SlideShare a Scribd company logo
Unsupervised Relation Extraction for 
E‐Learning Applications from 
Biomedical Domain
Naveed Afzal
1
Outline
• Multiple Choice Questions
• Motivation
• System Architecture
• Unsupervised IE
• Surface‐based Approach
• Dependency‐based Approach
• Use of Web as a corpus
• Automatic Generation of Questions
• Automatic Generation of Distractors
• Extrinsic Evaluation
• Comparison
• Main Contributions
2
Multiple Choice Questions (MCQ)
•Popular assessment tool
•MCQ consists of:
• A question
• The correct answer
• A list of distractors (wrong answers)
•45%‐67% students assessment utilise MCQ
•Automatic generation of MCQ:
• An emerging area of NLP
3
Motivation
• Most of the previous approaches relied on the syntactic 
structures of sentences to generate MCQs
• Previous approaches unable to automatically generate questions 
from complex sentences
• A complete MCQ system based on IE
• Aim is to identify the most important semantic relations in a 
document without assigning explicit labels to them in order to 
ensure broad coverage, unrestricted to predefined types of 
relations. 
• Our approach used semantic relations using Unsupervised 
Information Extraction (IE)
• Conversion of semantic relations into questions
• Distractors are generated using distributional similarity measure
4
System Architecture
Unannotated
corpus
Named Entity
Recognition
Semantic
Relations
Distractors
Generation
Rules
Question
Generation
Output
(MCQ)
Extraction of
Candidate
Patterns
Patterns
Ranking
Evaluation
Distributional
Similarity
5
Unsupervised IE
•Unsupervised Approaches
• Surface‐based
• Dependency‐based
•Each approach can cover a potentially unrestricted 
range of semantic relations
•Other approaches (supervised and semi‐supervised) 
require seed patterns to learn similar patterns which 
are exemplified by the seeds
6
NER & POS Tagging
• GENIA Tagger is used for the purpose of NER & POS tagging
• The GENIA tagger provides us the base forms, POS tags and 
NE tags for the GENIA corpus
• GENIA POS tagger achieves accuracy of 96.94% on Wall 
Street Journal corpus and 98.26% on GENIA corpus
7
Named Entity Recognition (NER)
Entity Type Precision Recall F-score
Protein 65.82 81.41 72.79
DNA 65.64 66.76 66.20
RNA 60.45 68.64 64.29
Cell Line 56.12 59.60 57.81
Cell Type 78.51 70.54 74.31
Overall 67.45 75.78 71.37
GENIA NER is used to recognise the following 5
main Named Entities:
8
Surface‐based Approach (Patterns Building)
• Important relations are expressed with the help of 
recurrent linguistic constructions
• These constructions can be recognised by examining 
sequences of words between NE’s
• To discover such linguistic constructions
• Find pairs of NE’s in a document 
• Extract sequences of words between them, which are 
later used to learn extraction patterns
9
Patterns Building
• The presented approach uses the idea of content 
words / notional words present between two named 
entities along with prepositions and without 
prepositions to build candidate patterns
• Three types of surface‐based patterns along with and 
without prepositions
• Untagged word patterns
• PoS‐tagged word patterns
• Verb‐centred word patterns
• Content words consist of (Nouns, verb, adverbs and 
adjectives) 
10
Patterns Building
• Minimum one content word and maximum three 
content words are extracted between two named 
entities
• Why??
• The idea behind this selection process is that if
• No content word between two NE’s then it is most likely there 
will be no relation between them 
• While on the other hand, if two NE’s are quite far from each 
other then it is also most likely they will be not related either 
• Use of lemmatised word
11
Patterns Building
• Passive voice to active voice conversion relieve the 
problem of data sparseness e.g.
• PROTEIN be_v express_v CELL_TYPE transformed into
• CELL_TYPE express_v PROTEIN
• We filter out patterns containing negation (e.g. not, 
do not etc)
• We also filter out patterns containing stop words 
only e.g.
