SlideShare a Scribd company logo
MONAD
TRANSFORMERS
In The Wild
speakerdeck.com/u/jrwest/p/monad-transformers
TWITTER: @_JRWEST
   GITHUB.COM/JRWEST
BLOG.LOOPEDSTRANGE.COM
SF SCALA
                                                                            May 2012


* http://marakana.com/s/scala_typeclassopedia_with_john_kodumal_of_atlassian_video,1198/index.html
trait Monad[F[_]] extends Applicative[F] {

            def flatMap[A, B](fa: F[A])(f :A=>F[B]):F[B]

        }



* monad type class
* flatMap also called bind, >>=
def point[A](a: => A): M[A]

            def map[A,B](ma: M[A])(f: A => B): M[B]

            def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]




* the functions we care about
* lift pure value, lift pure function, chain “operations”
scala> import scalaz.Monad
               scala> import scalaz.std.option._
               scala> val a = Monad[Option].point(1)
               a: Option[Int] = Some(1)
               scala> Monad[Option].map(a)(_.toString + "hi")
               res2: Option[java.lang.String] = Some(1hi)
               scala> Monad[Option].bind(a)(i => if (i < 0) None else Some(i + 1))
               res4: Option[Int] = Some(2)




* explicit type class usage in scalaz seven
scala> import scalaz.syntax.monad._
               import scalaz.syntax.monad._
               scala> Option(1).flatMap(i => if (i < 0) None else Some(i+1))
               res6: Option[Int] = Some(2)
               scala> 1.point[Option].flatMap(...)
               res7: Option[Int] = Some(2)




* implicit type class usage in scalaz7 using syntax extensions
“A MONADIC FOR
                                     COMPREHENSION IS AN
                                     EMBEDDED PROGRAMMING
                                     LANGUAGE WITH SEMANTICS
                                     DEFINED BY THE MONAD”




* “one intuition of monads” - john
MULTIPLE
 EFFECTS
Composition
Option[A]


* it may not exist
SIDE NOTE:
                                           SEMANTICS


* to an extent, you can “choose” the meaning of a monad
* Option -- anon. exceptions -- more narrowly, the exception that something is not there. Validation - monad/not monad - can
mean different things in different contexts
IO[Option[A]]


* but side-effects are needed to even look for that value
IO[Validation[Throwable,Option[A]]




* and looking for that value may throw exceptions (or fail in some way)
IO[(List[String], Validation[Throwable,Option[A])]




* and logging what is going on is necessary
MULTIPLE
 EFFECTS
A Problem
MONADS
                                        DO NOT
                                       COMPOSE

* the problem in theory (core issue)
“COMPOSE”?
FUNCTORS
                               DO
                            COMPOSE

* as well as applicatives
trait Functor[F[_]] {

    def map[A, B](fa: F[A])(f :A=>B):F[B]

}
def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) =
           new Functor[({type MN[A]=[M[N[A]]]})#MN] {
               def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = ...
           }




* generic function that composes any two functors M[_] and N[_]
def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) =
 new Functor[({type MN[A]=[M[N[A]]]})#MN] {
   def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = {
         M.map(mna)(na => N.map(na)(f))
     }
 }
scala> Option("abc").map(f)
         res1: Option[Int] = Some(3)

         scala> List(Option("abc"), Option("d"), Option("ef")).map2(f)
         res2: List[Option[Int]] = List(Some(3), Some(1), Some(2))




* can compose functors infinitely deep but...
* scalaz provides method to compose 2, with nice syntatic sugar, easily (map2)
def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) =
           new Monad[({type MN[A]=[M[N[A]]]})#MN] {
            def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ...
           }




* cannot write the same function for any two monads M[_], N[_]
IT !
         def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) =



                                           Y
            new Monad[({type MN[A]=[M[N[A]]]})#MN] {



                                          R
              def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ...
            }

                                        T
* best way to understand this is attempt to write it yourself
* it won’t compile
http://blog.tmorris.net/monads-do-not-compose/




* good resource to dive into this in more detail
* some of previous slides based on above
* provides template, in the form of a gist, for trying this stuff out
STAIR
                                                         STEPPING

* the problem in practice
*http://www.flickr.com/photos/caliperstudio/2667302181/
val a: IO[Option[MyData]] = ...

                   val b: IO[Option[MyData]] = ...



* have two values that require we communicate w/ outside world to fetch
* those values may not exist (alternative meaning, fetching may result in exceptions that are anonymous)
for {
                                    data1 <- a
                                    data2 <- b
                                } yield {
                                 data1 merge data2 // fail
                                }


* want to merge the two pieces of data if they both exist
for {
                                   // we've escaped IO, fail
                                   d1 <- a.unsafePerformIO
                                   d2 <- b.unsafePerformIO
                                } yield d1 merge d2


* don’t want to perform the actions until later (don’t escape the IO monad)
for {
                  od1 <- a                     for {
                  od2 <- b
                                                od1 <- a
                } yield (od1,od2) match {
                                                od2 <- b
                  case (Some(d1),Some(d2) =>
                                               } yield for {
                    Option(d1 merge d2)
                                                d1 <- od1
                  case (a@Some(d1),_)) => a
                                                d2 <- od2
                  case (_,a@Some(d2)) => a
                  case _ => None               } yield d1 merge d2
                }



