NEURAL STEM CELLS AND NEUROGENESIS
WHAT ARE NEURAL STEM CELLS?
Multipotent cells with the
ability to self-renew and
proliferate in order to give rise
to progenycells
NEURAL STEM CELLS AND NEUROGENESIS
HISTORY OF NEURAL STEM CELLS
THE NEURON DOCTRINE – each
neuron is an individual entity that
forms the basic unit of neural circuitry.
This was presented by Santiago
Ramón y Cajal in 1894.
“Intheadult…thenervepathsaresomething
fixed,ended,and immutable.Everythingmay
die,nothingmayberegenerated.”
The first evidence of
adult brain neurogenesis
came from JOSEPH
ALTMAN in the 1960s
from his studies in rats.
INITIAL WORK ISOLATION
Initial works in 1958 (Messier and Leblond) and 1961 (Smart) employed
the use of tritiated thymidine for labeling brain cells of mice 
radioactivity in the subventricular zone (SVZ) of the brain, the
hippocampus, cerebral cortex and fornix .
In 1989, DR SALLY
TEMPLE was able to
isolate neural stem cells
from rodent brain and
culture them in vitro.
THE ROAD MAP – HISTORICAL PERSPECTIVE
EXPERIMENT BY YEAR FINDINGS
LeBlond and Smart 1961 Tritiated thymidine labeling of cells- Discovered
neuroglial cells in mouse brain
Altman and Das 1965, 1967 Neurogenesis in adult brain of rats and guinea pigs,
respectively
Kaplan and Hinds 1977 Adult-born neurons in dentate gyrus and olfactory bulb
coupling tritiated thymidine and electron microscopy
Goldman and Nottebohm 1983 Neurogenesis in song birds (canaries)
Rakic 1985 Neurogenesis in monkeys happened only in early age and
not in adults
Reynolds and Weiss 1992 Used certain growth factors
Eriksson et al. 1998 Neurogenesis in adult human hippocampus in cancer
patients
Kornack and Rakic 1999 Re-examined neurogenesis in macaque monkey and
confirmed neurogenesis in the DG
Sorrells et al. 2018 Neurogenesis occurs only in the young, and not in adults
Boldrini et al. 2018 Neurogenesis occurs in adults, including old individuals
ROSTRAL MIGRATORY STREAM
Experiment by Altman in rats showed radially-oriented
streaks of cells in apparent migration. They were most
prominent around the rostra1 wall of the anterior horn
of the lateral ventricle and connected the lateral and
olfactory ventricles. This L-shaped structure, which
first moves vertically and then horizontally,
penetrates the laminated olfactory bulb
and is known as Rostral Migratory Stream.
Smart in his experiment had established that the
subependymal layer extended in mice from the anterior
wall of the lateral ventricle rostrally into the olfactory
bulb.
RMS
MARKERS
Some researchers theorize that the SGZ is a conducive
environment for the proliferation of NSCs into granule
cells, from which they migrate to the granule cell layer.
Quiescent radial glia-like type I neural
progenitor cells (QNPs)
Type II Intermediate neural progenitor cells (INPs)
Type III Intermediate neural progenitor
cells (INPs)
Immature neurons
Mature granule neurons that integrate into
the hippocampal circuitry
SOXBLBP
2, NESTIN,
Ki67, NESTIN
Lose expression of neural stem
cell markers and gain expression
of neuronal markers
DCX, PSA-NCAM
NeuN, β-III TUBB,
CALBINDIN
MARKERS OF NEURAL STEM CELLS
Exclusively found in
vertebrates
Belongs to the family of
Intermediate Filament proteins
Role : Self renewal of neural
stem cells
NESTIN
Green Fluorescent Protein is an excellent marker of
neural stem cells, so when the Nes/GFP screening was
done, it was seen that the Nes –/– individuals had
very low expression of GFP indicative of the fact that
absence of Nestin caused neural stem cells to
differentiate
SOX2
 Transcription factor
 Role: Important for maintenance of neural stem cells
Sox2 helps in hippocampal development as well. When Sox2
was deleted in mice and postnatal observations were done. This
was observed :
The defective hippocampal development was seen to mimic the
mutation of Shh or of its receptor Smo.
The absence of Shh causes an arrest of postnatal hippocampal
development which closely resembles that of Sox2 knockout
mouse, strongly suggesting that Sox2 controls hippocampal
development via regulation of Shh.
β- CATENIN
Role: Determines neural stem cell
state
Wnt signaling is a conserved cell
signaling system that is thought to
play multiple roles in NSC self-
renewal, neurogenesis, embryonic
patterning, and homeostatic tissue
regeneration in the developing and
adult brain.