• DNA through PROTEIN
• PROTEIN such as PROTEIN
• PROTEIN with PROTEIN in CELL_TYPE
• PROTEIN be same in CELL_LINE
• PROTEIN against PROTEIN
12
Dependency‐based Approach
• Unsupervised dependency‐based approach
• Dependency trees are suitable basis for semantic 
patterns acquisition as they abstract away from 
the surface structure to represent relations 
between elements of a sentence
• Our assumption for semantic relations is that it is 
between NE’s stated in the same sentence
13
Dependency‐based Approach (Patterns Building)
• After NER, the next step is extraction of candidate 
patterns and it consist of two main stages:
• the construction of potential patterns from an unannotated 
domain corpus 
• their relevance ranking 
• Use of an adapted Linked chain pattern model that 
combines the pair of chains in a dependency tree 
which share common verb root but no direct 
descendants 
14
Patterns Building
• Treat every NE as a chain in a dependency tree if it is 
less than 5 dependencies away from the verb root 
and the word linking the NE’s to the verb root are 
from the category of content words (Verb, Noun, 
Adverb and Adjective) along with prepositions. 
• Consider only those chains in the dependency tree of 
a sentence which contain NE’s 
15
Example
Fibrinogen activates NF‐kappa B in mononuclear phagocytes.
• GENIA tagger for NER:
• <protein> Fibrinogen </protein> activates <protein> NF‐
kappa B </protein> in <cell_type> mononuclear phagocytes 
</cell_type>.
• Replace all the NEs with their semantic class respectively, so the 
aforementioned sentence is transformed into the following 
sentence.
• PROTEIN activates PROTEIN in CELL.
• Parsed the sentence the Machinese Syntax parser 
16
Example
[V/activate] (subj[PROTEIN] + obj[PROTEIN])
[V/activate] (obj[PROTEIN] + prep[in] + p[CELL_TYPE])
17
Patterns Ranking
• Ranked according to their significance in domain 
corpus
• Use of general corpus (BNC)
• Measure the strength of association of a pattern 
with the domain corpus as opposed to the general 
corpus 
18
Patterns Ranking
• The patterns are ranked using the following ranking methods:
• Information Gain
• Information Gain Ratio
• Mutual Information
• Normalised Mutual Information
• Log‐likelihood
• Chi‐Square
• Meta‐ranking
• tf‐idf
• The patterns along with their scores obtained using the above 
mentioned ranking methods are stored into the database
Information-theoretic
concepts
Statistical tests
19
Ranking Methods
•Chi‐Square and Normalised Mutual Information – best 
performing ranking methods in terms of precision but 
recall is very low in Chi‐Square
•No statistical significant difference between 
Information Gain, Information Gain Ratio and Log‐
likelihood
•Mutual Information – worst performing ranking 
method
20
Surface‐based Patterns Ranking
0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9
1
>0.08 >0.09 >0.1 >0.2 >0.3 >0.4 >0.5
CHI
NMI
21
Surface‐based Patterns Ranking (CHI)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
>0.06 >0.07 >0.08 >0.09 >0.1 >0.2 >0.3
Precision
Recall
F-score
22
Surface‐based Patterns Ranking (NMI)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
>0.06 >0.07 >0.08 >0.09 >0.1 >0.2 >0.3
Precision
Recall
F-score
23
Dependency‐based Patterns Ranking
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
>0.08 >0.09 >0.1 >0.2 >0.3 >0.4 >0.5
CHI
NMI
24
Dependency‐based Patterns Ranking 
(CHI)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
>0.06 >0.07 >0.08 >0.09 >0.1 >0.2 >0.3
Precision
Recall
F-score
25
Dependency‐based Patterns Ranking 
(NMI)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
>0.06 >0.07 >0.08 >0.09 >0.1 >0.2 >0.3
Precision
Recall
F-score
26
Use of Web as a corpus
• Due to the small size of the GENIA corpus we developed a 
large WEB corpus by automatically collecting MEDLINE 
articles similar to the GENIA corpus from the National 
Library of Medicine
• To ensure that the web corpus is sufficiently on‐topic, it is 
important to know how similar the two corpora are
• It is most important to first determine the homogeneity of 
a corpus before computing its similarity to another corpus, 
as the judgement of similarity can become unreliable if a 
homogenous corpus is compared with a heterogeneous 
one
27
Use of Web as a corpus
• Web corpus is not homogenous 
• Web corpus is not similar to GENIA corpus
• Web corpus is not similar to GENIA EVENT corpus     
• One of the possible reasons for this is that GENIA is a very 
narrow‐domain corpus and it is hard to collect relevant 
topical documents automatically
• Use of a Web as a corpus is still unable to ensure the same 
level of topic relevance as achieved in manually compiled 
corpora 
28
Automatic Question Generation
•Emerging area of research
•Questions asking about important concepts 
described in a given text
•Well‐known that generating/asking good questions 
is a complicated task
•Semantic relations allow us to identify which part of 
learning material is important and worth testing
29
Automatic Question Generation
•Surface‐based approach used a certain set of rules 
to transform semantic patterns into questions 
automatically
•Dependency‐based approach questions are 
generated automatically by traversing the 
dependency tree of a given sentence matched by a 
semantic pattern
30
Automatic Question Generation
• Pattern: DNA contain_v DNA
• Step 1: Identify instantiations of a pattern in the evaluation 
corpus, this involves finding the template (in the above 
example, the verb ‘contain’) and the slot filler (two specifics 
DNA’s in the above example). We then have the 
aforementioned pattern being matched in the evaluation 
corpus and the relevant sentence is extracted form it.
• Thus, the gamma 3 ECS is an inducible promoter containing 
cis elements that critically mediate CD40L and IL‐4‐triggered 
transcriptional activation of the human C gamma 3 gene.
31
Automatic Question Generation
• Step 2: The part of the extracted sentence that contains template together 
with slot fillers is tagged by <QP> and </QP> tags as shown below:
• Thus, the <DNA> gamma 3 ECS </DNA> is an <QP> <DNA> inducible promoter 
</DNA> containing <DNA> cis elements </DNA> </QP> that critically mediate 
<protein> CD40L </protein> and IL‐4‐triggered transcriptional activation of the 
<DNA> human C gamma 3 gene </DNA>.
• Step 3: In this step, we extract semantic tags and actual names from the 
extracted sentence by employing Machinese parser (Tapanainen and Järvinen, 
1997). After parsing, the extracted semantic pattern is transformed into the 
following two types of questions (active voice and passive voice): 
• Which DNA contains cis elements?
• Which DNA is contained by inducible promoter?
• For various forms of extracted patterns, we develop a certain set of rules 
based on semantic classes (Named Entities) and part‐of‐speech (PoS) 
information present in a pattern.
32
Automatic Question Generation
• [V/encode] (subj[DNA] + obj[PROTEIN])
• This pattern is matched with the following sentence, which 
contains its instantiation:
• This structural similarity suggests that the pAT 133 gene encodes 
a transcription factor with a specific biological function.
• Our dependency‐based patterns always include a main verb, so 
in order to automatically generate questions:
• We traverse the whole dependency tree of the extracted sentence and 
• Extract all of the words which rely on the main verb present in the 
dependency parse of a sentence. 
• The part of the sentence is then transformed into the question by 
selecting the subtree of the parse bounded by the two named entities 
present in the dependency pattern. 
33
Automatic Question Generation
Which DNA encodes a transcription factor with a specific biological
function?
34
Automatic Question Generation
•In both surface‐based and dependency‐based 
approaches, we are able to automatically generate 
only one type of questions (Which questions) 
regarding named entities present in a semantic 
relation. 