* may notice the semi-group here
* can also write it w/ an applicative
* this is a contrived example
BUT WHAT IF...
         def b(data: MyData): IO[Option[MyData]




* even w/ simple example, this minor change throws a monkey wrench in things
for {




                                                                            ):
                      readRes <- readIO(domain)
                      res <- readRes.fold(
                       success = _.cata(
                        some = meta =>
                             if (meta.enabledStatus /== status) {
                               writeIO(meta.copy(enabledStatus = status))
                             } else meta.successNel[BarneyException].pure[IO],
                         none = new ReadFailure(domain).failNel[AppMetadata].pure[IO]
                        ),
                        failure = errors => errors.fail[AppMetadata].pure[IO]
                      )
                     } yield res

* example of what not to do from something I wrote a while back
MULTIPLE
 EFFECTS
A Solution
case class IOOption[A](run: IO[Option[A]])




define type that boxes box the value, doesn’t need to be a case class, similar to haskell newtype.
new Monad[IOOption] {

            def point[A](a: => A): IOOption[A] = IOOption(a.point[Option].point[IO])


            def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] =
             IOOption(fa.run.map(opt => opt.map(f)))


            def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]):IOOption[B] =

             IOOption(fa.run.flatMap((o: Option[A]) => o match {
                case Some(a) => f(a).run
                 case None => (None : Option[B]).point[IO]
             }))
        }

* can define a Monad instance for new type
val a: IOOption[MyData] = ...
                           val b: IOOption[MyData] = ...


                           val c: IOOption[MyData] = for {
                               data1 <- a
                               data2 <- b
                           } yield {
                            data1 merge data2
                           }


                           val d: IO[Option[MyData]] = c.run

can use new type to improve previous contrived example
type MyState[A] = State[StateData,A]
       case class MyStateOption[A](run: MyState[Option[A]])




* what if we don’t need effects, but state we can read and write to produce a final optional value and some new state
* State[S,A] where S is fixed is a monad
* can define a new type for that as well
new Monad[MyStateOption] {                                                new Monad[IOOption] {
        def map[A,B](fa: MyStateOption[A])(f: A => B): MyStateOption[B] =         def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] =
         MyStateOption(Functor[MyState].map(fa)(opt => opt.map(f)))                IOOption(Functor[IO].map(fa)(opt => opt.map(f)))


        def flatMap[A, B](fa: MyStateOption[A])(f :A=>IOOption[B]) =               def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) =

         MyStateOption(Monad[MyState]].bind(fa)((o: Option[A]) => o match {        IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match {
           case Some(a) => f(a).run                                                  case Some(a) => f(a).run
           case None => (None : Option[B]).point[MyState]                                case None => (None : Option[B]).point[IO]
         }))                                                                       }))
    }                                                                         }




* opportunity for more abstraction
* if you were going to do this, not exactly the way you would define these in real code, cheated a bit using {Functor,Monad}.apply
case class OptionT[M[_], A](run: M[Option[A]])




define a new type parameterized * -> * and *.
case class OptionT[M[_], A](run: M[Option[A]]) {
        def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B]
           def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B]
       }




* define map/flatMap a little differently, can be done like previous as typeclass instance but convention is to define the interface
on the transformer and later define typeclass instance using the interface
case class OptionT[M[_], A](run: M[Option[A]]) {
       def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] =
         OptionT[M,B](F.map(run)((o: Option[A]) => o map f))

          def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B] =
            OptionT[M,B](M.bind(run)((o: Option[A]) => o match {
               case Some(a) => f(a).run
               case None => M.point((None: Option[B]))
            }))
      }



* implementations resemble what has already been shown
new Monad[IOOption] {
   case class OptionT[M[_], A](run: M[Option[A]]) {
                                                                           def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] =
       def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] =
         OptionT[M,B](F.map(run)((o: Option[A]) => o map f))                IOOption(Functor[IO].map(fa)(opt => opt.map(f)))


       def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]) =         def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) =
        OptionT[M,B](M.bind(run)((o: Option[A]) => o match {
                                                                            IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match {
         case Some(a) => f(a).run
                                                                              case Some(a) => f(a).run
           case None => M.point((None: Option[B]))
        }))                                                                       case None => (None : Option[B]).point[IO]
   }                                                                        }))
                                                                       }




* it the generalization of what was written before
type FlowState[A] = State[ReqRespData, A]
                    val f: Option[String] => FlowState[Boolean] = (etag: Option[String]) => {
                      val a: OptionT[FlowState, Boolean] = for {

                         // string <- OptionT[FlowState,String]
                         e <- optionT[FlowState](etag.point[FlowState])

                         // wrap FlowState[Option[String]] in OptionT
                         matches <- optionT[FlowState]((requestHeadersL member IfMatch))
                     
                       } yield matches.split(",").map(_.trim).toList.contains(e)

                        a getOrElse false // FlowState[Boolean]
                    }




* check existence of etag in an http request, data lives in state
* has minor bug, doesn’t deal w/ double quotes as written
* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/
WebmachineDecisions.scala#L282-285
val reqCType: OptionT[FlowState,ContentType] = for {
                    contentType <- optionT[FlowState](
                       (requestHeadersL member ContentTypeHeader)
                    )
                    mediaInfo <- optionT[FlowState](
                       parseMediaTypes(contentType).headOption.point[FlowState]
                   )
              } yield mediaInfo.mediaRange




* determine content type of the request, data lives in state, may not be specified
* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/
WebmachineDecisions.scala#L772-775
scala> type EitherTString[M[_],A] = EitherT[M,String,A]
        defined type alias EitherTString


        scala> val items = eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_)))
        items: scalaz.EitherT[List,String,Int] = ...




