Morphological
modelling of tidal
creeks along arid
coasts
Xiaoya Luo, PhD student in UWA
Supervisors: Ryan Lowe, Matt Hipsey, Arnold
Van Rooijen, Daniel Raj David
Collaborators in Deltares: Jasper Dijkstra, Bas
van Maren, Jan Boersma
Overview of my PhD project
Vegetation
Hydrodyn
amic
Morpho-
dynamic
interactions
Mangroves in
Arid climate
• Intertidal habitats along arid coasts are growing at their
physiological limits.
• Interactions between vegetation, hydrodynamics and
morphodynamics are far more complex than bare tidal
flats
• Climate change and industrial development bring
uncertainty to the survival of these habitats
Background
To develop improved understanding and predictive models that explain the
ecomorphological evolution of tidal creeks in arid climates
Overview of my PhD project
Aim 1
• Understand the morphological change of tidal creeks
Aim 2
• Quantify the influence of vegetation on tidal creeks through static vegetation approach.
Aim 3
• Unravel the feedback between vegetation and hydro-morphodynamic
Aim 4
• Prediction under future scenarios
Overview of my PhD project
Climate in the Pilbara coast
Temperature and Rainfall Evaporation
Reference: 1. BOM. (2020a) Data for Onslow airport, Learnmonth Airport and Barrow Island. www.bom.gov.au ; 2. Seashore Engineering Report (2021)
Aridity Index (AI)=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙
𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛
=
280 𝑚𝑚
3000 𝑚𝑚
=0.09
Overview of my PhD project
Oceanic forcing in the Pilbara coast
Tides
M2 0.58 m
S2 0.31 m
K1 0.21 m
O1 0.14 m
semidiurnal Water level variations
= Mean value
Waves and Cyclones
Track of Tropical Cyclone Vance in 1999
Wind waves have an order of 1.5m
Significant wave height during cyclone
could reach 5.7m
Spring Tidal Range:2.0m
Neap Tidal Range: <1.0m
Main constituents in
Exmouth Gulf
Northwestern Australia
Annual
mean
sea
level
(m)
SOI
(El Nino) (La Nina)
Strong seasonal
and inter-annual
sea level
variability
Overview of my PhD project
Vegetation in the Pilbara coast
Mangrove and Algal (cyanobacterial)
mats distribution
*Land coverage analysis results from our teamwork Mardie Project A
1km
1km
2.1km
Sections Items Value Unit
Domain
Domain Size 2×15 km
Grid Size 20×20 m
Physical parameters
Uniform friction coefficient 0.023 s/m-1/3
Layer fraction
95% sand +
5% mud
Sand Specific density 2650 kg/m3
Sand sediment diameter 0.00025 m
Mud critical stress for erosion 0.125 N/m2
Mud critical stress for sedimentation 1000 N/m2
Morpho-Factor 100
Open boundary Astronomical tide M2 m
Delft3D FM Morpho Model
Morphological modelling of tidal creeks
1
Model settings
Reference: Colina Alonso, A., van Maren, D. S., van Weerdenburg, R. J. A., Huismans, Y., & Wang, Z. B. (2023). Morphodynamic Modeling of Tidal Basins: The Role of Sand‐Mud Interaction. Journal
of Geophysical Research: Earth Surface, 128(9), e2023JF007391
Preliminary Scenarios: Impacts of bed slope and tidal range on tidal creeks’ formation
15km
MSL
15km
MSL
15km
MSL
Micro-tidal system Meso-tidal system Macro-tidal system
Tidal Range: 1.0m, 1.5m Tidal Range: 1.8m, 2.0m, 2.5m Tidal Range: 3.0m, 4.0m, 5.0m
Reference: Xie, D., Schwarz, C., Kleinhans, M. G., Zhou, Z., & van Maanen, B. (2022). Implications of Coastal Conditions and Sea-Level Rise on Mangrove Vulnerability: A Bio-Morphodynamic
Modeling Study. Journal of Geophysical Research: Earth Surface, 127(3). https://doi.org/10.1029/2021JF006301
After 200 morpho-year …
Morphological modelling of tidal creeks
1
Tidal range =1.8m
Tidal range =1.0m
Tidal range =1.5m Tidal range =2.0m
Tidal range =2.5m
Tidal range =3.0m
Tidal range =4.0m
Tidal range =5.0m
Micro-tidal system Meso-tidal system Macro-tidal system
Morphological modelling of tidal creeks
1
• Results analysis: Intertidal area proportion
Pinter =
𝐴𝑟𝑒𝑎 (𝑀𝑆𝐿~𝐻𝑊)
𝐴𝑟𝑒𝑎(~𝐻𝑊)
In micro- and meso-tide system, intertidal area
proportions are around 28%.
