SlideShare a Scribd company logo
Dept. of Physical Geography and Ecosystem Science, LU
Analysis of Arctic peak-season carbon flux
estimations based on four MODIS vegetation
indices
June 8, 2016
Project background
• Pan-Arctic Net Ecosystem Exchange (PANEEx
2015)
• Aim: improve understanding of CO2 dynamics
in the Arctic
• Upscale satellite-derived data to produce NEE
(Net Ecosystem Exchange)
Why study C in the Arctic ?
• high-latitude boreal and tundra biomes: sequester a
atmospheric CO2
– 119 Pg of soil organic carbon
• Importance of the Arctic:
– Stable stocks of C (if frozen)
– Heat budget
• Delicate region: Arctic amplification
(Screen & Simmonds, 2010; Serreze et al., 2009)
Introduction
• NEE – exchange of C between land and atmosphere
– Uptake, release (-,+)
– Measured in g/m2/yr or µmol m2/s
• Arctic regarded as a net C sink
– future? (McGuire et al., 2010; Kimball et al., 2009)
• Arctic tundra C sequestration:
– Abisko: -1.74 µmol m-2 s-1 (Stoy et al., 2013) Source: AMAP 2012
Measurements of C exchange
• Eddy covariance towers
(Baldochi, 2003)
• Gas chambers
(Williams et al., 2006)
• Environmental modelling
(Mbufong,In Prep; Kimball et al., 2009)
Site: Barrow, Alaska, source: SpecNet (http://specnet.info/)
• PIRT - Photosyntesis & temp. sensitive (Williams et al., 2006)
• TCF - GPP, soil temperature (Kimball et al., 2009)
• PANEEx - Air temp, LAI, PAR (Mbufong, In Prep)
Examples of C models
• PANEEx - Air temp, LAI, PAR
LAI: ~0-2
[m2 / m2]
Air temperature:
~ 7-10 [ ͦC]
PAR: light photon
density [W / m2]
Problem statement
• Vegetation properties are important in understanding of
C exchanged in the Arctic
(Mbufong et al., 2015)
• Need for an accurate vegetation proxy (LAI, NDVI)
- Which one, based on what ?
Main objectives
• Objective: (1) Reduce knowledge gap between RS and environmental
modelling
(2) Assess suitability of satellite-derived products
• Goal: Model and evaluate Arctic NEE/LAI at 12 sites
• Assumptions:
(i) Vegetation proxies are expected to yield discrepancies in the Arctic
NEE estimations
(ii) The product with the finest spatial resolution is likely to yield most realistic
NEE estimations compared to in situ
Product
Spatial
Resolution
Temporal resolution Source
MCD15A3 - LAI 1 km2 4 - day LP DAAC, USGS*
MOD13A1 - NDVI 500 m2 16-day GEE, MODIS Terra
MOD13Q1 - NDVI 250 m2 16-day GEE, MODIS Terra
MYD09GA - NDVI 1 km2 Daily GEE, MODIS Aqua
Methodology, used materials
* LP DAAC – Land Processes Distributed Active Archive Center
• Scope: 2008-2010
• Peak of the growing season: July
• NDVI to LAI conversion for consistency (Van Wijk & Williams, 2005)
NEE model Study domain
• Sensitivity analysis: selective
(non-probability) sampling
• Quantitative analysis of “big
data”
• Average daily NEE [µmol m2/s]
(Mbufong et al., 2014)
Air temp: Fcsat
LAI: Rd, α, Fcsat
PAR: PPFD
NEE = − Fcsat + R 𝑑 1 − 𝑒
−α PPFD
𝐹 𝑐𝑠𝑎𝑡+𝑅 𝑑 + 𝑅 𝑑
Methodology, used software
• ESRI ArcGIS (vs. 10.2.2 Desktop)
• (Google Inc.)
• Matlab (vs. R2014a, The MathWorks, Inc.)
Results, LAI
Results, NEE
Slope = 0.29
Intercept = -0.94
r2 = 0.15; rmse = 0.30
NEE
Modelled vs. Observed NEE
0 - 0.25
0.25 - 0.5
0.50 - 0.75
0.75 - 1
1.1 - 1.5
1.5 - 2
2.1 - 2.5
2.5 - 3.5
Land fill
Water bodies
0.16
0.87 1.7
1.350.18
0.960.11
1.62
In situ LAI :
~0.24 & ~ 0.63
Results summary
• LAI – under & overestimated; 1/4 correlations is
consistently overestimated (slope = 2.45, R2 = 0.8) in
MCD15A3
• LAI – MOD13Q1 shows least overestimation
(slope =1.22, R2 = 0.59, RMSE = 0.23)
• NEE- MCD15A3, statistically insignificant (P>> 0.05)
• NEE – MOD13Q1 & MYD09GA show best estimations
(slope=0.78, R2=0.73; slope= 0.86, R2 = 0.56), p<0.05
Discussion – other studies
• Implementation of 250 m NDVI better than 1 km GPP