* adding features to a “embedded language”
for { i <- items } yield print(i)
                        // 123456


                        for {
                             i <- items
                             _ <- if (i > 4) leftT[List,String,Unit]("fail")
                                    else rightT[List,String,Unit](())
                        } yield print(i)
                        // 1234


* adding error handling, and early termination to non-deterministic computation
MONAD
TRANSFORMERS
  In General
MyMonad[A]
NAMING CONVENTION
                    MyMonadT[M[_], A]


* transformer name ends in T
BOXES A VALUE
                     run: M[MyMonad[A]


* value is typically called “run” in scalaz7
* often called “value” in scalaz6 (because of NewType)
A MONAD
                                          TRANSFORMER
                                              IS A
                                           MONAD TOO

* i mean, its thats kinda the point of this whole exercise isn’t it :)
def optTMonad[M[_] : Monad] = new Monad[({type O[X]=OptionT[M,X]]})#O) {
        def point[A](a: => A): OptionT[M,A] = OptionT(a.point[Option].point[M])
        def map[A,B](fa: OptionT[M,A])(f: A => B): OptionT[M,B] = fa map f
        def flatMap[A, B](fa: OptionT[M,A])(f :A=> OptionT[M,B]): OptionT[M, B] =
          fa flatMap f
      }




* monad instance definition for OptionT
HAS INTERFACE
                  RESEMBLING UNDERLYING
                    MONAD’S INTERFACE

* can interact with the monad transformer in a manner similar to working with the actual monad
* same methods, slightly different type signatures
* different from haskell, “feature” of scala, since we can define methods on a type
case class OptionT[M[_], A](run: M[Option[A]]) {
  def getOrElse[AA >: A](d: => AA)(implicit F: Functor[M]): M[AA] =
   F.map(run)((_: Option[A]) getOrElse default)

    def orElse[AA >: A](o: OptionT[M,AA])(implicit M: Monad[M]): OptionT[M,AA] =
     OptionT[M,AA](M.bind(run) {
        case x@Some(_) => M.point(x)
        case None => o.run
      }
}
MONAD
TRANSFORMERS
Stacked Effects
TRANSFORMER IS A MONAD

                    TRANSFORMER CAN WRAP
                     ANOTHER TRANSFORMER
* at the start, the goal was to stack effects (not just stack 2 effects)
* this makes it possible
type VIO[A] = ValidationT[IO,Throwable,A]

                    def doWork(): VIO[Option[Int]] = ...

                    val r: OptionT[VIO,Int] = optionT[VIO](doWork())




* wrap the ValidationT with success type Option[A] in an OptionT
* define type alias for connivence -- avoids nasty type lambda syntax inline
val action: OptionT[VIO, Boolean] = for {
            devDomain <- optionT[VIO] {
             validationT(
                bucket.fetch[CName]("%s.%s".format(devPrefix,hostname))
                ).mapFailure(CNameServiceException(_))
            }
            _ <- optionT[VIO] {
               validationT(deleteDomains(devDomain)).map(_.point[Option])
            }
         } yield true



* code (slightly modified) from one of stackmob’s internal services
* uses Scaliak to fetch hostname data from riak and then remove them
* possible to clean this code up a bit, will discuss shortly (monadtrans)
KEEP ON
                                              STACKIN’
                                                 ON

* don’t have to stop at 2 levels deep, our new stack is monad too
* each monad/transformer we add to the stack compose more types of effects
“ORDER”
                                                MATTERS


* how stack is built, which transformers wrap which monads, determines the overall semantics of the entire stack
* changing that order can, and usually does, change semantics
OptionT[FlowState, A]
                                                         vs.
                   StateT[Option,ReqRespData,A]


* what is the difference in semantics between the two?
* type FlowState[A] = State[ReqRespData,A]
FlowState[Option[A]]
                                                               vs.
                      Option[State[ReqRespData,A]


* unboxing makes things easier to see
* a state action that returns an optional value vs a state action that may not exist
* the latter probably doesn’t make as much sense in the majority of cases
MONADTRANS
                                  The Type Class


* type classes beget more type classes
REMOVING REPETITION
                               ===
                         MORE ABSTRACTION

* previous examples have had a repetitive, annoying, & verbose task
* can be abstracted away...by a type class of course
optionT[VIO](validationT(deleteDomains(devDomain)).map(_.point[Option]))
     eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_)))
     resT[FlowState](encodeBodyIfSet(resource).map(_.point[Res]))




* some cases require lifting the value into the monad and then wrap it in the transformer
* from previous examples
M[A] -> M[N[A]] -> NT[M[N[_]], A]