For the macro-tide system, larger tidal range
leads to large intertidal area proportion.
5.0 29% (25%)
4.0 27% (21%)
3.0 18% (17%)
2.5 28% (25%)
2.0 30% (21%)
1.8 28% (19%)
1.5 28% (29%)
1.0 28% (21%)
0.00025 0.0005 0.001
Morphological modelling of tidal creeks
1
Initial slope (m/m)
Tidal
range
(m)
5.0 0.0030
4.0 0.0041
3.0 0.0032
2.5 0.0029
2.0 0.0035
1.8 0.0031
1.5 0.0018
1.0 0.0023
0.00025 0.0005 0.001
Initial slope (m/m)
Tidal
range
(m)
Averaged Drainage Density (m/m2)
• Results analysis: Drainage Density
Morphological modelling of tidal creeks
1
y = 0.0004x1.146
R² = 0.89
1,0E+00
1,0E+01
1,0E+02
1,0E+03
1,0E+04
1,0E+05
1,0E+04 1,0E+05 1,0E+06 1,0E+07
Channel
Length
(m)
Watershed Area (m2)
Morphological modelling of tidal creeks
1
• Results analysis: Drainage Density compared with Giralia networks
y = 0,0004x1,0566
1,0E+03
1,0E+04
1,0E+05
1,0E+06 1,0E+07 1,0E+08
Total
channel
length
(m)
Watershed area (m2)
0
0,0002
0,0004
0,0006
0,0008
0,001
0,0012
0,0014
0 5 10 15 20
Drainage
Density
No. of tidal networks
Averaged Density: 0.00105
Channel drainage density in modelled results is
higher than that in the vegetated Giralia networks
Morphological modelling of tidal creeks
1
• Results analysis: Unchanneled Path
5.0 191
4.0 109
3.0 74
2.5 239
2.0 140
1.8 113
1.5 790
1.0 410
0.00025 0.0005 0.001
Tidal
range
(m)
Average unchanneled length l (m)
Initial slope (m/m)
Unchanneled path represents the distance of a particle
water at a point on the platform travels before reaching
a channel.
Unchanneled path increases with tidal range and
decreases with initial bed slope.
Morphological modelling of tidal creeks
1
• Results analysis: Channel Efficiency
The Hortonian length (the inverse of drainage density) divided by the mean unchanneled path: lH/l
Capture the branching and meandering characteristics of the channel network.
5 1.75
4 2.24
3 4.22
2.5 1.44
2 2.04
1.8 2.85
1.5 0.70
1 1.06
0.00025 0.0005 0.001
Channel efficiency increases with initial
bed slope and decreases with tidal range .
Initial slope (m/m)
Tidal
range
(m)
Micro-tidal system
Tidal range =1.5m
Macro-tidal system
Tidal range =4.0m
Reference: 1. Marani, M., Belluco, E., D’Alpaos, A., Defina, A., Lanzoni, S., & Rinaldo, A. (2003). On the drainage density of tidal networks. Water Resources Research, 39(2).