CELL PROLIFERATION CELL DIFFERENTIATION
OTHER NEURAL STEM
CELL MARKERS
GFAP – marks astrocytes
NeuN, βIII-tubulin – mark neurons
GalC – marks oligodendrocytes
DIFFERENTIATION
MARKERS
Musashi-1, Musashi-2, Pax3, Pax6,
Hes1, Hes5, CD133, CD15, Vimentin
CONTROVERSY
Sorrells et al. found a sharp
drop in neurogenesis as the
human brain ages
Boldrini et al. find persistent
adult neurogenesis in humans
into the eighth decade of life
SORRELLS
Maps of Ki-67+ (green) cells in the DG from samples of individuals that
were between 22 gestational weeks and 35 years of age; GCL in blue.
Ki-67+SOX1+ and Ki-
67+SOX2+ cells
(arrows) are distributed
across the hilus and GCL
and the number of
double-positive cells
decreases between 22
gestational weeks and 1
year of age.
DCX+PSA-NCAM+ cells in the
DG from birth to the age of 77
showing that the number of
young neurons declines in the
human DG
BOLDRINI
(A and B) Co-expression of
Sox2 and nestin in QNPs.
(E) GFAP+ cells with apical
process (white arrow) nestin+
INP (yellow arrow).
(F) Nestin/Ki-67+ INP.
(M) Sox2+ cell decline in anterior-mid DG with aging.
(N and O) Nestin+ and Ki-67+ cells do not decline with older age in anterior, mid, or
posterior DG.
(A) PSA-NCAM and DCX expression in an
immature neuron between subgranular zone
(SGZ) and granule cell layer (GCL), two
PSA-NCAM+/DCX cells, and 4’,6-
diamidino-2-phenylindole (DAPI)+ nuclei.
(G–H) Stable DCX+
immature neurons,
NeuN+ mature granule
neurons
ISSUES RAISED
Post Mortem Delay -
PMD.
Boldrini’s study sample
size age group
DCX as a marker?
Sorrells used patients who had
epilepsy
Use of 10% formalin
Gerd
Kempermann
There have been studies conducted after this controversy as
well (in 2019) that lean towards Boldrini’s conclusion that
neurogenesis does persist through an older age in healthy
individuals as well as in patients suffering from mild
cognitive impairments (MCI) and Alzheimer’s Disease.
Tobin et al. observe
persistent hippocampal
neurogenesis in aging
brains with no cognitive
impairments, mild
cognitive impairments,
and Alzheimer’s disease.
Elena P. Moreno-Jiménez et
al. observe persistence of
adult hippocampal neurons
during both physiological and
pathological aging in humans
REFERENCES
1. Smart, I., & Leblond, C. P. (1961). Evidence for division and transformations of neuroglia cells in the
mouse brain, as derived from radioautography after injection of thymidine-H3. The Journal of Comparative
Neurology, 116(3), 349–367. doi:10.1002/cne.901160307
2. Temple, S. (1989). Division and differentiation of isolated CNS blast cells in microculture. Nature,
340(6233), 471–473. doi:10.1038/340471a0
3. Park, D., Xiang, A. P., Mao, F. F., Zhang, L., Di, C. G., Liu, X. M., Shao, Y., Ma, B. F., Lee, J. H., Ha, K. S.,
Walton, N., & Lahn, B. T. (2010). Nestin is required for the proper self-renewal of neural stem cells. Stem
cells (Dayton, Ohio), 28(12), 2162–2171. https://doi.org/10.1002/stem.541
4. Gilyarov, A. V. (2008). Nestin in central nervous system cells. Neuroscience and Behavioral Physiology,
38(2), 165–169. doi:10.1007/s11055-008-0025-z
5. Neradil, J., & Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Science, 106(7), 803–
811. doi:10.1111/cas.12691
6. Thiel, G. (2013). How Sox2 maintains neural stem cell identity. Biochemical Journal, 450(3), e1–
e2. doi:10.1042/bj20130176
7. Favaro, R., Valotta, M., Ferri, A. L. M., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V.,
Ottolenghi, S., Taylor, V., Nicolis, S. K. (2009). Hippocampal development and neural stem cell maintenance
require Sox2-dependent regulation of Shh. Nature Neuroscience, 12(10), 1248–1256. doi:10.1038/nn.2397
8. Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., & Imai, T. (2005). Function of RNA-binding
protein Musashi-1 in stem cells. Experimental Cell Research, 306(2), 349–
356. doi:10.1016/j.yexcr.2005.02.021
9. Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., Toyama, Y.,
Miyata, T., Okano, H. (2000). Musashi1: An Evolutionally Conserved Marker for CNS Progenitor Cells
Including Neural Stem Cells. Developmental Neuroscience, 22(1-2), 139–153. doi:10.1159/000017435
10. Mizrak, D., Brittan, M., & Alison, M. (2007). CD133: molecule of the moment. The Journal of Pathology,
214(1), 3–9. doi:10.1002/path.2283
11. Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E., Nuber, U. A.
