SlideShare a Scribd company logo
Graphs of sin , cos , tan
               also called trig functions


                sin(   )   sin(   )    sin(   )



Note: as we change , different values of sin result

Let   =x


Resulting values are Dependent variable, ie. y

 So we get,


 f( ) = sin

 Let's graph f( ) = sin over [0, 2 ]
New day 8 examples
Definitions
Periodic Function = function whose graph has a pattern


Period = the length of one full pattern.
ex. in sine graph its 2

Amplitude = vertical deviation of graph from middle
 (sinusoidal axis).


Sinusoidial Axis = horizontal axis above and below
which the graph fluctuates. It defines the amplitude.



     Characteristics of sine function




   Domain: In general
   Range: In general
    Zeroes: In general


     Graph f( ) = cos        over [0, 2 ]




Domain: In general
Range: In general
Zeroes: In general       +     k ,k    I
Graph f( ) = tan       over [-2   ,2     ]



Locating the zeroes:
   f( ) = 0
ie. tan = 0
   sin = 0

     when sin = 0, occurs when           = 0, , 2 , - , -2




 What happens when cos = 0
  in tan = sin    = sin    =



  - an invisible line where the graph or function is undefined


 when cos = 0, occurs when           =    , 3 , - , -3




 Domain: In general

 Range: In general
 Equations for asymptotes: x =
New day 8 examples

More Related Content

PDF
Day 8 examples u2w14
PDF
Day 8 examples
PPTX
Chapter 4 review
PDF
Second derivative and graphing
PDF
P13 019
PDF
Exercise #13 notes ~ equations
PPTX
Ap calculus extrema v2
PPT
Slope Intercept
Day 8 examples u2w14
Day 8 examples
Chapter 4 review
Second derivative and graphing
P13 019
Exercise #13 notes ~ equations
Ap calculus extrema v2
Slope Intercept

What's hot (18)

PDF
Conformal mapping
PPTX
4.4 Fundamental Theorem of Calculus
PDF
Area between curves
PDF
Edge detection
PDF
Jee main questions
PPT
Areas between curves
PPT
Lecture 16 graphing - section 4.3
DOCX
Math tcwag 6, p 248, no 26 27
PDF
Notes 10-5
PPT
Riemann sumsdefiniteintegrals
PPTX
Derivatives and slope 2.1 update day1
PPT
Lesson 11 plane areas area by integration
PDF
Applications of integrals
PDF
Applications of integration
PPT
Hyperbolas
PPT
Kelompok 5
PPTX
Use of integral calculus in engineering
PDF
Day 1a examples
Conformal mapping
4.4 Fundamental Theorem of Calculus
Area between curves
Edge detection
Jee main questions
Areas between curves
Lecture 16 graphing - section 4.3
Math tcwag 6, p 248, no 26 27
Notes 10-5
Riemann sumsdefiniteintegrals
Derivatives and slope 2.1 update day1
Lesson 11 plane areas area by integration
Applications of integrals
Applications of integration
Hyperbolas
Kelompok 5
Use of integral calculus in engineering
Day 1a examples
Ad

Similar to New day 8 examples (20)

PDF
Day 8 examples
PDF
Day 8 examples
PPT
Graphing Trig Functions-Tangent and Cotangent.ppt
PDF
1.1 Lecture on Limits and Coninuity.pdf
PDF
12 th class ch 2 notes economices full notes
PDF
Optimization introduction
PDF
Fourier 3
PDF
Directional derivative and gradient
PDF
ilovepdf_merged.pdf
PDF
PDF
Module 4 circular function
PDF
Analytic function 1
PDF
Functions of several variables.pdf
PPTX
Inverse trignometry
PDF
PDF
Graphs of trigonometric exponential functions lecture
PPT
inverse trigonometric functions. inverse trigonometric functions
PPTX
Deatiled Functions and Piecewise ppt..pptx
PPT
Phase shift and amplitude of trigonometric functions
PPT
ComplexNumber.ppt
Day 8 examples
Day 8 examples
Graphing Trig Functions-Tangent and Cotangent.ppt
1.1 Lecture on Limits and Coninuity.pdf
12 th class ch 2 notes economices full notes
Optimization introduction
Fourier 3
Directional derivative and gradient
ilovepdf_merged.pdf
Module 4 circular function
Analytic function 1
Functions of several variables.pdf
Inverse trignometry
Graphs of trigonometric exponential functions lecture
inverse trigonometric functions. inverse trigonometric functions
Deatiled Functions and Piecewise ppt..pptx
Phase shift and amplitude of trigonometric functions
ComplexNumber.ppt
Ad

More from jchartiersjsd (20)

PDF
Exam outline j14
PDF
Test outline
PDF
Combs perms review pascals
PDF
Day 8 examples u7w14
PDF
Day 7 examples u7w14
PDF
Day 4 examples u7w14
PDF
Day 3 examples u7w14
PDF
Day 2 examples u7w14
PDF
Day 1 examples u7w14
PDF
Test outline comp rational
PDF
Day 7 examples u6w14
PDF
Day 5 examples u6w14
PDF
Day 4 examples u6w14
PDF
Day 3 examples u6w14
PDF
Day 2 examples u6w14
PDF
Day 1 examples u6w14
PDF
Mental math test outline
PDF
Day 8 examples u5w14
PDF
Day 7 examples u5w14
PDF
Day 5 examples u5w14
Exam outline j14
Test outline
Combs perms review pascals
Day 8 examples u7w14
Day 7 examples u7w14
Day 4 examples u7w14
Day 3 examples u7w14
Day 2 examples u7w14
Day 1 examples u7w14
Test outline comp rational
Day 7 examples u6w14
Day 5 examples u6w14
Day 4 examples u6w14
Day 3 examples u6w14
Day 2 examples u6w14
Day 1 examples u6w14
Mental math test outline
Day 8 examples u5w14
Day 7 examples u5w14
Day 5 examples u5w14

New day 8 examples

  • 1. Graphs of sin , cos , tan also called trig functions sin( ) sin( ) sin( ) Note: as we change , different values of sin result Let =x Resulting values are Dependent variable, ie. y So we get, f( ) = sin Let's graph f( ) = sin over [0, 2 ]
  • 3. Definitions Periodic Function = function whose graph has a pattern Period = the length of one full pattern. ex. in sine graph its 2 Amplitude = vertical deviation of graph from middle (sinusoidal axis). Sinusoidial Axis = horizontal axis above and below which the graph fluctuates. It defines the amplitude. Characteristics of sine function Domain: In general Range: In general Zeroes: In general Graph f( ) = cos over [0, 2 ] Domain: In general Range: In general Zeroes: In general + k ,k I
  • 4. Graph f( ) = tan over [-2 ,2 ] Locating the zeroes: f( ) = 0 ie. tan = 0 sin = 0 when sin = 0, occurs when = 0, , 2 , - , -2 What happens when cos = 0 in tan = sin = sin = - an invisible line where the graph or function is undefined when cos = 0, occurs when = , 3 , - , -3 Domain: In general Range: In general Equations for asymptotes: x =