SlideShare a Scribd company logo
PHYSICS 13 & 11A
GENERAL PHYSICS 1
MARLON FLORES SACEDON
Dynamics of Motion:
Application of Newton’s Laws of Motion
Friction 𝑓 - refers to actual forces that are exerted to oppose motion
- a resistance that opposes every effort to slide or roll a body over another
Kinds of Friction:
1. Static friction - force that will just start the body.
2. Kinetic friction - force that will pull the body uniformly.
APPLICATION OF NEWTON’S LAWS OF
MOTION
Friction
Coefficient of friction 𝜇 - the ratio of the force necessary to move one surface over the other with uniform velocity to
the normal force pressing the two surfaces to other.
𝜇 =
𝑓
𝑁
Where: N is the normal force exerted by the contact surface to the object. Normal force is
always acting against and perpendicular to the surface in contact.
m
𝑁
𝑃
𝑤
𝑓
𝜃
𝑦
𝑥
𝜃
𝑓 = 𝜇𝑁
Free-Body Diagram (FBD)
m
𝑁
𝑃
𝑤
𝑓
𝜃
𝑦
𝑥
𝜃
FBD is a vectors diagram showing all forces acting on the body.
APPLICATION OF NEWTON’S LAWS OF
MOTION
Free-Body Diagram (FBD)
FBD of Furniture
𝑦
𝑥
𝜮𝑭
𝒂
𝑷
𝒘 = 𝒎𝒈
N
𝒇 = 𝝁𝑵
Σ 𝐹𝑦 = 𝑁 − 𝑤 = 0 (for static equilibrium)
Σ 𝐹𝑥 = 𝑃 − 𝑓 (Net External force)
𝜮𝑭 = 𝑃𝑥 − 𝑓
Net external force
Note: If pulling force 𝑃 is less than friction 𝑓 then furniture is at
rest otherwise it will move to the right..
APPLICATION OF NEWTON’S LAWS OF
MOTION
FBD is a vectors diagram showing all forces acting on the body.
Free-Body Diagram (FBD)
N
P
𝒘 = 𝒎𝒈
𝑦
𝑥
𝑷 𝒙
𝑷 𝒚
FBD of box
Σ 𝐹𝑦 = 𝑁 + 𝑃𝑦 − 𝑤 = 0 (for static equilibrium)
𝒇 = 𝝁𝑵
Σ 𝐹𝑥 = 𝑃𝑥 − 𝑓 (Net External force)
𝜮𝑭 = 𝑃𝑥 − 𝑓
Note: If Σ 𝐹𝑦 is not equal to zero then box didn’t touch the ground
surface. Therefore Net external force is not equal to Σ 𝐹𝑥.
Net external force
𝜮𝑭
𝒂
APPLICATION OF NEWTON’S LAWS OF
MOTION
FBD is a vectors diagram showing all forces acting on the body.
Free-Body Diagram (FBD)
Exercise Problem: Construct the free-body diagram (FBD)
𝒘 = 𝒎𝒈
FBD of box
𝒘 𝒚
𝒘 𝒙
20 𝑜
APPLICATION OF NEWTON’S LAWS OF
MOTION
𝑠
𝑡 = 2𝑠
𝑚 𝐴
𝑚 𝐵
Figure:
𝑚 𝐴
𝑚 𝐵
𝑚 𝐵
𝑚 𝐴
𝑠
𝑡 = 2𝑠
APPLICATION OF NEWTON’S LAWS OF
MOTIONProblem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes
over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord?
Find the distance the two bodies will travel after 2s, if they start from rest.
Problem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes
over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord?
Find the distance the two bodies will travel after 2s, if they start from rest.