•Our approach is not capable of automatically 
generating different types of questions (e.g. Why, 
How and What questions), and in order to do that 
one has to look at various NLG techniques.
35
Distractors Generation
•Distributional Similarity measure
•Alleviate problem of data sparseness
•Corpus driven
•Information Radius
•Our aim is to automatically generate plausible 
distractors, so if the correct answer is a protein then 
our approach automatically generates all protein 
distractors that are involved in similar processes or 
belong to the same biological category.
36
Distractors Generation
• We build a pool of various biomedical corpora in order to 
generate distractors from these corpora. 
• After linguistic processing, we build a frequency matrix which 
involves the scanning of sequential semantic classes (Named 
Entities) along with a notional word in the corpora and record 
their frequencies in a database. 
• Constructed distributional models of all candidate named 
entities 
• semantic classes are compared using the distributional 
hypothesis that similar words appear in similar context. 
• The distractors to a given correct answer are then automatically 
generated by measuring it similarity to entire candidate named 
entities. 
• Top 4 similar candidate named entities as the distractors. 
37
Extrinsic Evaluation
• Real Application users have a vital role to play
• Evaluated both MCQ systems as a whole in a user‐
centred fashion 
• 2 biomedical experts (both post‐doc’s), vastly 
experienced
• We selected a score‐thresholding (score > 0.01) for 
NMI as it gives a maximum F‐score (surface‐based 
54% & dependency‐based 65%)
• Surface‐based 80 and Dependency‐based 52 MCQs 
38
39
Extrinsic Evaluation
•Question and Distractors Readability
1.Incomprehensible
2.Rather Clear
3.Clear
•Usefulness of Semantic Relation
1.Incomprehensible
2.Rather Clear
3.Clear
40
Extrinsic Evaluation
• Question and Distractors Relevance
1. Not Relevant
2. Rather Relevant 
3. Very Relevant
• Question and Distractors Acceptability
• (0 = Unacceptable, 5= Acceptable)
• Overall MCQ Usability
1. Unusable
2. Need Major Revision
3. Need Minor Revision
4. Directly Usable
41
Surface‐based MCQ
QR
(1-3)
DR
(1-3)
USR
(1-3)
QRelv
(1-3)
DRelv
(1-3)
QA
(0-
5)
DA
(0-5)
MCQ
Usability
(1-4)
Evaluator 1 2.15 2.96 2.14 2.04 2.24 2.53 3.04 2.61
Evaluator 2 1.74 2.29 1.88 1.66 2.10 1.95 3.28 2.11
Average 1.95 2.63 2.01 1.85 2.17 2.24 3.16 2.36
42
Surface‐based MCQ
•In terms of overall MCQ usability, the extrinsic 
evaluation results show that in surface‐based MCQ 
system 
• 35% of MCQ items were considered directly usable,
• 30% needed minor revisions and 14% needed major 
revisions 
• while 21% MCQ items were deemed unusable. 
43
Dependency‐based MCQ
QR
(1-3)
DR
(1-3)
USR
(1-3)
QRelv
(1-3)
DRelv
(1-3)
QA
(0-5)
DA
(0-5)
MCQ
Usability
(1-4)
Evaluator 1 2.42 2.98 2.38 2.37 2.31 3.25 3.73 3.37
Evaluator 2 2.25 2.15 2.46 2.23 2.06 3.27 3.15 2.79
Average 2.34 2.57 2.42 2.30 2.19 3.26 3.44 3.08
44
Dependency‐based MCQ
•In dependency‐based MCQ system, we found that 
•65% of MCQ items were considered directly 
usable, 
•23% needed minor revisions and 
•6% needed major revisions 
•while 6% of MCQ items were unusable.
