SlideShare a Scribd company logo
Chapter 3 – Data Representation
Section 3.1 – Data Types
• Registers contain either data or control information
• Control information is a bit or group of bits used to specify the sequence of
command signals needed for data manipulation
• Data are numbers and other binary-coded information that are operated on
• Possible data types in registers:
o Numbers used in computations
o Letters of the alphabet used in data processing
o Other discrete symbols used for specific purposes
• All types of data, except binary numbers, are represented in binary-coded form
• A number system of base, or radix, r is a system that uses distinct symbols for r
digits
• Numbers are represented by a string of digit symbols
• The string of digits 724.5 represents the quantity
7 x 102
+ 2 x 101
+ 4 x 100
+ 5 x 10-1
• The string of digits 101101 in the binary number system represents the quantity
1 x 25
+ 0 x 24
+ 1 x 23
+ 1 x 22
+ 0 x 21
+ 1 x 20
= 45
• (101101)2 = (45)10
• We will also use the octal (radix 8) and hexidecimal (radix 16) number systems
(736.4)8 = 7 x 82
+ 3 x 81
+ 6 x 80
+ 4 x 8-1
= (478.5)10
(F3)16 = F x 161
+ 3 x 160
= (243)10
• Conversion from decimal to radix r system is carried out by separating the
number into its integer and fraction parts and converting each part separately
• Divide the integer successively by r and accumulate the remainders
• Multiply the fraction successively by r until the fraction becomes zero
Computer Architecture 1
Chapter 3
• Each octal digit corresponds to three binary digits
• Each hexadecimal digit corresponds to four binary digits
• Rather than specifying numbers in binary form, refer to them in octal or
hexadecimal and reduce the number of digits by 1/3 or ¼, respectively
Computer Architecture 2
Chapter 3
Computer Architecture 3
Chapter 3
• A binary code is a group of n bits that assume up to 2n
distinct combinations
• A four bit code is necessary to represent the ten decimal digits – 6 are unused
• The most popular decimal code is called binary-coded decimal (BCD)
• BCD is different from converting a decimal number to binary
• For example 99, when converted to binary, is 1100011
• 99 when represented in BCD is 1001 1001
Computer Architecture 4
Chapter 3
• The standard alphanumeric binary code is ASCII
• This uses seven bits to code 128 characters
• Binary codes are required since registers can hold binary information only
Computer Architecture 5
Chapter 3
Section 3.2 – Complements
• Complements are used in digital computers for simplifying subtraction and logical
manipulation
• Two types of complements for each base r system: r’s complement and (r – 1)’s
complement
• Given a number N in base r having n digits, the (r – 1)’s complement of N is
defined as (rn
– 1) – N
• For decimal, the 9’s complement of N is (10n
– 1) – N
• The 9’s complement of 546700 is 999999 – 546700 = 453299
Computer Architecture 6
Chapter 3
• The 9’s complement of 453299 is 999999 – 453299 = 546700
• For binary, the 1’s complement of N is (2n
– 1) – N
• The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110
• The 1’s complement is the true complement of the number – just toggle all bits
• The r’s complement of an n-digit number N in base r is defined as rn
– N
• This is the same as adding 1 to the (r – 1)’s complement
• The 10’s complement of 2389 is 7610 + 1 = 7611
• The 2’s complement of 101100 is 010011 + 1 = 010100
• Subtraction of unsigned n-digit numbers: M – N
o Add M to the r’s complement of N – this results in
M + (rn
– N) = M – N + rn
o If M ≥ N, the sum will produce an end carry rn
which is discarded
o If M < N, the sum does not produce an end carry and is equal to
rn
– (N – M), which is the r’s complement of (N – M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place a
negative sign in front.
Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750.