𝑚 𝐵
𝑚 𝐴
𝑠
𝑡 = 2𝑠
𝑚 𝐴
𝑚 𝐵
Figure:
𝑚 𝐴
𝑚 𝐵
𝑠
𝑡 = 2𝑠
𝑦
𝑥
𝑦
𝑥𝑚 𝐴
𝑦
𝑥
𝑚 𝐵
+𝑇𝑐𝑜𝑟𝑑
−𝑇𝑐𝑜𝑟𝑑
−𝑤 𝐴= 𝑚 𝐴 𝑔
𝑤 𝐵 = 𝑚 𝐵 𝑔
𝑁
Σ 𝐹𝐴
Σ 𝐹𝐵
𝑎
𝑎
FBD of 𝑚 𝐴 FBD of 𝑚 𝐵
Σ 𝐹𝑥 = +𝑇𝑐𝑜𝑟𝑑 − 𝑓
Σ 𝐹𝑦 = 𝑁 − 𝑤 𝐴 = 0 (static equilibrium)
Σ 𝐹𝐴 = 𝑚 𝐴 𝑎
From Second law
𝑇𝑐𝑜𝑟𝑑 − 𝑓 = 𝑚 𝐴 𝑎
Σ 𝐹𝑦 = 0 (static equilibrium)
Σ 𝐹𝑥 = −𝑇𝑐𝑜𝑟𝑑+𝑚 𝐵 𝑔
Σ 𝐹𝐵 = 𝑚 𝐵 𝑎From Second law
−𝑇𝑐𝑜𝑟𝑑+𝑚 𝐵 𝑔 = 𝑚 𝐵 𝑎
Substi. 𝐸𝑞 2 in 𝐸𝑞. 1 to eliminate
𝑇𝑐𝑜𝑟𝑑 then solve Acceleration 𝑎.
𝑎 =
𝑔(𝑚 𝐵 − 𝜇 𝑘 𝑚 𝐴)
𝑚 𝐴 + 𝑚 𝐵
𝑎 =
9.81(8 − 0.25(6)
6 + 8
= 4.55 𝑚/𝑠2
Net external force
Net external force
APPLICATION OF NEWTON’S LAWS OF
MOTION
−𝑓
𝑇𝑐𝑜𝑟𝑑 = 𝑚 𝐵 𝑔 − 𝑚 𝐵 𝑎 Eq.2
= 𝑇𝑐𝑜𝑟𝑑 − 𝜇 𝑘 𝑚 𝐴 𝑔
𝑇𝑐𝑜𝑟𝑑 − 𝜇 𝑘 𝑚 𝐴 𝑔 = 𝑚 𝐴 𝑎
Eq.1
𝑚 𝐵
𝑚 𝐴
𝑠
𝑡 = 2𝑠
𝑚 𝐴
𝑚 𝐵
Figure:
𝑚 𝐴
𝑚 𝐵
𝑠
𝑡 = 2𝑠
𝑦
𝑥
𝑦
𝑥
a) Solve for tension in the cord 𝑇𝑐𝑜𝑟𝑑 using Eq.1
𝑇𝑐𝑜𝑟𝑑 = 6 4.55 + 0.25(6)(9.81)= 42.08 N ANSWER
b) Solve for the distance 𝑠 of two bodies after travelling 2
Given:
𝑣𝑖 = 0
𝑡 = 2 𝑠
𝑎 = 4.55 𝑚/𝑠2
From kinematics: 𝑠 = 𝑣1 𝑡 +
1
2
𝑎𝑡2
𝑠 = 0 2 +
1
2
4.55 22
= 9.10 𝑚 ANSWER
APPLICATION OF NEWTON’S LAWS OF
MOTION
𝑇𝑐𝑜𝑟𝑑 − 𝑓 = 𝑚 𝐴 𝑎 Eq.1
𝑇𝑐𝑜𝑟𝑑 = 𝑚 𝐴 𝑎 + 𝜇 𝑘 𝑚 𝐴 𝑔
Problem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes
over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord?
Find the distance the two bodies will travel after 2s, if they start from rest.
𝒎 𝟏
Atwood Machine
𝑤1 = +𝑚1 𝑔
−𝑇𝑐𝑜𝑟𝑑
Σ 𝐹1
𝑎
FBD of 𝑚1
𝑦
+𝑥
Σ 𝐹𝑥 = +𝑤1 − 𝑇𝑐𝑜𝑟𝑑
Net external force
Σ 𝐹1 = 𝑚1 𝑎
From Second law
+𝑤1 − 𝑇𝑐𝑜𝑟𝑑 = 𝑚1 𝑎
𝒎 𝟐
−𝑤2= 𝑚2 𝑔
+𝑇𝑐𝑜𝑟𝑑
Σ 𝐹2
𝑎
FBD of 𝑚2
𝑦
+𝑥
Σ 𝐹𝑥 = −𝑤2 + 𝑇𝑐𝑜𝑟𝑑
Net external force
Σ 𝐹2 = 𝑚2 𝑎
From Second law
−𝑤2 + 𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎
𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎 +𝑤2 𝑚1 𝑔 − 𝑇𝑐𝑜𝑟𝑑 = 𝑚1 𝑎 Eq.1
Substi Eq.2 in eq.1
𝑚1 𝑔 − (𝑚2 𝑎 +𝑚2 𝑔) = 𝑚1 𝑎
𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎 +𝑚2 𝑔 Eq.2
𝑎 =
𝑔(𝑚1 − 𝑚2)
𝑚1 + 𝑚2
Problem: Two blocks connected by a cord passing over a small, frictionless pulley rest on a double inclined plane. Block A whose mass is 𝑚 𝐴 =
100 𝑘𝑔 is on left side and Block B with mass 𝑚 𝐵 = 50 𝑘𝑔 is on the right side inclined plane.. The coefficient of kinetic frictions between
block and inclined plane on the right and left side are 𝜇 𝐴 = 0.30 and 𝜇 𝐵 = 0.25 respectively. The angles of the inclined plane are 𝜃 =
30 𝑜 (left side) and 𝛽 = 53.1 𝑜 (right side). (a) Calculate the acceleration "𝑎" of the system, (b) calculate also the tension in the cord 𝑇𝐶.
𝜃 𝛽
. Given:
m = 10 kg
h = 5 m
L = 10m
S1 = 2m
Ø =44o
𝜇 = 0.06 coef. of kinetic friction
Note:
 Particle “m” is release from rest at pt. A and moves
to pt. B, then to pt.C, and finally to pt.D.
 Neglect the effect of the change in velocity direction at pt.B.
 The same value of coef. friction, from pt.A to pt.C.
 Projectile motion from pt.C to pt.D.
Required:
a. Free-body diagram of the particle at inclined plane AB.
b. Free-body diagram of the particle at horizontal plane BC.
c. Unbalanced force of the particle along the inclined plane AB.
d. Unbalanced force of the particle along the horizontal plane BC.
e. acceleration, a1 of the particle along the inclined plane AB.
f. acceleration, a2 of the particle along the horizontal plane BC.
g. velocity of the particle at pt.B.
h. velocity of the particle at pt.C.
i. Range, (S2)
j. Total time of travel of particle from pt A to pt. D.
ASSIGNMENT
Figure:
ASSIGNMENT
ASSIGNMENT
ASSIGNMENT
eNd

More Related Content

PDF
6 Acoustics and Ultrasonics.pdf
PPT
series and parallel connection of capacitor
PPT
Theories of IR-4-globalization
PPTX
Chapter 10
PDF
Globalization powerpoint
PPTX
Rotational inertia
PPT
Globalization Theory
PPTX
Distribution of charges in a conductor and action
6 Acoustics and Ultrasonics.pdf
series and parallel connection of capacitor
Theories of IR-4-globalization
Chapter 10
Globalization powerpoint
Rotational inertia
Globalization Theory
Distribution of charges in a conductor and action

What's hot (20)

PPTX
kirchoff's rules
PPTX
Globalization & its positive effects
PPTX
KCL and KVL
DOC
Trigonometry [QEE-R 2012]
PPT
The Great Harmony
PDF
Capacitance and dielectrics
PPTX
role of youth in cleaner and greener environment
PDF
Mechanics of fluids 5th edition potter solutions manual
PPTX
Kirchoff's Law
PPTX
The North-South Gap
PDF
Electric Circuit 1 Chapter 1 Basic Concepts of Circuits
PPTX
Lecture 4
PPTX
1-Theories-of-Globalization.pptx
DOC
Kinematics of a particle
PPTX
Magnetic field
PPTX
Superposition theorem
PPTX
Breakdowngass
PDF
5. radial and transverse compo. 2 by-ghumare s m
PPT
Nature of globalization
PPTX
Vectors and Kinematics
kirchoff's rules
Globalization & its positive effects
KCL and KVL
Trigonometry [QEE-R 2012]
The Great Harmony
Capacitance and dielectrics
role of youth in cleaner and greener environment
Mechanics of fluids 5th edition potter solutions manual
Kirchoff's Law
The North-South Gap
Electric Circuit 1 Chapter 1 Basic Concepts of Circuits
Lecture 4
1-Theories-of-Globalization.pptx
Kinematics of a particle
Magnetic field
Superposition theorem
Breakdowngass
5. radial and transverse compo. 2 by-ghumare s m
Nature of globalization
Vectors and Kinematics
Ad

Similar to Module 7 -phys_13___11a_application_of__newtons_law (1) (20)

PPTX
Newton's laws of motion by Mphiriseni Khwanda
PPTX
Newton's first and second laws applications
PPTX
Kragte 11 e
PPTX
What is the Laws of Motion, Friction.pptx
PPTX
Vectors in mechanics
PPTX
Statics of particle
PPTX
Rotational_KineticEnergy_Torque.pptx
PPT
Structures and Materials- Section 1 Statics
PPT
Equilibrium and Equation of Equilibrium:2D
PPT
Equilibrium and Equation of Equilibrium:2D
PPTX
Unit 2 AR Equilibrium of Force Systems.pptx
PDF
ME421 The Single Degree of Freedom System (Undamped).pdf
PPTX
project statics
PDF
Handbook to ssc je mechanical
PPTX
Newton's laws of motion lecture notes
PDF
force and motion kinetic energy and work aiub
PDF
Force & Laws of-motion
PPTX
Drjjdhdhhdjsjsjshshshhshshslecture 28.pptxfg
PPT
2.2 - Forces & Dynamics
PDF
3). work & energy (finished)
Newton's laws of motion by Mphiriseni Khwanda
Newton's first and second laws applications
Kragte 11 e
What is the Laws of Motion, Friction.pptx
Vectors in mechanics
Statics of particle
Rotational_KineticEnergy_Torque.pptx
Structures and Materials- Section 1 Statics
Equilibrium and Equation of Equilibrium:2D
Equilibrium and Equation of Equilibrium:2D
Unit 2 AR Equilibrium of Force Systems.pptx
ME421 The Single Degree of Freedom System (Undamped).pdf
project statics
Handbook to ssc je mechanical
Newton's laws of motion lecture notes
force and motion kinetic energy and work aiub
Force & Laws of-motion
Drjjdhdhhdjsjsjshshshhshshslecture 28.pptxfg
2.2 - Forces & Dynamics
3). work & energy (finished)
Ad

Recently uploaded (20)

PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Global journeys: estimating international migration
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPT
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
PPTX
Business Acumen Training GuidePresentation.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PPTX
Database Infoormation System (DBIS).pptx
PPTX
1_Introduction to advance data techniques.pptx
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
Introduction to Business Data Analytics.
PDF
Clinical guidelines as a resource for EBP(1).pdf
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
Computer network topology notes for revision
Introduction to Knowledge Engineering Part 1
Global journeys: estimating international migration
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
Business Acumen Training GuidePresentation.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Data_Analytics_and_PowerBI_Presentation.pptx
IB Computer Science - Internal Assessment.pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Database Infoormation System (DBIS).pptx
1_Introduction to advance data techniques.pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
Introduction to Business Data Analytics.
Clinical guidelines as a resource for EBP(1).pdf
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Computer network topology notes for revision

Module 7 -phys_13___11a_application_of__newtons_law (1)

  • 1. PHYSICS 13 & 11A GENERAL PHYSICS 1 MARLON FLORES SACEDON Dynamics of Motion: Application of Newton’s Laws of Motion
  • 2. Friction 𝑓 - refers to actual forces that are exerted to oppose motion - a resistance that opposes every effort to slide or roll a body over another Kinds of Friction: 1. Static friction - force that will just start the body. 2. Kinetic friction - force that will pull the body uniformly. APPLICATION OF NEWTON’S LAWS OF MOTION Friction Coefficient of friction 𝜇 - the ratio of the force necessary to move one surface over the other with uniform velocity to the normal force pressing the two surfaces to other. 𝜇 = 𝑓 𝑁 Where: N is the normal force exerted by the contact surface to the object. Normal force is always acting against and perpendicular to the surface in contact. m 𝑁 𝑃 𝑤 𝑓 𝜃 𝑦 𝑥 𝜃 𝑓 = 𝜇𝑁
  • 3. Free-Body Diagram (FBD) m 𝑁 𝑃 𝑤 𝑓 𝜃 𝑦 𝑥 𝜃 FBD is a vectors diagram showing all forces acting on the body. APPLICATION OF NEWTON’S LAWS OF MOTION
  • 4. Free-Body Diagram (FBD) FBD of Furniture 𝑦 𝑥 𝜮𝑭 𝒂 𝑷 𝒘 = 𝒎𝒈 N 𝒇 = 𝝁𝑵 Σ 𝐹𝑦 = 𝑁 − 𝑤 = 0 (for static equilibrium) Σ 𝐹𝑥 = 𝑃 − 𝑓 (Net External force) 𝜮𝑭 = 𝑃𝑥 − 𝑓 Net external force Note: If pulling force 𝑃 is less than friction 𝑓 then furniture is at rest otherwise it will move to the right.. APPLICATION OF NEWTON’S LAWS OF MOTION FBD is a vectors diagram showing all forces acting on the body.
  • 5. Free-Body Diagram (FBD) N P 𝒘 = 𝒎𝒈 𝑦 𝑥 𝑷 𝒙 𝑷 𝒚 FBD of box Σ 𝐹𝑦 = 𝑁 + 𝑃𝑦 − 𝑤 = 0 (for static equilibrium) 𝒇 = 𝝁𝑵 Σ 𝐹𝑥 = 𝑃𝑥 − 𝑓 (Net External force) 𝜮𝑭 = 𝑃𝑥 − 𝑓 Note: If Σ 𝐹𝑦 is not equal to zero then box didn’t touch the ground surface. Therefore Net external force is not equal to Σ 𝐹𝑥. Net external force 𝜮𝑭 𝒂 APPLICATION OF NEWTON’S LAWS OF MOTION FBD is a vectors diagram showing all forces acting on the body.
  • 6. Free-Body Diagram (FBD) Exercise Problem: Construct the free-body diagram (FBD) 𝒘 = 𝒎𝒈 FBD of box 𝒘 𝒚 𝒘 𝒙 20 𝑜 APPLICATION OF NEWTON’S LAWS OF MOTION
  • 7. 𝑠 𝑡 = 2𝑠 𝑚 𝐴 𝑚 𝐵 Figure: 𝑚 𝐴 𝑚 𝐵 𝑚 𝐵 𝑚 𝐴 𝑠 𝑡 = 2𝑠 APPLICATION OF NEWTON’S LAWS OF MOTIONProblem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord? Find the distance the two bodies will travel after 2s, if they start from rest.
