NABU – Multilingual Graph-based Neural RDF
Verbalizer
Diego Moussallem1 Dwaraknath Gnaneshwar2
Thiago Castro Ferreira3 Axel-Cyrille Ngonga Ngomo1
1Data Science Group, Paderborn University, Germany
2DL group, Manipal Institute of Technology, India
3Linguistics Department, Federal University of Minas Gerais, Brazil
Moussallem et al. (DICE) NABU 1 / 21
Introduction
More than 2.5 exabytes per day
Moussallem et al. (DICE) NABU 2 / 21
Introduction
How can we generate text from Knowledge Graphs (KG)?
1
1
Taken from urlrb.gy/jqrry2
Moussallem et al. (DICE) NABU 3 / 21
Motivation
Natural Language Generation (NLG) task
Albert	Einstein	was	a	scientist who	worked	in	physics. 
He	was born	in	Ulm	and 
graduated	from	the	University	of	Zurich.
Also,	he	died	in	Princeton	and
 had	under his	guidance	Ernst	Gabor	Straus.
Scientist
rdf:type
dbo:almaMaterdbo:doctoralStudent
dbo:field
Physics
dbo:birthPlace
dbo:deathPlace
Moussallem et al. (DICE) NABU 4 / 21
Motivation
Natural Language Generation (NLG) task
Albert	Einstein	was	a	scientist who	worked	in	physics. 
He	was born	in	Ulm	and 
graduated	from	the	University	of	Zurich.
Also,	he	died	in	Princeton	and
 had	under his	guidance	Ernst	Gabor	Straus.
Scientist
rdf:type
dbo:almaMaterdbo:doctoralStudent
dbo:field
Physics
dbo:birthPlace
dbo:deathPlace
Current Drawback
1 English is the only widely targeted language
2 Graph structure is not fully exploited
3 Fluency is still low for sub-graphs
Moussallem et al. (DICE) NABU 4 / 21
Research Question
Goal
Devise a natural language generation approach which takes into account
the graph structure while generating text in more than one language
Moussallem et al. (DICE) NABU 5 / 21
Research Question
Goal
Devise a natural language generation approach which takes into account
the graph structure while generating text in more than one language
Answer
NABU
Moussallem et al. (DICE) NABU 5 / 21
NABU - Multilingual RDF Verbalizer
Architecture
NABU consists of an encoder-decoder architecture which relies on Graph
Attention Network (GAT) as encoder and Transformer as decoder.
layer
layer
layer
layer
layer
layer
Albert Einstein was a scientist born in 1879 in
Germany.
Albert Einstein war ein 1879 in Deutschland
geborener Wissenschaftler.
Альберт Эйнштейн - ученый, родился в 1879
году в Германии.
type
Albert
Einstein
A0
birthPlace
birthDate
A0
A0
Germany
A1
1879
A1
Scientist
A1
Encoder
GAT
Decoder
Transformer
English
German
Russian
RDF Graph 
OUTPUTINPUT
Moussallem et al. (DICE) NABU 6 / 21
NABU - Multilingual RDF Verbalizer
Encoding phase
Albert
Einstein
type
1879
birthDate
Germany
Scientist
type
Albert
Einstein
A0
birthPlace
birthDate
A0
A0
Germany
A1
1879
A1
Scientist
A1
birthPlace
reification
1 To avoid parameters explosion phenomenon (edges)
2 Concept from hyper graphs
3 To not be confused with RDF reification
Moussallem et al. (DICE) NABU 7 / 21
NABU - Multilingual RDF Verbalizer
Why GAT?
Moussallem et al. (DICE) NABU 8 / 21
NABU - Multilingual RDF Verbalizer
Single forward pass in NABU
Source
Vector
Destination
Vector
Node
Vector
Label
Vector
Node Role
layer
Input
vector
Encoder Decoder
Moussallem et al. (DICE) NABU 9 / 21
Evaluation
Goals
Answer the following research questions
Q1 : How does our multilingual approach compare with state-of-the-art
results in English?
Q2 : Is NABU able to generate bilingual text while modelling two
languages from distinct families?
Q3 : How accurate are the multilingual texts generated by NABU?
