Neural networks and deep learning are machine learning techniques inspired by the human brain. Neural networks consist of interconnected nodes that process input data and pass signals to other nodes. The main types discussed are artificial neural networks (ANNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs). ANNs can learn nonlinear relationships between inputs and outputs. CNNs are effective for image processing by learning relevant spatial features. RNNs capture sequential dependencies in data like text. Deep learning uses neural networks with many layers to learn complex patterns in large datasets.
Related topics: