SlideShare a Scribd company logo
Monadic
by Mario Fusco
mario.fusco@gmail.com
twitter: @mariofusco
Fortran
C / C++
Java
Lisp
ML
Haskell
Add abstractions
C#
Algol
Subtract abstractions
Imperative languages
Functional languages
Scala
F#
Hybrid languages
Learning a new language is relatively easy
compared with learning a new paradigm.
new language < new paradigm
Functional Programming is more a new
way of thinking than a new tool set
What is a monad?
What is a monad?
A monad is a triple (T, η, μ) where T is an endofunctor T: X → X
and η: I → T and μ: T x T → T are 2 natural transformations
satisfying these laws:
Identity law: μ(η(T)) = T = μ(T(η))
Associative law: μ(μ(T × T) × T)) = μ(T × μ(T × T))
In other words: "a monad in X is just a monoid in the category of
endofunctors of X, with product × replaced by composition of
endofunctors and unit set by the identity endofunctor"
What's the problem?
… really? do I need to know this?
In order to understand
monads you need to first
learn Cathegory Theory
In order to understand
pizza you need to first
learn Italian
… it's like saying …
… ok, so let's try to ask Google …
… no seriously, what is a monad?
A
monad
is a
structure
that puts a
value
in a
computational context
… and why should we care about?
Reduce code duplication
Improve maintainability
Increase readability
Remove side effects
Hide complexity
Encapsulate implementation details
Allow composability
{
return flatMap( x -> unit( f.apply(x) ) );
}
Monadic Methods
M<A> unit(A a);
M<B> bind(M<A> ma, Function<A, M<B>> f);
interface M {
M<B> map(Function<A, B> f);
M<B> flatMap(Function<A, M<B>> f);
}
map can defined for every monad as
a combination of flatMap and unit
public class Person {
private Car car;
public Car getCar() { return car; }
}
public class Car {
private Insurance insurance;
public Insurance getInsurance() { return insurance; }
}
public class Insurance {
private String name;
public String getName() { return name; }
}
Finding Car's Insurance Name
String getCarInsuranceName(Person person) {
if (person != null) {
Car car = person.getCar();
if (car != null) {
Insurance insurance = car.getInsurance();
if (insurance != null) {
return insurance.getName()
}
}
}
return "Unknown";
}
Attempt 1: deep doubts
Attempt 2: too many choices
String getCarInsuranceName(Person person) {
if (person == null) {
return "Unknown";
}
Car car = person.getCar();
if (car == null) {
return "Unknown";
}
Insurance insurance = car.getInsurance();
if (insurance == null) {
return "Unknown";
}
return insurance.getName()
}
What wrong with nulls?
✗
Errors source → NPE is by far the most common exception in Java
✗
Bloatware source → Worsen readability by making necessary to fill our code
with null checks
✗
Breaks Java philosophy → Java always hides pointers to developers, except
in one case: the null pointer
✗
A hole in the type system → Null has the bottom type, meaning that it can
be assigned to any reference type: this is a problem because, when
propagated to another part of the system, you have no idea what that null
was initially supposed to be
✗
Meaningless → Don't have any semantic meaning and in particular are the
wrong way to model the absence of a value in a statically typed language
“Absence of a signal should never be used as a signal“ - J. Bigalow, 1947
Tony Hoare, who invented the null reference in 1965 while working on
an object oriented language called ALGOL W, called its invention his
“billion dollar mistake”
Optional Monad to the rescue
public class Optional<T> {
private static final Optional<?> EMPTY = new Optional<>(null);
private final T value;
private Optional(T value) {
this.value = value;
}
public<U> Optional<U> map(Function<? super T, ? extends U> f) {
return value == null ? EMPTY : new Optional(f.apply(value));
}
public<U> Optional<U> flatMap(Function<? super T, Optional<U>> f) {
return value == null ? EMPTY : f.apply(value);
}
}
public class Person {
private Optional<Car> car;
public Optional<Car> getCar() { return car; }
}
public class Car {
private Optional<Insurance> insurance;
public Optional<Insurance> getInsurance() { return insurance; }
}
public class Insurance {
private String name;
public String getName() { return name; }
}
Rethinking our model
Using the type system
to model nullable value
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Person
Optional
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Person
Optional
flatMap(person -> person.getCar())
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Optional
flatMap(person -> person.getCar())
Optional
Car
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Optional
flatMap(car -> car.getInsurance())
Car
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Optional
flatMap(car -> car.getInsurance())
Optional
Insurance
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Optional
map(insurance -> insurance.getName())
Insurance
String getCarInsuranceName(Optional<Person> person) {
return person.flatMap(person -> person.getCar())
.flatMap(car -> car.getInsurance())
.map(insurance -> insurance.getName())
.orElse("Unknown");
}
Restoring the sanity
Optional
orElse("Unknown")
String
person
.flatMap(Person::getCar)
.flatMap(Car::getInsurance)
.map(Insurance::getName)
.orElse("Unknown");
Why map and flatMap ?
map defines monad's policy
for function application
flatMap defines monad's policy
for monads composition
This is what
happens
when you
don't use
flatMap
The Optional Monad
The Optional monad makes
the possibility of missing data
explicit
in the type system, while
hiding
the boilerplate of "if non-null" logic
Stream: another Java8 monad
Using map & flatMap with Streams
building.getApartments().stream().
.flatMap(apartment -> apartment.getPersons().stream())
.map(Person::getName);
flatMap( -> )
StreamStream
map( -> )
StreamStream
Given n>0 find all pairs i and j
where 1 ≤ j ≤ i ≤ n and i+j is prime
Stream.iterate(1, i -> i+1).limit(n)
.flatMap(i -> Stream.iterate(1, j -> j+1).limit(n)
.map(j -> new int[]{i, j}))
.filter(pair -> isPrime(pair[0] + pair[1]))
.collect(toList());
public boolean isPrime(int n) {
return Stream.iterate(2, i -> i+1)
.limit((long) Math.sqrt(n))
.noneMatch(i -> n % i == 0);
}
The Stream Monad
The Stream monad makes
the possibility of multiple data
explicit
in the type system, while
hiding
the boilerplate of nested loops
No Monads syntactic sugar in Java :(
for { i <- List.range(1, n)
j <- List.range(1, i)
if isPrime(i + j) } yield {i, j}
List.range(1, n)
.flatMap(i =>
List.range(1, i)
.filter(j => isPrime(i+j))
.map(j => (i, j)))
Scala's for-comprehension
is just syntactic sugar to
manipulate monadstranslated by the compiler in
Are there other monads
in Java8 API?
CompletableFuture
map
flatMap
Promise: a monadic CompletableFuture
public class Promise<A> implements Future<A> {
private final CompletableFuture<A> future;
private Promise(CompletableFuture<A> future) {
this.future = future;
}
public static final <A> Promise<A> promise(Supplier<A> supplier) {
return new
Promise<A>(CompletableFuture.supplyAsync(supplier));
}
public <B> Promise<B> map(Function<? super A,? extends B> f) {
return new Promise<B>(future.thenApplyAsync(f));
}
public <B> Promise<B> flatMap(Function<? super A, Promise<B>> f) {
return new Promise<B>(
future.thenComposeAsync(a -> f.apply(a).future));
}
// ... omitting methods delegating the wrapped future
}
public int slowLength(String s) {
someLongComputation();
return s.length();
}
public int slowDouble(int i) {
someLongComputation();
return i*2;
}
String s = "Hello";
Promise<Integer> p = promise(() -> slowLength(s))
.flatMap(i -> promise(() -> slowDouble(i)));
Composing long computations
The Promise Monad
The Promise monad makes
asynchronous computation
explicit
in the type system, while
hiding
the boilerplate thread logic
Creating our own Monad
Lost in Exceptions
public Person validateAge(Person p) throws ValidationException {
if (p.getAge() > 0 && p.getAge() < 130) return p;
throw new ValidationException("Age must be between 0 and 130");
}
public Person validateName(Person p) throws ValidationException {
if (Character.isUpperCase(p.getName().charAt(0))) return p;
throw new ValidationException("Name must start with uppercase");
}
List<String> errors = new ArrayList<String>();
try {
validateAge(person);
} catch (ValidationException ex) {
errors.add(ex.getMessage());
}
try {
validateName(person);
} catch (ValidationException ex) {
errors.add(ex.getMessage());
}
public abstract class Validation<L, A> {
protected final A value;
private Validation(A value) {
this.value = value;
}
public abstract <B> Validation<L, B> map(
Function<? super A, ? extends B> mapper);
public abstract <B> Validation<L, B> flatMap(
Function<? super A, Validation<?, ? extends B>> mapper);
public abstract boolean isSuccess();
}
Defining a Validation Monad
Success !!!
public class Success<L, A> extends Validation<L, A> {
private Success(A value) { super(value); }
public <B> Validation<L, B> map(
Function<? super A, ? extends B> mapper) {
return success(mapper.apply(value));
}
public <B> Validation<L, B> flatMap(
Function<? super A, Validation<?, ? extends B>> mapper) {
return (Validation<L, B>) mapper.apply(value);
}
public boolean isSuccess() { return true; }
public static <L, A> Success<L, A> success(A value) {
return new Success<L, A>(value);
}
}
Failure :(((
public class Failure<L, A> extends Validation<L, A> {
protected final L left;
public Failure(A value, L left) {super(value); this.left = left;}
public <B> Validation<L, B> map(
Function<? super A, ? extends B> mapper) {
return failure(left, mapper.apply(value));
}
public <B> Validation<L, B> flatMap(
Function<? super A, Validation<?, ? extends B>> mapper) {
Validation<?, ? extends B> result = mapper.apply(value);
return result.isSuccess() ?
failure(left, result.value) :
failure(((Failure<L, B>)result).left, result.value);
}
public boolean isSuccess() { return false; }
}
The Validation Monad
The Validation monad makes
the possibility of errors
explicit
in the type system, while
hiding
the boilerplate of "try/catch" logic
Rewriting validating methods
public Validation<String, Person> validateAge(Person p) {
return (p.getAge() > 0 && p.getAge() < 130) ?
success(p) :
failure("Age must be between 0 and 130", p);
}
public Validation<String, Person> validateName(Person p) {
return Character.isUpperCase(p.getName().charAt(0)) ?
success(p) :
failure("Name must start with uppercase", p);
}
Lesson learned:
Leverage the Type System
Gathering multiple errors - Success
public class SuccessList<L, A> extends Success<List<L>, A> {
public SuccessList(A value) { super(value); }
public <B> Validation<List<L>, B> map(
Function<? super A, ? extends B> mapper) {
return new SuccessList(mapper.apply(value));
}
public <B> Validation<List<L>, B> flatMap(
Function<? super A, Validation<?, ? extends B>> mapper) {
Validation<?, ? extends B> result = mapper.apply(value);
return (Validation<List<L>, B>)(result.isSuccess() ?
new SuccessList(result.value) :
new FailureList<L, B>(((Failure<L, B>)result).left,
result.value));
}
}
Gathering multiple errors - Failure
public class FailureList<L, A> extends Failure<List<L>, A> {
private FailureList(List<L> left, A value) { super(left, value); }
public <B> Validation<List<L>, B> map(
Function<? super A, ? extends B> mapper) {
return new FailureList(left, mapper.apply(value));
}
public <B> Validation<List<L>, B> flatMap(
Function<? super A, Validation<?, ? extends B>> mapper) {
Validation<?, ? extends B> result = mapper.apply(value);
return (Validation<List<L>, B>)(result.isSuccess() ?
new FailureList(left, result.value) :
new FailureList<L, B>(new ArrayList<L>(left) {{
add(((Failure<L, B>)result).left);
}}, result.value));
}
}
Monadic Validation
Validation<List<String>, Person>
validatedPerson = success(person).failList()
.flatMap(Validator::validAge)
.flatMap(Validator::validName);
Homework: develop your own
Transaction Monad
The Transaction monad makes
transactionally
explicit
in the type system, while
hiding
the boilerplate propagation of invoking rollbacks
Alternative Monads Definitions
Monads are parametric types with two operations
flatMap and unit that obey some algebraic laws
Monads are structures that represent
computations defined as sequences of steps
Monads are chainable containers types that confine
values defining how to transform and combine them
Monads are return types that
guide you through the happy path
Functional Domain Design
A practical example
A OOP BankAccount ...