(2007). CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells,
Ependymal Cells, and Glioblastoma Cells. Cancer Research, 67(12), 5727–5736. doi:10.1158/0008-5472.can-07-0183
12. Sun, Y., Kong, W., Falk, A., Hu, J., Zhou, L., Pollard, S., & Smith, A. (2009). CD133 (Prominin) Negative Human Neural Stem
Cells Are Clonogenic and Tripotent. PLoS ONE, 4(5), e5498. doi:10.1371/journal.pone.0005498
13. Kageyama, R., Shimojo, H., & Ohtsuka, T. (2018). Dynamic control of neural stem cells by bHLH factors. Neuroscience
Research. doi:10.1016/j.neures.2018.09.005
14. Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J., & Johnson, J. E. (2011). Ascl1 (Mash1) Defines Cells with Long-Term
Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain. PLoS ONE, 6(3),
e18472. doi:10.1371/journal.pone.0018472
15. Bengoa-Vergniory, N., & Kypta, R. M. (2015). Canonical and noncanonical Wnt signaling in neural stem/progenitor cells.
Cellular and Molecular Life Sciences, 72(21), 4157–4172. doi:10.1007/s00018-015-2028-6
16. Israsena, N., Hu, M., Fu, W., Kan, L., & Kessler, J. A. (2004). The presence of FGF2 signaling determines whether β-catenin
exerts effects on proliferation or neuronal differentiation of neural stem cells. Developmental Biology, 268(1), 220–
231. doi:10.1016/j.ydbio.2003.12.024
17. Ohtsuka, T., Sakamoto, M., Guillemot, F., & Kageyama, R. (2001). Roles of the Basic Helix-Loop-Helix GenesHes1andHes5in
Expansion of Neural Stem Cells of the Developing Brain. Journal of Biological Chemistry, 276(32), 30467–
30474. doi:10.1074/jbc.m102420200
18. Cao, S., Du, J., Lv, Y., Lin, H., Mao, Z., Xu, M., Xu, M., Liu, M., Liu, Y. (2017). PAX3 inhibits β-Tubulin-III expression and
neuronal differentiation of neural stem cell. Biochemical and Biophysical Research Communications, 485(2), 307-
311. doi:10.1016/j.bbrc.2017.02.086
19. Liu, Y., Zhu, H., Liu, M., Du, J., Qian, Y., Wang, Y., Ding, F., Gu, X. (2011). Downregulation of Pax3 expression correlates with
acquired GFAP expression during NSC differentiation towards astrocytes. FEBS Letters, 585(7), 1014–
1020. doi:10.1016/j.febslet.2011.02.034
20. Gómez-López, S., Wiskow, O., Favaro, R., Nicolis, S. K., Price, D. J., Pollard, S. M., & Smith, A. (2011). Sox2 and Pax6 maintain
the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia, 59(11), 1588–
1599. doi:10.1002/glia.21201
21. Lauder, J. M., & Krebs, H. (1978). Serotonin as a Differentiation Signal in Early Neurogenesis.
Developmental Neuroscience, 1(1), 15–30. doi:10.1159/000112549
22. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation
Marker. Acta Naturae. 2015 Apr-Jun;7(2):42-7. PMID: 26085943; PMCID: PMC4463411
23. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to
neurobiomarker. Trends Neurosci. 2015 Jun;38(6):364-74
24. Tang, Y., Yu, P., & Cheng, L. (2017). Current progress in the derivation and therapeutic application of
neural stem cells. Cell Death and Disease, 8(10), e3108. doi:10.1038/cddis.2017.504