2. Kearney, W. S., & Fagherazzi, S. (2016). Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 7. https://doi.org/10.1038/ncomms12287
Channel patterns comparing examples
Straight channel Dendritic channel
Morphological modelling of tidal creeks
1
• Next steps: Impact of Bed erodibility
Sample
name
Site 1 Site 2 Site 3
D50(𝜇𝑚) 25.85 50.06 271
Clay content 12% 13% -
Silt content 50% 37% -
Sand content 38% 50% 100%
Field work sites Examples of sediment property
D50 varies by an order and fraction varies from
mixed to sandy environment
• How will tidal creeks evolve in presence of arid mangroves
species? what’s the role of mangroves?
• How tidal creeks support mangroves’ survival and
migration? Will mangrove adapt to future sea level rise?
• The character of algal mats adjacent to creeks’ ends is little
known, especially when affected by undulating terrain.
• Can algal mats survive under the block of industrial banks?
Future works: Habitats modelling
2
But a morphological model alone cannot answer these questions:
Mangroves
Tidal creeks
Trap sediments
Promote channel incision
Reduce currents
And more …
Modify inundation
and shear stress on
mangroves
Future works: Habitats modelling
2
Empirical model
• Correlate mangrove distribution with
environmental factors
• For example, inundation and
exposure period, salinity limits
• Based on static vegetation models
(Trachytopes method in Delft3D FM)
• Update hydro and morpho manually
Fully coupled model
• Apply physical process-based
vegetation models with Delft3D FM,
• Information exchange between
hydrodynamic, morphodynamic and
vegetation model will be
automatically conducted by
BMI(Basic Model Interface)
Reference: Willemsen, P. W. J. M., Smits, B. P., Borsje, B. W., Herman, P. M. J., Dijkstra, J. T., Bouma, T. J., & Hulscher, S. J. M. H. (2022). Modeling Decadal Salt Marsh Development: Variability of the Salt Marsh Edge Under Influence
of Waves and Sediment Availability. Water Resources Research, 58(1). https://doi.org/10.1029/2020WR028962
Workflow of coupling model
Future works: Habitats modelling
2
Empirical model
Preliminary results from our teamwork Mardie Project B
PROPAGULE AN
CHORING
PROPAGULE DES
SICATION
SEEDLING
ESTABLISHMENT
ADULT
DROWNING
Surface exposure time 48h 10day - -
Surface temperature f(T) f(T) - -
Inundation hydroperiod 0 0 1 tidal cycle (12hr)
>0.1m
10 days > 0.5m​
Bottom stress - - - -
Substrate SAND, MUD - - -
Surface salinity / salt-
crust
- - < 80 psu -
Future works: Prediction
3
Sea Level Rise
Predict tidal creek evolution and the survival of
mangroves and algal mats under low, medium and high
emission scenarios
Salt Pond development
Evaluate the impact of artificial levees on the expansion
and survival of algal mats
Different conceptual models for mangroves under sea level rise
Existing
Mortality under SLR
Migration under SLR
Adaptation and
Migration under SLR
Adaptation and
Migration under
accretion and SLR
Thanks for listening
&
Welcome to Perth!

More Related Content

PDF
Modeling Morphodynamic Evolution In Alluvial Estuaries Unescoihe Phd Thesis 1...
PDF
Waves And Tidal Flat Ecosystems 1st Edition Prof Eiichi Baba
PDF
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
PDF
Numerical simulation of tidal circulation in the
PDF
Numerical simulation of tidal circulation in the pichavaram mangrove estuary ...
PDF
Coastal ecosystems Edited -J. Bovas Joel.pdf
PDF
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
PDF
Estuaries Dynamics Mixing Sedimentation And Morphology 1st Edition David Prandle
Modeling Morphodynamic Evolution In Alluvial Estuaries Unescoihe Phd Thesis 1...
Waves And Tidal Flat Ecosystems 1st Edition Prof Eiichi Baba
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
Numerical simulation of tidal circulation in the
Numerical simulation of tidal circulation in the pichavaram mangrove estuary ...