* this is basically what we are doing every time
* taking some monad M[A], lifting A into N, a monad we have a transformer for, and then wrapping all of that in N’s monad
transformer
trait MonadTrans[F[_[_], _]] {

           def liftM[G[_] : Monad, A](a: G[A]): F[G, A]

         }



* liftM will do this for any transformer F[_[_],_] and any monad G[_] provided an instance of it is defined for F[_[_],_]
 def liftM[G[_], A](a: G[A])(implicit G: Monad[G]): OptionT[G, A] =

             OptionT[G, A](G.map[A, Option[A]](a)((a: A) => a.point[Option]))




* full definition requires some type ceremony
* https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/scalaz/OptionT.scala#L155-156
def liftM[G[_], A](ga: G[A])(implicit G: Monad[G]): ResT[G,A] =

                  ResT[G,A](G.map(ga)(_.point[Res]))




* implementation for scalamachine’s Res monad
* https://github.com/stackmob/scalamachine/blob/master/scalaz7/src/main/scala/scalamachine/scalaz/res/
ResT.scala#L75-76
encodeBodyIfSet(resource).liftM[OptionT]
                      List(1,2,3).liftM[EitherTString]
                      validationT(deleteDomains(devDomain)).liftM[OptionT]




* cleanup of previous examples
* method-like syntax requires a bit more work: https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/
scalaz/syntax/MonadSyntax.scala#L9
for {
         media <- (metadataL >=> contentTypeL).map(_ | ContentType("text/plain")).liftM[ResT]
         charset <- (metadataL >=> chosenCharsetL).map2(";charset=" + _).getOrElse("")).liftM[ResT]
         _ <- (responseHeadersL += (ContentTypeHeader, media.toHeader + charset)).liftM[ResT]
         mbHeader <- (requestHeadersL member AcceptEncoding).liftM[ResT]
         decision <- mbHeader >| f7.point[ResTFlow] | chooseEncoding(resource, "identity;q=1.0,*;q=0.5")
      } yield decision




* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/
WebmachineDecisions.scala#L199-205
MONAD
TRANSFORMERS
  In Review
STACKING
                                            MONADS
                                           COMPOSES
                                            EFFECTS

* when monads are stacked an embedded language is being built with multiple effects
* this is not the only intuition of monads/transformers
CAN NOT
                               COMPOSE MONADS
                                 GENERICALLY

* cannot write generic function to compose any two monads M[_], N[_] like we can for any two functors
MONAD TRANSFORMERS
           COMPOSE M[_] : MONAD WITH
               ANY N[_] : MONAD

* can’t compose any two, but can compose a given one with any other
MONAD TRANSFORMERS
                          WRAP OTHER
                      MONAD TRANSFORMERS

* monad transformers are monads
* so they can be the N[_] : Monad that the transformer composes with its underlying monad
MONADTRANS
                                           REDUCES
                                          REPETITION

* often need to take a value that is not entirely lifted into a monad transformer stack and do just that
STACK MONADS
                                         DON’T
                                       STAIR-STEP

* monad transformers reduce ugly, stair-stepping or nested code and focuses on core task
* focuses on intuition of mutiple effects instead of handling things haphazardly
THANK
                                                    YOU


* stackmob, markana, john & atlassian, other sponsors, cosmin
QUESTIONS?

More Related Content

PDF
Functor, Apply, Applicative And Monad
PDF
One Monad to Rule Them All
PDF
Refactoring Functional Type Classes
PPTX
Introduction to Monads in Scala (1)
PDF
The Death of Final Tagless
PDF
Blazing Fast, Pure Effects without Monads — LambdaConf 2018
PDF
Scalaz 8: A Whole New Game
PDF
First-Class Patterns
Functor, Apply, Applicative And Monad
One Monad to Rule Them All
Refactoring Functional Type Classes
Introduction to Monads in Scala (1)
The Death of Final Tagless
Blazing Fast, Pure Effects without Monads — LambdaConf 2018
Scalaz 8: A Whole New Game
First-Class Patterns

What's hot (19)

PDF
The Easy-Peasy-Lemon-Squeezy, Statically-Typed, Purely Functional Programming...
PDF
"Немного о функциональном программирование в JavaScript" Алексей Коваленко
PDF
Learning Functional Programming Without Growing a Neckbeard
PDF
Quark: A Purely-Functional Scala DSL for Data Processing & Analytics
PPTX
Joy of scala
PPTX
Groovy vs Boilerplate and Ceremony Code
PPTX
Scala - where objects and functions meet
PDF
ZIO Schedule: Conquering Flakiness & Recurrence with Pure Functional Programming
PDF
Atomically { Delete Your Actors }
PDF
Scalaz 8 vs Akka Actors
PDF
Hammurabi
PDF
Post-Free: Life After Free Monads
PDF
Introduction to ad-3.4, an automatic differentiation library in Haskell
PDF
Humble introduction to category theory in haskell
PPTX
API design: using type classes and dependent types
PPT
Collection v3
PPTX
Category theory, Monads, and Duality in the world of (BIG) Data
PPT
OOP v3
PDF
Being functional in PHP (DPC 2016)
The Easy-Peasy-Lemon-Squeezy, Statically-Typed, Purely Functional Programming...
"Немного о функциональном программирование в JavaScript" Алексей Коваленко
Learning Functional Programming Without Growing a Neckbeard
Quark: A Purely-Functional Scala DSL for Data Processing & Analytics
Joy of scala
Groovy vs Boilerplate and Ceremony Code
Scala - where objects and functions meet
ZIO Schedule: Conquering Flakiness & Recurrence with Pure Functional Programming
Atomically { Delete Your Actors }
Scalaz 8 vs Akka Actors
Hammurabi
Post-Free: Life After Free Monads
Introduction to ad-3.4, an automatic differentiation library in Haskell
Humble introduction to category theory in haskell
API design: using type classes and dependent types
Collection v3
Category theory, Monads, and Duality in the world of (BIG) Data
OOP v3
Being functional in PHP (DPC 2016)
Ad

