
                     dt                                 −∞


                       τ m dρ   τ dρ  dT 
or              B=−           =− m
                        ρ dt     ρ dT  dt  +
                                       
                                                                                      U(t)    UT

                                                            ~(t , u ) =  π exp(− u ), if
                                                                         1
For the simplicity, we consider the case of                                        2
                                                                                             u ( t ) < T (t )
arbitrary but monotonically increasing T(t) and             ρ
the Gaussian distribution                                               
                                                                        0, otherwise
                                                                        

       τ m dρ  dT             dT  ~
 B=−                  = −τ m 2   F (T )
        ρ dT  dt  +
                              dt  +

       ~             2 exp( −T 2 )
 where F (T ) =
                     π 1 + erf(T )
         [x]+ for x>0 and zero otherwise
Approximation of hazard function in arbitrary case
      ~
     ∂ρ ∂            ~                            ρ (t , T (t )) = 0
                                                   ~                           где T (t ) = (U T − U (t )) σ
  τm    +      ~ − 1 ∂ρ  = 0
             −uρ
                                                                                          ˆ
     ∂t ∂u        2 ∂u                           ρ (t ,−∞) = 0
                                                   ~
                       
                                                                        exp(− u 2 )
                                                   ~             1
       1 ∂ρ ~                                      ρ (0, u ) =
   H=
    ˆ                                                             π
      2τ m ∂u u =T ( t )
                                             A – solution in case of steady stimulation (self-similar);
  Approximation:              H ≈ A+ B
                                             B – solution in case of abrupt excitation
         Weak stimulus                                                                     Strong stimulus




Approximation of H by A is green, by B is blue, by A+B is red, exact solution is black.                    ν (t ) = ∂ρ ∂t
3. Hazard-function in the case of colored noise
                            dU                                                                           Langevin equation
Without noise: C               = − I tot (U , t )                  U < UT
                            dt
                            dV                                                                              du                         ~
With noise:             C      = − I tot (V , t ) + η (t )         V < UT                    τ m (U , t )      = −u + q(t ),       u < T (t )
                            dt                                                                              dt
                            dη                                                                 dq
                        τ      = −η + 2τ σ ξ (t )                               or           τ    = − q + 2τ ξ (t )
                            dt                                                                 dt
                             < ξ (t ) > = 0                                                  где u = gtot (U , t )(V − U ) / σ , q = η (t ) / σ ,
                             < ξ (t ) ξ (t ' ) >= τ δ (t − t ' )                                   ~
                                                                                                  T (t ) = g (U , t )(U T − U ) / σ
                                                                                                                  tot


                                                                                                         Fokker-Planck eq.
 ∂ρ ∂  − u + q ~  ∂  q ~  1 ∂ ρ
  ~                               ~                                 2
                                                                                     ρ (t, u = ∞, q) = ρ (t , u, q = −∞) =
                                                                                     ~                 ~
    +   τ      ρ  + − ρ  −      =0
 ∂t ∂u  m         ∂q  τ  τ ∂q
                                  2                                                     ~                   ~         ~      ~
                                                                                     = ρ (t, u, q = +∞) = ρ (t , u = T , q ≤ T ) = 0

 ~              1   ∞
                            ~ ~ ~                                                    ρ (t = 0, u, q) =
                                                                                     ~                    1+ k
                                                                                                         2π k
                                                                                                                  1+ k
                                                                                                               exp          [                     
                                                                                                                        − (1 + k )u 2 − q 2 + 2 qu  ]
 H (U (t )) ≡
                ρT
                 ~
                    ∫ ( q − T ) ρ (t, T , q) dq,                                     k (U , t ) ≡ τ m (U , t )/τ
                                                                                                                   2k                             

                                                                   or                                                       ~
                                                                                                                            T ∞
                                                                   ∞
ρ ( t , u, q ) = ρ ( t ) p ( t , u, q )
                                                                            T (t )
~                                       where ∫−∞ dq ∫− ∞ p (t , u, q ) du = 1                                   ρ (t ) =   ∫ ∫ ρ (t, u, q) dq du.
                                                                                                                                ~
ρ (t ) − amplitude , p(t , u ) − shape                                                                                      −∞−∞

   dρ       ~                                                                                                           ∞
τm    = − ρ H (t ),                                                                    where         ~                    ~          ~
                                                                                                     H (U (t )) ≡ ∫ ( q − T ) p (t , T , q ) dq
   dt                                                                                                                   ~
                                                                                                                        T

   ∂p ∂              ∂    ∂2 p  ~                                                              p(t , u = ∞, q) = p(t , u, q = −∞) =
τm   = (u − q) p + k  qp + 2  + H (t ) p
   ∂t ∂u              ∂q  ∂q                                                                                                   ~          ~
                                                                                                 = p(t , u, q = +∞) = p(t , u = T (t ), q ≤ T (t )) = 0
Self-similar solution (T=const)
Assumption.         U(t) (or T(t)) is constant or slow.
                                          ~
                    Then the shape of ρ , which is p(t , u, q), is invariable.

    ∂                ∂    ∂2 p                                         p(t, u = ∞, q) = p(t, u, q = −∞) =
       (u − q) p + k  qp + 2  + A p = 0                                                              ~       ~
    ∂u                ∂q  ∂q                                           = p(t , u, q = +∞) = p(t, u = T , q ≤ T ) = 0
                    ∞
                           ~          ~
               A = ∫ ( q − T ) p (t , T , q ) dq
       where                                                               ~ 1+ k
                                                                        T =T
                    ~
                    T                                                         2




q



               u




                                                   A ∞ (T) = exp(0.0061 - 1.12 T - 0.257 T 2 - 0.072 T 3 - 0.0117 T 4 )
Hazard function in arbitrary case                        H ≈ A+ B
K=1:   Weak stimulus                       Strong stimulus




K=8:   Weak stimulus                        Strong stimulus




                                                              Approximation of H
                                                              by A is green,
                                                              by B is blue,
                                                              by A+B is red,
                                                              exact solution is black.
                                                                  ν (t ) = ∂ρ ∂t
CBRD                                Single cell level

t* is the time since the last spike
∂ρ ∂ρ
  + ∗ = −ρ H
∂t ∂t
  ∂U ∂U 
C    +      = − I DR − I A − I M − I H − I L − I AHP − I i
   ∂t ∂t * 
∂x ∂x x∞ (U ) − x                                                      Populations
   + *=               ,     I ... = g ... x y (U − V... )
∂t ∂t       τ x (U )
                             for I DR , I A , I M , I H , I AHP
∂y ∂y y∞ (U ) − y
   + *=
∂t ∂t       τ y (U )
           ∞
ρ (t ,0) = ∫ ρ F dt ∗ ≡ ν (t )
           +0




                                                                  Large-scale simulations
                                                                    (NMM & FR-models
                                                                      for EEG & MRI)
Simulations by CBRD-model
Simulations. Current-step stimulation.
Comparison with Monte-Carlo.
                                         Non-adaptive neurons




                                                                (4000)
Simulations. Current-step
stimulation. Color noise.        LIF
Adaptive neurons.




                            Adaptive conductance-based neuron
Simulations. Oscillatory input.




                                  with IM
Simulations. Constant current stimulation.
Comparison with analytical solution.




                                             [Johannesma 1968]
Simulations. Constant current stimulation.
Color noise.
Comparison with analytical solution.
                                                      −1                (*)
     a         u ' τ m H (u )                  
ν = τ m ∫0 exp − ∫0          du  /(a − u ′) du′
                     a−u                       
a = I a /g L (U T − VL )




                                            dots – Monte-Carlo
                                            solid – eq.(*)
                                            dash – adiabatic approach
                                            [Moreno-Bote, Parga 2004]




                              Firing rate depends on the noise
                              time constant.
Interconnected populations

                                                                Synaptic current
                                                                kinetics

GABA-IPSC                 AMPA-EPSC
                                      AMPA-EPSC             GABA-IPSC
                                                                      Membrane
GABA-IPSP                 AMPA-EPSP                                   equations
                                      AMPA-EPSP             GABA-IPSP
               PSP
                                                    PSP
                                                          Threshold criterium
               Spike
                                                    Spike




                                                          Population model
            Firing rate
                                                  Firing rate
Pyramidal neurons
Approximations of synaptic currents                                            200                   AMPA-PSC                                     40                      NMDA-PSC
                                                                                                     (with PTX, APV)                                                      (with PTX, CNQX)
                                                                               150                                                                20
                                                                                                                                                                Vh=-40 mV
                                                                                         Vh=-80 mV                   experiment
                                                                                                                     model                         0




                                                                     PSC, pA
                                                                               100