Schubert et al. (2012)
• Watts (2014)
– used 13Q1 & 13A1 (250 m) compared to EC
(R2 = 0.8, p < 0.05)
– halved the acquisition time by combining 13Q1 & 13A1
(linear interpolation)
• Arctic heterogeneity  500 m and 250 m vegetation indices
may not be sufficient
Discussion - methods
• Need for sufficient number of observed
data in global scale(n=12)
• Spatial misalignment of external data
(LAI, PAR)
– Edge effect, miscalculated pixels
• LAI derivation from NDVI (97% of in
situ variation, Abisko) (Van Wijk & Williams, 2005)
• Spectral errors imbedded in LAI
images
• Investigation of finer-resolution
satellites (Sentinel 2 project)
www.sentinel.esa
Conclusions
• Three MODIS products generated NEE (p<0.05)
• Best estimation: 250 m 16-day LAI (MOD13Q1)
- Slope = 0.78, R2=0.73
• Spatial resolution is important for result accuracy
- Need for finer scale (30 to 60m)
• Heterogeneity of Arctic landscape can be
modelled via RS; accuracy of NEE is correlated
to the configuration of sat.-derived products
MSc Project  Presentation 2016
Methodology cont.
• Air Temperature
(Ta)
Processing PAR
• 00:00
• 03:00
• 06:00
• 09:00
• 12:00
• 15:00
• 18:00
• 21:00
Fine 3-hr resolution creates illumination shadows
References
• Baldocchi, D.D. 2003. Assessing the eddy covariance technique for evaluatiing carbon dioxide exchange rates of
ecosystems: past, present and future. Glob. Change Biol 9:479-92.
• McGuire, A.D., Hayes, D.J., Kicklighter, D.W., Manizza, M., Zhuang, Q., Chen, M., Follows, M.J., Gurney, K.R.,
McClelland, J.W., Melillo, J.M., Peterson, B.J., Prinn, R.G., 2010. An analysis of the carbon balance of the Arctic Basin
from 1997 to 2006. Tellus B 62. doi:10.3402/tellusb.v62i5.16587
• Kimball, J., Jones, L., Zhang, K., Heinsch, F., McDonald, K., Oechel, W., 2009. A Satellite Approach to Estimate Land-
Atmosphere CO2 Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E. IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING 47, 569–587.
• Mbufong, H.N., Lund, M., Aurela, M., Christensen, T.R., Eugster, W., Friborg, T., Hansen, B.U., Humphreys, E.R.,
Jackowicz-Korczynski, M., Kutzbach, L., Lafleur, P.M., Oechel, W.C., Parmentier, F.J.W., Rasse, D.P., Rocha, A.V.,
Sachs, T., van der Molen, M.K., Tamstorf, M.P. 2014. Assessing the spatial variability in peak season CO2 exchange
characteristics across the Arctic tundra using a light response curve parameterization. Biogeosciences 11, 4897-4912.
• Mbufong, H. N., 2015. Drivers of sesasonality in Arctic carbon dioxide fluxes. PhD thesis. Arhus University, Department
of Bioscience, Denmark. 144 pp.
• Watts, J.D., Kimball, J.S., Parmentier, F.J.W., Sachs, T., Rinne, J., Zona, D., Oechel, W., Tagesson, T., Jackowicz-
Korczyński, M., Aurela, M., 2014. A satellite data driven biophysical modeling approach for estimating northern peatland
and tundra CO2 and CH4 fluxes. Biogeosciences 11, 1961–1980. doi:10.5194/bg-11-1961-2014
• Stoy, P.C., Williams, M., Evans, J.G., Prieto-Blanco, A., Disney, M., Hill, T.C., Ward, H.C., Wade, T.J., Street, L.E., 2013.
Upscaling Tundra CO2 Exchange from Chamber to Eddy Covariance Tower. Arctic, Antarctic, and Alpine Research 45,
275–284. doi:10.1657/1938-4246-45.2.275
• Land Processes Distributed Active Archive Center (LP DAAC), 2000. Land Cover Type Yearly L3 Global 500 m SIN Grid.
Version 051. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center,
Sioux Falls, South Dakota (https://lpdaac.usgs.gov), accessed 04/11, 2015, at
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1.
• Van Wijk, M. T. and Williams, M., 2005. Optical Instruments for Measuring Leaf Area Index in Low Vegetation: Application
in Arctic Ecosystems. Ecological Applications, 15: 1462–1470. doi:10.1890/03-5354y.