Viewers also liked (19)

PDF
Monad as things to do
PPTX
Monad - a functional design pattern
KEY
Scalaz
PDF
Reactive Streams 1.0.0 and Why You Should Care (webinar)
PPTX
Дизайн REST API для высокопроизводительных систем / Александр Лебедев (Новые ...
PDF
Why The Free Monad isn't Free
PPTX
Merci de
PPT
Senior slide show 2014
PPTX
тезисы киркина
PPTX
Opening Credit Timeline
PDF
Applying correct market factors
PPTX
My logo
DOCX
Accident prevention at house
PPT
School magazine contents page
PDF
Ethics university real world planning
PDF
Beyond Town Gown
PPT
School magazine
PPT
Shot types
Monad as things to do
Monad - a functional design pattern
Scalaz
Reactive Streams 1.0.0 and Why You Should Care (webinar)
Дизайн REST API для высокопроизводительных систем / Александр Лебедев (Новые ...
Why The Free Monad isn't Free
Merci de
Senior slide show 2014
тезисы киркина
Opening Credit Timeline
Applying correct market factors
My logo
Accident prevention at house
School magazine contents page
Ethics university real world planning
Beyond Town Gown
School magazine
Shot types
Ad

Similar to Monad Transformers In The Wild (20)

PDF
10. haskell Modules
PDF
Functions, Types, Programs and Effects
PDF
Practical cats
PPTX
My favorite slides
PDF
Monoids - Part 2 - with examples using Scalaz and Cats
PDF
Mining Functional Patterns
PDF
Monads from Definition
PPT
Data structures KTU chapter2.PPT
PPTX
PyData NYC 2019
PDF
Introduction to ad-3.4, an automatic differentiation library in Haskell
PPTX
Advanced JavaScript
PDF
Drinking the free kool-aid
PPTX
Things about Functional JavaScript
PDF
Monads do not Compose
PDF
The Essence of the Iterator Pattern (pdf)
PDF
Fp in scala with adts
PDF
Functional Algebra: Monoids Applied
PPT
Chapter2
PPT
Chapter2
PPT
User defined functions
10. haskell Modules
Functions, Types, Programs and Effects
Practical cats
My favorite slides
Monoids - Part 2 - with examples using Scalaz and Cats
Mining Functional Patterns
Monads from Definition
Data structures KTU chapter2.PPT
PyData NYC 2019
Introduction to ad-3.4, an automatic differentiation library in Haskell
Advanced JavaScript
Drinking the free kool-aid
Things about Functional JavaScript
Monads do not Compose
The Essence of the Iterator Pattern (pdf)
Fp in scala with adts
Functional Algebra: Monoids Applied
Chapter2
Chapter2
User defined functions