Coastal ecosystems Edited -J. Bovas Joel.pdf
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
Estuaries Dynamics Mixing Sedimentation And Morphology 1st Edition David Prandle

Similar to DSD-INT 2024 Morphological modelling of tidal creeks along arid coasts - Luo (20)

PDF
Mangroves Swamp Profile - Nelson Perez-Jacome
PDF
DSD-INT 2017 Biogeomorphodynamics of rivers, estuaries and their floodplains ...
PDF
Sea level rise on estuarine slopes, sediment particle size and wave exposure ...
PDF
The Ecogeomorphology Of Tidal Marshes Sergio Fagherazzi Marco Marani
PPT
Estuarine systems
PPTX
Marine ecosystem
PDF
Estuaries Dynamics Mixing Sedimentation and Morphology 1st Edition David Prandle
PDF
Estuaries Monitoring And Modeling The Physical System Jack Hardisty
PDF
DSD-INT 2023 Process-based modelling of salt marsh development coupling Delft...
PDF
Estuaries Monitoring and Modeling the Physical System 1st Edition Jack Hardisty
PPS
Tide Prediction GIS Model for Willapa Bay
PDF
Werelddag van de Stedenbouw. Sigmaplan: ecosysteembenadering in het Schelde-e...
PPTX
TUREK SALT MARSH RESTORATION FINAL 12 09 14
PDF
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
PDF
Tidal networks geomorphology
PDF
DSD-INT 2019 Mangrove diversity loss may be inevitable - Xie
PPT
Coastal Communities
PDF
DSD-INT 2017 Moth plant dispersion Modelling based on synoptic weather patter...
PPT
Dynamic Habitat - CLLAMM technical briefing
PPT
CLLAMM Futures - CLLAMM technical briefing
Mangroves Swamp Profile - Nelson Perez-Jacome
DSD-INT 2017 Biogeomorphodynamics of rivers, estuaries and their floodplains ...
Sea level rise on estuarine slopes, sediment particle size and wave exposure ...
The Ecogeomorphology Of Tidal Marshes Sergio Fagherazzi Marco Marani
Estuarine systems
Marine ecosystem
Estuaries Dynamics Mixing Sedimentation and Morphology 1st Edition David Prandle
Estuaries Monitoring And Modeling The Physical System Jack Hardisty
DSD-INT 2023 Process-based modelling of salt marsh development coupling Delft...
Estuaries Monitoring and Modeling the Physical System 1st Edition Jack Hardisty
Tide Prediction GIS Model for Willapa Bay
Werelddag van de Stedenbouw. Sigmaplan: ecosysteembenadering in het Schelde-e...
TUREK SALT MARSH RESTORATION FINAL 12 09 14
Modeling morphodynamic evolution in alluvial estuaries UNESCO IHE PhD Thesis ...
Tidal networks geomorphology
DSD-INT 2019 Mangrove diversity loss may be inevitable - Xie
Coastal Communities
DSD-INT 2017 Moth plant dispersion Modelling based on synoptic weather patter...
Dynamic Habitat - CLLAMM technical briefing
CLLAMM Futures - CLLAMM technical briefing
Ad

More from Deltares (20)

PDF
DSD-INT 2024 Delft3D FM Suite 2025.01 2D3D - New features + Improvements - Ge...
PDF
DSD-INT 2024 Delft3D FM Suite 2025.01 1D2D - Beta testing programme - Hutten
PDF
DSD-INT 2024 MeshKernel and Grid Editor - New mesh generation tools - Carniato
PDF
DSD-INT 2024 Quantifying wind wake effects around offshore wind farms in the ...
PDF
DSD-INT 2024 Salinity intrusion in the Rhine-Meuse Delta - Geraeds
PDF
DSD-INT 2024 El-Nakheel beach swimmer safety study - Dobrochinski
PDF
DSD-INT 2024 Development of a Delft3D FM Scheldt Estuary Model - Vanlede
PDF
DSD-INT 2024 Modeling the effects of dredging operations on salt transport in...
PDF
DSD-INT 2024 Wadi Flash Flood Modelling using Delft3D FM Suite 1D2D - Dangudu...