45
Comparison
1
1.5
2
2.5
3
QR DR USR QRelv DRelv
Surface-based MCQ
Dependency-based MCQ
46
Comparison
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
QA DA
Surface-based MCQ
Dependency-based MCQ
47
Comparison
1
1.5
2
2.5
3
3.5
4
MCQ Usability
Surface-based MCQ
Dependency-based MCQ
48
Statistical Significance
Evaluator 1 Evaluator 2
Question Readability 0.1912 0.0011
Distractors Readability 0.5496 0.4249
Usefulness of Semantic Relation 0.2737 0.0002
Question Relevance 0.0855 0.0004
Distractors Relevance 0.1244 0.7022
Question Acceptability 0.1449 0.0028
Distractors Acceptability 0.0715 0.4123
Overall MCQ Usability 0.0026 0.0010
49
Main Contributions
•A fully implemented automatically generated MCQ 
systems based on IE
•Overcome problems faced by previous approaches
•Use of IE to improve the quality of automatically 
generated MCQ 
•Unsupervised approaches for RE intended to be 
deployed in an e‐Learning system for automatic 
generation of MCQs.
•Explored different pattern ranking methods 
•Our system has the capability to be easily adapted to 
other domains
50
References
• PhD Thesis Online:
• http://clg.wlv.ac.uk/papers/afzal‐thesis.pdf
• Journal Papers:
• Afzal N. and Mitkov R. (2014). Automatic Generation of Multiple Choice Questions 
using Dependency‐based Semantic Relations. Soft Computing. Volume 18, Issue 7, pp. 
1269‐1281 (Impact Factor 2013: 1.304) DOI: 10.1007/s00500‐013‐1141‐4
• Afzal N. and Farzindar A. (2013). Unsupervised Relation Extraction from a Corpus 
Automatically Collected from the Web from Biomedical Domain. International Journal 
of Computational Linguistics and Natural Language Processing (IJCLNLP), Vol. 2 Issue 4 
pp. 315‐324.
• Conference Papers:
• Afzal N., Mitkov R. and Farzindar A. (2011). Unsupervised Relation Extraction using 
Dependency Trees for Automatic Generation of Multiple‐Choice Questions. In 
Proceedings of the C. Butz and P. Lingras (Eds.): Canadian AI 2011, LNAI 6657, pp. 32‐
43. Springer, Heidelberg.
• Afzal N. and Pekar V. (2009). Unsupervised Relation Extraction for Automatic 
Generation of Multiple‐Choice Questions. In Proceedings of RANLP'2009 14‐16 
September, 2009. Borovets, Bulgaria.
51

More Related Content

PDF
Automatic Generation of Multiple Choice Questions using Surface-based Semanti...
PPTX
Question Answering System using machine learning approach
PDF
De carlo rizk 2010 icelw
PPTX
Crowdsourcing Predictors of Behavioral Outcomes
PPTX
Usability of Online Instruction
PDF
A017640107
PDF
A Learning Analytics Approach
PPT
Wendi Chen
Automatic Generation of Multiple Choice Questions using Surface-based Semanti...
Question Answering System using machine learning approach
De carlo rizk 2010 icelw
Crowdsourcing Predictors of Behavioral Outcomes
Usability of Online Instruction
A017640107
A Learning Analytics Approach
Wendi Chen

What's hot (10)

PPTX
Brightspace Analytics Core
PDF
Interfaces for User-Controlled and Transparent Recommendations
PDF
Question Retrieval in Community Question Answering via NON-Negative Matrix Fa...
PDF
A BRIEF SURVEY OF QUESTION ANSWERING SYSTEMS
PDF
Using GradeMark to improve feedback and involve students in the marking process
PPTX
Learning Analytics: Seeking new insights from educational data
PDF
Advances in Learning Analytics and Educational Data Mining
PDF
User Control in AIED (Artificial Intelligence in Education)
PDF
Michael Gage SOED 2016
PPTX
Issue-based metrics
Brightspace Analytics Core
Interfaces for User-Controlled and Transparent Recommendations
Question Retrieval in Community Question Answering via NON-Negative Matrix Fa...