Monad Transformers In The Wild

  • 3. TWITTER: @_JRWEST GITHUB.COM/JRWEST BLOG.LOOPEDSTRANGE.COM
  • 4. SF SCALA May 2012 * http://marakana.com/s/scala_typeclassopedia_with_john_kodumal_of_atlassian_video,1198/index.html
  • 5. trait Monad[F[_]] extends Applicative[F] { def flatMap[A, B](fa: F[A])(f :A=>F[B]):F[B] } * monad type class * flatMap also called bind, >>=
  • 6. def point[A](a: => A): M[A] def map[A,B](ma: M[A])(f: A => B): M[B] def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B] * the functions we care about * lift pure value, lift pure function, chain “operations”
  • 7. scala> import scalaz.Monad scala> import scalaz.std.option._ scala> val a = Monad[Option].point(1) a: Option[Int] = Some(1) scala> Monad[Option].map(a)(_.toString + "hi") res2: Option[java.lang.String] = Some(1hi) scala> Monad[Option].bind(a)(i => if (i < 0) None else Some(i + 1)) res4: Option[Int] = Some(2) * explicit type class usage in scalaz seven
  • 8. scala> import scalaz.syntax.monad._ import scalaz.syntax.monad._ scala> Option(1).flatMap(i => if (i < 0) None else Some(i+1)) res6: Option[Int] = Some(2) scala> 1.point[Option].flatMap(...) res7: Option[Int] = Some(2) * implicit type class usage in scalaz7 using syntax extensions
  • 9. “A MONADIC FOR COMPREHENSION IS AN EMBEDDED PROGRAMMING LANGUAGE WITH SEMANTICS DEFINED BY THE MONAD” * “one intuition of monads” - john
  • 11. Option[A] * it may not exist
  • 12. SIDE NOTE: SEMANTICS * to an extent, you can “choose” the meaning of a monad * Option -- anon. exceptions -- more narrowly, the exception that something is not there. Validation - monad/not monad - can mean different things in different contexts
  • 13. IO[Option[A]] * but side-effects are needed to even look for that value
  • 14. IO[Validation[Throwable,Option[A]] * and looking for that value may throw exceptions (or fail in some way)
  • 15. IO[(List[String], Validation[Throwable,Option[A])] * and logging what is going on is necessary
  • 17. MONADS DO NOT COMPOSE * the problem in theory (core issue)
  • 19. FUNCTORS DO COMPOSE * as well as applicatives
  • 20. trait Functor[F[_]] { def map[A, B](fa: F[A])(f :A=>B):F[B] }
  • 21. def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) = new Functor[({type MN[A]=[M[N[A]]]})#MN] { def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = ... } * generic function that composes any two functors M[_] and N[_]
  • 22. def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) = new Functor[({type MN[A]=[M[N[A]]]})#MN] { def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = { M.map(mna)(na => N.map(na)(f)) } }
  • 23. scala> Option("abc").map(f) res1: Option[Int] = Some(3) scala> List(Option("abc"), Option("d"), Option("ef")).map2(f) res2: List[Option[Int]] = List(Some(3), Some(1), Some(2)) * can compose functors infinitely deep but... * scalaz provides method to compose 2, with nice syntatic sugar, easily (map2)
  • 24. def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) = new Monad[({type MN[A]=[M[N[A]]]})#MN] { def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ... } * cannot write the same function for any two monads M[_], N[_]
  • 25. IT ! def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) = Y new Monad[({type MN[A]=[M[N[A]]]})#MN] { R def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ... } T * best way to understand this is attempt to write it yourself * it won’t compile
  • 26. http://blog.tmorris.net/monads-do-not-compose/ * good resource to dive into this in more detail * some of previous slides based on above * provides template, in the form of a gist, for trying this stuff out
  • 27. STAIR STEPPING * the problem in practice *http://www.flickr.com/photos/caliperstudio/2667302181/
  • 28. val a: IO[Option[MyData]] = ... val b: IO[Option[MyData]] = ... * have two values that require we communicate w/ outside world to fetch * those values may not exist (alternative meaning, fetching may result in exceptions that are anonymous)
  • 29. for { data1 <- a data2 <- b } yield { data1 merge data2 // fail } * want to merge the two pieces of data if they both exist
  • 30. for { // we've escaped IO, fail d1 <- a.unsafePerformIO d2 <- b.unsafePerformIO } yield d1 merge d2 * don’t want to perform the actions until later (don’t escape the IO monad)
  • 31. for { od1 <- a for { od2 <- b od1 <- a } yield (od1,od2) match { od2 <- b case (Some(d1),Some(d2) => } yield for { Option(d1 merge d2) d1 <- od1 case (a@Some(d1),_)) => a d2 <- od2 case (_,a@Some(d2)) => a case _ => None } yield d1 merge d2 } * may notice the semi-group here * can also write it w/ an applicative * this is a contrived example
  • 32. BUT WHAT IF... def b(data: MyData): IO[Option[MyData] * even w/ simple example, this minor change throws a monkey wrench in things
  • 33. for { ):   readRes <- readIO(domain)   res <- readRes.fold(    success = _.cata(     some = meta => if (meta.enabledStatus /== status) { writeIO(meta.copy(enabledStatus = status)) } else meta.successNel[BarneyException].pure[IO],      none = new ReadFailure(domain).failNel[AppMetadata].pure[IO]     ),     failure = errors => errors.fail[AppMetadata].pure[IO]   ) } yield res * example of what not to do from something I wrote a while back
  • 35. case class IOOption[A](run: IO[Option[A]]) define type that boxes box the value, doesn’t need to be a case class, similar to haskell newtype.
  • 36. new Monad[IOOption] { def point[A](a: => A): IOOption[A] = IOOption(a.point[Option].point[IO]) def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = IOOption(fa.run.map(opt => opt.map(f))) def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]):IOOption[B] = IOOption(fa.run.flatMap((o: Option[A]) => o match { case Some(a) => f(a).run case None => (None : Option[B]).point[IO] })) } * can define a Monad instance for new type