25. Gage, F. H., & Temple, S. (2013). Neural Stem Cells: Generating and Regenerating the Brain. Neuron,
80(3), 588–601. doi:10.1016/j.neuron.2013.10.037
26. Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal
neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319–
335. doi:10.1002/cne.901240303
27. ALTMAN, J., & DAS, G. D. (1967). Postnatal Neurogenesis in the Guinea-pig. Nature, 214(5093),
1098–1101. doi:10.1038/2141098a0
28. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell
proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis
in the olfactory bulb. The Journal of Comparative Neurology, 137(4), 433–
457. doi:10.1002/cne.901370404
29. Morest, D. K. (1970). The pattern of neurogenesis in the retina of the rat. Zeitschrift F�r Anatomie
Und Entwicklungsgeschichte, 131(1), 45–67. doi:10.1007/bf00518815
30. Kaplan, M., & Hinds, J. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light
radioautographs. Science, 197(4308), 1092–1094. doi:10.1126/science.887941
31. Graziadei, P. P. C., & Graziadei, G. A. M. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I.
Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of Neurocytology,
8(1), 1–18. doi:10.1007/bf01206454
32. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the
adult female canary brain. Proceedings of the National Academy of Sciences, 80(8), 2390–2394. doi:10.1073/pnas.80.8.2390
33. Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227(4690), 1054–1056. doi:10.1126/science.3975601
34. Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central
nervous system. Science, 255(5052), 1707–1710. doi:10.1126/science.1553558
35. Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey.
Proceedings of the National Academy of Sciences, 96(10), 5768–5773. doi:10.1073/pnas.96.10.5768
36. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H.
(1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317. doi:10.1038/3305
37. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, P. W., Frankland, P. W.,
Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., Frisén, J. (2018). Human
Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 23(1), 25–30. doi:10.1016/j.stem.2018.04.004
38. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K.
I., Chang, E. F., Gutierrez. A. J., Kreigstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang,
Z., Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
Nature, 555(7696), 377–381. doi:10.1038/nature25975
39. Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V.,
Dwork, A. J., Hen, R., Mann, J. J. (2018). Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell, 22(4),
589–599.e5. doi:10.1016/j.stem.2018.03.015
40. Germain, J., Bruel-Jungerman, E., Grannec, G., Denis, C., Lepousez, G., Giros, B., Francis, F., Nosten-Bertrand, M.
(2013). Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects. PLoS
ONE, 8(9), e74992. doi:10.1371/journal.pone.0074992
41. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., Llorens-
Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients
with Alzheimer’s disease. Nature Medicine, 25(4), 554–560. doi:10.1038/s41591-019-0375-9
42. Tobin, M. K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W. G., Kim, N., Dawe, R. J., Bennett, D. A., Arfanakis, K.,
Lazarov, O. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem
Cell, 24(6), 974–982.e3. doi:10.1016/j.stem.2019.05.003
NEURAL STEM CELLS AND NEUROGENESIS

More Related Content

PPTX
Axis and pattern formation in amphibia
PPT
Developmental Biology of Drosophila
PPTX
Limb development in vertebrates
PDF
Cell proliferation & differentiation
PPT
Glial cells - Neurobiology and Clinical Aspects
PPTX
PPTX
Stem cells
PPTX
Neuronal stem cellfi
Axis and pattern formation in amphibia
Developmental Biology of Drosophila
Limb development in vertebrates
Cell proliferation & differentiation
Glial cells - Neurobiology and Clinical Aspects
Stem cells
Neuronal stem cellfi

What's hot (20)

PPTX
Fundamental of mesenchymal stem cells as a promising candidate in regenerativ...
PPSX
Microtubules & filaments.pptx 2
PPT
Stem cell
PPTX
Hippocampus
PPTX
Molecular diagnosis of genetic disease ppt for students
PPTX
cleavage and gastrulation in amphibians
PDF
Developmental Specification & Differentiation
PPTX
3D cell culture engineering
PPT
Aging- the biology of senescence
PPT
Synaptic Transmission
PPTX
Development in drosophila
PPTX
Presentation on astrocytes
PPTX
Basic concepts in developmental biology
PPTX
Neurons , Neurogenesis
PPTX
Apoptosis
PPTX
Blood Brain Barrier by Dr Padmesh V
PDF
concept of competence and differentiation of embryonic cells
PPTX
Stem cell therapy in neurological disorder
PPTX
Genomic imprinting
Fundamental of mesenchymal stem cells as a promising candidate in regenerativ...