PDF
DSD-INT 2024 European Digital Twin Ocean and Delft3D FM - Dols
PDF
DSD-INT 2024 Building towards a better (modelling) future - Wijnants
PDF
DSD-INT 2024 Flood modelling using the Delft3D FM Suite 1D2D - Horn
PDF
DSD-INT 2024 The effects of two cable installations on the water quality of t...
PDF
DSD-INT 2024 Rainfall nowcasting – now and then - Uijlenhoet
PDF
DSD-INT 2023 Hydrology User Days - Intro - Day 3 - Kroon
PDF
DSD-INT 2023 Demo EPIC Response Assessment Methodology (ERAM) - Couvin Rodriguez
PDF
DSD-INT 2023 Demo Climate Stress Testing Tool (CST Tool) - Taner
PDF
DSD-INT 2023 Demo Climate Resilient Cities Tool (CRC Tool) - Rooze
PDF
DSD-INT 2023 Approaches for assessing multi-hazard risk - Ward
PDF
DSD-INT 2023 Dynamic Adaptive Policy Pathways (DAPP) - Theory & Showcase - Wa...
DSD-INT 2024 Delft3D FM Suite 2025.01 2D3D - New features + Improvements - Ge...
DSD-INT 2024 Delft3D FM Suite 2025.01 1D2D - Beta testing programme - Hutten
DSD-INT 2024 MeshKernel and Grid Editor - New mesh generation tools - Carniato
DSD-INT 2024 Quantifying wind wake effects around offshore wind farms in the ...
DSD-INT 2024 Salinity intrusion in the Rhine-Meuse Delta - Geraeds
DSD-INT 2024 El-Nakheel beach swimmer safety study - Dobrochinski
DSD-INT 2024 Development of a Delft3D FM Scheldt Estuary Model - Vanlede
DSD-INT 2024 Modeling the effects of dredging operations on salt transport in...
DSD-INT 2024 Wadi Flash Flood Modelling using Delft3D FM Suite 1D2D - Dangudu...
DSD-INT 2024 European Digital Twin Ocean and Delft3D FM - Dols
DSD-INT 2024 Building towards a better (modelling) future - Wijnants
DSD-INT 2024 Flood modelling using the Delft3D FM Suite 1D2D - Horn
DSD-INT 2024 The effects of two cable installations on the water quality of t...
DSD-INT 2024 Rainfall nowcasting – now and then - Uijlenhoet
DSD-INT 2023 Hydrology User Days - Intro - Day 3 - Kroon
DSD-INT 2023 Demo EPIC Response Assessment Methodology (ERAM) - Couvin Rodriguez
DSD-INT 2023 Demo Climate Stress Testing Tool (CST Tool) - Taner
DSD-INT 2023 Demo Climate Resilient Cities Tool (CRC Tool) - Rooze
DSD-INT 2023 Approaches for assessing multi-hazard risk - Ward
DSD-INT 2023 Dynamic Adaptive Policy Pathways (DAPP) - Theory & Showcase - Wa...
Ad

Recently uploaded (20)

PPTX
CNN LeNet5 Architecture: Neural Networks
PPTX
"Secure File Sharing Solutions on AWS".pptx
PDF
Autodesk AutoCAD Crack Free Download 2025
PDF
DNT Brochure 2025 – ISV Solutions @ D365
PPTX
Patient Appointment Booking in Odoo with online payment
DOCX
Modern SharePoint Intranet Templates That Boost Employee Engagement in 2025.docx
PPTX
Computer Software - Technology and Livelihood Education
PDF
AI/ML Infra Meetup | LLM Agents and Implementation Challenges
PPTX
Cybersecurity: Protecting the Digital World
PPTX
Computer Software and OS of computer science of grade 11.pptx
PDF
Types of Token_ From Utility to Security.pdf
PDF
Microsoft Office 365 Crack Download Free
PPTX
Introduction to Windows Operating System
PDF
Ableton Live Suite for MacOS Crack Full Download (Latest 2025)
PDF
EaseUS PDF Editor Pro 6.2.0.2 Crack with License Key 2025
PPTX
Oracle Fusion HCM Cloud Demo for Beginners
PPTX
assetexplorer- product-overview - presentation
PPTX
Trending Python Topics for Data Visualization in 2025
PPTX
Why Generative AI is the Future of Content, Code & Creativity?