Steps
Our evaluation is three-fold:
1 Monolingual
2 Bilingual
3 Multilingual
Moussallem et al. (DICE) NABU 10 / 21
NABU - Evaluation
Experimental Setup
Model:
8-headed multi-head attention mechanism
batch size - 32, Adam optimizer 0.001
Embeddings and Hidden Layers 256
dropout 0.3
Sentence length 50 and BPE 32k
beam size 5
Unsupervised Tokenizer - SentencePiece
WebNLG Datasets
English – 9,674 RDF sets (1-7 triples), 25,298 texts, 15 domains
German – 7,812 RDF sets (1-7 triples), 20,370 texts, 15 domains
Russian – 5,185 RDF sets (1-7 triples), 20,800 texts, 9 domains
Moussallem et al. (DICE) NABU 11 / 21
NABU - Evaluation
Monolingual task
Goal
Measure the overall quality of NABU against current SOTA
Baseline:
1 Related works (English)
2 Vanilla Transformer (German)
3 Vanilla Transformer (Russian)
Benchmark:
1 WebNLG-English
2 WebNLG-German
3 WebNLG-Russian
Metrics: BLEU, METEOR, chrF++
Moussallem et al. (DICE) NABU 12 / 21
NABU - Evaluation
Bilingual task
Goal
Measure the overall quality of NABU on language families
Baseline:
1 Vanilla Transformer
Benchmark:
1 WebNLG-English+WebNLG-German
2 WebNLG-English+WebNLG-Russian
Metrics: BLEU, METEOR, chrF++
Moussallem et al. (DICE) NABU 13 / 21
NABU - Evaluation
Multilingual task
Goal
Measure the overall quality of NABU on English, German and Russian
Baseline:
1 Vanilla Transformer
Benchmark:
1 WebNLG-English+WebNLG-German +
WebNLG-Russian
Metrics: BLEU, METEOR, chrF++
Moussallem et al. (DICE) NABU 14 / 21
NABU - Results
Monolingual Results - English
Q1 : How does our multilingual approach compare with state-of-the-art
results in English?
NABU outperforms related works on English
Model BLEU METEOR chrF++
UPF-FORGe 38.65 39.00 -
Melbourne 45.13 37.00 -
Moryossef et al., 2019) 47.40 39.00 -
Castro et al. (2019) 51.68 32.00 -
NABUGAT−Trans 66.21 41.11 71.98
Moussallem et al. (DICE) NABU 15 / 21
NABU - Results
Monolingual Results
Q1 : How does our multilingual approach compare with state-of-the-art
results on German and Russian?
NABU presents good results on German and Russian separately
Models Language BLEU METEOR chrF++
Monolingual
Transformerbaseline
ENG 54.96 38.43 69.11
GER 50.07 34.51 63.48
RUS 46.42 27.74 56.80
NABUGAT−Trans
ENG 66.21 41.47 71.98
GER 53.08 37.42 64.57
RUS 46.86 28.84 58.37
Moussallem et al. (DICE) NABU 16 / 21
NABU - Results
Bilingual Results
Q2 : Is NABU able to generate bilingual text while modelling two
languages from distinct families?
NABU generates good bilingual results
Models Language BLEU METEOR chrF++
Bilingual
Transformerbaseline ENG-GER 58.30 36.46 66.72
NABUGAT−Trans ENG-GER 61.99 39.51 69.68
Transformerbaseline ENG-RUS 55.30 37.90 61.63
NABUGAT−Trans ENG-RUS 49.15 33.41 64.00
Moussallem et al. (DICE) NABU 17 / 21
NABU - Results
Multilingual Results
Q3 : How accurate are the multilingual texts generated by NABU?
NABU presents good multilingual results
Models Language BLEU METEOR chrF++
Multilingual
Transformerbaseline ENG-GER-RUS 53.39 36.86 60.72
NABUGAT−Trans ENG-GER-RUS 56.04 38.34 62.04
Moussallem et al. (DICE) NABU 18 / 21
Error Analysis and Discussion
1 Consistent results across languages
2 Possessive is still a source of error
3 Similar predicates with similar subjects fail to verbalize (co-reference)
Albert Einstein deathPlace USA
Michael Jackson deathPlace USA
Albert Einstein birthPlace Ulm
Michael Jackson birthPlace Gary
4 Improved generalisation (unseen entities) on all languages
5 Unseen entities on Russian were worse than on German and English
Moussallem et al. (DICE) NABU 19 / 21
Summary and Future Work
Summary:
66.21 BLEU on English (new SOTA)
56.04 BLEU on Multilingual settings
Consistent results across languages
What Next?