Microtubules & filaments.pptx 2
Stem cell
Hippocampus
Molecular diagnosis of genetic disease ppt for students
cleavage and gastrulation in amphibians
Developmental Specification & Differentiation
3D cell culture engineering
Aging- the biology of senescence
Synaptic Transmission
Development in drosophila
Presentation on astrocytes
Basic concepts in developmental biology
Neurons , Neurogenesis
Apoptosis
Blood Brain Barrier by Dr Padmesh V
concept of competence and differentiation of embryonic cells
Stem cell therapy in neurological disorder
Genomic imprinting
Ad

Similar to NEURAL STEM CELLS AND NEUROGENESIS (20)

PPTX
Eng Rekayasa Sistem saraf_Alzheimer.pptx
PDF
PNAS-2015-Messer
PDF
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
PPTX
Stem Cells Biology by Lomesh
PDF
Abhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
PDF
Adult Neurogenesis and it's Role in Alzheimer's
PDF
Aple ms rapid proof
PDF
Jmcb.mjs016.full diab
PPTX
role of stem cells in CNS repair - Maha Hammady.pptx
PPT
Brain Power: Build It
DOCX
Review Paper Natasha
PPT
Development
PDF
An update of wallace´s zoogeographic regions of the world
PPT
Restorative neurology
PPT
Pinel basics ch07
PDF
Infant and Adult Neurogenesis
PPTX
Stem cell in Neurosurgery
PDF
Neuroscience in the 21st century
PDF
Neural Differentiation
PDF
The Growth Of New Brain Cells: Researchers Find A Way To "Hack" Neurons' Inte...
Eng Rekayasa Sistem saraf_Alzheimer.pptx
PNAS-2015-Messer
Pten Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neu...
Stem Cells Biology by Lomesh
Abhishek Das_20131056_BIO334_Adult Neurogenesis_Revised
Adult Neurogenesis and it's Role in Alzheimer's
Aple ms rapid proof
Jmcb.mjs016.full diab
role of stem cells in CNS repair - Maha Hammady.pptx
Brain Power: Build It
Review Paper Natasha
Development
An update of wallace´s zoogeographic regions of the world
Restorative neurology
Pinel basics ch07
Infant and Adult Neurogenesis
Stem cell in Neurosurgery
Neuroscience in the 21st century
Neural Differentiation
The Growth Of New Brain Cells: Researchers Find A Way To "Hack" Neurons' Inte...
Ad

Recently uploaded (20)

PPTX
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
PPTX
endocrine - management of adrenal incidentaloma.pptx
PDF
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
PPTX
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
Platelet disorders - thrombocytopenia.pptx
PPTX
bone as a tissue presentation micky.pptx
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
PMR- PPT.pptx for students and doctors tt
PDF
From Molecular Interactions to Solubility in Deep Eutectic Solvents: Explorin...
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PDF
Metabolic Acidosis. pa,oakw,llwla,wwwwqw
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PDF
Packaging materials of fruits and vegetables
PPTX
limit test definition and all limit tests
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PPTX
AP CHEM 1.2 Mass spectroscopy of elements
PDF
Science Form five needed shit SCIENEce so
PPTX
ELISA(Enzyme linked immunosorbent assay)
PPTX
diabetes and its complications nephropathy neuropathy
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
endocrine - management of adrenal incidentaloma.pptx
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Platelet disorders - thrombocytopenia.pptx
bone as a tissue presentation micky.pptx
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PMR- PPT.pptx for students and doctors tt
From Molecular Interactions to Solubility in Deep Eutectic Solvents: Explorin...
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
Metabolic Acidosis. pa,oakw,llwla,wwwwqw
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
Packaging materials of fruits and vegetables
limit test definition and all limit tests
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
AP CHEM 1.2 Mass spectroscopy of elements
Science Form five needed shit SCIENEce so
ELISA(Enzyme linked immunosorbent assay)
diabetes and its complications nephropathy neuropathy

NEURAL STEM CELLS AND NEUROGENESIS

  • 2. WHAT ARE NEURAL STEM CELLS? Multipotent cells with the ability to self-renew and proliferate in order to give rise to progenycells
  • 4. HISTORY OF NEURAL STEM CELLS THE NEURON DOCTRINE – each neuron is an individual entity that forms the basic unit of neural circuitry. This was presented by Santiago Ramón y Cajal in 1894. “Intheadult…thenervepathsaresomething fixed,ended,and immutable.Everythingmay die,nothingmayberegenerated.” The first evidence of adult brain neurogenesis came from JOSEPH ALTMAN in the 1960s from his studies in rats.
  • 5. INITIAL WORK ISOLATION Initial works in 1958 (Messier and Leblond) and 1961 (Smart) employed the use of tritiated thymidine for labeling brain cells of mice  radioactivity in the subventricular zone (SVZ) of the brain, the hippocampus, cerebral cortex and fornix . In 1989, DR SALLY TEMPLE was able to isolate neural stem cells from rodent brain and culture them in vitro.