M = 72352
10’s comp. of N = +86750
Sum = 159282
Discard end carry = -100000
Answer = 59282
Example for M < N: 13250 – 72532 = -59282
M = 13250
10’s comp. of N = +27468
Sum = 40718
No end carry
Answer = -59282 (10’s comp. of 40718)
Example for X = 1010100 and Y = 1000011
X = 1010100
2’s comp. of Y = +0111101
Sum = 10010001
Discard end carry = -10000000
Answer X – Y = 0010001
Y = 1000011
2’s comp. of X = +0101100
Sum = 1101111
Computer Architecture 7
Chapter 3
No end carry
Answer = -0010001 (2’s comp. of 1101111)
Section 3.3 – Fixed-Point Representation
• Positive integers and zero can be represented by unsigned numbers
• Negative numbers must be represented by signed numbers since + and – signs are
not available, only 1’s and 0’s are
• Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit
• Two ways to designate binary point position in a register
o Fixed point position
o Floating-point representation
• Fixed point position usually uses one of the two following positions
o A binary point in the extreme left of the register to make it a fraction
o A binary point in the extreme right of the register to make it an integer
o In both cases, a binary point is not actually present
• The floating-point representations uses a second register to designate the position
of the binary point in the first register
• When an integer is positive, the msb, or sign bit, is 0 and the remaining bits
represent the magnitude
• When an integer is negative, the msb, or sign bit, is 1, but the rest of the number
can be represented in one of three ways
o Signed-magnitude representation
o Signed-1’s complement representation
o Signed-2’s complement representation
• Consider an 8-bit register and the number +14
o The only way to represent it is 00001110
• Consider an 8-bit register and the number –14
o Signed magnitude: 1 0001110
o Signed 1’s complement: 1 1110001
o Signed 2’s complement: 1 1110010
• Typically use signed 2’s complement
• Addition of two signed-magnitude numbers follow the normal rules
o If same signs, add the two magnitudes and use the common sign
o Differing signs, subtract the smaller from the larger and use the sign of the
larger magnitude
o Must compare the signs and magnitudes and then either add or subtract
• Addition of two signed 2’s complement numbers does not require a comparison or
subtraction – only addition and complementation
o Add the two numbers, including their sign bits
o Discard any carry out of the sign bit position
o All negative numbers must be in the 2’s complement form
o If the sum obtained is negative, then it is in 2’s complement form
Computer Architecture 8
Chapter 3
+6 00000110 -6 11111010
+13 00001101 +13 00001101
+19 00010011 +7 00000111
+6 00000110 -6 11111010
-13 11110011 -13 11110011
-7 11111001 -19 11101101
• Subtraction of two signed 2’s complement numbers is as follows
o Take the 2’s complement form of the subtrahend (including sign bit)
o Add it to the minuend (including the sign bit)
o A carry out of the sign bit position is discarded
• An overflow occurs when two numbers of n digits each are added and the sum
occupies n + 1 digits
• Overflows are problems since the width of a register is finite
• Therefore, a flag is set if this occurs and can be checked by the user
• Detection of an overflow depends on if the numbers are signed or unsigned
• For unsigned numbers, an overflow is detected from the end carry out of the msb
• For addition of signed numbers, an overflow cannot occur if one is positive and
one is negative – both have to have the same sign
• An overflow can be detected if the carry into the sign bit position and the carry
out of the sign bit position are not equal
+70 0 1000110 -70 1 0111010
+80 0 1010000 -80 1 0110000
+150 1 0010110 -150 0 1101010
• The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit
• A 4-bit decimal code requires four flip-flops for each decimal digit
• This takes much more space than the equivalent binary representation and the
circuits required to perform decimal arithmetic are more complex
• Representation of signed decimal numbers in BCD is similar to the representation
of signed numbers in binary
• Either signed magnitude or signed complement systems
• The sign of a number is represented with four bits
o 0000 for +
o 1001 for –
• To obtain the 10’s complement of a BCD number, first take the 9’s complement
and then add one to the least significant digit
• Example: (+375) + (-240) = +135