More Related Content

PDF
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
PDF
First results from_the_hubble_opal_program_jupiter_in_2015
PPTX
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
PDF
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
PDF
Remote Sensing Methods for operational ET determinations in the NENA region, ...
PPTX
Merging multiple soil moisture products for improving the accuracy in rainfal...
PPTX
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
PPT
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
First results from_the_hubble_opal_program_jupiter_in_2015
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
Remote Sensing Methods for operational ET determinations in the NENA region, ...
Merging multiple soil moisture products for improving the accuracy in rainfal...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...

What's hot (18)

PPTX
Af sis midterm_review_consortium_presentation_v3
PPTX
Afsismidtermreviewconsortiumpresentationv2 110203031825-phpapp02
PDF
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
PDF
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
PPTX
EcoTas13 BradEvans e-Mast UNSW
PPTX
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
PPT
IGARSS11_HongboSu_ver3.ppt
PPT
3178_IGARSS11.ppt
PDF
Meterological Technology International, Nov 2010
PPTX
Evapotranspiration estimation with remote sensing
PDF
Analysis of large scale soil spectral libraries
 
PDF
Hankerson_2012_Estimation of evapotranspiration from fields with and without ...
PDF
Marcel Caron - Prospectus Defense - December 2016 - Final PDF
PPT
The performance of portable mid-infrared spectroscopy for the prediction of s...
PDF
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
PPTX
Measuring water from Sky: Basin-wide ET monitoring and application
PPT
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
PPTX
Using Infrared Spectroscopy for Detection of Changes in Soil Properties in Se...
Af sis midterm_review_consortium_presentation_v3
Afsismidtermreviewconsortiumpresentationv2 110203031825-phpapp02
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
EcoTas13 BradEvans e-Mast UNSW
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
IGARSS11_HongboSu_ver3.ppt
3178_IGARSS11.ppt
Meterological Technology International, Nov 2010
Evapotranspiration estimation with remote sensing
Analysis of large scale soil spectral libraries
 
Hankerson_2012_Estimation of evapotranspiration from fields with and without ...
Marcel Caron - Prospectus Defense - December 2016 - Final PDF
The performance of portable mid-infrared spectroscopy for the prediction of s...
Using Remote Sensing Techniques For Monitoring Ecological Changes In Lakes: C...
Measuring water from Sky: Basin-wide ET monitoring and application
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
Using Infrared Spectroscopy for Detection of Changes in Soil Properties in Se...
Ad

Viewers also liked (20)