public class Balance {
final BigDecimal amount;
public Balance( BigDecimal amount ) { this.amount = amount; }
}
public class Account {
private final String owner;
private final String number;
private Balance balance = new Balance(BigDecimal.ZERO);
public Account( String owner, String number ) {
this.owner = owner;
this.number = number;
}
public void credit(BigDecimal value) {
balance = new Balance( balance.amount.add( value ) );
}
public void debit(BigDecimal value) throws InsufficientBalanceException {
if (balance.amount.compareTo( value ) < 0)
throw new InsufficientBalanceException();
balance = new Balance( balance.amount.subtract( value ) );
}
}
Mutability
Error handling
using Exception
… and how we can use it
Account a = new Account("Alice", "123");
Account b = new Account("Bob", "456");
Account c = new Account("Charlie", "789");
List<Account> unpaid = new ArrayList<>();
for (Account account : Arrays.asList(a, b, c)) {
try {
account.debit( new BigDecimal( 100.00 ) );
} catch (InsufficientBalanceException e) {
unpaid.add(account);
}
}
List<Account> unpaid = new ArrayList<>();
Stream.of(a, b, c).forEach( account -> {
try {
account.debit( new BigDecimal( 100.00 ) );
} catch (InsufficientBalanceException e) {
unpaid.add(account);
}
} );
Mutation of enclosing scope
Cannot use a parallel Stream
Ugly syntax
Error handling with Try monad
public interface Try<A> {
<B> Try<B> map(Function<A, B> f);
<B> Try<B> flatMap(Function<A, Try<B>> f);
boolean isFailure();
}
public Success<A> implements Try<A> {
private final A value;
public Success(A value) { this.value = value; }
public boolean isFailure() { return false; }
public <B> Try<B> map(Function<A, B> f) {
return new Success<>(f.apply(value));
}
public <B> Try<B> flatMap(Function<A, Try<B>> f) {
return f.apply(value);
}
}
public Failure<A> implements Try<T> {
private final Object error;
public Failure(Object error) { this.error = error; }
public boolean isFailure() { return false; }
public <B> Try<B> map(Function<A, B> f) { return (Failure<B>)this; }
public <B> Try<B> flatMap(Function<A, Try<B>> f) { return (Failure<B>)this; }
}
A functional BankAccount ...
public class Account {
private final String owner;
private final String number;
private final Balance balance;
public Account( String owner, String number, Balance balance ) {
this.owner = owner;
this.number = number;
this.balance = balance;
}
public Account credit(BigDecimal value) {
return new Account( owner, number,
new Balance( balance.amount.add( value ) ) );
}
public Try<Account> debit(BigDecimal value) {
if (balance.amount.compareTo( value ) < 0)
return new Failure<>( new InsufficientBalanceError() );
return new Success<>(
new Account( owner, number,
new Balance( balance.amount.subtract( value ) ) ) );
}
}
Immutable
Error handling
without Exceptions
… and how we can use it
Account a = new Account("Alice", "123");
Account b = new Account("Bob", "456");
Account c = new Account("Charlie", "789");
List<Account> unpaid =
Stream.of( a, b, c )
.map( account ->
new Tuple2<>( account,
account.debit( new BigDecimal( 100.00 ) ) ) )
.filter( t -> t._2.isFailure() )
.map( t -> t._1 )
.collect( toList() );
List<Account> unpaid =
Stream.of( a, b, c )
.filter( account ->
account.debit( new BigDecimal( 100.00 ) )
.isFailure() )
.collect( toList() );
From Methods to Functions
public class BankService {
public static Try<Account> open(String owner, String number,
BigDecimal balance) {
if (initialBalance.compareTo( BigDecimal.ZERO ) < 0)
return new Failure<>( new InsufficientBalanceError() );
return new Success<>( new Account( owner, number,
new Balance( balance ) ) );
}
public static Account credit(Account account, BigDecimal value) {
return new Account( account.owner, account.number,
new Balance( account.balance.amount.add( value ) ) );
}
public static Try<Account> debit(Account account, BigDecimal value) {
if (account.balance.amount.compareTo( value ) < 0)
return new Failure<>( new InsufficientBalanceError() );
return new Success<>(
new Account( account.owner, account.number,
new Balance( account.balance.amount.subtract( value ) ) ) );
}
}
Decoupling state and behavior
import static BankService.*
Try<Account> account =
open( "Alice", "123", new BigDecimal( 100.00 ) )
.map( acc -> credit( acc, new BigDecimal( 200.00 ) ) )
.map( acc -> credit( acc, new BigDecimal( 300.00 ) ) )
.flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ) );
The object-oriented paradigm couples state and behavior
Functional programming decouples them
… but I need a BankConnection!
What about dependency injection?
A naïve solution
public class BankService {
public static Try<Account> open(String owner, String number,
BigDecimal balance, BankConnection bankConnection) {
...
}
public static Account credit(Account account, BigDecimal value,
BankConnection bankConnection) {
...
}
public static Try<Account> debit(Account account, BigDecimal value,
BankConnection bankConnection) {
...
}
}
BankConnection bconn = new BankConnection();
Try<Account> account =
open( "Alice", "123", new BigDecimal( 100.00 ), bconn )
.map( acc -> credit( acc, new BigDecimal( 200.00 ), bconn ) )
.map( acc -> credit( acc, new BigDecimal( 300.00 ), bconn ) )
.flatMap( acc -> debit( acc, new BigDecimal( 400.00 ), bconn ) );
Necessary to create the
BankConnection in advance ...
… and pass it to all methods
Making it lazy
public class BankService {
public static Function<BankConnection, Try<Account>>
open(String owner, String number, BigDecimal balance) {
return (BankConnection bankConnection) -> ...
}
public static Function<BankConnection, Account>
credit(Account account, BigDecimal value) {
return (BankConnection bankConnection) -> ...
}
public static Function<BankConnection, Try<Account>>
debit(Account account, BigDecimal value) {
return (BankConnection bankConnection) -> ...
}
}
Function<BankConnection, Try<Account>> f =
(BankConnection conn) ->
open( "Alice", "123", new BigDecimal( 100.00 ) )
.apply( conn )
.map( acc -> credit( acc, new BigDecimal( 200.00 ) ).apply( conn ) )
.map( acc -> credit( acc, new BigDecimal( 300.00 ) ).apply( conn ) )
.flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ).apply( conn ) );
Try<Account> account = f.apply( new BankConnection() );
open
Ctx -> S1
S1
A, B
credit
Ctx
S2
C, D
result
open
S1
A, B, Ctx
injection
credit
C, D, Ctx, S1
resultS2
Pure OOP implementation Static Methods
open
A, B
apply(Ctx)
S1
Ctx -> S2
apply(Ctx)
S2
C, D
Lazy evaluation
Ctx
credit
result
Introducing the Reader monad ...
public class Reader<R, A> {
private final Function<R, A> run;
public Reader( Function<R, A> run ) {
this.run = run;
}
public <B> Reader<R, B> map(Function<A, B> f) {
...
}
public <B> Reader<R, B> flatMap(Function<A, Reader<R, B>> f) {
...
}
public A apply(R r) {
return run.apply( r );
}
}
The reader monad provides an environment to
wrap an abstract computation without evaluating it
Introducing the Reader monad ...
public class Reader<R, A> {
private final Function<R, A> run;
public Reader( Function<R, A> run ) {
this.run = run;
}
public <B> Reader<R, B> map(Function<A, B> f) {
return new Reader<>((R r) -> f.apply( apply( r ) ));
}
public <B> Reader<R, B> flatMap(Function<A, Reader<R, B>> f) {
return new Reader<>((R r) -> f.apply( apply( r ) ).apply( r ));
}
public A apply(R r) {
return run.apply( r );
}
}
The reader monad provides an environment to
wrap an abstract computation without evaluating it
The Reader Monad
The Reader monad makes
a lazy computation
explicit
in the type system, while
hiding
the logic to apply it
In other words the reader monad
allows us to treat functions as
values with a context
We can act as if we already know
what the functions will return.
… and combining it with Try
public class TryReader<R, A> {
private final Function<R, Try<A>> run;
public TryReader( Function<R, Try<A>> run ) {
this.run = run;
}
public <B> TryReader<R, B> map(Function<A, B> f) {
...
}
public <B> TryReader<R, B> mapReader(Function<A, Reader<R, B>> f) {
...
}
public <B> TryReader<R, B> flatMap(Function<A, TryReader<R, B>> f) {
...
}
public Try<A> apply(R r) {
return run.apply( r );
}
}
… and combining it with Try
public class TryReader<R, A> {
private final Function<R, Try<A>> run;
public TryReader( Function<R, Try<A>> run ) {
this.run = run;
}
public <B> TryReader<R, B> map(Function<A, B> f) {
return new TryReader<R, B>((R r) -> apply( r )
.map( a -> f.apply( a ) ));
}
public <B> TryReader<R, B> mapReader(Function<A, Reader<R, B>> f) {
return new TryReader<R, B>((R r) -> apply( r )
.map( a -> f.apply( a ).apply( r ) ));
}
public <B> TryReader<R, B> flatMap(Function<A, TryReader<R, B>> f) {
return new TryReader<R, B>((R r) -> apply( r )
.flatMap( a -> f.apply( a ).apply( r ) ));
}
public Try<A> apply(R r) {
return run.apply( r );
}
}
A more user-friendly API
public class BankService {
public static TryReader<BankConnection, Account>
open(String owner, String number, BigDecimal balance) {
return new TryReader<>( (BankConnection bankConnection) -> ... )
}
public static Reader<BankConnection, Account>
credit(Account account, BigDecimal value) {
return new Reader<>( (BankConnection bankConnection) -> ... )
}
public static TryReader<BankConnection, Account>
debit(Account account, BigDecimal value) {
return new TryReader<>( (BankConnection bankConnection) -> ... )
}
}
TryReader<BankConnection, Account> reader =
open( "Alice", "123", new BigDecimal( 100.00 ) )
.mapReader( acc -> credit( acc, new BigDecimal( 200.00 ) ) )
.mapReader( acc -> credit( acc, new BigDecimal( 300.00 ) ) )
.flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ) );
Try<Account> account = reader.apply( new BankConnection() );
open
Ctx -> S1
S1
A, B
credit
Ctx
S2
C, D
result
open
S1
A, B, Ctx
injection
credit
C, D, Ctx, S1
resultS2
Pure OOP implementation Static Methods
open
A, B
apply(Ctx)
S1
Ctx -> S2
apply(Ctx)
S2
C, D
Lazy evaluation
Ctx
credit
Reader monad
result
Ctx -> S1
A, B C, D
map(credit)
Ctx -> result
apply(Ctx)
open
Ctx -> S2
To recap: a Monad is a design
patternAlias
 flatMap that shit
Intent
 Put a value in a computational context defining the policy
on how to operate on it
Motivations
 Reduce code duplication
 Improve maintainability
 Increase readability
 Remove side effects
 Hide complexity
 Encapusalate implementation details
 Allow composability
Known Uses
 Optional, Stream, Promise, Validation, Transaction, State, …
Use Monads whenever possible
to keep your code clean and
encapsulate repetitive logic
TL;DR
Monadic Java
Mario Fusco
Red Hat – Senior Software Engineer
mario.fusco@gmail.com
twitter: @mariofusco
Q A
Thanks … Questions?

More Related Content

PDF
Lazy java
PDF
If You Think You Can Stay Away from Functional Programming, You Are Wrong
PDF
From object oriented to functional domain modeling
PDF
Modern c++ (C++ 11/14)
PDF
Let's make a contract: the art of designing a Java API
PDF
Laziness, trampolines, monoids and other functional amenities: this is not yo...
PPTX
Optional in Java 8
PDF
Idiomatic Kotlin
Lazy java
If You Think You Can Stay Away from Functional Programming, You Are Wrong
From object oriented to functional domain modeling
Modern c++ (C++ 11/14)
Let's make a contract: the art of designing a Java API
Laziness, trampolines, monoids and other functional amenities: this is not yo...
Optional in Java 8
Idiomatic Kotlin

What's hot (20)

PDF
Map(), flatmap() and reduce() are your new best friends: simpler collections,...
PDF
Java 8 Workshop
PPTX
Clean Pragmatic Architecture - Avoiding a Monolith
PDF
Advanced SQL injection to operating system full control (slides)
PDF
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
PPTX
Vertical Slicing Architectures
PDF
Clean Lambdas & Streams in Java8
PPTX
Key range locking
PDF
Java 8 Lambda Built-in Functional Interfaces
PDF
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
PPT
JUnit 4
PDF
Evolving a Clean, Pragmatic Architecture - A Craftsman's Guide
PDF
Applicative style programming
PDF
BPF - in-kernel virtual machine
PPTX
Quill vs Slick Smackdown
PDF
Pragmatic functional refactoring with java 8
PPTX
PowerShell-1
PPTX
Troubleshooting common oslo.messaging and RabbitMQ issues
PDF
Hyperspace for Delta Lake
PDF
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Map(), flatmap() and reduce() are your new best friends: simpler collections,...
Java 8 Workshop
Clean Pragmatic Architecture - Avoiding a Monolith
Advanced SQL injection to operating system full control (slides)
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Vertical Slicing Architectures
Clean Lambdas & Streams in Java8
Key range locking
Java 8 Lambda Built-in Functional Interfaces
Dangerous on ClickHouse in 30 minutes, by Robert Hodges, Altinity CEO
JUnit 4
Evolving a Clean, Pragmatic Architecture - A Craftsman's Guide
Applicative style programming
BPF - in-kernel virtual machine
Quill vs Slick Smackdown
Pragmatic functional refactoring with java 8
PowerShell-1
Troubleshooting common oslo.messaging and RabbitMQ issues
Hyperspace for Delta Lake
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Ad

Similar to Monadic Java (20)

PDF
Monadic Java
PDF
Unlocking the Magic of Monads with Java 8
PPTX
Introduction to Monads in Scala (1)
PDF
The what over the how (another way on android development with kotlin)
PDF
Functional Principles for OO Developers
PPT
Thesis PPT
PPT
Thesis
PDF
SeneJug java_8_prez_122015
PDF
[JuraSIC! Meetup] Mateusz Stasch - Monady w .NET
PPTX
Grokking TechTalk #16: Maybe functor in javascript
PPTX
Programming picaresque
PDF
A Scala tutorial
PDF
Monads - Dublin Scala meetup
PDF
It's All About Morphisms
PDF
FP in Java - Project Lambda and beyond
PDF
Humble introduction to category theory in haskell
PDF
Thumbtack Expertise Days # 5 - Javaz
PPTX
Eclipse Day India 2015 - Java 8 Overview
PDF
Développer un moteur d'exécution symbolique en partant de rien
PPTX
Intro to java 8
Monadic Java
Unlocking the Magic of Monads with Java 8
Introduction to Monads in Scala (1)
The what over the how (another way on android development with kotlin)
Functional Principles for OO Developers
Thesis PPT
Thesis
SeneJug java_8_prez_122015
[JuraSIC! Meetup] Mateusz Stasch - Monady w .NET
Grokking TechTalk #16: Maybe functor in javascript
Programming picaresque
A Scala tutorial
Monads - Dublin Scala meetup
It's All About Morphisms
FP in Java - Project Lambda and beyond
Humble introduction to category theory in haskell
Thumbtack Expertise Days # 5 - Javaz
Eclipse Day India 2015 - Java 8 Overview
Développer un moteur d'exécution symbolique en partant de rien
Intro to java 8
Ad

More from Mario Fusco (16)

PDF
Kogito: cloud native business automation
PDF
How and why I turned my old Java projects into a first-class serverless compo...
PDF
OOP and FP
ODP
Drools 6 deep dive
PDF
OOP and FP - Become a Better Programmer
PDF
Reactive Programming for a demanding world: building event-driven and respons...
PDF
Comparing different concurrency models on the JVM
PDF
Why we cannot ignore Functional Programming
PPTX
Real world DSL - making technical and business people speaking the same language
PDF
Introducing Drools
PPTX
Java 7, 8 & 9 - Moving the language forward
PDF
Hammurabi
PPT
Swiss army knife Spring
PDF
No more loops with lambdaj
PPTX
Concurrency, Scalability & Fault-tolerance 2.0 with Akka Actors & STM
PPTX
Scala - where objects and functions meet
Kogito: cloud native business automation
How and why I turned my old Java projects into a first-class serverless compo...
OOP and FP
Drools 6 deep dive
OOP and FP - Become a Better Programmer
Reactive Programming for a demanding world: building event-driven and respons...
Comparing different concurrency models on the JVM
Why we cannot ignore Functional Programming
Real world DSL - making technical and business people speaking the same language
Introducing Drools
Java 7, 8 & 9 - Moving the language forward
Hammurabi
Swiss army knife Spring
No more loops with lambdaj
Concurrency, Scalability & Fault-tolerance 2.0 with Akka Actors & STM
Scala - where objects and functions meet

Recently uploaded (20)

PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
Big Data Technologies - Introduction.pptx
PDF
cuic standard and advanced reporting.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Machine learning based COVID-19 study performance prediction
PDF
Encapsulation theory and applications.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Electronic commerce courselecture one. Pdf
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Network Security Unit 5.pdf for BCA BBA.
Encapsulation_ Review paper, used for researhc scholars
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Big Data Technologies - Introduction.pptx
cuic standard and advanced reporting.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
MIND Revenue Release Quarter 2 2025 Press Release
20250228 LYD VKU AI Blended-Learning.pptx
Machine learning based COVID-19 study performance prediction
Encapsulation theory and applications.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Electronic commerce courselecture one. Pdf
Spectroscopy.pptx food analysis technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...

Monadic Java

  • 2. Fortran C / C++ Java Lisp ML Haskell Add abstractions C# Algol Subtract abstractions Imperative languages Functional languages Scala F# Hybrid languages
  • 3. Learning a new language is relatively easy compared with learning a new paradigm. new language < new paradigm Functional Programming is more a new way of thinking than a new tool set
  • 4. What is a monad?
  • 5. What is a monad? A monad is a triple (T, η, μ) where T is an endofunctor T: X → X and η: I → T and μ: T x T → T are 2 natural transformations satisfying these laws: Identity law: μ(η(T)) = T = μ(T(η)) Associative law: μ(μ(T × T) × T)) = μ(T × μ(T × T)) In other words: "a monad in X is just a monoid in the category of endofunctors of X, with product × replaced by composition of endofunctors and unit set by the identity endofunctor" What's the problem?
  • 6. … really? do I need to know this? In order to understand monads you need to first learn Cathegory Theory In order to understand pizza you need to first learn Italian … it's like saying …
  • 7. … ok, so let's try to ask Google …
  • 8. … no seriously, what is a monad? A monad is a structure that puts a value in a computational context
  • 9. … and why should we care about? Reduce code duplication Improve maintainability Increase readability Remove side effects Hide complexity Encapsulate implementation details Allow composability
  • 10. { return flatMap( x -> unit( f.apply(x) ) ); } Monadic Methods M<A> unit(A a); M<B> bind(M<A> ma, Function<A, M<B>> f); interface M { M<B> map(Function<A, B> f); M<B> flatMap(Function<A, M<B>> f); } map can defined for every monad as a combination of flatMap and unit
  • 11. public class Person { private Car car; public Car getCar() { return car; } } public class Car { private Insurance insurance; public Insurance getInsurance() { return insurance; } } public class Insurance { private String name; public String getName() { return name; } } Finding Car's Insurance Name
  • 12. String getCarInsuranceName(Person person) { if (person != null) { Car car = person.getCar(); if (car != null) { Insurance insurance = car.getInsurance(); if (insurance != null) { return insurance.getName() } } } return "Unknown"; } Attempt 1: deep doubts
  • 13. Attempt 2: too many choices String getCarInsuranceName(Person person) { if (person == null) { return "Unknown"; } Car car = person.getCar(); if (car == null) { return "Unknown"; } Insurance insurance = car.getInsurance(); if (insurance == null) { return "Unknown"; } return insurance.getName() }