Application of sub-graphs
Exploit other NN architectures
Investigate different KG Embeddings
Extend to other languages
Moussallem et al. (DICE) NABU 20 / 21
Thank you for your Attention!
Diego Moussallem
diego.moussallem@upb.de
https://go.upb.de/moussallem
Follow us on Twitter @DiceResearch
Follow me on Twitter @diegomoussallem
⇒ Github: https://github.com/dice-group
⇒ Website:
https://dice.cs.uni-paderborn.de
Moussallem et al. (DICE) NABU 21 / 21

More Related Content

PPTX
01 Knapsack using Dynamic Programming
PDF
PR-207: YOLOv3: An Incremental Improvement
PPTX
輪読資料 Xception: Deep Learning with Depthwise Separable Convolutions
PPTX
[PR12] Inception and Xception - Jaejun Yoo
PPTX
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
PDF
PR-132: SSD: Single Shot MultiBox Detector
PPTX
Object detection
PPTX
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...
01 Knapsack using Dynamic Programming
PR-207: YOLOv3: An Incremental Improvement
輪読資料 Xception: Deep Learning with Depthwise Separable Convolutions
[PR12] Inception and Xception - Jaejun Yoo
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
PR-132: SSD: Single Shot MultiBox Detector
Object detection
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...

What's hot (20)

PPTX
0/1 DYNAMIC PROGRAMMING KNAPSACK PROBLEM
PPTX
Google net
PDF
単項イデアル整域の証明 整数環Zがpidである事の証明
PDF
module4_dynamic programming_2022.pdf
PPTX
Knapsack Problem (DP & GREEDY)
PDF
Introduction to Computer Vision using OpenCV
PPT
Knapsack problem using dynamic programming
PDF
はじめての機械学習
PDF
Yolo v2 urop 발표자료
PDF
Object detection and Instance Segmentation
PPTX
YOLO v1
PDF
Recent Progress in RNN and NLP
PPTX
Deep learning for object detection
PPTX
Object Detection Methods using Deep Learning
PPTX
Introduction to object detection
PDF
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
PDF
Divisor
PPTX
[DL輪読会]Xception: Deep Learning with Depthwise Separable Convolutions
PDF
(Paper Review)Image to image translation with conditional adversarial network...
PPTX
Segment Anything
0/1 DYNAMIC PROGRAMMING KNAPSACK PROBLEM
Google net
単項イデアル整域の証明 整数環Zがpidである事の証明
module4_dynamic programming_2022.pdf
Knapsack Problem (DP & GREEDY)
Introduction to Computer Vision using OpenCV
Knapsack problem using dynamic programming
はじめての機械学習
Yolo v2 urop 발표자료
Object detection and Instance Segmentation
YOLO v1
Recent Progress in RNN and NLP
Deep learning for object detection
Object Detection Methods using Deep Learning
Introduction to object detection
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
Divisor
[DL輪読会]Xception: Deep Learning with Depthwise Separable Convolutions
(Paper Review)Image to image translation with conditional adversarial network...
Segment Anything
Ad

Recently uploaded (20)

PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Flame analysis and combustion estimation using large language and vision assi...
PPTX
Modernising the Digital Integration Hub
PDF
OpenACC and Open Hackathons Monthly Highlights July 2025
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Consumable AI The What, Why & How for Small Teams.pdf
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
Architecture types and enterprise applications.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Developing a website for English-speaking practice to English as a foreign la...
The influence of sentiment analysis in enhancing early warning system model f...
A comparative study of natural language inference in Swahili using monolingua...
Flame analysis and combustion estimation using large language and vision assi...