  • 8. Problem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord? Find the distance the two bodies will travel after 2s, if they start from rest. 𝑚 𝐵 𝑚 𝐴 𝑠 𝑡 = 2𝑠 𝑚 𝐴 𝑚 𝐵 Figure: 𝑚 𝐴 𝑚 𝐵 𝑠 𝑡 = 2𝑠 𝑦 𝑥 𝑦 𝑥𝑚 𝐴 𝑦 𝑥 𝑚 𝐵 +𝑇𝑐𝑜𝑟𝑑 −𝑇𝑐𝑜𝑟𝑑 −𝑤 𝐴= 𝑚 𝐴 𝑔 𝑤 𝐵 = 𝑚 𝐵 𝑔 𝑁 Σ 𝐹𝐴 Σ 𝐹𝐵 𝑎 𝑎 FBD of 𝑚 𝐴 FBD of 𝑚 𝐵 Σ 𝐹𝑥 = +𝑇𝑐𝑜𝑟𝑑 − 𝑓 Σ 𝐹𝑦 = 𝑁 − 𝑤 𝐴 = 0 (static equilibrium) Σ 𝐹𝐴 = 𝑚 𝐴 𝑎 From Second law 𝑇𝑐𝑜𝑟𝑑 − 𝑓 = 𝑚 𝐴 𝑎 Σ 𝐹𝑦 = 0 (static equilibrium) Σ 𝐹𝑥 = −𝑇𝑐𝑜𝑟𝑑+𝑚 𝐵 𝑔 Σ 𝐹𝐵 = 𝑚 𝐵 𝑎From Second law −𝑇𝑐𝑜𝑟𝑑+𝑚 𝐵 𝑔 = 𝑚 𝐵 𝑎 Substi. 𝐸𝑞 2 in 𝐸𝑞. 1 to eliminate 𝑇𝑐𝑜𝑟𝑑 then solve Acceleration 𝑎. 𝑎 = 𝑔(𝑚 𝐵 − 𝜇 𝑘 𝑚 𝐴) 𝑚 𝐴 + 𝑚 𝐵 𝑎 = 9.81(8 − 0.25(6) 6 + 8 = 4.55 𝑚/𝑠2 Net external force Net external force APPLICATION OF NEWTON’S LAWS OF MOTION −𝑓 𝑇𝑐𝑜𝑟𝑑 = 𝑚 𝐵 𝑔 − 𝑚 𝐵 𝑎 Eq.2 = 𝑇𝑐𝑜𝑟𝑑 − 𝜇 𝑘 𝑚 𝐴 𝑔 𝑇𝑐𝑜𝑟𝑑 − 𝜇 𝑘 𝑚 𝐴 𝑔 = 𝑚 𝐴 𝑎 Eq.1
  • 9. 𝑚 𝐵 𝑚 𝐴 𝑠 𝑡 = 2𝑠 𝑚 𝐴 𝑚 𝐵 Figure: 𝑚 𝐴 𝑚 𝐵 𝑠 𝑡 = 2𝑠 𝑦 𝑥 𝑦 𝑥 a) Solve for tension in the cord 𝑇𝑐𝑜𝑟𝑑 using Eq.1 𝑇𝑐𝑜𝑟𝑑 = 6 4.55 + 0.25(6)(9.81)= 42.08 N ANSWER b) Solve for the distance 𝑠 of two bodies after travelling 2 Given: 𝑣𝑖 = 0 𝑡 = 2 𝑠 𝑎 = 4.55 𝑚/𝑠2 From kinematics: 𝑠 = 𝑣1 𝑡 + 1 2 𝑎𝑡2 𝑠 = 0 2 + 1 2 4.55 22 = 9.10 𝑚 ANSWER APPLICATION OF NEWTON’S LAWS OF MOTION 𝑇𝑐𝑜𝑟𝑑 − 𝑓 = 𝑚 𝐴 𝑎 Eq.1 𝑇𝑐𝑜𝑟𝑑 = 𝑚 𝐴 𝑎 + 𝜇 𝑘 𝑚 𝐴 𝑔 Problem: A horizontal cord is attached to a 6.0-kg body in a horizontal table whose coefficient of kinetic friction 𝜇 𝑘 = 0.25. The cord passes over a pulley at the end of the table and to this end is hung a body of mass 8 kg. What is the acceleration of the system and tension in the cord? Find the distance the two bodies will travel after 2s, if they start from rest.