                                                                                                                                       PSC, pA
                                                                                                                                                                                      experiment
                                                                                                                                                                                      model
    Excitatory synaptic current:                                                                                                                 -20
                                                                                50
              iE = i AMPA + i NMDA                                                     Vh=-40 mV
                                                                                                                                                 -40

              i AMPA = g AMPA m AMPA (t ) (V − V AMPA )                          0
                                                                                           Vh=+20 mV                                             -60
                                                                                                                                                                Vh=+20 mV


              iNMDA = g NMDAm NMDA (t ) f NMDA (V ) (V − VNMDA )               -50
                                                                                                                                                 -80
                                                                                  0     10         20      30       40         50                   0      25            50           75           100
                                                                                                     t, ms                                                            t, ms
     gj                          - maximum specific conductance,                0
                                                                                                                                                   0
     mj                          - non-dimensional conductance                                     GABA-PSC
                                                                                                   (with CNQX, D-AP5)
     Vj                          - reversal potential                                                                                        -100
      f NMDA (V ) = 1 /(1 + Mg / 3.57 exp( −0.062V ))                          -50       Vh=-64 mV                                                                  fast GABA-A -IPSC




                                                                     PSC, pA
                                                                                                                                                                    (with CNQX, D,L-APV)




                                                                                                                                       PSC, pA
                                                                                                                                             -200
                                                                                                                                                        Vh=-60 mV
    Inhibitory synaptic current:
                                                                                                                                             -300
               i I = g GABAmGABA (t ) (V − VGABA )                         -100
                                                                                                                  experiment
                                                                                                                  model                                                              experiment
    Non-dimensional synaptic conductances:                                                                                                   -400                                    model


       d 2m j                 dm j
    ττ        + (τ rj + τ d )      + m j = S (ν j ),
      r   d                                                                      0       10          20      30       40          50         -500
                                                                                                                                                 0       10         20          30         40       50
      j   j               j                                                                             t, ms                                                          t, ms
        dt 2                   dt
                                                                                                                                                                Interneurons
                                            j = AMPA , GABA , NMDA             500                   AMPA-PSC
                                                                                                     (with PTX, APV)                             150                      NMDA-PSC
    where S ( ν j ) = 2 ( 1 + exp( −2τ ν j ) ) − 1      τ = 1 µs               400
                                                                                                                                                                          (with PTX, CNQX)
   τ r , τ d - rise and decay time constants
     j     j                                                                                                          experiment
                                                                                                                                                 100
                                                                                                                                                                    Vh=-40 mV
                                                                               300      Vh=-80 mV
   ν j (t ) - firing rate on j-type axonal terminals                                                                  model
                                                                     PSC, pA




                                                                                                                                                  50




                                                                                                                                       PSC, pA
                                                                               200                                                                                                    experiment
                                                                                                                                                   0                                  model

                                                                               100                                                               -50
                                                                                      Vh=-40 mV
                                                                                 0                                                           -100                   Vh=+20 mV
                                                                                              Vh=+20 mV
                                                                          -100                                                               -150
                                                                              0          10          20      30      40        50                  0       25            50           75           100
                                                                                                      t, ms                                                           t, ms
Simulations. Interictal activity. Recurrent network of pyramidal cells,
including all-to-all connectivity by excitatory synapses.

      I i (t ) = I ext (t ) + I S (t ),                   Model
                                                                   with IM and IAHP
     I S (t ) = g S (t ) (U (t ) − VS ),
             2
       2 d g S (t )           dg (t )
     τS              + 2τ S S + g S (t ) = g S τ ρ (t ,0)
              dt 2               dt
           Experiment                    I = 150 pA
                                           ext

                                          τ S = 5.4 ms,
                                          τ = 1 ms,
                                          VS = 5 mV,
                                          g S = 1 mS/cm 2
                                          σ V = 2 mV ( at rest )




[S.Karnup, A.Stelzer 2001]
Simulations. Gamma rhythm. Recurrent network of interneurons,
including all-to-all connectivity by inhibitory synapses
                                                                                                     τ S = 3ms,
                                             d 2 g S (t )       dg (t )
    I i (t ) = I ext (t ) + I S (t ),     τ2
                                           S              + 2τ S S + g S (t ) = g S τ ν (t − τ d )   τ d = 1ms,
                                                dt 2              dt                                 τ = 1ms,
    I S (t ) = g S (t ) (U (t ) − VS ),    for density approach ν (t ) = ρ (t , t * = 0)             VS = -80mV,
                                                                                                     g S = 7mS/cm 2
Model                                          Experiments                                                  Oscillations
Control (“Kainate”)            +“Bicuculline”
                                                                                                          All the simulations were done with a
                                                                                                          single set of parameters. All the
                                                                                                          parameters except synaptic maximum
                                                                                                          conductances have been obtained by
                                                                                                          fitting to experimental registration of
                                                                                                          elementary events such as patch-
                                                                                                          electrode current-induced traces,
              Spikes in single neurons                                                                    spike trains and monosynaptic
                                                                                                          responses .


                    Conductances                                                                          The model reproduces the following
                                                                                                          characteristics of gamma-oscillations :
                                                                                                            frequency of population spikes
                                                                                                            a single pyramidal cell does not fire
 Power Spectrum of Extracellular Potentials                                                               every cycle
                                                                                                            every interneuron fires every cycle
                                                                                          bic
                                                                                                con          amplitude of EPSC is less than that
                                                                                                          of IPSC
                                                                                                             blockage of GABA-A        receptors
                                                   [Khazipov, Holmes, 2003]                               reduces the frequency
                                                   Kainate-induced oscillations [A.Fisahn et al., 1998]
                                                   in CA3.                      Cholinergically induced
                                                                                oscillations in CA3
                                                                                                             peak of pyramidal cell’s firing
                                                                                                          frequency   corresponds  to    the
                                                                                                          descending phase of EPSC and the
                                                                                                          ascending phase of IPSC
                                                                                                              firing of interneurons follows the
                                                                                                          firing of pyramidal cells
                                                                                                            gamma-oscillations are
                                                   [N.Hajos, J.Palhalmi, E.O.Mann, B.Nemeth,              homogeneous in space along the
 Spike timing of pyramidal and inhibitory cells.   O.Paulsen, and T.F.Freund. J.Neuroscience,             cortical surface (data not shown)
                                                   24(41):9127–9137, 2004]
Spatial connections


ϕij (t , x, y ) = ∫ ∫ ν i (t − d ( x, y , X , Y ) / c, X , Y ) W ( x, y , X , Y ) dX dY ,
                                                  d ( x, y , X , Y ) = ( x − X ) 2 + ( y − Y ) 2                    Experiment:

φ ( t , x , y ) - firing rate on presynaptic terminals;
ν ( t , x , y ) - firing rate on somas.
Assumption: distances from soma to synapses have exponentially decreasing
distribution p(x) [B.Hellwig 2000].


                             d ( x , y , X ,Y )
                         −
W ( x, y , X , Y ) = e              λ




∂ 2φ      ∂φ          2 ∂ φ
                          2
                             ∂ 2φ   2   ∂
     + 2γ    + γ φ − c  2 + 2  =  γ + γ  ν (t , x, y )
                2
                        ∂x
∂t 2      ∂t                ∂y  
                                         ∂t 
                                                                                 [V.Jirsa, G.Haken 1996]
where γ = c/λ; c – the average velocity of spike                                 [P.Nunez 1995]
propagation along the cortex surface by axons;                                   [J.Wright, P.Robinson 1995]

λ – characteristic axon length.                                                                                [D.Contreras, R.Llinas 2001]
Model                                          Experiments                                              Evoked responses
                                           A                                    B


                                                                                                                 The model reproduces postsynaptic currents
                                                                                                                 and postsynaptic potentials registered on
                                                                                                                 somas of pyramidal cells, namely:
                                                                                                                   monosynaptic EPSCs and EPSPs
                                           [S.Karnup, A.Stelzer
                                           1999] Effects of GABA-A                                                 disynaptic IPSC/Ps followed be EPSC/Ps
                                           receptor        blockade       on
                                           orthodromic potentials in CA1                                           polysynaptic EPSC/Ps
                                           pyramidal cells. Superimposed
                                                                                                             C
                                           responses in a pyramidal cell
                                                                                                                   reduction of delays in polysynaptic EPSCs
                                           soma      before      and    after                                       decay of excitation after II component of
                                           application of picrotoxin (PTX,
                                           100 muM). Control and PTX                                             poly-EPSCs in presence of GABA-A receptor
                                           recordings were obtained at V                                         block.
                                           rest (-64 mV; 150 muA
                                           stimulation intensities; 1 mm                                         The model predicts that the evoked responses
                                           distance     between      stratum        [B.Mlinar,                   are essentially non-homogeneous in space:
                                           radiatum stimulation site and            A.M.Pugliese,
                                           perpendicular      line   through
                                           stratum pyramidale recording             R.Corradetti
                                           site). The recordings were               2001] Components        of
                                           carried out in ‘minislices’ in           complex         synaptic
                                           which the CA3 region was cut             responses evoked in CA1
                                           off by dissection.                       pyramidal neurones in the
                                                                                    presence     of  GABAA
                                                                                    receptor block.