DOCX
How to Use SharePoint as an ISO-Compliant Document Management System
CNN LeNet5 Architecture: Neural Networks
"Secure File Sharing Solutions on AWS".pptx
Autodesk AutoCAD Crack Free Download 2025
DNT Brochure 2025 – ISV Solutions @ D365
Patient Appointment Booking in Odoo with online payment
Modern SharePoint Intranet Templates That Boost Employee Engagement in 2025.docx
Computer Software - Technology and Livelihood Education
AI/ML Infra Meetup | LLM Agents and Implementation Challenges
Cybersecurity: Protecting the Digital World
Computer Software and OS of computer science of grade 11.pptx
Types of Token_ From Utility to Security.pdf
Microsoft Office 365 Crack Download Free
Introduction to Windows Operating System
Ableton Live Suite for MacOS Crack Full Download (Latest 2025)
EaseUS PDF Editor Pro 6.2.0.2 Crack with License Key 2025
Oracle Fusion HCM Cloud Demo for Beginners
assetexplorer- product-overview - presentation
Trending Python Topics for Data Visualization in 2025
Why Generative AI is the Future of Content, Code & Creativity?
How to Use SharePoint as an ISO-Compliant Document Management System

DSD-INT 2024 Morphological modelling of tidal creeks along arid coasts - Luo

  • 1. Morphological modelling of tidal creeks along arid coasts Xiaoya Luo, PhD student in UWA Supervisors: Ryan Lowe, Matt Hipsey, Arnold Van Rooijen, Daniel Raj David Collaborators in Deltares: Jasper Dijkstra, Bas van Maren, Jan Boersma
  • 2. Overview of my PhD project Vegetation Hydrodyn amic Morpho- dynamic interactions Mangroves in Arid climate • Intertidal habitats along arid coasts are growing at their physiological limits. • Interactions between vegetation, hydrodynamics and morphodynamics are far more complex than bare tidal flats • Climate change and industrial development bring uncertainty to the survival of these habitats Background
  • 3. To develop improved understanding and predictive models that explain the ecomorphological evolution of tidal creeks in arid climates Overview of my PhD project Aim 1 • Understand the morphological change of tidal creeks Aim 2 • Quantify the influence of vegetation on tidal creeks through static vegetation approach. Aim 3 • Unravel the feedback between vegetation and hydro-morphodynamic Aim 4 • Prediction under future scenarios
  • 4. Overview of my PhD project Climate in the Pilbara coast Temperature and Rainfall Evaporation Reference: 1. BOM. (2020a) Data for Onslow airport, Learnmonth Airport and Barrow Island. www.bom.gov.au ; 2. Seashore Engineering Report (2021) Aridity Index (AI)= 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 280 𝑚𝑚 3000 𝑚𝑚 =0.09
  • 5. Overview of my PhD project Oceanic forcing in the Pilbara coast Tides M2 0.58 m S2 0.31 m K1 0.21 m O1 0.14 m semidiurnal Water level variations = Mean value Waves and Cyclones Track of Tropical Cyclone Vance in 1999 Wind waves have an order of 1.5m Significant wave height during cyclone could reach 5.7m Spring Tidal Range:2.0m Neap Tidal Range: <1.0m Main constituents in Exmouth Gulf Northwestern Australia Annual mean sea level (m) SOI (El Nino) (La Nina) Strong seasonal and inter-annual sea level variability
  • 6. Overview of my PhD project Vegetation in the Pilbara coast Mangrove and Algal (cyanobacterial) mats distribution *Land coverage analysis results from our teamwork Mardie Project A