DOCX
Математика в різних галузях нашого життя ( Пономаренко Е.В.)
PDF
St. Joseph's University Campus Master Plan
PPTX
Tejido Muscular y Tejido Nervioso
PDF
Colloque lille2017 sequence7a2-radiant-floor-heating-system-for-broilers-in-p...
PDF
Colloque lille2017 sequence7a5-bati_santé-application-smartphone_rousseliere_en
PDF
Colloque lille2017 sequence7a6-medibate_robin-amand_en
DOCX
замітка інтернет
PPTX
Tem mode 1st 2
PPTX
Oral health ppt
PDF
Chatbots 101: an introduction to conversational interfaces for the enterprise
DOCX
Whiplash Doc
PPTX
Documentary Analysis: Kenny Rodgers
DOC
Resume - Mrinal Thakur
PDF
Presentation on Learning Opportunities for the Persons with Disabilities
PPT
Food grade 3- unit 4
PPTX
The art of copying
DOCX
BCOM 275 Final Exam VERSION 2 2015 version
DOCX
larodney resume (1)
DOCX
ทองหยิบ ทองหยอด
DOCX
Nutrición en los vegetales
Математика в різних галузях нашого життя ( Пономаренко Е.В.)
St. Joseph's University Campus Master Plan
Tejido Muscular y Tejido Nervioso
Colloque lille2017 sequence7a2-radiant-floor-heating-system-for-broilers-in-p...
Colloque lille2017 sequence7a5-bati_santé-application-smartphone_rousseliere_en
Colloque lille2017 sequence7a6-medibate_robin-amand_en
замітка інтернет
Tem mode 1st 2
Oral health ppt
Chatbots 101: an introduction to conversational interfaces for the enterprise
Whiplash Doc
Documentary Analysis: Kenny Rodgers
Resume - Mrinal Thakur
Presentation on Learning Opportunities for the Persons with Disabilities
Food grade 3- unit 4
The art of copying
BCOM 275 Final Exam VERSION 2 2015 version
larodney resume (1)
ทองหยิบ ทองหยอด
Nutrición en los vegetales
Ad

Similar to MSc Project Presentation 2016 (20)

PDF
Global Soil Spectral Library, A global reference, spectral library and conver...
 
PPTX
EcoTas13 BradEvans e-MAST
PDF
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
PPTX
Bukosa, Beata: CarbonWatchNZ: Regional to National Scale Inverse Modelling of...
PPTX
Water quality and land cover change analysis in East Tennessee watersheds
PPTX
PRESENTATION XU - Copy
PDF
Drought Assessment + Impacts: A Preview
PDF
Monitoring and retrieving historical daily surface temperature of sub-alpine ...
PPT
igarss11_rudiger.ppt
PPT
igarss11_rudiger.ppt
PDF
Gurpreet Singh Poster for LURA 2016
PDF
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
PPTX
Near real-time measurement of CO2, water and energy fluxes: determining the b...
PPTX
Ajayi_M_Senior Thesis Poster
PPTX
Impact and Strategies to combate Shrinking Photic zone in the Ocean by B.pptx
PPTX
Bakker, Dorothee C. E.: The value chain of ocean CO2 measurements
PPT
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
PPT
Physical Characteristics Of A Real Tidal Energy Resource [David Woolf]
PPTX
Fundamentals aquatic-web
Global Soil Spectral Library, A global reference, spectral library and conver...
 
EcoTas13 BradEvans e-MAST
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
Bukosa, Beata: CarbonWatchNZ: Regional to National Scale Inverse Modelling of...
Water quality and land cover change analysis in East Tennessee watersheds
PRESENTATION XU - Copy
Drought Assessment + Impacts: A Preview
Monitoring and retrieving historical daily surface temperature of sub-alpine ...
igarss11_rudiger.ppt
igarss11_rudiger.ppt
Gurpreet Singh Poster for LURA 2016
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
Near real-time measurement of CO2, water and energy fluxes: determining the b...
Ajayi_M_Senior Thesis Poster
Impact and Strategies to combate Shrinking Photic zone in the Ocean by B.pptx
Bakker, Dorothee C. E.: The value chain of ocean CO2 measurements
TH3.L10.1: THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION: OVERVIEW
Physical Characteristics Of A Real Tidal Energy Resource [David Woolf]
Fundamentals aquatic-web

MSc Project Presentation 2016

  • 1. Dept. of Physical Geography and Ecosystem Science, LU Analysis of Arctic peak-season carbon flux estimations based on four MODIS vegetation indices June 8, 2016
  • 2. Project background • Pan-Arctic Net Ecosystem Exchange (PANEEx 2015) • Aim: improve understanding of CO2 dynamics in the Arctic • Upscale satellite-derived data to produce NEE (Net Ecosystem Exchange)
  • 3. Why study C in the Arctic ? • high-latitude boreal and tundra biomes: sequester a atmospheric CO2 – 119 Pg of soil organic carbon • Importance of the Arctic: – Stable stocks of C (if frozen) – Heat budget • Delicate region: Arctic amplification (Screen & Simmonds, 2010; Serreze et al., 2009)
  • 4. Introduction • NEE – exchange of C between land and atmosphere – Uptake, release (-,+) – Measured in g/m2/yr or µmol m2/s • Arctic regarded as a net C sink – future? (McGuire et al., 2010; Kimball et al., 2009) • Arctic tundra C sequestration: – Abisko: -1.74 µmol m-2 s-1 (Stoy et al., 2013) Source: AMAP 2012
  • 5. Measurements of C exchange • Eddy covariance towers (Baldochi, 2003) • Gas chambers (Williams et al., 2006) • Environmental modelling (Mbufong,In Prep; Kimball et al., 2009) Site: Barrow, Alaska, source: SpecNet (http://specnet.info/)
  • 6. • PIRT - Photosyntesis & temp. sensitive (Williams et al., 2006) • TCF - GPP, soil temperature (Kimball et al., 2009) • PANEEx - Air temp, LAI, PAR (Mbufong, In Prep) Examples of C models
  • 7. • PANEEx - Air temp, LAI, PAR LAI: ~0-2 [m2 / m2] Air temperature: ~ 7-10 [ ͦC] PAR: light photon density [W / m2]
  • 8. Problem statement • Vegetation properties are important in understanding of C exchanged in the Arctic (Mbufong et al., 2015) • Need for an accurate vegetation proxy (LAI, NDVI) - Which one, based on what ?
  • 9. Main objectives • Objective: (1) Reduce knowledge gap between RS and environmental modelling (2) Assess suitability of satellite-derived products • Goal: Model and evaluate Arctic NEE/LAI at 12 sites • Assumptions: (i) Vegetation proxies are expected to yield discrepancies in the Arctic NEE estimations (ii) The product with the finest spatial resolution is likely to yield most realistic NEE estimations compared to in situ
  • 10. Product Spatial Resolution Temporal resolution Source MCD15A3 - LAI 1 km2 4 - day LP DAAC, USGS* MOD13A1 - NDVI 500 m2 16-day GEE, MODIS Terra MOD13Q1 - NDVI 250 m2 16-day GEE, MODIS Terra MYD09GA - NDVI 1 km2 Daily GEE, MODIS Aqua Methodology, used materials * LP DAAC – Land Processes Distributed Active Archive Center • Scope: 2008-2010 • Peak of the growing season: July • NDVI to LAI conversion for consistency (Van Wijk & Williams, 2005)
  • 11. NEE model Study domain • Sensitivity analysis: selective (non-probability) sampling • Quantitative analysis of “big data” • Average daily NEE [µmol m2/s] (Mbufong et al., 2014) Air temp: Fcsat LAI: Rd, α, Fcsat PAR: PPFD NEE = − Fcsat + R 𝑑 1 − 𝑒 −α PPFD 𝐹 𝑐𝑠𝑎𝑡+𝑅 𝑑 + 𝑅 𝑑
  • 12. Methodology, used software • ESRI ArcGIS (vs. 10.2.2 Desktop) • (Google Inc.) • Matlab (vs. R2014a, The MathWorks, Inc.)
  • 14. Results, NEE Slope = 0.29 Intercept = -0.94 r2 = 0.15; rmse = 0.30
  • 16. 0 - 0.25 0.25 - 0.5 0.50 - 0.75 0.75 - 1 1.1 - 1.5 1.5 - 2 2.1 - 2.5 2.5 - 3.5 Land fill Water bodies 0.16 0.87 1.7 1.350.18 0.960.11 1.62 In situ LAI : ~0.24 & ~ 0.63
  • 17. Results summary • LAI – under & overestimated; 1/4 correlations is consistently overestimated (slope = 2.45, R2 = 0.8) in MCD15A3 • LAI – MOD13Q1 shows least overestimation (slope =1.22, R2 = 0.59, RMSE = 0.23) • NEE- MCD15A3, statistically insignificant (P>> 0.05) • NEE – MOD13Q1 & MYD09GA show best estimations (slope=0.78, R2=0.73; slope= 0.86, R2 = 0.56), p<0.05