      PSPs and PSCs evoked by
extracellular stimulation and registered
 at 3.5cm away, w/ and w/o kainate.
                                           [V.Crepel, R.Khazipov,
                                           Y.Ben-Ari, 1997]
                                           In normal concentrations of Mg and in the
                                           absence of CNQX, block of GABA-A                                      Spatial profiles of membrane potential and
                                           receptors induced a late synaptic response.                                     firing rate in pyramids.
Model                                                           Experiments                                                                      Waves
 In the case of reduced GABA-reversal
 potential VGABA= -50mV and stimulation                                                                                                             Waves with unchanging chape and
 by extracellular electrode we obtain a                                                                                                             velocity are observed in cortical tissue
 traveling wave of stable amplitude and                                                                                                             in    disinhibiting   or    overexciting
 velocity 0.15 m/s. The velocity is much                                                                                                            conditions. The waves are produced
 less than the axon propagation velocity                                                                                                            by complex interaction of pyramidal
 (1m/s) and is A  determined mostly by                                                                                                              cells and interneurons. That is
 synaptic interactions.                                                                                                                             confirmed by much lower speed of the
                                                                                                                                                    wave propagation comparing with the
     140                             voltage, pyramids
                                                                                                                                                    axon propagation velocity which is the
                                     voltage, interneurons
     120                             firing rate, pyramids
                                     firing rate, interneurons
                                                                                                                                                    coefficient in the wave-like equation.
     100
      80
                                                                  -40                                                                               Analysis of wave solutions and more



                                                                        mV
Hz




      60                  B                                                                                                                         detailed comparison with experiments
      40
      20                                                          -60
                                                                                                                                                    are expected in future.
       0
           0             25     50           75              100
                                ms
                                                                             [Leinekugel et al. 1998]. Spontaneous GDPs
                                                                             propagate synchronously in both hippocampi from septal to
     120                             voltage, pyramids
                                                                             temporal poles. Multiple extracellular field recordings from the CA3
     100
                                     voltage, interneurons
                                     firing rate, pyramids                   region of the intact bilateral septohippocampal complex.
                                     firing rate, interneurons
               0.15m/s                                            -40        Simultaneous extracellular field recordings at the four recording
      80
                                                                             sites indicated in the scheme. Corresponding electrophysiological
                                                                        mV
Hz




      60
                                                                             traces (1–4) showing propagation of a GDP at a large time scale.
      40
                                                                  -60
      20

       0
                         10     20           30                  40
                                mm


     Fig.5. Wave propagating from the site
     of extracellular stimulation at right
     border of the “slice”.
     A, Evoked responses of pyramidal
     cells and interneurons at the site of
     stimulation.
     B, Profiles of mean voltage and firing
     rate    in    pyramidal   cells   and
     interneurons at the time 200 ms after
     the stimulus.                                                                 [D.Golomb,            Y.Amitai,          1997]
                                                                                   Propagation of discharges        in   disinhibited
                                                                                   neocortical slices.
From CBRD to Firing-Rate model
Macro- and meso-scale
macro-scale                     meso-scale                         micro-scale


                                             external granular
                                             layer

                                             external pyramidal
                                             layer


                                             internal granular
                                             layer

                                             internal pyramidal
                                             layer




                AP generation zone           synapses




                                                                  [S.Kiebel]
                                                                  [C.Friston]
Not-adaptive neurons                                          Firing-rate model                                                 Adaptive neurons
       dU
   C       = −( g L + g S )(U − VL ) − I                             C
                                                                         dU
                                                                             = −( g L + g S )(U − VL ) − g M n 2 (t )(U − VM ) − g AHP w(t )(U − V AHP ) + I
        dt                                                                dt
   Hazard-function:                                                  Hazard-function:
  ν (t ) = A (U ) + B(U , dU dt )           -- firing rate           ν (t ) = A (U ) + B(U , dU dt )          -- firing rate
  τ m = C / gL                                                       τ m = C / gL
                                             −1                                                                −1
                                                                                                             
                      T                                                                  T
                   (V −U ) / σ                                                       (V −U ) / σ

   A(U ) = τ m π         ∫ e (1 + erf (u))du  ;                    A(U ) = τ m π         ∫ e (1 + erf (u))du  ;
                               u2                                                                u2
                                                    (steady)                                                          (steady)
                                                                                                             
                 (V reset −U ) / σ                                               (V reset −U ) / σ           
                  1  dU          (V T − U )2                                    1  dU          (V T − U )2 
   B(U ) = -τ m                exp −           ; ( sudden)         B(U ) = -τ m                exp −           ; ( sudden)
                  π σ  dt  +
                                
                                       σ2      
                                                                                   π σ  dt  +
                                                                                                  
                                                                                                         σ2      
                                                                                                                  
                                                                                  d 2w                   dw                       χ (1 − w)
                                                                     τ 1 τ AHP
                                                                           0
                                                                                        + (τ 1 + τ AHP )
                                                                                                    0
                                                                                                            − w∞ + w =                            v(t )
                                                                                                                          K (1 / τ 1 ,1 / τ AHP )
                                                                       AHP            2      AHP                                            0
                                                                                   dt                    dt                         AHP

                                                                              d 2n                dn               ξ (1 − n)
                                                                     τ1 τM
                                                                         0
                                                                                    + (τ 1 + τ M ) − n∞ + n =
                                                                                               0
                                                                                                                                     v(t )
                                                                                                               K (1 / τ 1 ,1 / τ M )
                                                                      M          2       M                                       0
                                                                              dt                  dt                    M




                          Oscillating input                                                  Oscillating input




[Chizhov, Rodrigues, Terry // Phys.Lett.A, 2007 ]                             [Чижов, Бучин // Нейроинформатика-2009 ]
Синаптические токи и проводимости:
                                                                                                                             Simple model of interacting
iE (t ) = g E (t ) (V (t ) − VE )                                   i I (t ) = g I (t ) (V (t ) − VI )
         d 2 gE                 dg                                    d 2gI                 dg                               cortical interneurons,
τ 1Eτ 2E        + (τ 1E + τ 2E ) E + g E = τ g E ν ext (t )        ττ I I
                                                                            + (τ 1I + τ 2I ) I + g I = τ g I ν (t )
          dt 2
                                 dt
                                                                     1 2
                                                                       dt 2
                                                                                             dt                              evoked by thalamus
 Мембранный потенциал:

    dU
C       = − g L (U − VL ) + i E (t ) + i I (t ),
     dt                                                                     Experiment
 Популяционная частота спайков:

ν (t ) = A (U ) + B (U ),
                                                     -1
               (VT −U ) / σ V 2
                                                
A(U ) = τ m π           ∫ e (1 + erf (u ) ) du  ;
                                    u2
                                               
              (Vreset −U ) / σ V 2             
              1      dU          (V T − U ) 2 
B(U ) =                      × exp −
                                                
                                                 
             2π σ V  dt  +
                                    2σ V2
                                                 
                                                                             Model


                      gE
      νext
                               FS
                           ν        gI

    Рис. 12. Схема активности
    популяции FS (fast spiking)
    нейронов,         возбуждаемых
    внешним    стимулом       νext(t),
                                                          Рис. 13. Постсинаптический
    приходящим     из     таламуса.
                                                          (моносинаптический) ток в FS-
    Обозначения:        ν(t)        –
                                                          нейроне          при       слабой
    популяционная частота спайков
                                                          таламической          стимуляции
    FS нейронов, gE(t), gI(t) –
                                                          током 30 µA и потенциале                       Рис. 14. Ответы FS-нейронов на таламическую стимуляцию
    проводимости возбуждающих и
                                                          фиксации        -88     mV       в             током 120 µA в эксперименте (слева) (adapted by permission from
    тормозящих синапсов.
                                                          эксперименте (вверху) (adapted                 Macmillan Publishers Ltd: (Cruikshank et al., 2007), © 2007) и в
                                                          by permission from Macmillan                   модели (справа). A, B - постсинаптические токи при
                                                          Publishers Ltd: (Cruikshank et al.,            потенциале фиксации -88, -62, и -35 mV; C, D - синаптические
                                                          2007), copyright 2007) и в модели              проводимости; E, F – постсинаптические потенциалы U и
                                                          (внизу).                                       модельная популяционная частота ν.
Частотная модель популяции
                       адаптивных нейронов:
                    «интериктальная» активность
                                    I AHP (ν ), I M (ν )
             I
                        E
                                   I S (ν )


FR модель :
   ∂V
C      = I − I AHP (ν ) − I M (ν ) − g L (V − VL ) − I S (ν )
    ∂t
I S = g S (t )(V − VS )
      d 2 g S (t )        d g S (t )
τS  2
            2
                   + 2τ S            + g S (t ) = g Sτv(t )
         dt                  dt
ν (t ) = A(U ) + B(U , dU / dt )
• What can be modeled on population level?

• Which details are important?

• What kinds of population models do exist?

