SlideShare a Scribd company logo
2
Most read
4
Most read
5
Most read
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Multidimension Scaling and Isomap
Li, Cheng-Shiang
September 7, 2016
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Introduction
Algorithm
Dimension Reduction
Curse of dimension.
Choose a subset of important features.
Feature selection and extraction.
Selection: Find a subset of original variable.
Extraction: Transform the data in high-dimensional space to
a space lower of fewer dimensions.
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Introduction
Algorithm
Algorithm
PCA (Principal Components Analysis)
LDA (Linear Discriminant Analysis)
MDS (MultiDimension Scaling)
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Classical MDS
Source datum X as
X =
⎡
⎢
⎣
X1
...
Xm
⎤
⎥
⎦ =
⎡
⎢
⎣
x11 · · · x1n
...
...
xm1 · · · xmn
⎤
⎥
⎦
X is m × n matrix where m datum and n attributes
Find datum Z as
Z =
⎡
⎢
⎣
Z1
...
Xm
⎤
⎥
⎦ =
⎡
⎢
⎣
z11 · · · z1k
...
...
zm1 · · · zmk
⎤
⎥
⎦
Z is m × k matrix where m datum and k attributes
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Classical MDS
Concept Equation
D ≈ P
D and P are m × m Euclidean distance matrix of each datum
of X and Z respectively. Dij is distance between xi and xj as
well as Prs is distance between zr and zs.
Dij = (xi − xj )(xi − xj )T , and Prs = (zr − zs)(zr − zs)T
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Mathematical Formula
Assume
r
zr = 0, the proximity matrix D can be transformed
to inner product matrix B by
B = −
1
2
HDH = ZZT
where
H = I −
1
m
11
′
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Mathematical Formula
Find spectral decomposition of B
B = V ΛV T
= (V Λ1/2
)(V Λ1/2
)T
= ZZT
Coordinator matrix Z can be assigned by
Z = V Λ1/2
where Λ is the diagonal matrix defined by Λii = λi the
eigenvalues that λ1 ≥ λ2 . . . λm ≥ 0, and V = [v1, v2, . . . , vm]
is matrix of eigenvectors.
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Steps
Set up the proximity matrix D = [dij ].
Apply the double centering: B = −1
2 HDH using the centering
matrix H = I − 1
m 11
′
where m is the number of objects.
Determine the k largest eigenvalues λ1, λ2, ..., λk and
corresponding eigenvectors e1, e2, ..., ek of B
Then, Z = EkΛ
1/2
k , where Ek is the matrix of k eigenvectors
and Λk is the diagonal matrix of k eigenvalues of B.
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Classical Method
Mathematical Formula
Steps
Example
Example
Original Data
−2 0 2 4 6 8 10
−2024681012
−8
−6
−4
−2
0
2
4
6
8
X
Y
Z
−5 0 5
−4−2024
Classical MDS
Coordinate 1
Coordinate2
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Isomap
Algorithm
Example
Comparison
Isomap - Isometric mapping
Classical MDS maybe loss intrinsic structure of datums.
Generate global distance of each datum from local
information.
Apply classical MDS algorithm.
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Isomap
Algorithm
Example
Comparison
Algorithm
Determine the neighbors of each point.
All points in some fixed radius.
K nearest neighbors.
Construct a neighborhood graph.
Each point is connected to other if it is a K nearest neighbor.
Edge length equal to Euclidean distance.
Compute shortest path between two nodes.
Dijkstra’s algorithm
Floyd–Warshall algorithm
Compute lower-dimensional embedding.
Multidimensional scaling(MDS)
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Isomap
Algorithm
Example
Comparison
Example
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Isomap
Algorithm
Example
Comparison
Comparison
Figure: Comparison with PCA and LLE
Li, Cheng-Shiang Multidimension Scaling and Isomap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Dimension Reduction
MDS
Isomap
Reference
Reference
MDS - Wikipdeia
Isomap - Author’s website
Isomap - Wikipedia
http://ciera.northwestern.edu/Education/REU/2015/
Thorsen/
Li, Cheng-Shiang Multidimension Scaling and Isomap

More Related Content

PPTX
Machine Learning-Linear regression
PPTX
CART – Classification & Regression Trees
PPTX
Lect5 principal component analysis
PPTX
multi dimensional data model
PPT
Multi-Layer Perceptrons
PPT
Intro to Deep learning - Autoencoders
PDF
C++ plus data structures, 3rd edition (2003)
 