  • 6. THE ROAD MAP – HISTORICAL PERSPECTIVE EXPERIMENT BY YEAR FINDINGS LeBlond and Smart 1961 Tritiated thymidine labeling of cells- Discovered neuroglial cells in mouse brain Altman and Das 1965, 1967 Neurogenesis in adult brain of rats and guinea pigs, respectively Kaplan and Hinds 1977 Adult-born neurons in dentate gyrus and olfactory bulb coupling tritiated thymidine and electron microscopy Goldman and Nottebohm 1983 Neurogenesis in song birds (canaries) Rakic 1985 Neurogenesis in monkeys happened only in early age and not in adults Reynolds and Weiss 1992 Used certain growth factors Eriksson et al. 1998 Neurogenesis in adult human hippocampus in cancer patients Kornack and Rakic 1999 Re-examined neurogenesis in macaque monkey and confirmed neurogenesis in the DG Sorrells et al. 2018 Neurogenesis occurs only in the young, and not in adults Boldrini et al. 2018 Neurogenesis occurs in adults, including old individuals
  • 7. ROSTRAL MIGRATORY STREAM Experiment by Altman in rats showed radially-oriented streaks of cells in apparent migration. They were most prominent around the rostra1 wall of the anterior horn of the lateral ventricle and connected the lateral and olfactory ventricles. This L-shaped structure, which first moves vertically and then horizontally, penetrates the laminated olfactory bulb and is known as Rostral Migratory Stream. Smart in his experiment had established that the subependymal layer extended in mice from the anterior wall of the lateral ventricle rostrally into the olfactory bulb. RMS
  • 8. MARKERS Some researchers theorize that the SGZ is a conducive environment for the proliferation of NSCs into granule cells, from which they migrate to the granule cell layer. Quiescent radial glia-like type I neural progenitor cells (QNPs) Type II Intermediate neural progenitor cells (INPs) Type III Intermediate neural progenitor cells (INPs) Immature neurons Mature granule neurons that integrate into the hippocampal circuitry SOXBLBP 2, NESTIN, Ki67, NESTIN Lose expression of neural stem cell markers and gain expression of neuronal markers DCX, PSA-NCAM NeuN, β-III TUBB, CALBINDIN
  • 9. MARKERS OF NEURAL STEM CELLS Exclusively found in vertebrates Belongs to the family of Intermediate Filament proteins Role : Self renewal of neural stem cells NESTIN Green Fluorescent Protein is an excellent marker of neural stem cells, so when the Nes/GFP screening was done, it was seen that the Nes –/– individuals had very low expression of GFP indicative of the fact that absence of Nestin caused neural stem cells to differentiate
  • 10. SOX2  Transcription factor  Role: Important for maintenance of neural stem cells Sox2 helps in hippocampal development as well. When Sox2 was deleted in mice and postnatal observations were done. This was observed :
  • 11. The defective hippocampal development was seen to mimic the mutation of Shh or of its receptor Smo. The absence of Shh causes an arrest of postnatal hippocampal development which closely resembles that of Sox2 knockout mouse, strongly suggesting that Sox2 controls hippocampal development via regulation of Shh.
  • 12. β- CATENIN Role: Determines neural stem cell state Wnt signaling is a conserved cell signaling system that is thought to play multiple roles in NSC self- renewal, neurogenesis, embryonic patterning, and homeostatic tissue regeneration in the developing and adult brain. CELL PROLIFERATION CELL DIFFERENTIATION
  • 13. OTHER NEURAL STEM CELL MARKERS GFAP – marks astrocytes NeuN, βIII-tubulin – mark neurons GalC – marks oligodendrocytes DIFFERENTIATION MARKERS Musashi-1, Musashi-2, Pax3, Pax6, Hes1, Hes5, CD133, CD15, Vimentin
  • 14. CONTROVERSY Sorrells et al. found a sharp drop in neurogenesis as the human brain ages Boldrini et al. find persistent adult neurogenesis in humans into the eighth decade of life
  • 15. SORRELLS Maps of Ki-67+ (green) cells in the DG from samples of individuals that were between 22 gestational weeks and 35 years of age; GCL in blue. Ki-67+SOX1+ and Ki- 67+SOX2+ cells (arrows) are distributed across the hilus and GCL and the number of double-positive cells decreases between 22 gestational weeks and 1 year of age.
  • 16. DCX+PSA-NCAM+ cells in the DG from birth to the age of 77 showing that the number of young neurons declines in the human DG
  • 17. BOLDRINI (A and B) Co-expression of Sox2 and nestin in QNPs. (E) GFAP+ cells with apical process (white arrow) nestin+ INP (yellow arrow). (F) Nestin/Ki-67+ INP.
  • 18. (M) Sox2+ cell decline in anterior-mid DG with aging. (N and O) Nestin+ and Ki-67+ cells do not decline with older age in anterior, mid, or posterior DG.