  • 37. val a: IOOption[MyData] = ... val b: IOOption[MyData] = ... val c: IOOption[MyData] = for { data1 <- a data2 <- b } yield { data1 merge data2 } val d: IO[Option[MyData]] = c.run can use new type to improve previous contrived example
  • 38. type MyState[A] = State[StateData,A] case class MyStateOption[A](run: MyState[Option[A]]) * what if we don’t need effects, but state we can read and write to produce a final optional value and some new state * State[S,A] where S is fixed is a monad * can define a new type for that as well
  • 39. new Monad[MyStateOption] { new Monad[IOOption] { def map[A,B](fa: MyStateOption[A])(f: A => B): MyStateOption[B] = def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = MyStateOption(Functor[MyState].map(fa)(opt => opt.map(f))) IOOption(Functor[IO].map(fa)(opt => opt.map(f))) def flatMap[A, B](fa: MyStateOption[A])(f :A=>IOOption[B]) = def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) = MyStateOption(Monad[MyState]].bind(fa)((o: Option[A]) => o match { IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match { case Some(a) => f(a).run case Some(a) => f(a).run case None => (None : Option[B]).point[MyState] case None => (None : Option[B]).point[IO] })) })) } } * opportunity for more abstraction * if you were going to do this, not exactly the way you would define these in real code, cheated a bit using {Functor,Monad}.apply
  • 40. case class OptionT[M[_], A](run: M[Option[A]]) define a new type parameterized * -> * and *.
  • 41. case class OptionT[M[_], A](run: M[Option[A]]) { def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B] } * define map/flatMap a little differently, can be done like previous as typeclass instance but convention is to define the interface on the transformer and later define typeclass instance using the interface
  • 42. case class OptionT[M[_], A](run: M[Option[A]]) { def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] = OptionT[M,B](F.map(run)((o: Option[A]) => o map f)) def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B] = OptionT[M,B](M.bind(run)((o: Option[A]) => o match { case Some(a) => f(a).run case None => M.point((None: Option[B])) })) } * implementations resemble what has already been shown
  • 43. new Monad[IOOption] { case class OptionT[M[_], A](run: M[Option[A]]) { def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] = OptionT[M,B](F.map(run)((o: Option[A]) => o map f)) IOOption(Functor[IO].map(fa)(opt => opt.map(f))) def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]) = def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) = OptionT[M,B](M.bind(run)((o: Option[A]) => o match { IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match { case Some(a) => f(a).run case Some(a) => f(a).run case None => M.point((None: Option[B])) })) case None => (None : Option[B]).point[IO] } })) } * it the generalization of what was written before
  • 44. type FlowState[A] = State[ReqRespData, A] val f: Option[String] => FlowState[Boolean] = (etag: Option[String]) => { val a: OptionT[FlowState, Boolean] = for { // string <- OptionT[FlowState,String]      e <- optionT[FlowState](etag.point[FlowState]) // wrap FlowState[Option[String]] in OptionT      matches <- optionT[FlowState]((requestHeadersL member IfMatch))    } yield matches.split(",").map(_.trim).toList.contains(e) a getOrElse false // FlowState[Boolean] } * check existence of etag in an http request, data lives in state * has minor bug, doesn’t deal w/ double quotes as written * https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/ WebmachineDecisions.scala#L282-285
  • 45. val reqCType: OptionT[FlowState,ContentType] = for {       contentType <- optionT[FlowState]( (requestHeadersL member ContentTypeHeader) )       mediaInfo <- optionT[FlowState]( parseMediaTypes(contentType).headOption.point[FlowState] ) } yield mediaInfo.mediaRange * determine content type of the request, data lives in state, may not be specified * https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/ WebmachineDecisions.scala#L772-775
  • 46. scala> type EitherTString[M[_],A] = EitherT[M,String,A] defined type alias EitherTString scala> val items = eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_))) items: scalaz.EitherT[List,String,Int] = ... * adding features to a “embedded language”
  • 47. for { i <- items } yield print(i) // 123456 for { i <- items _ <- if (i > 4) leftT[List,String,Unit]("fail") else rightT[List,String,Unit](()) } yield print(i) // 1234 * adding error handling, and early termination to non-deterministic computation
  • 50. NAMING CONVENTION MyMonadT[M[_], A] * transformer name ends in T
  • 51. BOXES A VALUE run: M[MyMonad[A] * value is typically called “run” in scalaz7 * often called “value” in scalaz6 (because of NewType)
  • 52. A MONAD TRANSFORMER IS A MONAD TOO * i mean, its thats kinda the point of this whole exercise isn’t it :)
  • 53. def optTMonad[M[_] : Monad] = new Monad[({type O[X]=OptionT[M,X]]})#O) { def point[A](a: => A): OptionT[M,A] = OptionT(a.point[Option].point[M]) def map[A,B](fa: OptionT[M,A])(f: A => B): OptionT[M,B] = fa map f def flatMap[A, B](fa: OptionT[M,A])(f :A=> OptionT[M,B]): OptionT[M, B] = fa flatMap f } * monad instance definition for OptionT
  • 54. HAS INTERFACE RESEMBLING UNDERLYING MONAD’S INTERFACE * can interact with the monad transformer in a manner similar to working with the actual monad * same methods, slightly different type signatures * different from haskell, “feature” of scala, since we can define methods on a type