  • 7. 1km 1km 2.1km Sections Items Value Unit Domain Domain Size 2×15 km Grid Size 20×20 m Physical parameters Uniform friction coefficient 0.023 s/m-1/3 Layer fraction 95% sand + 5% mud Sand Specific density 2650 kg/m3 Sand sediment diameter 0.00025 m Mud critical stress for erosion 0.125 N/m2 Mud critical stress for sedimentation 1000 N/m2 Morpho-Factor 100 Open boundary Astronomical tide M2 m Delft3D FM Morpho Model Morphological modelling of tidal creeks 1 Model settings Reference: Colina Alonso, A., van Maren, D. S., van Weerdenburg, R. J. A., Huismans, Y., & Wang, Z. B. (2023). Morphodynamic Modeling of Tidal Basins: The Role of Sand‐Mud Interaction. Journal of Geophysical Research: Earth Surface, 128(9), e2023JF007391
  • 8. Preliminary Scenarios: Impacts of bed slope and tidal range on tidal creeks’ formation 15km MSL 15km MSL 15km MSL Micro-tidal system Meso-tidal system Macro-tidal system Tidal Range: 1.0m, 1.5m Tidal Range: 1.8m, 2.0m, 2.5m Tidal Range: 3.0m, 4.0m, 5.0m Reference: Xie, D., Schwarz, C., Kleinhans, M. G., Zhou, Z., & van Maanen, B. (2022). Implications of Coastal Conditions and Sea-Level Rise on Mangrove Vulnerability: A Bio-Morphodynamic Modeling Study. Journal of Geophysical Research: Earth Surface, 127(3). https://doi.org/10.1029/2021JF006301 After 200 morpho-year … Morphological modelling of tidal creeks 1
  • 9. Tidal range =1.8m Tidal range =1.0m Tidal range =1.5m Tidal range =2.0m Tidal range =2.5m Tidal range =3.0m Tidal range =4.0m Tidal range =5.0m Micro-tidal system Meso-tidal system Macro-tidal system Morphological modelling of tidal creeks 1
  • 10. • Results analysis: Intertidal area proportion Pinter = 𝐴𝑟𝑒𝑎 (𝑀𝑆𝐿~𝐻𝑊) 𝐴𝑟𝑒𝑎(~𝐻𝑊) In micro- and meso-tide system, intertidal area proportions are around 28%. For the macro-tide system, larger tidal range leads to large intertidal area proportion. 5.0 29% (25%) 4.0 27% (21%) 3.0 18% (17%) 2.5 28% (25%) 2.0 30% (21%) 1.8 28% (19%) 1.5 28% (29%) 1.0 28% (21%) 0.00025 0.0005 0.001 Morphological modelling of tidal creeks 1 Initial slope (m/m) Tidal range (m)
  • 11. 5.0 0.0030 4.0 0.0041 3.0 0.0032 2.5 0.0029 2.0 0.0035 1.8 0.0031 1.5 0.0018 1.0 0.0023 0.00025 0.0005 0.001 Initial slope (m/m) Tidal range (m) Averaged Drainage Density (m/m2) • Results analysis: Drainage Density Morphological modelling of tidal creeks 1 y = 0.0004x1.146 R² = 0.89 1,0E+00 1,0E+01 1,0E+02 1,0E+03 1,0E+04 1,0E+05 1,0E+04 1,0E+05 1,0E+06 1,0E+07 Channel Length (m) Watershed Area (m2)
  • 12. Morphological modelling of tidal creeks 1 • Results analysis: Drainage Density compared with Giralia networks y = 0,0004x1,0566 1,0E+03 1,0E+04 1,0E+05 1,0E+06 1,0E+07 1,0E+08 Total channel length (m) Watershed area (m2) 0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012 0,0014 0 5 10 15 20 Drainage Density No. of tidal networks Averaged Density: 0.00105 Channel drainage density in modelled results is higher than that in the vegetated Giralia networks
  • 13. Morphological modelling of tidal creeks 1 • Results analysis: Unchanneled Path 5.0 191 4.0 109 3.0 74 2.5 239 2.0 140 1.8 113 1.5 790 1.0 410 0.00025 0.0005 0.001 Tidal range (m) Average unchanneled length l (m) Initial slope (m/m) Unchanneled path represents the distance of a particle water at a point on the platform travels before reaching a channel. Unchanneled path increases with tidal range and decreases with initial bed slope.
  • 14. Morphological modelling of tidal creeks 1 • Results analysis: Channel Efficiency The Hortonian length (the inverse of drainage density) divided by the mean unchanneled path: lH/l Capture the branching and meandering characteristics of the channel network. 5 1.75 4 2.24 3 4.22 2.5 1.44 2 2.04 1.8 2.85 1.5 0.70 1 1.06 0.00025 0.0005 0.001 Channel efficiency increases with initial bed slope and decreases with tidal range . Initial slope (m/m) Tidal range (m) Micro-tidal system Tidal range =1.5m Macro-tidal system Tidal range =4.0m Reference: 1. Marani, M., Belluco, E., D’Alpaos, A., Defina, A., Lanzoni, S., & Rinaldo, A. (2003). On the drainage density of tidal networks. Water Resources Research, 39(2). 2. Kearney, W. S., & Fagherazzi, S. (2016). Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 7. https://doi.org/10.1038/ncomms12287 Channel patterns comparing examples Straight channel Dendritic channel
  • 15. Morphological modelling of tidal creeks 1 • Next steps: Impact of Bed erodibility Sample name Site 1 Site 2 Site 3 D50(𝜇𝑚) 25.85 50.06 271 Clay content 12% 13% - Silt content 50% 37% - Sand content 38% 50% 100% Field work sites Examples of sediment property D50 varies by an order and fraction varies from mixed to sandy environment
  • 16. • How will tidal creeks evolve in presence of arid mangroves species? what’s the role of mangroves? • How tidal creeks support mangroves’ survival and migration? Will mangrove adapt to future sea level rise? • The character of algal mats adjacent to creeks’ ends is little known, especially when affected by undulating terrain. • Can algal mats survive under the block of industrial banks? Future works: Habitats modelling 2 But a morphological model alone cannot answer these questions: Mangroves Tidal creeks Trap sediments Promote channel incision Reduce currents And more … Modify inundation and shear stress on mangroves
  • 17. Future works: Habitats modelling 2 Empirical model • Correlate mangrove distribution with environmental factors • For example, inundation and exposure period, salinity limits • Based on static vegetation models (Trachytopes method in Delft3D FM) • Update hydro and morpho manually Fully coupled model • Apply physical process-based vegetation models with Delft3D FM, • Information exchange between hydrodynamic, morphodynamic and vegetation model will be automatically conducted by BMI(Basic Model Interface) Reference: Willemsen, P. W. J. M., Smits, B. P., Borsje, B. W., Herman, P. M. J., Dijkstra, J. T., Bouma, T. J., & Hulscher, S. J. M. H. (2022). Modeling Decadal Salt Marsh Development: Variability of the Salt Marsh Edge Under Influence of Waves and Sediment Availability. Water Resources Research, 58(1). https://doi.org/10.1029/2020WR028962 Workflow of coupling model
  • 18. Future works: Habitats modelling 2 Empirical model Preliminary results from our teamwork Mardie Project B PROPAGULE AN CHORING PROPAGULE DES SICATION SEEDLING ESTABLISHMENT ADULT DROWNING Surface exposure time 48h 10day - - Surface temperature f(T) f(T) - - Inundation hydroperiod 0 0 1 tidal cycle (12hr) >0.1m 10 days > 0.5m​ Bottom stress - - - - Substrate SAND, MUD - - - Surface salinity / salt- crust - - < 80 psu -
  • 19. Future works: Prediction 3 Sea Level Rise Predict tidal creek evolution and the survival of mangroves and algal mats under low, medium and high emission scenarios Salt Pond development Evaluate the impact of artificial levees on the expansion and survival of algal mats Different conceptual models for mangroves under sea level rise Existing Mortality under SLR Migration under SLR Adaptation and Migration under SLR Adaptation and Migration under accretion and SLR