  • 18. Discussion – other studies • Implementation of 250 m NDVI better than 1 km GPP Schubert et al. (2012) • Watts (2014) – used 13Q1 & 13A1 (250 m) compared to EC (R2 = 0.8, p < 0.05) – halved the acquisition time by combining 13Q1 & 13A1 (linear interpolation) • Arctic heterogeneity  500 m and 250 m vegetation indices may not be sufficient
  • 19. Discussion - methods • Need for sufficient number of observed data in global scale(n=12) • Spatial misalignment of external data (LAI, PAR) – Edge effect, miscalculated pixels • LAI derivation from NDVI (97% of in situ variation, Abisko) (Van Wijk & Williams, 2005) • Spectral errors imbedded in LAI images • Investigation of finer-resolution satellites (Sentinel 2 project) www.sentinel.esa
  • 20. Conclusions • Three MODIS products generated NEE (p<0.05) • Best estimation: 250 m 16-day LAI (MOD13Q1) - Slope = 0.78, R2=0.73 • Spatial resolution is important for result accuracy - Need for finer scale (30 to 60m) • Heterogeneity of Arctic landscape can be modelled via RS; accuracy of NEE is correlated to the configuration of sat.-derived products
  • 22. Methodology cont. • Air Temperature (Ta)
  • 23. Processing PAR • 00:00 • 03:00 • 06:00 • 09:00 • 12:00 • 15:00 • 18:00 • 21:00 Fine 3-hr resolution creates illumination shadows
  • 24. References • Baldocchi, D.D. 2003. Assessing the eddy covariance technique for evaluatiing carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol 9:479-92. • McGuire, A.D., Hayes, D.J., Kicklighter, D.W., Manizza, M., Zhuang, Q., Chen, M., Follows, M.J., Gurney, K.R., McClelland, J.W., Melillo, J.M., Peterson, B.J., Prinn, R.G., 2010. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus B 62. doi:10.3402/tellusb.v62i5.16587 • Kimball, J., Jones, L., Zhang, K., Heinsch, F., McDonald, K., Oechel, W., 2009. A Satellite Approach to Estimate Land- Atmosphere CO2 Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 47, 569–587. • Mbufong, H.N., Lund, M., Aurela, M., Christensen, T.R., Eugster, W., Friborg, T., Hansen, B.U., Humphreys, E.R., Jackowicz-Korczynski, M., Kutzbach, L., Lafleur, P.M., Oechel, W.C., Parmentier, F.J.W., Rasse, D.P., Rocha, A.V., Sachs, T., van der Molen, M.K., Tamstorf, M.P. 2014. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization. Biogeosciences 11, 4897-4912. • Mbufong, H. N., 2015. Drivers of sesasonality in Arctic carbon dioxide fluxes. PhD thesis. Arhus University, Department of Bioscience, Denmark. 144 pp. • Watts, J.D., Kimball, J.S., Parmentier, F.J.W., Sachs, T., Rinne, J., Zona, D., Oechel, W., Tagesson, T., Jackowicz- Korczyński, M., Aurela, M., 2014. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes. Biogeosciences 11, 1961–1980. doi:10.5194/bg-11-1961-2014 • Stoy, P.C., Williams, M., Evans, J.G., Prieto-Blanco, A., Disney, M., Hill, T.C., Ward, H.C., Wade, T.J., Street, L.E., 2013. Upscaling Tundra CO2 Exchange from Chamber to Eddy Covariance Tower. Arctic, Antarctic, and Alpine Research 45, 275–284. doi:10.1657/1938-4246-45.2.275 • Land Processes Distributed Active Archive Center (LP DAAC), 2000. Land Cover Type Yearly L3 Global 500 m SIN Grid. Version 051. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov), accessed 04/11, 2015, at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1. • Van Wijk, M. T. and Williams, M., 2005. Optical Instruments for Measuring Leaf Area Index in Low Vegetation: Application in Arctic Ecosystems. Ecological Applications, 15: 1462–1470. doi:10.1890/03-5354y.