  • 14. What wrong with nulls? ✗ Errors source → NPE is by far the most common exception in Java ✗ Bloatware source → Worsen readability by making necessary to fill our code with null checks ✗ Breaks Java philosophy → Java always hides pointers to developers, except in one case: the null pointer ✗ A hole in the type system → Null has the bottom type, meaning that it can be assigned to any reference type: this is a problem because, when propagated to another part of the system, you have no idea what that null was initially supposed to be ✗ Meaningless → Don't have any semantic meaning and in particular are the wrong way to model the absence of a value in a statically typed language “Absence of a signal should never be used as a signal“ - J. Bigalow, 1947 Tony Hoare, who invented the null reference in 1965 while working on an object oriented language called ALGOL W, called its invention his “billion dollar mistake”
  • 15. Optional Monad to the rescue public class Optional<T> { private static final Optional<?> EMPTY = new Optional<>(null); private final T value; private Optional(T value) { this.value = value; } public<U> Optional<U> map(Function<? super T, ? extends U> f) { return value == null ? EMPTY : new Optional(f.apply(value)); } public<U> Optional<U> flatMap(Function<? super T, Optional<U>> f) { return value == null ? EMPTY : f.apply(value); } }
  • 16. public class Person { private Optional<Car> car; public Optional<Car> getCar() { return car; } } public class Car { private Optional<Insurance> insurance; public Optional<Insurance> getInsurance() { return insurance; } } public class Insurance { private String name; public String getName() { return name; } } Rethinking our model Using the type system to model nullable value
  • 17. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity
  • 18. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Person Optional
  • 19. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Person Optional flatMap(person -> person.getCar())
  • 20. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Optional flatMap(person -> person.getCar()) Optional Car
  • 21. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Optional flatMap(car -> car.getInsurance()) Car
  • 22. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Optional flatMap(car -> car.getInsurance()) Optional Insurance
  • 23. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Optional map(insurance -> insurance.getName()) Insurance
  • 24. String getCarInsuranceName(Optional<Person> person) { return person.flatMap(person -> person.getCar()) .flatMap(car -> car.getInsurance()) .map(insurance -> insurance.getName()) .orElse("Unknown"); } Restoring the sanity Optional orElse("Unknown") String
  • 25. person .flatMap(Person::getCar) .flatMap(Car::getInsurance) .map(Insurance::getName) .orElse("Unknown"); Why map and flatMap ? map defines monad's policy for function application flatMap defines monad's policy for monads composition
  • 26. This is what happens when you don't use flatMap
  • 27. The Optional Monad The Optional monad makes the possibility of missing data explicit in the type system, while hiding the boilerplate of "if non-null" logic
  • 29. Using map & flatMap with Streams building.getApartments().stream(). .flatMap(apartment -> apartment.getPersons().stream()) .map(Person::getName); flatMap( -> ) StreamStream map( -> ) StreamStream
  • 30. Given n>0 find all pairs i and j where 1 ≤ j ≤ i ≤ n and i+j is prime Stream.iterate(1, i -> i+1).limit(n) .flatMap(i -> Stream.iterate(1, j -> j+1).limit(n) .map(j -> new int[]{i, j})) .filter(pair -> isPrime(pair[0] + pair[1])) .collect(toList()); public boolean isPrime(int n) { return Stream.iterate(2, i -> i+1) .limit((long) Math.sqrt(n)) .noneMatch(i -> n % i == 0); }
  • 31. The Stream Monad The Stream monad makes the possibility of multiple data explicit in the type system, while hiding the boilerplate of nested loops
  • 32. No Monads syntactic sugar in Java :( for { i <- List.range(1, n) j <- List.range(1, i) if isPrime(i + j) } yield {i, j} List.range(1, n) .flatMap(i => List.range(1, i) .filter(j => isPrime(i+j)) .map(j => (i, j))) Scala's for-comprehension is just syntactic sugar to manipulate monadstranslated by the compiler in
  • 33. Are there other monads in Java8 API?
  • 35. Promise: a monadic CompletableFuture public class Promise<A> implements Future<A> { private final CompletableFuture<A> future; private Promise(CompletableFuture<A> future) { this.future = future; } public static final <A> Promise<A> promise(Supplier<A> supplier) { return new Promise<A>(CompletableFuture.supplyAsync(supplier)); } public <B> Promise<B> map(Function<? super A,? extends B> f) { return new Promise<B>(future.thenApplyAsync(f)); } public <B> Promise<B> flatMap(Function<? super A, Promise<B>> f) { return new Promise<B>( future.thenComposeAsync(a -> f.apply(a).future)); } // ... omitting methods delegating the wrapped future }
  • 36. public int slowLength(String s) { someLongComputation(); return s.length(); } public int slowDouble(int i) { someLongComputation(); return i*2; } String s = "Hello"; Promise<Integer> p = promise(() -> slowLength(s)) .flatMap(i -> promise(() -> slowDouble(i))); Composing long computations
  • 37. The Promise Monad The Promise monad makes asynchronous computation explicit in the type system, while hiding the boilerplate thread logic
  • 39. Lost in Exceptions public Person validateAge(Person p) throws ValidationException { if (p.getAge() > 0 && p.getAge() < 130) return p; throw new ValidationException("Age must be between 0 and 130"); } public Person validateName(Person p) throws ValidationException { if (Character.isUpperCase(p.getName().charAt(0))) return p; throw new ValidationException("Name must start with uppercase"); } List<String> errors = new ArrayList<String>(); try { validateAge(person); } catch (ValidationException ex) { errors.add(ex.getMessage()); } try { validateName(person); } catch (ValidationException ex) { errors.add(ex.getMessage()); }
  • 40. public abstract class Validation<L, A> { protected final A value; private Validation(A value) { this.value = value; } public abstract <B> Validation<L, B> map( Function<? super A, ? extends B> mapper); public abstract <B> Validation<L, B> flatMap( Function<? super A, Validation<?, ? extends B>> mapper); public abstract boolean isSuccess(); } Defining a Validation Monad
  • 41. Success !!! public class Success<L, A> extends Validation<L, A> { private Success(A value) { super(value); } public <B> Validation<L, B> map( Function<? super A, ? extends B> mapper) { return success(mapper.apply(value)); } public <B> Validation<L, B> flatMap( Function<? super A, Validation<?, ? extends B>> mapper) { return (Validation<L, B>) mapper.apply(value); } public boolean isSuccess() { return true; } public static <L, A> Success<L, A> success(A value) { return new Success<L, A>(value); } }
  • 42. Failure :((( public class Failure<L, A> extends Validation<L, A> { protected final L left; public Failure(A value, L left) {super(value); this.left = left;} public <B> Validation<L, B> map( Function<? super A, ? extends B> mapper) { return failure(left, mapper.apply(value)); } public <B> Validation<L, B> flatMap( Function<? super A, Validation<?, ? extends B>> mapper) { Validation<?, ? extends B> result = mapper.apply(value); return result.isSuccess() ? failure(left, result.value) : failure(((Failure<L, B>)result).left, result.value); } public boolean isSuccess() { return false; } }
