SlideShare a Scribd company logo
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
if isempty(which('spm')),
throw(MException('SPMCheck:NotFound',
'SPM not in matlab path'));
end
[name, version] = spm('ver');
fprintf('SPM version: %s Release:
%sn',name, version);
fprintf('SPM path: %sn', which('spm'));
spm('Defaults','fMRI');
if strcmp(name, 'SPM8') ||
strcmp(name(1:5), 'SPM12'),
spm_jobman('initcfg');
spm_get_defaults('cmdline', 1);
end
antsRegistration --collapse-output-transforms 1 --dimensionality 3 --initial-
moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 1 --
interpolation Linear --output [ output_, output_warped_image.nii.gz ] --
restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ]
--metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [
1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-
estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25,
3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [
100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1
--use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-
image-intensities [ 0.0, 1.0 ] --write-composite-transform 1
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
Nipype
workflow.run(plugin=“SGE”)
Workflow.run(plugin=“MultiProc”)
Nipype
Nipype
Nipype

More Related Content

PDF
Advanced QUnit - Front-End JavaScript Unit Testing
PPT
Repetition loop
PDF
Control flow
PDF
Algoritmos ensambladores
DOCX
PDF
C++ control structure
PDF
Emulador de ensamblador EMU8086
Advanced QUnit - Front-End JavaScript Unit Testing
Repetition loop
Control flow
Algoritmos ensambladores
C++ control structure
Emulador de ensamblador EMU8086

Viewers also liked (20)

PDF
Robert Meyer- pypet
PDF
Evolutionary Algorithms: Perfecting the Art of "Good Enough"
PDF
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
PPTX
Speed Without Drag by Saul Diez-Guerra PyData SV 2014
PDF
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
PPTX
Crushing the Head of the Snake by Robert Brewer PyData SV 2014
PDF
Numba: Flexible analytics written in Python with machine-code speeds and avo...
PPT
Interactive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
PDF
How Soon is Now: automatically extracting publication dates of news articles ...
PDF
Faster Python Programs Through Optimization by Dr.-Ing Mike Muller
PDF
Python resampling
POTX
Doing frequentist statistics with scipy
PDF
Fang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
PDF
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
PDF
Promoting a Data Driven Culture in a Microservices Environment
POTX
Making your code faster cython and parallel processing in the jupyter notebook
PDF
Large scale-ctr-prediction lessons-learned-florian-hartl
PDF
GraphGen: Conducting Graph Analytics over Relational Databases
PDF
Embracing the Monolith in Small Teams: Doubling down on python to move fast w...
PDF
Bayesian Network Modeling using Python and R
Robert Meyer- pypet
Evolutionary Algorithms: Perfecting the Art of "Good Enough"
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
Speed Without Drag by Saul Diez-Guerra PyData SV 2014
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
Crushing the Head of the Snake by Robert Brewer PyData SV 2014
Numba: Flexible analytics written in Python with machine-code speeds and avo...
Interactive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
How Soon is Now: automatically extracting publication dates of news articles ...
Faster Python Programs Through Optimization by Dr.-Ing Mike Muller
Python resampling
Doing frequentist statistics with scipy
Fang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Promoting a Data Driven Culture in a Microservices Environment
Making your code faster cython and parallel processing in the jupyter notebook
Large scale-ctr-prediction lessons-learned-florian-hartl
GraphGen: Conducting Graph Analytics over Relational Databases
Embracing the Monolith in Small Teams: Doubling down on python to move fast w...
Bayesian Network Modeling using Python and R
Ad

More from PyData (20)

PDF
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
PDF
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
PDF
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
PDF
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
PDF
Deploying Data Science for Distribution of The New York Times - Anne Bauer
PPTX
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
PPTX
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
PDF
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
PDF
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
PDF
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
PDF
Words in Space - Rebecca Bilbro
PDF
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
PPTX
Pydata beautiful soup - Monica Puerto
PDF
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
PPTX
Extending Pandas with Custom Types - Will Ayd
PDF
Measuring Model Fairness - Stephen Hoover
PDF
What's the Science in Data Science? - Skipper Seabold
PDF
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
PDF
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
PDF
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
Deploying Data Science for Distribution of The New York Times - Anne Bauer
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
Words in Space - Rebecca Bilbro
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
Pydata beautiful soup - Monica Puerto
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
Extending Pandas with Custom Types - Will Ayd
Measuring Model Fairness - Stephen Hoover
What's the Science in Data Science? - Skipper Seabold
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
Ad

Recently uploaded (20)

PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
Lecture1 pattern recognition............
PPTX
Introduction to machine learning and Linear Models
PPTX
1_Introduction to advance data techniques.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Business Analytics and business intelligence.pdf
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
SAP 2 completion done . PRESENTATION.pptx
Mega Projects Data Mega Projects Data
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Lecture1 pattern recognition............
Introduction to machine learning and Linear Models
1_Introduction to advance data techniques.pptx
Miokarditis (Inflamasi pada Otot Jantung)
IB Computer Science - Internal Assessment.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
oil_refinery_comprehensive_20250804084928 (1).pptx
Fluorescence-microscope_Botany_detailed content
IBA_Chapter_11_Slides_Final_Accessible.pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Introduction to Knowledge Engineering Part 1
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Business Analytics and business intelligence.pdf

Nipype

  • 11. if isempty(which('spm')), throw(MException('SPMCheck:NotFound', 'SPM not in matlab path')); end [name, version] = spm('ver'); fprintf('SPM version: %s Release: %sn',name, version); fprintf('SPM path: %sn', which('spm')); spm('Defaults','fMRI'); if strcmp(name, 'SPM8') || strcmp(name(1:5), 'SPM12'), spm_jobman('initcfg'); spm_get_defaults('cmdline', 1); end
  • 12. antsRegistration --collapse-output-transforms 1 --dimensionality 3 --initial- moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 1 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] -- restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use- estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize- image-intensities [ 0.0, 1.0 ] --write-composite-transform 1