  • 55. case class OptionT[M[_], A](run: M[Option[A]]) { def getOrElse[AA >: A](d: => AA)(implicit F: Functor[M]): M[AA] = F.map(run)((_: Option[A]) getOrElse default) def orElse[AA >: A](o: OptionT[M,AA])(implicit M: Monad[M]): OptionT[M,AA] = OptionT[M,AA](M.bind(run) { case x@Some(_) => M.point(x) case None => o.run } }
  • 57. TRANSFORMER IS A MONAD TRANSFORMER CAN WRAP ANOTHER TRANSFORMER * at the start, the goal was to stack effects (not just stack 2 effects) * this makes it possible
  • 58. type VIO[A] = ValidationT[IO,Throwable,A] def doWork(): VIO[Option[Int]] = ... val r: OptionT[VIO,Int] = optionT[VIO](doWork()) * wrap the ValidationT with success type Option[A] in an OptionT * define type alias for connivence -- avoids nasty type lambda syntax inline
  • 59. val action: OptionT[VIO, Boolean] = for { devDomain <- optionT[VIO] {     validationT(        bucket.fetch[CName]("%s.%s".format(devPrefix,hostname))        ).mapFailure(CNameServiceException(_))    } _ <- optionT[VIO] { validationT(deleteDomains(devDomain)).map(_.point[Option]) } } yield true * code (slightly modified) from one of stackmob’s internal services * uses Scaliak to fetch hostname data from riak and then remove them * possible to clean this code up a bit, will discuss shortly (monadtrans)
  • 60. KEEP ON STACKIN’ ON * don’t have to stop at 2 levels deep, our new stack is monad too * each monad/transformer we add to the stack compose more types of effects
  • 61. “ORDER” MATTERS * how stack is built, which transformers wrap which monads, determines the overall semantics of the entire stack * changing that order can, and usually does, change semantics
  • 62. OptionT[FlowState, A] vs. StateT[Option,ReqRespData,A] * what is the difference in semantics between the two? * type FlowState[A] = State[ReqRespData,A]
  • 63. FlowState[Option[A]] vs. Option[State[ReqRespData,A] * unboxing makes things easier to see * a state action that returns an optional value vs a state action that may not exist * the latter probably doesn’t make as much sense in the majority of cases
  • 64. MONADTRANS The Type Class * type classes beget more type classes
  • 65. REMOVING REPETITION === MORE ABSTRACTION * previous examples have had a repetitive, annoying, & verbose task * can be abstracted away...by a type class of course
  • 66. optionT[VIO](validationT(deleteDomains(devDomain)).map(_.point[Option])) eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_))) resT[FlowState](encodeBodyIfSet(resource).map(_.point[Res])) * some cases require lifting the value into the monad and then wrap it in the transformer * from previous examples
  • 67. M[A] -> M[N[A]] -> NT[M[N[_]], A] * this is basically what we are doing every time * taking some monad M[A], lifting A into N, a monad we have a transformer for, and then wrapping all of that in N’s monad transformer
  • 68. trait MonadTrans[F[_[_], _]] {   def liftM[G[_] : Monad, A](a: G[A]): F[G, A] } * liftM will do this for any transformer F[_[_],_] and any monad G[_] provided an instance of it is defined for F[_[_],_]
  • 69.  def liftM[G[_], A](a: G[A])(implicit G: Monad[G]): OptionT[G, A] =     OptionT[G, A](G.map[A, Option[A]](a)((a: A) => a.point[Option])) * full definition requires some type ceremony * https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/scalaz/OptionT.scala#L155-156
  • 70. def liftM[G[_], A](ga: G[A])(implicit G: Monad[G]): ResT[G,A] =       ResT[G,A](G.map(ga)(_.point[Res])) * implementation for scalamachine’s Res monad * https://github.com/stackmob/scalamachine/blob/master/scalaz7/src/main/scala/scalamachine/scalaz/res/ ResT.scala#L75-76
  • 71. encodeBodyIfSet(resource).liftM[OptionT] List(1,2,3).liftM[EitherTString] validationT(deleteDomains(devDomain)).liftM[OptionT] * cleanup of previous examples * method-like syntax requires a bit more work: https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/ scalaz/syntax/MonadSyntax.scala#L9
  • 72. for { media <- (metadataL >=> contentTypeL).map(_ | ContentType("text/plain")).liftM[ResT]    charset <- (metadataL >=> chosenCharsetL).map2(";charset=" + _).getOrElse("")).liftM[ResT]    _ <- (responseHeadersL += (ContentTypeHeader, media.toHeader + charset)).liftM[ResT]    mbHeader <- (requestHeadersL member AcceptEncoding).liftM[ResT]    decision <- mbHeader >| f7.point[ResTFlow] | chooseEncoding(resource, "identity;q=1.0,*;q=0.5") } yield decision * https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/ WebmachineDecisions.scala#L199-205
  • 74. STACKING MONADS COMPOSES EFFECTS * when monads are stacked an embedded language is being built with multiple effects * this is not the only intuition of monads/transformers
  • 75. CAN NOT COMPOSE MONADS GENERICALLY * cannot write generic function to compose any two monads M[_], N[_] like we can for any two functors
  • 76. MONAD TRANSFORMERS COMPOSE M[_] : MONAD WITH ANY N[_] : MONAD * can’t compose any two, but can compose a given one with any other
  • 77. MONAD TRANSFORMERS WRAP OTHER MONAD TRANSFORMERS * monad transformers are monads * so they can be the N[_] : Monad that the transformer composes with its underlying monad
  • 78. MONADTRANS REDUCES REPETITION * often need to take a value that is not entirely lifted into a monad transformer stack and do just that
  • 79. STACK MONADS DON’T STAIR-STEP * monad transformers reduce ugly, stair-stepping or nested code and focuses on core task * focuses on intuition of mutiple effects instead of handling things haphazardly
  • 80. THANK YOU * stackmob, markana, john & atlassian, other sponsors, cosmin