This document presents a dissertation on module theory submitted in partial fulfillment of a master's degree. It contains an introduction, three chapters, and a conclusion. Chapter 1 provides preliminaries on groups, rings, vector spaces, and related concepts needed to understand modules. Chapter 2 introduces modules and submodules, discusses module homomorphisms, quotient modules, generation of modules, and direct sums. Chapter 3 examines Artinian and Noetherian modules, which have special properties regarding ascending and descending chains of submodules.