Modernising the Digital Integration Hub
OpenACC and Open Hackathons Monthly Highlights July 2025
Benefits of Physical activity for teenagers.pptx
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Consumable AI The What, Why & How for Small Teams.pdf
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
sbt 2.0: go big (Scala Days 2025 edition)
Final SEM Unit 1 for mit wpu at pune .pptx
Zenith AI: Advanced Artificial Intelligence
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Custom Battery Pack Design Considerations for Performance and Safety
Architecture types and enterprise applications.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
UiPath Agentic Automation session 1: RPA to Agents
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Ad

NABU - Multilingual Graph-based Neural RDF Verbalizer

  • 1. NABU – Multilingual Graph-based Neural RDF Verbalizer Diego Moussallem1 Dwaraknath Gnaneshwar2 Thiago Castro Ferreira3 Axel-Cyrille Ngonga Ngomo1 1Data Science Group, Paderborn University, Germany 2DL group, Manipal Institute of Technology, India 3Linguistics Department, Federal University of Minas Gerais, Brazil Moussallem et al. (DICE) NABU 1 / 21
  • 2. Introduction More than 2.5 exabytes per day Moussallem et al. (DICE) NABU 2 / 21
  • 3. Introduction How can we generate text from Knowledge Graphs (KG)? 1 1 Taken from urlrb.gy/jqrry2 Moussallem et al. (DICE) NABU 3 / 21
  • 4. Motivation Natural Language Generation (NLG) task Albert Einstein was a scientist who worked in physics.  He was born in Ulm and  graduated from the University of Zurich. Also, he died in Princeton and  had under his guidance Ernst Gabor Straus. Scientist rdf:type dbo:almaMaterdbo:doctoralStudent dbo:field Physics dbo:birthPlace dbo:deathPlace Moussallem et al. (DICE) NABU 4 / 21
  • 5. Motivation Natural Language Generation (NLG) task Albert Einstein was a scientist who worked in physics.  He was born in Ulm and  graduated from the University of Zurich. Also, he died in Princeton and  had under his guidance Ernst Gabor Straus. Scientist rdf:type dbo:almaMaterdbo:doctoralStudent dbo:field Physics dbo:birthPlace dbo:deathPlace Current Drawback 1 English is the only widely targeted language 2 Graph structure is not fully exploited 3 Fluency is still low for sub-graphs Moussallem et al. (DICE) NABU 4 / 21
  • 6. Research Question Goal Devise a natural language generation approach which takes into account the graph structure while generating text in more than one language Moussallem et al. (DICE) NABU 5 / 21
  • 7. Research Question Goal Devise a natural language generation approach which takes into account the graph structure while generating text in more than one language Answer NABU Moussallem et al. (DICE) NABU 5 / 21
  • 8. NABU - Multilingual RDF Verbalizer Architecture NABU consists of an encoder-decoder architecture which relies on Graph Attention Network (GAT) as encoder and Transformer as decoder. layer layer layer layer layer layer Albert Einstein was a scientist born in 1879 in Germany. Albert Einstein war ein 1879 in Deutschland geborener Wissenschaftler. Альберт Эйнштейн - ученый, родился в 1879 году в Германии. type Albert Einstein A0 birthPlace birthDate A0 A0 Germany A1 1879 A1 Scientist A1 Encoder GAT Decoder Transformer English German Russian RDF Graph  OUTPUTINPUT Moussallem et al. (DICE) NABU 6 / 21
  • 9. NABU - Multilingual RDF Verbalizer Encoding phase Albert Einstein type 1879 birthDate Germany Scientist type Albert Einstein A0 birthPlace birthDate A0 A0 Germany A1 1879 A1 Scientist A1 birthPlace reification 1 To avoid parameters explosion phenomenon (edges) 2 Concept from hyper graphs 3 To not be confused with RDF reification Moussallem et al. (DICE) NABU 7 / 21
  • 10. NABU - Multilingual RDF Verbalizer Why GAT? Moussallem et al. (DICE) NABU 8 / 21
  • 11. NABU - Multilingual RDF Verbalizer Single forward pass in NABU Source Vector Destination Vector Node Vector Label Vector Node Role layer Input vector Encoder Decoder Moussallem et al. (DICE) NABU 9 / 21
  • 12. Evaluation Goals Answer the following research questions Q1 : How does our multilingual approach compare with state-of-the-art results in English? Q2 : Is NABU able to generate bilingual text while modelling two languages from distinct families? Q3 : How accurate are the multilingual texts generated by NABU? Steps Our evaluation is three-fold: 1 Monolingual 2 Bilingual 3 Multilingual Moussallem et al. (DICE) NABU 10 / 21