• Which one to choose?
Monte-Carlo                                      conventional
       simulations:                                     Firing-Rate                        modified Firing-Rate                                                    CBRD:
                                                        model:                             model (non-
Метод Монте − Карло :
  ∂V                                               FR модель :                             stationary and                                           RD модель :
C     = I − ( g L + g S )(V − VL ) + σ I ξ ( t )
   ∂t                                                                                      adaptive):                                               ∂ρ ∂ρ
                                                      dU                                                                                                  +       = − ρH
если V > V T , т V = Vreset и спайк                C        = I − ( g L + g S )(U − VL )                                                             ∂t ∂t *
                                                       dt
           1 nact ( t + ∆ t )                      ν (t ) = A(U ) + B (U , dU / dt )
                                                                                         FR модель :                                                    ∂U ∂U 
ν (t ) =                                                                                                                                            C        +        = I − ( g L + g S )(U − VL )
           ∆t                                                                            ∂V                                                             ∂t ∂t * 
                    N                                                                 C        = I − ( g L + g S )(V − VL ) − I M (ν ) − I AHP (ν )
                                                                                          ∂t                                                                            1
                                                                                             2                                                      H (U (t , t*)) = ( A(U ) + B(U , dU / dt ))
                                                                                      τS 2 d g S (t )
                                                                                                      + 2τ S
                                                                                                             d g S (t )
                                                                                                                        + g S (t ) = g Sτv (t )                        τm
                                                                                              dt 2               dt                                                      ∞
                                                                                      ν (t ) = A(U ) + B (U , dU / dt )                             v (t ) = ρ (t ,0) = ∫ ρ H dt *
                                                                                                                                                                     +0




  Mathematical complexity:
         104 ODEs          1 ODE                                                                a few ODEs                                                     1-d PDEs

  Precision:
           4                  2                                                                                     3                                                             5
  Precision for non-stationary problems:
           5                  2                                                                                     4                                                             5
  Precision for adaptive neurons :
           5                  1                                                                                     3                                                             4
  Computational efficiency:
           2                  5                                                                                     5                                                             4
  Mathematical analyzability:
           1                  5                                                                                     4                                                             4

More Related Content

PDF
Hierarchy of visual cortex models
PDF
NanowireSensor
PDF
Expert Design & Empirical Test Strategies for Practical Transformer Development
PDF
Automatic Processing of Emotionally Salient Images
PPTX
Silicon sensors final_prsentation
PDF
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
PDF
IGARSS11 End-to-end calibration v2.pdf
PDF
Graded Patterns in Attractor Networks
Hierarchy of visual cortex models
NanowireSensor
Expert Design & Empirical Test Strategies for Practical Transformer Development
Automatic Processing of Emotionally Salient Images
Silicon sensors final_prsentation
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
IGARSS11 End-to-end calibration v2.pdf
Graded Patterns in Attractor Networks

Viewers also liked (17)

PPT
Models of neuronal populations
PDF
Exwfylla 12 12 2010
PDF
Dream it tonight achieve it tomorrow - presentation
PDF
Algebra of equivalent instances and its applications
PPT
Need To Get Your Mojo Back? Keeping You and Your Team Motivated!
PDF
Heart of healing korea hma 2010-ardy roberto - upload for delegates
PPT
35th anniversary presentation (2005)
 
PPTX
Physical Wellness Powerpoint
PPT
Back to School Webinar: A Crash Course In Digital Marketing Opportunities You...
PPTX
уводни час 8 разред
PPTX
Session 7 E-Marketing - 3 Sep 10
DOC
Timothy Knell_CV_Oct2015
PDF
How good are interior point methods? Klee–Minty cubes tighten iteration-compl...
PPT
Diri dalam Konteks Sosial
PDF
Beacon Technology - Real Estate
PPT
Мир древних цивилизаций. Общий обзор. Николай Панчишин
Models of neuronal populations
Exwfylla 12 12 2010
Dream it tonight achieve it tomorrow - presentation
Algebra of equivalent instances and its applications
Need To Get Your Mojo Back? Keeping You and Your Team Motivated!
Heart of healing korea hma 2010-ardy roberto - upload for delegates
35th anniversary presentation (2005)
 
Physical Wellness Powerpoint
Back to School Webinar: A Crash Course In Digital Marketing Opportunities You...
уводни час 8 разред
Session 7 E-Marketing - 3 Sep 10
Timothy Knell_CV_Oct2015
How good are interior point methods? Klee–Minty cubes tighten iteration-compl...
Diri dalam Konteks Sosial
Beacon Technology - Real Estate
Мир древних цивилизаций. Общий обзор. Николай Панчишин
Ad

Similar to Models of neuronal populations (20)

PDF
Neuron-computer interface in Dynamic-Clamp experiments
PDF
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
PPT
Neuron-Computer Interface in Dynamic-Clamp Experiments. Models of Neuronal P...
PDF
Introduction to modern methods and tools for biologically plausible modeling ...
PDF
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
PPTX
Fingerprint Validation Pilot
PDF
Models of Synaptic Transmission (1)
PDF
SPICE MODEL of 2SD2012 in SPICE PARK
PDF
Jennie Si: "Computing with Neural Spikes"
PDF
SPICE MODEL of LM7815 PSpice in SPICE PARK
PDF
TLP181のスパイスモデル
PDF
SPICE MODEL of LM7924 SIMetrix in SPICE PARK
KEY
A neuromoprhic approach to computer vision
PDF
SPICE MODEL of PC111LY in SPICE PARK
PDF
ResearchTalks Vol. 2 - Neural stimulation, challenges and success
PDF
SPICE MODEL of NJM2734 in SPICE PARK
PDF
SPICE MODEL of SPP02N60C3 (Professional+BDSP Model) in SPICE PARK
PDF
Introduction to modern methods and tools for biologically plausible modeling ...
PDF
neural pacemaker
PDF
SPICE MODEL of 2SD2623 in SPICE PARK
Neuron-computer interface in Dynamic-Clamp experiments
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Neuron-Computer Interface in Dynamic-Clamp Experiments. Models of Neuronal P...
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Fingerprint Validation Pilot
Models of Synaptic Transmission (1)
SPICE MODEL of 2SD2012 in SPICE PARK
Jennie Si: "Computing with Neural Spikes"
SPICE MODEL of LM7815 PSpice in SPICE PARK
TLP181のスパイスモデル
SPICE MODEL of LM7924 SIMetrix in SPICE PARK
A neuromoprhic approach to computer vision
SPICE MODEL of PC111LY in SPICE PARK
ResearchTalks Vol. 2 - Neural stimulation, challenges and success
SPICE MODEL of NJM2734 in SPICE PARK
SPICE MODEL of SPP02N60C3 (Professional+BDSP Model) in SPICE PARK
Introduction to modern methods and tools for biologically plausible modeling ...
neural pacemaker
SPICE MODEL of 2SD2623 in SPICE PARK
Ad

More from SSA KPI (20)

PDF
Germany presentation
PDF
Grand challenges in energy
PDF
Engineering role in sustainability
PDF
Consensus and interaction on a long term strategy for sustainable development
PDF
Competences in sustainability in engineering education
PDF
Introducatio SD for enginers
PPT
DAAD-10.11.2011
PDF
Talking with money
PDF
'Green' startup investment
PDF
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
PDF
Dynamics of dice games
PPT
Energy Security Costs
PPT
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
PDF
Advanced energy technology for sustainable development. Part 5
PDF
Advanced energy technology for sustainable development. Part 4
PDF
Advanced energy technology for sustainable development. Part 3
PDF
Advanced energy technology for sustainable development. Part 2
PDF
Advanced energy technology for sustainable development. Part 1
PPT
Fluorescent proteins in current biology
PPTX
Neurotransmitter systems of the brain and their functions
Germany presentation
Grand challenges in energy
Engineering role in sustainability
Consensus and interaction on a long term strategy for sustainable development
Competences in sustainability in engineering education
Introducatio SD for enginers
DAAD-10.11.2011
Talking with money
'Green' startup investment
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
Dynamics of dice games
Energy Security Costs
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 1
Fluorescent proteins in current biology
Neurotransmitter systems of the brain and their functions

Recently uploaded (20)

PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
Cell Structure & Organelles in detailed.
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Computing-Curriculum for Schools in Ghana
PDF
RMMM.pdf make it easy to upload and study
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Classroom Observation Tools for Teachers
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Anesthesia in Laparoscopic Surgery in India
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Cell Structure & Organelles in detailed.
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Final Presentation General Medicine 03-08-2024.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Paper A Mock Exam 9_ Attempt review.pdf.
What if we spent less time fighting change, and more time building what’s rig...
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Microbial disease of the cardiovascular and lymphatic systems
Computing-Curriculum for Schools in Ghana
RMMM.pdf make it easy to upload and study
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Classroom Observation Tools for Teachers
Final Presentation General Medicine 03-08-2024.pptx
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...