PPTX
Data analytics vs. Data analysis
Machine Learning-Linear regression
CART – Classification & Regression Trees
Lect5 principal component analysis
multi dimensional data model
Multi-Layer Perceptrons
Intro to Deep learning - Autoencoders
C++ plus data structures, 3rd edition (2003)
 
Data analytics vs. Data analysis

What's hot (20)

PPT
Clustering
PPTX
Interactive Visualization
PPTX
Supervised learning and unsupervised learning
PDF
Big Data: Its Characteristics And Architecture Capabilities
PPTX
Presentation on supervised learning
PPTX
Unsupervised learning
PPT
Reinforcement learning
PDF
Lecture2 big data life cycle
PPSX
PDF
Machine Learning Course | Edureka
PPT
Introduction To Predictive Analytics Part I
PPTX
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
PPTX
Online analytical processing
PPTX
Logistic Regression | Logistic Regression In Python | Machine Learning Algori...
PPT
Market basket analysis
PDF
Machine Learning for Recommender Systems MLSS 2015 Sydney
PDF
Federated Learning
PDF
Deep Learning Frameworks slides
PPTX
Convolutional Neural Network (CNN)
PDF
Label propagation - Semisupervised Learning with Applications to NLP
Clustering
Interactive Visualization
Supervised learning and unsupervised learning
Big Data: Its Characteristics And Architecture Capabilities
Presentation on supervised learning
Unsupervised learning
Reinforcement learning
Lecture2 big data life cycle
Machine Learning Course | Edureka
Introduction To Predictive Analytics Part I
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Online analytical processing
Logistic Regression | Logistic Regression In Python | Machine Learning Algori...
Market basket analysis
Machine Learning for Recommender Systems MLSS 2015 Sydney
Federated Learning
Deep Learning Frameworks slides
Convolutional Neural Network (CNN)
Label propagation - Semisupervised Learning with Applications to NLP
Ad

Similar to Multidimension Scaling and Isomap (20)

PDF
Machine Learning Foundations for Professional Managers
PDF
M2R Group 26
PDF
Principal component analysis and lda
PDF
Lecture7 xing fei-fei
PPT
Principal Component Analysis PCA: How to conduct the analysis
PPT
dimensionaLITY REDUCTION WITH EXAMPLE.ppt
PDF
Dimensionality reduction
PDF
Uncertainty aware multidimensional ensemble data visualization and exploration
PPTX
Multi Dimensional Scaling in Machine learning.pptx
ODP
Introduction to Principle Component Analysis
PPTX
Dimentionality reduction
PDF
Cs229 notes10
PPTX
Ml10 dimensionality reduction-and_advanced_topics
PDF
Machine learning (11)
PPTX
Mini_Project
PDF
slides.pdf
PDF
5 DimensionalityReduction.pdf
PDF
Improved probabilistic distance based locality preserving projections method ...
PDF
1376846406 14447221
Machine Learning Foundations for Professional Managers
M2R Group 26
Principal component analysis and lda
Lecture7 xing fei-fei
Principal Component Analysis PCA: How to conduct the analysis
dimensionaLITY REDUCTION WITH EXAMPLE.ppt
Dimensionality reduction
Uncertainty aware multidimensional ensemble data visualization and exploration
Multi Dimensional Scaling in Machine learning.pptx
Introduction to Principle Component Analysis
Dimentionality reduction
Cs229 notes10
Ml10 dimensionality reduction-and_advanced_topics
Machine learning (11)
Mini_Project
slides.pdf
5 DimensionalityReduction.pdf
Improved probabilistic distance based locality preserving projections method ...
1376846406 14447221
Ad

Recently uploaded (20)

PDF
Machine learning based COVID-19 study performance prediction
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Tartificialntelligence_presentation.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
1. Introduction to Computer Programming.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
August Patch Tuesday
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Encapsulation theory and applications.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
Machine learning based COVID-19 study performance prediction
Building Integrated photovoltaic BIPV_UPV.pdf
Tartificialntelligence_presentation.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Programs and apps: productivity, graphics, security and other tools
1. Introduction to Computer Programming.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Assigned Numbers - 2025 - Bluetooth® Document
Univ-Connecticut-ChatGPT-Presentaion.pdf
Network Security Unit 5.pdf for BCA BBA.
August Patch Tuesday
TLE Review Electricity (Electricity).pptx
Encapsulation theory and applications.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Unlocking AI with Model Context Protocol (MCP)
A comparative analysis of optical character recognition models for extracting...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Digital-Transformation-Roadmap-for-Companies.pptx

Multidimension Scaling and Isomap