A BRIEF SURVEY OF QUESTION ANSWERING SYSTEMS
Using GradeMark to improve feedback and involve students in the marking process
Learning Analytics: Seeking new insights from educational data
Advances in Learning Analytics and Educational Data Mining
User Control in AIED (Artificial Intelligence in Education)
Michael Gage SOED 2016
Issue-based metrics
Ad

Viewers also liked (17)

PPT
AMTA'2008 translation universals
DOCX
CV Bruno-V Ing.-2015
DOC
Sohail resume Safety specialist
PDF
Pursuing A Dream - PhD
DOCX
PPT
AI_Paper_Presentation
DOCX
dunhill Store Management Operations
PPTX
永安發Ted
PPSX
PPTX
Installing Ubuntu
PPTX
Installing ubuntu
PDF
Ivon James Resume
PDF
error page
PDF
Place your bets sxsw2016 teaser
PDF
billtopay
PDF
Resume
PDF
Resume Update Oct
AMTA'2008 translation universals
CV Bruno-V Ing.-2015
Sohail resume Safety specialist
Pursuing A Dream - PhD
AI_Paper_Presentation
dunhill Store Management Operations
永安發Ted
Installing Ubuntu
Installing ubuntu
Ivon James Resume
error page
Place your bets sxsw2016 teaser
billtopay
Resume
Resume Update Oct
Ad

Similar to Naveed_Presentation_Mayo (20)

PPT
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
PDF
The User Side of Personalization: How Personalization Affects the Users
PPTX
A Path Analysis of Educator Perceptions of OER
PPT
Owning the Discovery Experience for Your Patrons
PPT
Query Dependent Pseudo-Relevance Feedback based on Wikipedia
PPTX
Influence of Timeline and Named-entity Components on User Engagement
PDF
eAssessment in practice
PPTX
Mental-Health-App-for-Students-A-Design-Thinking-Approach (3).pptx
PPTX
Machine Learning Applications in E-learning - Bias, Risks, and Mitigations
PPTX
Machine learning assisted citation screening for Systematic Reviews - Anjani ...
PPTX
Machine Learning Assisted Citation Screening for Systematic Reviews
PPTX
Literature review
PPTX
Assessing critical thinking in moo cs preliminary proposal 201309
PDF
Improving neural question generation using answer separation
PDF
Online Learning to Rank
PPTX
Post-it Up: Qualitative Data Analysis of a Test Fest
PPTX
Naïve multi label classification of you tube comments using
PPTX
Online Student Mentoring System.ppt (1) (1).pptx
PPT
20080223 Lasvegas Conference Presentation
PPTX
[DSC Europe 22] Machine learning algorithms as tools for student success pred...
Asking Clarifying Questions in Open-Domain Information-Seeking Conversations
The User Side of Personalization: How Personalization Affects the Users
A Path Analysis of Educator Perceptions of OER
Owning the Discovery Experience for Your Patrons
Query Dependent Pseudo-Relevance Feedback based on Wikipedia
Influence of Timeline and Named-entity Components on User Engagement
eAssessment in practice
Mental-Health-App-for-Students-A-Design-Thinking-Approach (3).pptx
Machine Learning Applications in E-learning - Bias, Risks, and Mitigations
Machine learning assisted citation screening for Systematic Reviews - Anjani ...
Machine Learning Assisted Citation Screening for Systematic Reviews
Literature review
Assessing critical thinking in moo cs preliminary proposal 201309
Improving neural question generation using answer separation
Online Learning to Rank
Post-it Up: Qualitative Data Analysis of a Test Fest
Naïve multi label classification of you tube comments using
Online Student Mentoring System.ppt (1) (1).pptx
20080223 Lasvegas Conference Presentation
[DSC Europe 22] Machine learning algorithms as tools for student success pred...

Naveed_Presentation_Mayo