Models of neuronal populations

  • 1. Models of neuronal populations Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Definitions: Population is a great number of similar neurons receiving similar input Population activity (=population firing rate) is the number of spikes per unit time per total number of neurons
  • 3. Overview • Experimental evidences of population firing rate coding • Conductance-based neuron model • Probability Density Approach (PDA) • Conductance-Based Refractory Density approach (CBRD) - threshold neuron - t*-parameterization - Hazard-function for white noise - Hazard-function for colored noise • Simulations of coupled populations • Firing-Rate model • Hierarchy of visual cortex models
  • 4. • What can be modeled on population level? • Which details are important? • What kinds of population models do exist? • Which one to choose?
  • 5. Commonly information is coded by firing rate [R.M.Bruno, B.Sakmann // Science 312:1622-1627, 2006] Population PSTH of thalamic neurons’ responses to a 2-Hz sinusoidal deflection of their [E.Aksay, R.Baker, H.S.Seung, D.W.Tank Activity of a J.Neurophysiol. 84:1035-1049, 2000] respective principal whiskers (n = 40 cells). position neuron during spontaneous saccades and fixations in the dark. A: horizontal eye position (top 2 traces), extracellular recording (middle), and firing rate (bottom) of an area I position neuron during a scanning pattern of horizontal eye movements.
  • 6. Commonly populations are localized in cortical space Whole-cell (WC) recording of a layer 2/3 neuron of the C2 cortical barrel column was performed simultaneously with measurement of VSD fluorescence under conventional optics in a urethane anesthetized mouse.
  • 7. Pure population events observed in experiments: • Evoked responses • Oscillations •Traveling waves Voltage-sensitive Dye Optical Imaging [W.Tsau, L.Guan, J.-Y.Wu, 1999]
  • 8. • What can be modeled on population level? • Which details are important? • What kinds of population models do exist? • Which one to choose?
  • 9. Synaptic conductance kinetics GABA-IPSC AMPA-EPSC AMPA-EPSC GABA-IPSC Membrane GABA-IPSP AMPA-EPSP equations AMPA-EPSP GABA-IPSP PSP PSP Threshold criterium Spike Spike Population model Firing rate Firing rate Eq. for spatial connections
  • 10. • ionic channel kinetics • input signal is 2-d Model of a pyramidal neuron dV C = − I Na − I DR − I A − I M − I H − I L − I AHP − s(t ) (V − V0 ) + u(t ) + η (t ) dt u(t ) = ∑S g S (t ) (VS − V0 ) + I electrode (t ) I ... = g... x p (t ) y q (t ) (V (t ) − V... ) s(t ) = ∑S g S (t ) dx x∞ (U ) − x = , dt τ x (U ) dy y∞ (U ) − y = dt τ y (U ) Approximations for I Na , I DR , I A , I M , I H are from [L.Graham, 1999]; EXPЕRIМЕNТ IAHP is from [N.Kopell et al., 2000] MODEL Color noise model (Ornstein-Uhlenbeck process): dη τ = −η + 2τ σξ (t ) dt
  • 12. • neuron is spatially distributed A 2-comp. neuron with synaptic currents at somas 15 0 B PSC, exp. PSP, exp. Vd -50 PSP, model 2 10 PSP, model 1 PSP, mV PSC, pA Vd -100 Vs Is 5 -150 -200 0 0 5 10 t, ms 15 C Two boundary problems: ∂V  ∂V  g=Id/(Vd-Vrev) Vd A) current-clamp to register PSP: ∂X = R Gs  V + ; X =0  ∂T  B) voltage-clamp to register PSC: V (T ,0) = 0; Vd ∂V Vd Is = R I S (T ) Vs ∂X X =L V0 [F.Pouille, ∂V ∂ V 2 M.Scanziani − +V = 0 //Nature, 2004] ∂T ∂X 2 X=0 X=L Figure Transient activation of somatic and delayed Solution: activation of dendritic inhibitory conductances in dV I [A.V.Chizhov // τm = −(V − V rest ) + ρ (Vd − V ) − S Biophysics 2004] experiment (solid lines) and in the model (small circles). dt Gs A, Experimental configuration. dV 1  ∂I d  B, Responses to alveus stimulation without (left) and with τ m d = −(Vd − V rest ) − (2 + ρ )(Vd − V ) − τ m  + 3I d   (right) somatic V-clamp. dt ρ Gs  ∂t  C, In a different cell, responses to dynamic current injection Parameters of the model: in the dendrite; conductance time course (g) in green, 5-nS τm= 33 ms, ρ = 3.5, Gs= 6 nS in B and 2.4 nS in C peak amplitude, Vrev=-85 mV.
  • 13. • spatial structure of connections 1 mm Эксперимент. Зрительная кора. Карта ориентационной избирательности активности нейронов. Модель “Pinwheels” карты ориентационной избирательности входных сигналов. Модель. Ответ зрительной коры на полосу горизонтальной, а затем вертикальной ориентации.
  • 14. • What can be modeled on population level? • Which details are important? • What kinds of population models do exist? • Which one to choose?
  • 15. Population models • Definition A population is a set of similar neurons receiving a common input and dispersed due to noise and intrinsic parameter distribution. • Common assumptions: – Input – synaptic current (+conductance) – Infinite number of neurons – Output – population firing rate (4000) 1 nact (t; t + ∆t ) ν (t ) = lim lim ∆t →0 N →∞ ∆t N
  • 16. Direct Monte-Carlo simulation of individual neurons: Types of population models ∂V C = I − g L (V − VL ) + σ I ξ (t ) ∂t если V > V T , т V = Vreset и спайк 1 nact ( t + ∆t ) ν (t ) = ∆t N Firing-rate: ν (t ) = f ( I (t )) f “f-I-curve” dν or τ = −ν + f ( I (t )) dt dU or C = I − g L (U − VL ), dt I ν (t ) = ~(U (t )) f Assumption. Neurons are de-synchronized. Probability Density Approach (PDA): (4000) RD модель : ∂ρ ∂ρ + = − ρH ∂t ∂t *  ∂U ∂U  C +  = I − g L (U − VL )  ∂t ∂t *  1 H (U ( t , t*)) = ( A(U ) + B(U , dU / dt )) τm ∞ v (t ) = ρ (t ,0) = ∫ ρ H dt * +0
  • 17. Idea of Probability Density Approach (PDA) Single neuron equation (e.g. H-H model) r dX = F(X ) + S r r r dt r where F is the common deterministic part, r S is the noisy term. X = (V , m, h, n ) r For classical H-H: ρ ( X , t) r Eq. for neural density ∂ρ ∂t =− ∂ ∂X r r ( ∂ r ⋅ F(X ) ρ + r ∂X )  t ∂ρ  ⋅ W r   ∂X  [B.Knight 1972]   t r where the matrix W represents the influence of noise S Problem! The equation is multi-dimensional. Particular cases are [A.Omurtag et al. 2000] X ≡V - membrane potential [D.Nykamp, D.Tranchina 2000] [N.Brunel, V.Hakim 1999], … X ≡ t* - time passed since the last spike [J.Eggert, JL.Hemmen 2001] [А.Чижов, А.Турбин 2003] X ≡τ - time till the next spike [A.Turbin 2003]
  • 18. ρ Simplest 1-d PDAs • Kolmogorov-Fokker-Planck eq. for ρ(t,V) Hz Leaky Integrate-and-Fire (LIF) neuron: dV τm = −V + RI (t ) + η (t ), dt if V > V T then V = Vreset 0 Vreset VT < η (t ) >= 0, < η (t ) η (t ' ) >= τ m σ 2 δ (t − t ' ) ν ∂ρ ∂ σ 2 ∂2ρ τm = [(V − RI ) ρ ] + + ν ⋅ δ (V − Vreset ) ∂t ∂V 2 ∂V 2 Hz σ 2 ∂ρ Problem! Voltage can not ν (t ) = uniquely characterize 2 ∂V V =V T neuron’s state. 0 t • Refractory density ρ(t,t*) for SRM - neurons ∂ρ ∂ρ ∞ + ∗ = −ρ H ρ (t ,0) ≡ ν (t ) = ∫ ρ (t , t * ) dt * ∂t ∂t 0 H = H (U (t , t*), V T ) Spike Response Model (SRM): U (t , t * ) = η (t * ) + ∫ k (t * , t ') I (t ' ) dt ' t* [W.Gerstner, W.Kistler, 2002] 0