Computer Architecture 9
Chapter 3
0 375 (0000 0011 0111 1010)BCD
+9 760 (1001 0111 0110 0000)BCD
0 135 (0000 0001 0011 0101)BCD
Section 3.4 – Floating-Point Representation
• The floating-point representation of a number has two parts
• The first part represents a signed, fixed-point number – the mantissa
• The second part designates the position of the binary point – the exponent
• The mantissa may be a fraction or an integer
• Example: the decimal number +6132.789 is
o Fraction: +0.6123789
o Exponent: +04
o Equivalent to +0.6132789 x 10+4
• A floating-point number is always interpreted to represent m x re
• Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)
o Fraction: 01001110
o Exponent: 000100
o Equivalent to +(.1001110)2 x 2+4
• A floating-point number is said to be normalized if the most significant digit of
the mantissa is nonzero
• The decimal number 350 is normalized, 00350 is not
• The 8-bit number 00011010 is not normalized
• Normalize it by fraction = 11010000 and exponent = -3
• Normalized numbers provide the maximum possible precision for the floating-
point number
Section 3.5 – Other Binary Codes
• Digital systems can process data in discrete form only
• Continuous, or analog, information is converted into digital form by means of an
analog-to-digital converter
• The reflected binary or Gray code, is sometimes used for the converted digital
data
• The Gray code changes by only one bit as it sequences from one number to the
next
• Gray code counters are sometimes used to provide the timing sequences that
control the operations in a digital system
Computer Architecture 10
Chapter 3
• Binary codes for decimal digits require a minimum of four bits
• Other codes besides BCD exist to represent decimal digits
Computer Architecture 11
Chapter 3
• The 2421 code and the excess-3 code are both self-complementing
• The 9’s complement of each digit is obtained by complementing each bit in the
code
• The 2421 code is a weighted code
• The bits are multiplied by indicated weights and the sum gives the decimal digit
• The excess-3 code is obtained from the corresponding BCD code added to 3
Section 3.6 – Error Detection Codes
• Transmitted binary information is subject to noise that could change bits 1 to 0
and vice versa
• An error detection code is a binary code that detects digital errors during
transmission
• The detected errors cannot be corrected, but can prompt the data to be
retransmitted
• The most common error detection code used is the parity bit
Computer Architecture 12
Chapter 3
• A parity bit is an extra bit included with a binary message to make the total
number of 1’s either odd or even
• The P(odd) bit is chosen to make the sum of 1’s in all four bits odd
• The even-parity scheme has the disadvantage of having a bit combination of all
0’s
• Procedure during transmission:
o At the sending end, the message is applied to a parity generator
o The message, including the parity bit, is transmitted
o At the receiving end, all the incoming bits are applied to a parity checker
o Any odd number of errors are detected
• Parity generators and checkers are constructed with XOR gates (odd function)
• An odd function generates 1 iff an odd number if input variables are 1
Computer Architecture 13
Chapter 3
Computer Architecture 14
Chapter 3

More Related Content

PDF
CS304PC:Computer Organization and Architecture Unit- III PDF notes .pdf
PPTX
Chapter 2 Data Representation Data Representation
PDF
Finite word length effects
PPT
Number_Systems decimal, binary, octal, and hexadecimal
PPT
An introduction to the different number systems
PPT
Number Systems and its effectiveness .ppt
CS304PC:Computer Organization and Architecture Unit- III PDF notes .pdf
Chapter 2 Data Representation Data Representation
Finite word length effects
Number_Systems decimal, binary, octal, and hexadecimal
An introduction to the different number systems
Number Systems and its effectiveness .ppt

Similar to Module 2_Data representations.pdf (20)

PPT
Number_Systems_Number base conversions.ppt
PPT
Number_Systems _binary_octal_hex_dec.ppt
PPT
Digital fundamendals r001a
PDF
Digital Logic Computer Design lecture notes
PPT
digital logic circuits, digital component floting and fixed point
PPT
Number_Systems (2).ppt
PPTX
digital logic circuits, digital component
PPTX
Data_Representation_CAO.pptx............
PPTX
Lecture 7 Data Representation (1).pptx for computer organization and architec...
PPT
3.Fixed-Floating Point.ppt
PPTX
Digital Module 2.pptx Digital logic design
PPT
Number Systems.ppt
PPT
De numbers systems vk ppt
PPTX
PPTX
Lecture 1
PDF
Course Name: Digital System Design Number System.pdf
PPTX
Chapter 2.1 introduction to number system
PPT
02 number systems
PPT
Counit2
PPTX
Bca 2nd sem-u-1.3 digital logic circuits, digital component
Number_Systems_Number base conversions.ppt
Number_Systems _binary_octal_hex_dec.ppt
Digital fundamendals r001a
Digital Logic Computer Design lecture notes
digital logic circuits, digital component floting and fixed point
Number_Systems (2).ppt
digital logic circuits, digital component
Data_Representation_CAO.pptx............
Lecture 7 Data Representation (1).pptx for computer organization and architec...
3.Fixed-Floating Point.ppt
Digital Module 2.pptx Digital logic design
Number Systems.ppt
De numbers systems vk ppt
Lecture 1
Course Name: Digital System Design Number System.pdf
Chapter 2.1 introduction to number system
02 number systems
Counit2
Bca 2nd sem-u-1.3 digital logic circuits, digital component
Ad

Recently uploaded (20)

PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPT
Project quality management in manufacturing
PPTX
bas. eng. economics group 4 presentation 1.pptx
DOCX
573137875-Attendance-Management-System-original
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
composite construction of structures.pdf
PPTX
web development for engineering and engineering
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
additive manufacturing of ss316l using mig welding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Model Code of Practice - Construction Work - 21102022 .pdf
Project quality management in manufacturing
bas. eng. economics group 4 presentation 1.pptx
573137875-Attendance-Management-System-original
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
OOP with Java - Java Introduction (Basics)
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
composite construction of structures.pdf
web development for engineering and engineering
Lecture Notes Electrical Wiring System Components
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Foundation to blockchain - A guide to Blockchain Tech
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
additive manufacturing of ss316l using mig welding
Ad

Module 2_Data representations.pdf

  • 1. Chapter 3 – Data Representation Section 3.1 – Data Types • Registers contain either data or control information • Control information is a bit or group of bits used to specify the sequence of command signals needed for data manipulation • Data are numbers and other binary-coded information that are operated on • Possible data types in registers: o Numbers used in computations o Letters of the alphabet used in data processing o Other discrete symbols used for specific purposes • All types of data, except binary numbers, are represented in binary-coded form • A number system of base, or radix, r is a system that uses distinct symbols for r digits • Numbers are represented by a string of digit symbols • The string of digits 724.5 represents the quantity 7 x 102 + 2 x 101 + 4 x 100 + 5 x 10-1 • The string of digits 101101 in the binary number system represents the quantity 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45 • (101101)2 = (45)10 • We will also use the octal (radix 8) and hexidecimal (radix 16) number systems (736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 = (478.5)10 (F3)16 = F x 161 + 3 x 160 = (243)10 • Conversion from decimal to radix r system is carried out by separating the number into its integer and fraction parts and converting each part separately • Divide the integer successively by r and accumulate the remainders • Multiply the fraction successively by r until the fraction becomes zero Computer Architecture 1 Chapter 3
  • 2. • Each octal digit corresponds to three binary digits • Each hexadecimal digit corresponds to four binary digits • Rather than specifying numbers in binary form, refer to them in octal or hexadecimal and reduce the number of digits by 1/3 or ¼, respectively Computer Architecture 2 Chapter 3
  • 4. • A binary code is a group of n bits that assume up to 2n distinct combinations • A four bit code is necessary to represent the ten decimal digits – 6 are unused • The most popular decimal code is called binary-coded decimal (BCD) • BCD is different from converting a decimal number to binary • For example 99, when converted to binary, is 1100011 • 99 when represented in BCD is 1001 1001 Computer Architecture 4 Chapter 3
  • 5. • The standard alphanumeric binary code is ASCII • This uses seven bits to code 128 characters • Binary codes are required since registers can hold binary information only Computer Architecture 5 Chapter 3