  • 43. The Validation Monad The Validation monad makes the possibility of errors explicit in the type system, while hiding the boilerplate of "try/catch" logic
  • 44. Rewriting validating methods public Validation<String, Person> validateAge(Person p) { return (p.getAge() > 0 && p.getAge() < 130) ? success(p) : failure("Age must be between 0 and 130", p); } public Validation<String, Person> validateName(Person p) { return Character.isUpperCase(p.getName().charAt(0)) ? success(p) : failure("Name must start with uppercase", p); }
  • 46. Gathering multiple errors - Success public class SuccessList<L, A> extends Success<List<L>, A> { public SuccessList(A value) { super(value); } public <B> Validation<List<L>, B> map( Function<? super A, ? extends B> mapper) { return new SuccessList(mapper.apply(value)); } public <B> Validation<List<L>, B> flatMap( Function<? super A, Validation<?, ? extends B>> mapper) { Validation<?, ? extends B> result = mapper.apply(value); return (Validation<List<L>, B>)(result.isSuccess() ? new SuccessList(result.value) : new FailureList<L, B>(((Failure<L, B>)result).left, result.value)); } }
  • 47. Gathering multiple errors - Failure public class FailureList<L, A> extends Failure<List<L>, A> { private FailureList(List<L> left, A value) { super(left, value); } public <B> Validation<List<L>, B> map( Function<? super A, ? extends B> mapper) { return new FailureList(left, mapper.apply(value)); } public <B> Validation<List<L>, B> flatMap( Function<? super A, Validation<?, ? extends B>> mapper) { Validation<?, ? extends B> result = mapper.apply(value); return (Validation<List<L>, B>)(result.isSuccess() ? new FailureList(left, result.value) : new FailureList<L, B>(new ArrayList<L>(left) {{ add(((Failure<L, B>)result).left); }}, result.value)); } }
  • 48. Monadic Validation Validation<List<String>, Person> validatedPerson = success(person).failList() .flatMap(Validator::validAge) .flatMap(Validator::validName);
  • 49. Homework: develop your own Transaction Monad The Transaction monad makes transactionally explicit in the type system, while hiding the boilerplate propagation of invoking rollbacks
  • 50. Alternative Monads Definitions Monads are parametric types with two operations flatMap and unit that obey some algebraic laws Monads are structures that represent computations defined as sequences of steps Monads are chainable containers types that confine values defining how to transform and combine them Monads are return types that guide you through the happy path
  • 51. Functional Domain Design A practical example
  • 52. A OOP BankAccount ... public class Balance { final BigDecimal amount; public Balance( BigDecimal amount ) { this.amount = amount; } } public class Account { private final String owner; private final String number; private Balance balance = new Balance(BigDecimal.ZERO); public Account( String owner, String number ) { this.owner = owner; this.number = number; } public void credit(BigDecimal value) { balance = new Balance( balance.amount.add( value ) ); } public void debit(BigDecimal value) throws InsufficientBalanceException { if (balance.amount.compareTo( value ) < 0) throw new InsufficientBalanceException(); balance = new Balance( balance.amount.subtract( value ) ); } } Mutability Error handling using Exception
  • 53. … and how we can use it Account a = new Account("Alice", "123"); Account b = new Account("Bob", "456"); Account c = new Account("Charlie", "789"); List<Account> unpaid = new ArrayList<>(); for (Account account : Arrays.asList(a, b, c)) { try { account.debit( new BigDecimal( 100.00 ) ); } catch (InsufficientBalanceException e) { unpaid.add(account); } } List<Account> unpaid = new ArrayList<>(); Stream.of(a, b, c).forEach( account -> { try { account.debit( new BigDecimal( 100.00 ) ); } catch (InsufficientBalanceException e) { unpaid.add(account); } } ); Mutation of enclosing scope Cannot use a parallel Stream Ugly syntax
  • 54. Error handling with Try monad public interface Try<A> { <B> Try<B> map(Function<A, B> f); <B> Try<B> flatMap(Function<A, Try<B>> f); boolean isFailure(); } public Success<A> implements Try<A> { private final A value; public Success(A value) { this.value = value; } public boolean isFailure() { return false; } public <B> Try<B> map(Function<A, B> f) { return new Success<>(f.apply(value)); } public <B> Try<B> flatMap(Function<A, Try<B>> f) { return f.apply(value); } } public Failure<A> implements Try<T> { private final Object error; public Failure(Object error) { this.error = error; } public boolean isFailure() { return false; } public <B> Try<B> map(Function<A, B> f) { return (Failure<B>)this; } public <B> Try<B> flatMap(Function<A, Try<B>> f) { return (Failure<B>)this; } }
  • 55. A functional BankAccount ... public class Account { private final String owner; private final String number; private final Balance balance; public Account( String owner, String number, Balance balance ) { this.owner = owner; this.number = number; this.balance = balance; } public Account credit(BigDecimal value) { return new Account( owner, number, new Balance( balance.amount.add( value ) ) ); } public Try<Account> debit(BigDecimal value) { if (balance.amount.compareTo( value ) < 0) return new Failure<>( new InsufficientBalanceError() ); return new Success<>( new Account( owner, number, new Balance( balance.amount.subtract( value ) ) ) ); } } Immutable Error handling without Exceptions
  • 56. … and how we can use it Account a = new Account("Alice", "123"); Account b = new Account("Bob", "456"); Account c = new Account("Charlie", "789"); List<Account> unpaid = Stream.of( a, b, c ) .map( account -> new Tuple2<>( account, account.debit( new BigDecimal( 100.00 ) ) ) ) .filter( t -> t._2.isFailure() ) .map( t -> t._1 ) .collect( toList() ); List<Account> unpaid = Stream.of( a, b, c ) .filter( account -> account.debit( new BigDecimal( 100.00 ) ) .isFailure() ) .collect( toList() );
  • 57. From Methods to Functions public class BankService { public static Try<Account> open(String owner, String number, BigDecimal balance) { if (initialBalance.compareTo( BigDecimal.ZERO ) < 0) return new Failure<>( new InsufficientBalanceError() ); return new Success<>( new Account( owner, number, new Balance( balance ) ) ); } public static Account credit(Account account, BigDecimal value) { return new Account( account.owner, account.number, new Balance( account.balance.amount.add( value ) ) ); } public static Try<Account> debit(Account account, BigDecimal value) { if (account.balance.amount.compareTo( value ) < 0) return new Failure<>( new InsufficientBalanceError() ); return new Success<>( new Account( account.owner, account.number, new Balance( account.balance.amount.subtract( value ) ) ) ); } }
  • 58. Decoupling state and behavior import static BankService.* Try<Account> account = open( "Alice", "123", new BigDecimal( 100.00 ) ) .map( acc -> credit( acc, new BigDecimal( 200.00 ) ) ) .map( acc -> credit( acc, new BigDecimal( 300.00 ) ) ) .flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ) ); The object-oriented paradigm couples state and behavior Functional programming decouples them
  • 59. … but I need a BankConnection! What about dependency injection?