  • 19. (A) PSA-NCAM and DCX expression in an immature neuron between subgranular zone (SGZ) and granule cell layer (GCL), two PSA-NCAM+/DCX cells, and 4’,6- diamidino-2-phenylindole (DAPI)+ nuclei. (G–H) Stable DCX+ immature neurons, NeuN+ mature granule neurons
  • 20. ISSUES RAISED Post Mortem Delay - PMD. Boldrini’s study sample size age group DCX as a marker? Sorrells used patients who had epilepsy Use of 10% formalin Gerd Kempermann
  • 21. There have been studies conducted after this controversy as well (in 2019) that lean towards Boldrini’s conclusion that neurogenesis does persist through an older age in healthy individuals as well as in patients suffering from mild cognitive impairments (MCI) and Alzheimer’s Disease. Tobin et al. observe persistent hippocampal neurogenesis in aging brains with no cognitive impairments, mild cognitive impairments, and Alzheimer’s disease. Elena P. Moreno-Jiménez et al. observe persistence of adult hippocampal neurons during both physiological and pathological aging in humans
  • 22. REFERENCES 1. Smart, I., & Leblond, C. P. (1961). Evidence for division and transformations of neuroglia cells in the mouse brain, as derived from radioautography after injection of thymidine-H3. The Journal of Comparative Neurology, 116(3), 349–367. doi:10.1002/cne.901160307 2. Temple, S. (1989). Division and differentiation of isolated CNS blast cells in microculture. Nature, 340(6233), 471–473. doi:10.1038/340471a0 3. Park, D., Xiang, A. P., Mao, F. F., Zhang, L., Di, C. G., Liu, X. M., Shao, Y., Ma, B. F., Lee, J. H., Ha, K. S., Walton, N., & Lahn, B. T. (2010). Nestin is required for the proper self-renewal of neural stem cells. Stem cells (Dayton, Ohio), 28(12), 2162–2171. https://doi.org/10.1002/stem.541 4. Gilyarov, A. V. (2008). Nestin in central nervous system cells. Neuroscience and Behavioral Physiology, 38(2), 165–169. doi:10.1007/s11055-008-0025-z 5. Neradil, J., & Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Science, 106(7), 803– 811. doi:10.1111/cas.12691 6. Thiel, G. (2013). How Sox2 maintains neural stem cell identity. Biochemical Journal, 450(3), e1– e2. doi:10.1042/bj20130176 7. Favaro, R., Valotta, M., Ferri, A. L. M., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V., Ottolenghi, S., Taylor, V., Nicolis, S. K. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nature Neuroscience, 12(10), 1248–1256. doi:10.1038/nn.2397 8. Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., & Imai, T. (2005). Function of RNA-binding protein Musashi-1 in stem cells. Experimental Cell Research, 306(2), 349– 356. doi:10.1016/j.yexcr.2005.02.021 9. Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., Ogawa, Y., Toyama, Y., Miyata, T., Okano, H. (2000). Musashi1: An Evolutionally Conserved Marker for CNS Progenitor Cells Including Neural Stem Cells. Developmental Neuroscience, 22(1-2), 139–153. doi:10.1159/000017435 10. Mizrak, D., Brittan, M., & Alison, M. (2007). CD133: molecule of the moment. The Journal of Pathology, 214(1), 3–9. doi:10.1002/path.2283
  • 23. 11. Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E., Nuber, U. A. (2007). CD133 Is Not Present on Neurogenic Astrocytes in the Adult Subventricular Zone, but on Embryonic Neural Stem Cells, Ependymal Cells, and Glioblastoma Cells. Cancer Research, 67(12), 5727–5736. doi:10.1158/0008-5472.can-07-0183 12. Sun, Y., Kong, W., Falk, A., Hu, J., Zhou, L., Pollard, S., & Smith, A. (2009). CD133 (Prominin) Negative Human Neural Stem Cells Are Clonogenic and Tripotent. PLoS ONE, 4(5), e5498. doi:10.1371/journal.pone.0005498 13. Kageyama, R., Shimojo, H., & Ohtsuka, T. (2018). Dynamic control of neural stem cells by bHLH factors. Neuroscience Research. doi:10.1016/j.neures.2018.09.005 14. Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J., & Johnson, J. E. (2011). Ascl1 (Mash1) Defines Cells with Long-Term Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain. PLoS ONE, 6(3), e18472. doi:10.1371/journal.pone.0018472 15. Bengoa-Vergniory, N., & Kypta, R. M. (2015). Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cellular and Molecular Life Sciences, 72(21), 4157–4172. doi:10.1007/s00018-015-2028-6 16. Israsena, N., Hu, M., Fu, W., Kan, L., & Kessler, J. A. (2004). The presence of FGF2 signaling determines whether β-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Developmental Biology, 268(1), 220– 231. doi:10.1016/j.ydbio.2003.12.024 17. Ohtsuka, T., Sakamoto, M., Guillemot, F., & Kageyama, R. (2001). Roles of the Basic Helix-Loop-Helix GenesHes1andHes5in Expansion of Neural Stem Cells of the Developing Brain. Journal of Biological Chemistry, 276(32), 30467– 30474. doi:10.1074/jbc.m102420200 18. Cao, S., Du, J., Lv, Y., Lin, H., Mao, Z., Xu, M., Xu, M., Liu, M., Liu, Y. (2017). PAX3 inhibits β-Tubulin-III expression and neuronal differentiation of neural stem cell. Biochemical and Biophysical Research Communications, 485(2), 307- 311. doi:10.1016/j.bbrc.2017.02.086 19. Liu, Y., Zhu, H., Liu, M., Du, J., Qian, Y., Wang, Y., Ding, F., Gu, X. (2011). Downregulation of Pax3 expression correlates with acquired GFAP expression during NSC differentiation towards astrocytes. FEBS Letters, 585(7), 1014– 1020. doi:10.1016/j.febslet.2011.02.034 20. Gómez-López, S., Wiskow, O., Favaro, R., Nicolis, S. K., Price, D. J., Pollard, S. M., & Smith, A. (2011). Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro. Glia, 59(11), 1588– 1599. doi:10.1002/glia.21201
  • 24. 21. Lauder, J. M., & Krebs, H. (1978). Serotonin as a Differentiation Signal in Early Neurogenesis. Developmental Neuroscience, 1(1), 15–30. doi:10.1159/000112549 22. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta Naturae. 2015 Apr-Jun;7(2):42-7. PMID: 26085943; PMCID: PMC4463411 23. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015 Jun;38(6):364-74 24. Tang, Y., Yu, P., & Cheng, L. (2017). Current progress in the derivation and therapeutic application of neural stem cells. Cell Death and Disease, 8(10), e3108. doi:10.1038/cddis.2017.504 25. Gage, F. H., & Temple, S. (2013). Neural Stem Cells: Generating and Regenerating the Brain. Neuron, 80(3), 588–601. doi:10.1016/j.neuron.2013.10.037 26. Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319– 335. doi:10.1002/cne.901240303 27. ALTMAN, J., & DAS, G. D. (1967). Postnatal Neurogenesis in the Guinea-pig. Nature, 214(5093), 1098–1101. doi:10.1038/2141098a0 28. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. The Journal of Comparative Neurology, 137(4), 433– 457. doi:10.1002/cne.901370404 29. Morest, D. K. (1970). The pattern of neurogenesis in the retina of the rat. Zeitschrift F�r Anatomie Und Entwicklungsgeschichte, 131(1), 45–67. doi:10.1007/bf00518815 30. Kaplan, M., & Hinds, J. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science, 197(4308), 1092–1094. doi:10.1126/science.887941
  • 25. 31. Graziadei, P. P. C., & Graziadei, G. A. M. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. Journal of Neurocytology, 8(1), 1–18. doi:10.1007/bf01206454 32. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences, 80(8), 2390–2394. doi:10.1073/pnas.80.8.2390 33. Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227(4690), 1054–1056. doi:10.1126/science.3975601 34. Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710. doi:10.1126/science.1553558 35. Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Sciences, 96(10), 5768–5773. doi:10.1073/pnas.96.10.5768 36. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317. doi:10.1038/3305 37. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, P. W., Frankland, P. W., Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., Frisén, J. (2018). Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 23(1), 25–30. doi:10.1016/j.stem.2018.04.004 38. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez. A. J., Kreigstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377–381. doi:10.1038/nature25975 39. Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V., Dwork, A. J., Hen, R., Mann, J. J. (2018). Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell, 22(4), 589–599.e5. doi:10.1016/j.stem.2018.03.015 40. Germain, J., Bruel-Jungerman, E., Grannec, G., Denis, C., Lepousez, G., Giros, B., Francis, F., Nosten-Bertrand, M. (2013). Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects. PLoS ONE, 8(9), e74992. doi:10.1371/journal.pone.0074992 41. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., Llorens- Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, 25(4), 554–560. doi:10.1038/s41591-019-0375-9 42. Tobin, M. K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W. G., Kim, N., Dawe, R. J., Bennett, D. A., Arfanakis, K., Lazarov, O. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell, 24(6), 974–982.e3. doi:10.1016/j.stem.2019.05.003