  • 19. 1-D Refractory Density Approach for conductance- based neurons (CBRD) [A.V.Chizhov, L.J.Graham // Phys. Rev. E 2007, 2008] 1. Threshold single-neuron model 2. Refractory density approach (t* - parameterization) 3. Hazard-function t* is the time since the last spike; H ≈ A+ B ∂ρ ∂ρ + = −ρ H ∂t ∂t ∗  ∂U ∂U  C + *  = − I DR − I A − I M − I H − I L − I AHP − I i H(U) = ‘frozen stationary’ + ‘self-similar’  ∂t ∂t  solutions of Kolmogorov-Fokker-Planck eq. ∂x ∂x x (U ) − x + * = ∞ , ∞ ∂t ∂t τ x (U ) for I&F neuron with white or color v (t ) = ρ H dt * ∫ noise-current ∂y ∂y y ∞ (U ) − y + = +0 ∂t ∂t * τ y (U )
  • 20. 1. Threshold neuron model Full single neuron model dV C = − I Na − I DR − I A − I M − I H − I L − I AHP − I i dt Approximations for I Na , I DR , I A , I M , I H are taken from [L.Graham, 1999]; IAHP is from [N.Kopell et al., 2000] Threshold model dU C = − I Na − I DR − I A − I M − I H − I L − I AHP − I i dt dx x∞ (U ) − x dy y∞ (U ) − y = , = dt τ x (U ) dt τ y (U ) if U > V T then U = U reset = −40 mV for I DR : x = x reset = 0.262, y = y reset = 0.473; for IA : x = x reset = 0.743, y = y reset = 0.691; for IH : y = y reset = 0.002; for IM : x = x + ∆ x reset , ∆ x reset = 0.18 (1 − x ); for I AHP : w = w + ∆ w reset , ∆ w reset = 0.018 (1 − w).
  • 22. 2. Refractory density approach (t* - parameterization) t* is the time since the last spike; ρ = ρ (t , t * ), U = U (t , t * ), x = x (t , t * ), y = y (t , t * ) ∂ρ ∂ρ d • ∂ • dt * ∂ • ∂ • ∂ • + ∗ = −ρ H = + = + ∂t dt ∂t * ∂t ∂t * ∂t ∂t dt  ∂U ∂U  C + *  = − I DR − I A − I M − I H − I L − I AHP − I i  ∂t ∂t  ∂x ∂x x∞ (U ) − x + *= , ∂t ∂t τ x (U ) I ... = g ... x y (U − V... ) for I DR , I A , I M , I H , I AHP ∂y ∂y y∞ (U ) − y + = ∂t ∂t * τ y (U ) H (U ) = 1 τ m ( A(U ) + B (U , dU dt ) ) -- Hazard function τ m = C /( g DR (t , t * ) + g A (t , t * ) + g M (t , t * ) + g H (t, t * ) + g L + g AHP (t , t * )) Boundary conditions: A(U ) = exp(6.1 ⋅ 10−3 − 1.12 T − 0.257 T 2 − 0.072 T 3 − 0.0117 T 4 ). ∞ B (U ) = -τ m 2 dT ~ F (T ), T= U −U T , ~ F (T ) = 2 exp( −T ) 2 ρ (t ,0) = ∫ ρ F dt ∗ ≡ ν (t ) -- firing rate dt σ π 1 + erf (T ) +0 U (t ,0) = U reset x (t ,0) = x reset , y (t ,0) = y reset for I DR , I A , I H ; Application x (t ,0) = x (t , t *T ) + ∆ x reset for I M ; w(t ,0) = w(t , t *T ) + ∆ w reset for I AHP ; t *T : U (t , t *T ) = U T ( dU (t , t *T ) dt ).
  • 23. 3. Hazard-function in the case of white noise-current (First-time passage problem) A – solution in case of steady stimulation (self-similar); Approximation: H ≈ A+ B B – solution in case of abrupt excitation Single LIF neuron - Langevin equation dV < η (t ) > = 0 τm = −V + U (t ) + η (t ) < η (t )η (t ' ) >= σ 2 τ m δ (t − t ' ) dt if V < UT then spike Fokker-Planck equation ~ ∂ ∂ρ  ~ σ 2 ∂ρ  τm ~− + (U (t ) − V ) ρ 2 ∂V  = 0 ρ (t,U T ) = 0 ~ ∂t ∂V   ρ (t ,−∞) = 0 ~ σ 2 ∂ρ~ exp (− (V − U ) 2 σ 2 ) H (t ) ≡ − ~ 1 ρ (0,V ) = 2τ m ∂V V =U T πσ u (t ) = (V (t ) − U (t )) σ ˆ T (t ) = (U T − U (t )) σ ˆ ~ ~ ρ (t , T (t )) = 0 ~ ∂ρ ∂  ~ − 1 ∂ρ  = 0 τm + −uρ ρ (t ,−∞) = 0 ~ ∂t ∂u  2 ∂u   exp(− u 2 ) ~ 1 ρ (0, u ) = ~ 1 ∂ρ ~ π H (t ) ≡ H (t ) / τ m = − 2τ m ∂u u =T ( t )
  • 24. Self-similar solution (T=const) Equivalent formulation: ~ ρ ( t , u ) = ρ (t ) p (t , u ) T (t ) where ρ (t ) = ∫ ~ ρ (t , u ) du −∞ ρ (t ) − amplitude , p(t , u ) − shape p (t , T ) = 0 ∂p ∂  1 ∂p  ~ ~ 1 ∂p τm + − u p − = H (t ) ⋅ p where H (t ) = − p(t ,−∞) = 0 ∂t ∂u  2 ∂u   2 ∂u u = T exp(− u 2 ) 1 p(0, u ) = dρ ~ π τm = − ρ H (t ), dt ~ Assumption. U(t)=const (or T(t)=const). Notation: A ≡ H ~ Then the shape of ρ , which is p(t , u) , is invariable. ∂  1 ∂p  1 ∂p p (t , T ) = 0  −u p−  = A(t ) ⋅ p where A(t ) = − ∂u  2 ∂u  2 ∂u u =T p(t ,−∞) = 0 dρ τm = − ρ A(T ) dt
  • 25. Frozen Gaussian distribution (dT/dt = ∞) Assumption. T(t) decreases fast. The initial Gaussian distribution remains almost unchanged except cutting at u=T. The hazard function in this case is H=B(T,dT/dt). dρ τm = −ρ B T (t ) where ρ (t ) = ∫ ~ ρ (t , u ) du dt −∞ τ m dρ τ dρ  dT  or B=− =− m ρ dt ρ dT  dt  +   U(t) UT ~(t , u ) =  π exp(− u ), if  1 For the simplicity, we consider the case of 2 u ( t ) < T (t ) arbitrary but monotonically increasing T(t) and ρ the Gaussian distribution  0, otherwise  τ m dρ  dT   dT  ~ B=− = −τ m 2   F (T ) ρ dT  dt  +    dt  + ~ 2 exp( −T 2 ) where F (T ) = π 1 + erf(T ) [x]+ for x>0 and zero otherwise
  • 26. Approximation of hazard function in arbitrary case ~ ∂ρ ∂  ~ ρ (t , T (t )) = 0 ~ где T (t ) = (U T − U (t )) σ τm + ~ − 1 ∂ρ  = 0 −uρ ˆ ∂t ∂u  2 ∂u  ρ (t ,−∞) = 0 ~   exp(− u 2 ) ~ 1 1 ∂ρ ~ ρ (0, u ) = H= ˆ π 2τ m ∂u u =T ( t ) A – solution in case of steady stimulation (self-similar); Approximation: H ≈ A+ B B – solution in case of abrupt excitation Weak stimulus Strong stimulus Approximation of H by A is green, by B is blue, by A+B is red, exact solution is black. ν (t ) = ∂ρ ∂t
  • 27. 3. Hazard-function in the case of colored noise dU Langevin equation Without noise: C = − I tot (U , t ) U < UT dt dV du ~ With noise: C = − I tot (V , t ) + η (t ) V < UT τ m (U , t ) = −u + q(t ), u < T (t ) dt dt dη dq τ = −η + 2τ σ ξ (t ) or τ = − q + 2τ ξ (t ) dt dt < ξ (t ) > = 0 где u = gtot (U , t )(V − U ) / σ , q = η (t ) / σ , < ξ (t ) ξ (t ' ) >= τ δ (t − t ' ) ~ T (t ) = g (U , t )(U T − U ) / σ tot Fokker-Planck eq. ∂ρ ∂  − u + q ~  ∂  q ~  1 ∂ ρ ~ ~ 2 ρ (t, u = ∞, q) = ρ (t , u, q = −∞) = ~ ~ +  τ ρ  + − ρ  − =0 ∂t ∂u  m  ∂q  τ  τ ∂q 2 ~ ~ ~ ~ = ρ (t, u, q = +∞) = ρ (t , u = T , q ≤ T ) = 0 ~ 1 ∞ ~ ~ ~ ρ (t = 0, u, q) = ~ 1+ k 2π k 1+ k exp [  − (1 + k )u 2 − q 2 + 2 qu  ] H (U (t )) ≡ ρT ~ ∫ ( q − T ) ρ (t, T , q) dq, k (U , t ) ≡ τ m (U , t )/τ  2k  or ~ T ∞ ∞ ρ ( t , u, q ) = ρ ( t ) p ( t , u, q ) T (t ) ~ where ∫−∞ dq ∫− ∞ p (t , u, q ) du = 1 ρ (t ) = ∫ ∫ ρ (t, u, q) dq du. ~ ρ (t ) − amplitude , p(t , u ) − shape −∞−∞ dρ ~ ∞ τm = − ρ H (t ), where ~ ~ ~ H (U (t )) ≡ ∫ ( q − T ) p (t , T , q ) dq dt ~ T ∂p ∂ ∂ ∂2 p  ~ p(t , u = ∞, q) = p(t , u, q = −∞) = τm = (u − q) p + k  qp + 2  + H (t ) p ∂t ∂u  ∂q ∂q  ~ ~ = p(t , u, q = +∞) = p(t , u = T (t ), q ≤ T (t )) = 0
  • 28. Self-similar solution (T=const) Assumption. U(t) (or T(t)) is constant or slow. ~ Then the shape of ρ , which is p(t , u, q), is invariable. ∂ ∂ ∂2 p  p(t, u = ∞, q) = p(t, u, q = −∞) = (u − q) p + k  qp + 2  + A p = 0 ~ ~ ∂u  ∂q ∂q  = p(t , u, q = +∞) = p(t, u = T , q ≤ T ) = 0 ∞ ~ ~ A = ∫ ( q − T ) p (t , T , q ) dq where ~ 1+ k T =T ~ T 2 q u A ∞ (T) = exp(0.0061 - 1.12 T - 0.257 T 2 - 0.072 T 3 - 0.0117 T 4 )
  • 29. Hazard function in arbitrary case H ≈ A+ B K=1: Weak stimulus Strong stimulus K=8: Weak stimulus Strong stimulus Approximation of H by A is green, by B is blue, by A+B is red, exact solution is black. ν (t ) = ∂ρ ∂t
  • 30. CBRD Single cell level t* is the time since the last spike ∂ρ ∂ρ + ∗ = −ρ H ∂t ∂t  ∂U ∂U  C +  = − I DR − I A − I M − I H − I L − I AHP − I i  ∂t ∂t *  ∂x ∂x x∞ (U ) − x Populations + *= , I ... = g ... x y (U − V... ) ∂t ∂t τ x (U ) for I DR , I A , I M , I H , I AHP ∂y ∂y y∞ (U ) − y + *= ∂t ∂t τ y (U ) ∞ ρ (t ,0) = ∫ ρ F dt ∗ ≡ ν (t ) +0 Large-scale simulations (NMM & FR-models for EEG & MRI)
  • 32. Simulations. Current-step stimulation. Comparison with Monte-Carlo. Non-adaptive neurons (4000)
  • 33. Simulations. Current-step stimulation. Color noise. LIF Adaptive neurons. Adaptive conductance-based neuron
  • 35. Simulations. Constant current stimulation. Comparison with analytical solution. [Johannesma 1968]
  • 36. Simulations. Constant current stimulation. Color noise. Comparison with analytical solution. −1 (*)  a  u ' τ m H (u )   ν = τ m ∫0 exp − ∫0 du  /(a − u ′) du′   a−u   a = I a /g L (U T − VL ) dots – Monte-Carlo solid – eq.(*) dash – adiabatic approach [Moreno-Bote, Parga 2004] Firing rate depends on the noise time constant.
  • 37. Interconnected populations Synaptic current kinetics GABA-IPSC AMPA-EPSC AMPA-EPSC GABA-IPSC Membrane GABA-IPSP AMPA-EPSP equations AMPA-EPSP GABA-IPSP PSP PSP Threshold criterium Spike Spike Population model Firing rate Firing rate
  • 38. Pyramidal neurons Approximations of synaptic currents 200 AMPA-PSC 40 NMDA-PSC (with PTX, APV) (with PTX, CNQX) 150 20 Vh=-40 mV Vh=-80 mV experiment model 0 PSC, pA 100 PSC, pA experiment model Excitatory synaptic current: -20 50 iE = i AMPA + i NMDA Vh=-40 mV -40 i AMPA = g AMPA m AMPA (t ) (V − V AMPA ) 0 Vh=+20 mV -60 Vh=+20 mV iNMDA = g NMDAm NMDA (t ) f NMDA (V ) (V − VNMDA ) -50 -80 0 10 20 30 40 50 0 25 50 75 100 t, ms t, ms gj - maximum specific conductance, 0 0 mj - non-dimensional conductance GABA-PSC (with CNQX, D-AP5) Vj - reversal potential -100 f NMDA (V ) = 1 /(1 + Mg / 3.57 exp( −0.062V )) -50 Vh=-64 mV fast GABA-A -IPSC PSC, pA (with CNQX, D,L-APV) PSC, pA -200 Vh=-60 mV Inhibitory synaptic current: -300 i I = g GABAmGABA (t ) (V − VGABA ) -100 experiment model experiment Non-dimensional synaptic conductances: -400 model d 2m j dm j ττ + (τ rj + τ d ) + m j = S (ν j ), r d 0 10 20 30 40 50 -500 0 10 20 30 40 50 j j j t, ms t, ms dt 2 dt Interneurons j = AMPA , GABA , NMDA 500 AMPA-PSC (with PTX, APV) 150 NMDA-PSC where S ( ν j ) = 2 ( 1 + exp( −2τ ν j ) ) − 1 τ = 1 µs 400 (with PTX, CNQX) τ r , τ d - rise and decay time constants j j experiment 100 Vh=-40 mV 300 Vh=-80 mV ν j (t ) - firing rate on j-type axonal terminals model PSC, pA 50 PSC, pA 200 experiment 0 model 100 -50 Vh=-40 mV 0 -100 Vh=+20 mV Vh=+20 mV -100 -150 0 10 20 30 40 50 0 25 50 75 100 t, ms t, ms
  • 39. Simulations. Interictal activity. Recurrent network of pyramidal cells, including all-to-all connectivity by excitatory synapses. I i (t ) = I ext (t ) + I S (t ), Model with IM and IAHP I S (t ) = g S (t ) (U (t ) − VS ), 2 2 d g S (t ) dg (t ) τS + 2τ S S + g S (t ) = g S τ ρ (t ,0) dt 2 dt Experiment I = 150 pA ext τ S = 5.4 ms, τ = 1 ms, VS = 5 mV, g S = 1 mS/cm 2 σ V = 2 mV ( at rest ) [S.Karnup, A.Stelzer 2001]
  • 40. Simulations. Gamma rhythm. Recurrent network of interneurons, including all-to-all connectivity by inhibitory synapses τ S = 3ms, d 2 g S (t ) dg (t ) I i (t ) = I ext (t ) + I S (t ), τ2 S + 2τ S S + g S (t ) = g S τ ν (t − τ d ) τ d = 1ms, dt 2 dt τ = 1ms, I S (t ) = g S (t ) (U (t ) − VS ), for density approach ν (t ) = ρ (t , t * = 0) VS = -80mV, g S = 7mS/cm 2
  • 41. Model Experiments Oscillations Control (“Kainate”) +“Bicuculline” All the simulations were done with a single set of parameters. All the parameters except synaptic maximum conductances have been obtained by fitting to experimental registration of elementary events such as patch- electrode current-induced traces, Spikes in single neurons spike trains and monosynaptic responses . Conductances The model reproduces the following characteristics of gamma-oscillations : frequency of population spikes a single pyramidal cell does not fire Power Spectrum of Extracellular Potentials every cycle every interneuron fires every cycle bic con amplitude of EPSC is less than that of IPSC blockage of GABA-A receptors [Khazipov, Holmes, 2003] reduces the frequency Kainate-induced oscillations [A.Fisahn et al., 1998] in CA3. Cholinergically induced oscillations in CA3 peak of pyramidal cell’s firing frequency corresponds to the descending phase of EPSC and the ascending phase of IPSC firing of interneurons follows the firing of pyramidal cells gamma-oscillations are [N.Hajos, J.Palhalmi, E.O.Mann, B.Nemeth, homogeneous in space along the Spike timing of pyramidal and inhibitory cells. O.Paulsen, and T.F.Freund. J.Neuroscience, cortical surface (data not shown) 24(41):9127–9137, 2004]
  • 42. Spatial connections ϕij (t , x, y ) = ∫ ∫ ν i (t − d ( x, y , X , Y ) / c, X , Y ) W ( x, y , X , Y ) dX dY , d ( x, y , X , Y ) = ( x − X ) 2 + ( y − Y ) 2 Experiment: φ ( t , x , y ) - firing rate on presynaptic terminals; ν ( t , x , y ) - firing rate on somas. Assumption: distances from soma to synapses have exponentially decreasing distribution p(x) [B.Hellwig 2000]. d ( x , y , X ,Y ) − W ( x, y , X , Y ) = e λ ∂ 2φ ∂φ 2 ∂ φ 2 ∂ 2φ   2 ∂ + 2γ + γ φ − c  2 + 2  =  γ + γ  ν (t , x, y ) 2  ∂x ∂t 2 ∂t  ∂y    ∂t  [V.Jirsa, G.Haken 1996] where γ = c/λ; c – the average velocity of spike [P.Nunez 1995] propagation along the cortex surface by axons; [J.Wright, P.Robinson 1995] λ – characteristic axon length. [D.Contreras, R.Llinas 2001]
  • 43. Model Experiments Evoked responses A B The model reproduces postsynaptic currents and postsynaptic potentials registered on somas of pyramidal cells, namely: monosynaptic EPSCs and EPSPs [S.Karnup, A.Stelzer 1999] Effects of GABA-A disynaptic IPSC/Ps followed be EPSC/Ps receptor blockade on orthodromic potentials in CA1 polysynaptic EPSC/Ps pyramidal cells. Superimposed C responses in a pyramidal cell reduction of delays in polysynaptic EPSCs soma before and after decay of excitation after II component of application of picrotoxin (PTX, 100 muM). Control and PTX poly-EPSCs in presence of GABA-A receptor recordings were obtained at V block. rest (-64 mV; 150 muA stimulation intensities; 1 mm The model predicts that the evoked responses distance between stratum [B.Mlinar, are essentially non-homogeneous in space: radiatum stimulation site and A.M.Pugliese, perpendicular line through stratum pyramidale recording R.Corradetti site). The recordings were 2001] Components of carried out in ‘minislices’ in complex synaptic which the CA3 region was cut responses evoked in CA1 off by dissection. pyramidal neurones in the presence of GABAA receptor block. PSPs and PSCs evoked by extracellular stimulation and registered at 3.5cm away, w/ and w/o kainate. [V.Crepel, R.Khazipov, Y.Ben-Ari, 1997] In normal concentrations of Mg and in the absence of CNQX, block of GABA-A Spatial profiles of membrane potential and receptors induced a late synaptic response. firing rate in pyramids.