  • 13. NABU - Evaluation Experimental Setup Model: 8-headed multi-head attention mechanism batch size - 32, Adam optimizer 0.001 Embeddings and Hidden Layers 256 dropout 0.3 Sentence length 50 and BPE 32k beam size 5 Unsupervised Tokenizer - SentencePiece WebNLG Datasets English – 9,674 RDF sets (1-7 triples), 25,298 texts, 15 domains German – 7,812 RDF sets (1-7 triples), 20,370 texts, 15 domains Russian – 5,185 RDF sets (1-7 triples), 20,800 texts, 9 domains Moussallem et al. (DICE) NABU 11 / 21
  • 14. NABU - Evaluation Monolingual task Goal Measure the overall quality of NABU against current SOTA Baseline: 1 Related works (English) 2 Vanilla Transformer (German) 3 Vanilla Transformer (Russian) Benchmark: 1 WebNLG-English 2 WebNLG-German 3 WebNLG-Russian Metrics: BLEU, METEOR, chrF++ Moussallem et al. (DICE) NABU 12 / 21
  • 15. NABU - Evaluation Bilingual task Goal Measure the overall quality of NABU on language families Baseline: 1 Vanilla Transformer Benchmark: 1 WebNLG-English+WebNLG-German 2 WebNLG-English+WebNLG-Russian Metrics: BLEU, METEOR, chrF++ Moussallem et al. (DICE) NABU 13 / 21
  • 16. NABU - Evaluation Multilingual task Goal Measure the overall quality of NABU on English, German and Russian Baseline: 1 Vanilla Transformer Benchmark: 1 WebNLG-English+WebNLG-German + WebNLG-Russian Metrics: BLEU, METEOR, chrF++ Moussallem et al. (DICE) NABU 14 / 21
  • 17. NABU - Results Monolingual Results - English Q1 : How does our multilingual approach compare with state-of-the-art results in English? NABU outperforms related works on English Model BLEU METEOR chrF++ UPF-FORGe 38.65 39.00 - Melbourne 45.13 37.00 - Moryossef et al., 2019) 47.40 39.00 - Castro et al. (2019) 51.68 32.00 - NABUGAT−Trans 66.21 41.11 71.98 Moussallem et al. (DICE) NABU 15 / 21
  • 18. NABU - Results Monolingual Results Q1 : How does our multilingual approach compare with state-of-the-art results on German and Russian? NABU presents good results on German and Russian separately Models Language BLEU METEOR chrF++ Monolingual Transformerbaseline ENG 54.96 38.43 69.11 GER 50.07 34.51 63.48 RUS 46.42 27.74 56.80 NABUGAT−Trans ENG 66.21 41.47 71.98 GER 53.08 37.42 64.57 RUS 46.86 28.84 58.37 Moussallem et al. (DICE) NABU 16 / 21
  • 19. NABU - Results Bilingual Results Q2 : Is NABU able to generate bilingual text while modelling two languages from distinct families? NABU generates good bilingual results Models Language BLEU METEOR chrF++ Bilingual Transformerbaseline ENG-GER 58.30 36.46 66.72 NABUGAT−Trans ENG-GER 61.99 39.51 69.68 Transformerbaseline ENG-RUS 55.30 37.90 61.63 NABUGAT−Trans ENG-RUS 49.15 33.41 64.00 Moussallem et al. (DICE) NABU 17 / 21
  • 20. NABU - Results Multilingual Results Q3 : How accurate are the multilingual texts generated by NABU? NABU presents good multilingual results Models Language BLEU METEOR chrF++ Multilingual Transformerbaseline ENG-GER-RUS 53.39 36.86 60.72 NABUGAT−Trans ENG-GER-RUS 56.04 38.34 62.04 Moussallem et al. (DICE) NABU 18 / 21
  • 21. Error Analysis and Discussion 1 Consistent results across languages 2 Possessive is still a source of error 3 Similar predicates with similar subjects fail to verbalize (co-reference) Albert Einstein deathPlace USA Michael Jackson deathPlace USA Albert Einstein birthPlace Ulm Michael Jackson birthPlace Gary 4 Improved generalisation (unseen entities) on all languages 5 Unseen entities on Russian were worse than on German and English Moussallem et al. (DICE) NABU 19 / 21
  • 22. Summary and Future Work Summary: 66.21 BLEU on English (new SOTA) 56.04 BLEU on Multilingual settings Consistent results across languages What Next? Application of sub-graphs Exploit other NN architectures Investigate different KG Embeddings Extend to other languages Moussallem et al. (DICE) NABU 20 / 21
  • 23. Thank you for your Attention! Diego Moussallem diego.moussallem@upb.de https://go.upb.de/moussallem Follow us on Twitter @DiceResearch Follow me on Twitter @diegomoussallem ⇒ Github: https://github.com/dice-group ⇒ Website: https://dice.cs.uni-paderborn.de Moussallem et al. (DICE) NABU 21 / 21