  • 60. A naïve solution public class BankService { public static Try<Account> open(String owner, String number, BigDecimal balance, BankConnection bankConnection) { ... } public static Account credit(Account account, BigDecimal value, BankConnection bankConnection) { ... } public static Try<Account> debit(Account account, BigDecimal value, BankConnection bankConnection) { ... } } BankConnection bconn = new BankConnection(); Try<Account> account = open( "Alice", "123", new BigDecimal( 100.00 ), bconn ) .map( acc -> credit( acc, new BigDecimal( 200.00 ), bconn ) ) .map( acc -> credit( acc, new BigDecimal( 300.00 ), bconn ) ) .flatMap( acc -> debit( acc, new BigDecimal( 400.00 ), bconn ) ); Necessary to create the BankConnection in advance ... … and pass it to all methods
  • 61. Making it lazy public class BankService { public static Function<BankConnection, Try<Account>> open(String owner, String number, BigDecimal balance) { return (BankConnection bankConnection) -> ... } public static Function<BankConnection, Account> credit(Account account, BigDecimal value) { return (BankConnection bankConnection) -> ... } public static Function<BankConnection, Try<Account>> debit(Account account, BigDecimal value) { return (BankConnection bankConnection) -> ... } } Function<BankConnection, Try<Account>> f = (BankConnection conn) -> open( "Alice", "123", new BigDecimal( 100.00 ) ) .apply( conn ) .map( acc -> credit( acc, new BigDecimal( 200.00 ) ).apply( conn ) ) .map( acc -> credit( acc, new BigDecimal( 300.00 ) ).apply( conn ) ) .flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ).apply( conn ) ); Try<Account> account = f.apply( new BankConnection() );
  • 62. open Ctx -> S1 S1 A, B credit Ctx S2 C, D result open S1 A, B, Ctx injection credit C, D, Ctx, S1 resultS2 Pure OOP implementation Static Methods open A, B apply(Ctx) S1 Ctx -> S2 apply(Ctx) S2 C, D Lazy evaluation Ctx credit result
  • 63. Introducing the Reader monad ... public class Reader<R, A> { private final Function<R, A> run; public Reader( Function<R, A> run ) { this.run = run; } public <B> Reader<R, B> map(Function<A, B> f) { ... } public <B> Reader<R, B> flatMap(Function<A, Reader<R, B>> f) { ... } public A apply(R r) { return run.apply( r ); } } The reader monad provides an environment to wrap an abstract computation without evaluating it
  • 64. Introducing the Reader monad ... public class Reader<R, A> { private final Function<R, A> run; public Reader( Function<R, A> run ) { this.run = run; } public <B> Reader<R, B> map(Function<A, B> f) { return new Reader<>((R r) -> f.apply( apply( r ) )); } public <B> Reader<R, B> flatMap(Function<A, Reader<R, B>> f) { return new Reader<>((R r) -> f.apply( apply( r ) ).apply( r )); } public A apply(R r) { return run.apply( r ); } } The reader monad provides an environment to wrap an abstract computation without evaluating it
  • 65. The Reader Monad The Reader monad makes a lazy computation explicit in the type system, while hiding the logic to apply it In other words the reader monad allows us to treat functions as values with a context We can act as if we already know what the functions will return.
  • 66. … and combining it with Try public class TryReader<R, A> { private final Function<R, Try<A>> run; public TryReader( Function<R, Try<A>> run ) { this.run = run; } public <B> TryReader<R, B> map(Function<A, B> f) { ... } public <B> TryReader<R, B> mapReader(Function<A, Reader<R, B>> f) { ... } public <B> TryReader<R, B> flatMap(Function<A, TryReader<R, B>> f) { ... } public Try<A> apply(R r) { return run.apply( r ); } }
  • 67. … and combining it with Try public class TryReader<R, A> { private final Function<R, Try<A>> run; public TryReader( Function<R, Try<A>> run ) { this.run = run; } public <B> TryReader<R, B> map(Function<A, B> f) { return new TryReader<R, B>((R r) -> apply( r ) .map( a -> f.apply( a ) )); } public <B> TryReader<R, B> mapReader(Function<A, Reader<R, B>> f) { return new TryReader<R, B>((R r) -> apply( r ) .map( a -> f.apply( a ).apply( r ) )); } public <B> TryReader<R, B> flatMap(Function<A, TryReader<R, B>> f) { return new TryReader<R, B>((R r) -> apply( r ) .flatMap( a -> f.apply( a ).apply( r ) )); } public Try<A> apply(R r) { return run.apply( r ); } }
  • 68. A more user-friendly API public class BankService { public static TryReader<BankConnection, Account> open(String owner, String number, BigDecimal balance) { return new TryReader<>( (BankConnection bankConnection) -> ... ) } public static Reader<BankConnection, Account> credit(Account account, BigDecimal value) { return new Reader<>( (BankConnection bankConnection) -> ... ) } public static TryReader<BankConnection, Account> debit(Account account, BigDecimal value) { return new TryReader<>( (BankConnection bankConnection) -> ... ) } } TryReader<BankConnection, Account> reader = open( "Alice", "123", new BigDecimal( 100.00 ) ) .mapReader( acc -> credit( acc, new BigDecimal( 200.00 ) ) ) .mapReader( acc -> credit( acc, new BigDecimal( 300.00 ) ) ) .flatMap( acc -> debit( acc, new BigDecimal( 400.00 ) ) ); Try<Account> account = reader.apply( new BankConnection() );
  • 69. open Ctx -> S1 S1 A, B credit Ctx S2 C, D result open S1 A, B, Ctx injection credit C, D, Ctx, S1 resultS2 Pure OOP implementation Static Methods open A, B apply(Ctx) S1 Ctx -> S2 apply(Ctx) S2 C, D Lazy evaluation Ctx credit Reader monad result Ctx -> S1 A, B C, D map(credit) Ctx -> result apply(Ctx) open Ctx -> S2
  • 70. To recap: a Monad is a design patternAlias  flatMap that shit Intent  Put a value in a computational context defining the policy on how to operate on it Motivations  Reduce code duplication  Improve maintainability  Increase readability  Remove side effects  Hide complexity  Encapusalate implementation details  Allow composability Known Uses  Optional, Stream, Promise, Validation, Transaction, State, …
  • 71. Use Monads whenever possible to keep your code clean and encapsulate repetitive logic TL;DR
  • 73. Mario Fusco Red Hat – Senior Software Engineer mario.fusco@gmail.com twitter: @mariofusco Q A Thanks … Questions?