  • 6. Section 3.2 – Complements • Complements are used in digital computers for simplifying subtraction and logical manipulation • Two types of complements for each base r system: r’s complement and (r – 1)’s complement • Given a number N in base r having n digits, the (r – 1)’s complement of N is defined as (rn – 1) – N • For decimal, the 9’s complement of N is (10n – 1) – N • The 9’s complement of 546700 is 999999 – 546700 = 453299 Computer Architecture 6 Chapter 3
  • 7. • The 9’s complement of 453299 is 999999 – 453299 = 546700 • For binary, the 1’s complement of N is (2n – 1) – N • The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110 • The 1’s complement is the true complement of the number – just toggle all bits • The r’s complement of an n-digit number N in base r is defined as rn – N • This is the same as adding 1 to the (r – 1)’s complement • The 10’s complement of 2389 is 7610 + 1 = 7611 • The 2’s complement of 101100 is 010011 + 1 = 010100 • Subtraction of unsigned n-digit numbers: M – N o Add M to the r’s complement of N – this results in M + (rn – N) = M – N + rn o If M ≥ N, the sum will produce an end carry rn which is discarded o If M < N, the sum does not produce an end carry and is equal to rn – (N – M), which is the r’s complement of (N – M). To obtain the answer in a familiar form, take the r’s complement of the sum and place a negative sign in front. Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750. M = 72352 10’s comp. of N = +86750 Sum = 159282 Discard end carry = -100000 Answer = 59282 Example for M < N: 13250 – 72532 = -59282 M = 13250 10’s comp. of N = +27468 Sum = 40718 No end carry Answer = -59282 (10’s comp. of 40718) Example for X = 1010100 and Y = 1000011 X = 1010100 2’s comp. of Y = +0111101 Sum = 10010001 Discard end carry = -10000000 Answer X – Y = 0010001 Y = 1000011 2’s comp. of X = +0101100 Sum = 1101111 Computer Architecture 7 Chapter 3
  • 8. No end carry Answer = -0010001 (2’s comp. of 1101111) Section 3.3 – Fixed-Point Representation • Positive integers and zero can be represented by unsigned numbers • Negative numbers must be represented by signed numbers since + and – signs are not available, only 1’s and 0’s are • Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit • Two ways to designate binary point position in a register o Fixed point position o Floating-point representation • Fixed point position usually uses one of the two following positions o A binary point in the extreme left of the register to make it a fraction o A binary point in the extreme right of the register to make it an integer o In both cases, a binary point is not actually present • The floating-point representations uses a second register to designate the position of the binary point in the first register • When an integer is positive, the msb, or sign bit, is 0 and the remaining bits represent the magnitude • When an integer is negative, the msb, or sign bit, is 1, but the rest of the number can be represented in one of three ways o Signed-magnitude representation o Signed-1’s complement representation o Signed-2’s complement representation • Consider an 8-bit register and the number +14 o The only way to represent it is 00001110 • Consider an 8-bit register and the number –14 o Signed magnitude: 1 0001110 o Signed 1’s complement: 1 1110001 o Signed 2’s complement: 1 1110010 • Typically use signed 2’s complement • Addition of two signed-magnitude numbers follow the normal rules o If same signs, add the two magnitudes and use the common sign o Differing signs, subtract the smaller from the larger and use the sign of the larger magnitude o Must compare the signs and magnitudes and then either add or subtract • Addition of two signed 2’s complement numbers does not require a comparison or subtraction – only addition and complementation o Add the two numbers, including their sign bits o Discard any carry out of the sign bit position o All negative numbers must be in the 2’s complement form o If the sum obtained is negative, then it is in 2’s complement form Computer Architecture 8 Chapter 3