  • 10. 𝒎 𝟏 Atwood Machine 𝑤1 = +𝑚1 𝑔 −𝑇𝑐𝑜𝑟𝑑 Σ 𝐹1 𝑎 FBD of 𝑚1 𝑦 +𝑥 Σ 𝐹𝑥 = +𝑤1 − 𝑇𝑐𝑜𝑟𝑑 Net external force Σ 𝐹1 = 𝑚1 𝑎 From Second law +𝑤1 − 𝑇𝑐𝑜𝑟𝑑 = 𝑚1 𝑎 𝒎 𝟐 −𝑤2= 𝑚2 𝑔 +𝑇𝑐𝑜𝑟𝑑 Σ 𝐹2 𝑎 FBD of 𝑚2 𝑦 +𝑥 Σ 𝐹𝑥 = −𝑤2 + 𝑇𝑐𝑜𝑟𝑑 Net external force Σ 𝐹2 = 𝑚2 𝑎 From Second law −𝑤2 + 𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎 𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎 +𝑤2 𝑚1 𝑔 − 𝑇𝑐𝑜𝑟𝑑 = 𝑚1 𝑎 Eq.1 Substi Eq.2 in eq.1 𝑚1 𝑔 − (𝑚2 𝑎 +𝑚2 𝑔) = 𝑚1 𝑎 𝑇𝑐𝑜𝑟𝑑 = 𝑚2 𝑎 +𝑚2 𝑔 Eq.2 𝑎 = 𝑔(𝑚1 − 𝑚2) 𝑚1 + 𝑚2
  • 11. Problem: Two blocks connected by a cord passing over a small, frictionless pulley rest on a double inclined plane. Block A whose mass is 𝑚 𝐴 = 100 𝑘𝑔 is on left side and Block B with mass 𝑚 𝐵 = 50 𝑘𝑔 is on the right side inclined plane.. The coefficient of kinetic frictions between block and inclined plane on the right and left side are 𝜇 𝐴 = 0.30 and 𝜇 𝐵 = 0.25 respectively. The angles of the inclined plane are 𝜃 = 30 𝑜 (left side) and 𝛽 = 53.1 𝑜 (right side). (a) Calculate the acceleration "𝑎" of the system, (b) calculate also the tension in the cord 𝑇𝐶. 𝜃 𝛽
  • 12. . Given: m = 10 kg h = 5 m L = 10m S1 = 2m Ø =44o 𝜇 = 0.06 coef. of kinetic friction Note:  Particle “m” is release from rest at pt. A and moves to pt. B, then to pt.C, and finally to pt.D.  Neglect the effect of the change in velocity direction at pt.B.  The same value of coef. friction, from pt.A to pt.C.  Projectile motion from pt.C to pt.D. Required: a. Free-body diagram of the particle at inclined plane AB. b. Free-body diagram of the particle at horizontal plane BC. c. Unbalanced force of the particle along the inclined plane AB. d. Unbalanced force of the particle along the horizontal plane BC. e. acceleration, a1 of the particle along the inclined plane AB. f. acceleration, a2 of the particle along the horizontal plane BC. g. velocity of the particle at pt.B. h. velocity of the particle at pt.C. i. Range, (S2) j. Total time of travel of particle from pt A to pt. D. ASSIGNMENT Figure:
  • 16. eNd