  • 44. Model Experiments Waves In the case of reduced GABA-reversal potential VGABA= -50mV and stimulation Waves with unchanging chape and by extracellular electrode we obtain a velocity are observed in cortical tissue traveling wave of stable amplitude and in disinhibiting or overexciting velocity 0.15 m/s. The velocity is much conditions. The waves are produced less than the axon propagation velocity by complex interaction of pyramidal (1m/s) and is A determined mostly by cells and interneurons. That is synaptic interactions. confirmed by much lower speed of the wave propagation comparing with the 140 voltage, pyramids axon propagation velocity which is the voltage, interneurons 120 firing rate, pyramids firing rate, interneurons coefficient in the wave-like equation. 100 80 -40 Analysis of wave solutions and more mV Hz 60 B detailed comparison with experiments 40 20 -60 are expected in future. 0 0 25 50 75 100 ms [Leinekugel et al. 1998]. Spontaneous GDPs propagate synchronously in both hippocampi from septal to 120 voltage, pyramids temporal poles. Multiple extracellular field recordings from the CA3 100 voltage, interneurons firing rate, pyramids region of the intact bilateral septohippocampal complex. firing rate, interneurons 0.15m/s -40 Simultaneous extracellular field recordings at the four recording 80 sites indicated in the scheme. Corresponding electrophysiological mV Hz 60 traces (1–4) showing propagation of a GDP at a large time scale. 40 -60 20 0 10 20 30 40 mm Fig.5. Wave propagating from the site of extracellular stimulation at right border of the “slice”. A, Evoked responses of pyramidal cells and interneurons at the site of stimulation. B, Profiles of mean voltage and firing rate in pyramidal cells and interneurons at the time 200 ms after the stimulus. [D.Golomb, Y.Amitai, 1997] Propagation of discharges in disinhibited neocortical slices.
  • 45. From CBRD to Firing-Rate model
  • 46. Macro- and meso-scale macro-scale meso-scale micro-scale external granular layer external pyramidal layer internal granular layer internal pyramidal layer AP generation zone synapses [S.Kiebel] [C.Friston]
  • 47. Not-adaptive neurons Firing-rate model Adaptive neurons dU C = −( g L + g S )(U − VL ) − I C dU = −( g L + g S )(U − VL ) − g M n 2 (t )(U − VM ) − g AHP w(t )(U − V AHP ) + I dt dt Hazard-function: Hazard-function: ν (t ) = A (U ) + B(U , dU dt ) -- firing rate ν (t ) = A (U ) + B(U , dU dt ) -- firing rate τ m = C / gL τ m = C / gL −1 −1     T T (V −U ) / σ (V −U ) / σ A(U ) = τ m π ∫ e (1 + erf (u))du  ; A(U ) = τ m π ∫ e (1 + erf (u))du  ; u2 u2 (steady) (steady)      (V reset −U ) / σ   (V reset −U ) / σ  1  dU   (V T − U )2  1  dU   (V T − U )2  B(U ) = -τ m exp − ; ( sudden) B(U ) = -τ m exp − ; ( sudden) π σ  dt  +     σ2   π σ  dt  +     σ2   d 2w dw χ (1 − w) τ 1 τ AHP 0 + (τ 1 + τ AHP ) 0 − w∞ + w = v(t ) K (1 / τ 1 ,1 / τ AHP ) AHP 2 AHP 0 dt dt AHP d 2n dn ξ (1 − n) τ1 τM 0 + (τ 1 + τ M ) − n∞ + n = 0 v(t ) K (1 / τ 1 ,1 / τ M ) M 2 M 0 dt dt M Oscillating input Oscillating input [Chizhov, Rodrigues, Terry // Phys.Lett.A, 2007 ] [Чижов, Бучин // Нейроинформатика-2009 ]
  • 48. Синаптические токи и проводимости: Simple model of interacting iE (t ) = g E (t ) (V (t ) − VE ) i I (t ) = g I (t ) (V (t ) − VI ) d 2 gE dg d 2gI dg cortical interneurons, τ 1Eτ 2E + (τ 1E + τ 2E ) E + g E = τ g E ν ext (t ) ττ I I + (τ 1I + τ 2I ) I + g I = τ g I ν (t ) dt 2 dt 1 2 dt 2 dt evoked by thalamus Мембранный потенциал: dU C = − g L (U − VL ) + i E (t ) + i I (t ), dt Experiment Популяционная частота спайков: ν (t ) = A (U ) + B (U ), -1  (VT −U ) / σ V 2  A(U ) = τ m π ∫ e (1 + erf (u ) ) du  ; u2    (Vreset −U ) / σ V 2  1  dU   (V T − U ) 2  B(U ) = × exp −    2π σ V  dt  +    2σ V2  Model gE νext FS ν gI Рис. 12. Схема активности популяции FS (fast spiking) нейронов, возбуждаемых внешним стимулом νext(t), Рис. 13. Постсинаптический приходящим из таламуса. (моносинаптический) ток в FS- Обозначения: ν(t) – нейроне при слабой популяционная частота спайков таламической стимуляции FS нейронов, gE(t), gI(t) – током 30 µA и потенциале Рис. 14. Ответы FS-нейронов на таламическую стимуляцию проводимости возбуждающих и фиксации -88 mV в током 120 µA в эксперименте (слева) (adapted by permission from тормозящих синапсов. эксперименте (вверху) (adapted Macmillan Publishers Ltd: (Cruikshank et al., 2007), © 2007) и в by permission from Macmillan модели (справа). A, B - постсинаптические токи при Publishers Ltd: (Cruikshank et al., потенциале фиксации -88, -62, и -35 mV; C, D - синаптические 2007), copyright 2007) и в модели проводимости; E, F – постсинаптические потенциалы U и (внизу). модельная популяционная частота ν.
  • 49. Частотная модель популяции адаптивных нейронов: «интериктальная» активность I AHP (ν ), I M (ν ) I E I S (ν ) FR модель : ∂V C = I − I AHP (ν ) − I M (ν ) − g L (V − VL ) − I S (ν ) ∂t I S = g S (t )(V − VS ) d 2 g S (t ) d g S (t ) τS 2 2 + 2τ S + g S (t ) = g Sτv(t ) dt dt ν (t ) = A(U ) + B(U , dU / dt )
  • 50. • What can be modeled on population level? • Which details are important? • What kinds of population models do exist? • Which one to choose?
  • 51. Monte-Carlo conventional simulations: Firing-Rate modified Firing-Rate CBRD: model: model (non- Метод Монте − Карло : ∂V FR модель : stationary and RD модель : C = I − ( g L + g S )(V − VL ) + σ I ξ ( t ) ∂t adaptive): ∂ρ ∂ρ dU + = − ρH если V > V T , т V = Vreset и спайк C = I − ( g L + g S )(U − VL ) ∂t ∂t * dt 1 nact ( t + ∆ t ) ν (t ) = A(U ) + B (U , dU / dt ) FR модель :  ∂U ∂U  ν (t ) = C +  = I − ( g L + g S )(U − VL ) ∆t ∂V  ∂t ∂t *  N C = I − ( g L + g S )(V − VL ) − I M (ν ) − I AHP (ν ) ∂t 1 2 H (U (t , t*)) = ( A(U ) + B(U , dU / dt )) τS 2 d g S (t ) + 2τ S d g S (t ) + g S (t ) = g Sτv (t ) τm dt 2 dt ∞ ν (t ) = A(U ) + B (U , dU / dt ) v (t ) = ρ (t ,0) = ∫ ρ H dt * +0 Mathematical complexity: 104 ODEs 1 ODE a few ODEs 1-d PDEs Precision: 4 2 3 5 Precision for non-stationary problems: 5 2 4 5 Precision for adaptive neurons : 5 1 3 4 Computational efficiency: 2 5 5 4 Mathematical analyzability: 1 5 4 4