  • 9. +6 00000110 -6 11111010 +13 00001101 +13 00001101 +19 00010011 +7 00000111 +6 00000110 -6 11111010 -13 11110011 -13 11110011 -7 11111001 -19 11101101 • Subtraction of two signed 2’s complement numbers is as follows o Take the 2’s complement form of the subtrahend (including sign bit) o Add it to the minuend (including the sign bit) o A carry out of the sign bit position is discarded • An overflow occurs when two numbers of n digits each are added and the sum occupies n + 1 digits • Overflows are problems since the width of a register is finite • Therefore, a flag is set if this occurs and can be checked by the user • Detection of an overflow depends on if the numbers are signed or unsigned • For unsigned numbers, an overflow is detected from the end carry out of the msb • For addition of signed numbers, an overflow cannot occur if one is positive and one is negative – both have to have the same sign • An overflow can be detected if the carry into the sign bit position and the carry out of the sign bit position are not equal +70 0 1000110 -70 1 0111010 +80 0 1010000 -80 1 0110000 +150 1 0010110 -150 0 1101010 • The representation of decimal numbers in registers is a function of the binary code used to represent a decimal digit • A 4-bit decimal code requires four flip-flops for each decimal digit • This takes much more space than the equivalent binary representation and the circuits required to perform decimal arithmetic are more complex • Representation of signed decimal numbers in BCD is similar to the representation of signed numbers in binary • Either signed magnitude or signed complement systems • The sign of a number is represented with four bits o 0000 for + o 1001 for – • To obtain the 10’s complement of a BCD number, first take the 9’s complement and then add one to the least significant digit • Example: (+375) + (-240) = +135 Computer Architecture 9 Chapter 3
  • 10. 0 375 (0000 0011 0111 1010)BCD +9 760 (1001 0111 0110 0000)BCD 0 135 (0000 0001 0011 0101)BCD Section 3.4 – Floating-Point Representation • The floating-point representation of a number has two parts • The first part represents a signed, fixed-point number – the mantissa • The second part designates the position of the binary point – the exponent • The mantissa may be a fraction or an integer • Example: the decimal number +6132.789 is o Fraction: +0.6123789 o Exponent: +04 o Equivalent to +0.6132789 x 10+4 • A floating-point number is always interpreted to represent m x re • Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent) o Fraction: 01001110 o Exponent: 000100 o Equivalent to +(.1001110)2 x 2+4 • A floating-point number is said to be normalized if the most significant digit of the mantissa is nonzero • The decimal number 350 is normalized, 00350 is not • The 8-bit number 00011010 is not normalized • Normalize it by fraction = 11010000 and exponent = -3 • Normalized numbers provide the maximum possible precision for the floating- point number Section 3.5 – Other Binary Codes • Digital systems can process data in discrete form only • Continuous, or analog, information is converted into digital form by means of an analog-to-digital converter • The reflected binary or Gray code, is sometimes used for the converted digital data • The Gray code changes by only one bit as it sequences from one number to the next • Gray code counters are sometimes used to provide the timing sequences that control the operations in a digital system Computer Architecture 10 Chapter 3
  • 11. • Binary codes for decimal digits require a minimum of four bits • Other codes besides BCD exist to represent decimal digits Computer Architecture 11 Chapter 3
  • 12. • The 2421 code and the excess-3 code are both self-complementing • The 9’s complement of each digit is obtained by complementing each bit in the code • The 2421 code is a weighted code • The bits are multiplied by indicated weights and the sum gives the decimal digit • The excess-3 code is obtained from the corresponding BCD code added to 3 Section 3.6 – Error Detection Codes • Transmitted binary information is subject to noise that could change bits 1 to 0 and vice versa • An error detection code is a binary code that detects digital errors during transmission • The detected errors cannot be corrected, but can prompt the data to be retransmitted • The most common error detection code used is the parity bit Computer Architecture 12 Chapter 3
  • 13. • A parity bit is an extra bit included with a binary message to make the total number of 1’s either odd or even • The P(odd) bit is chosen to make the sum of 1’s in all four bits odd • The even-parity scheme has the disadvantage of having a bit combination of all 0’s • Procedure during transmission: o At the sending end, the message is applied to a parity generator o The message, including the parity bit, is transmitted o At the receiving end, all the incoming bits are applied to a parity checker o Any odd number of errors are detected • Parity generators and checkers are constructed with XOR gates (odd function) • An odd function generates 1 iff an odd number if input variables are 1 Computer Architecture 13 Chapter 3