SlideShare a Scribd company logo
2
Most read
3
Most read
5
Most read
1
NAME: Shrafat Hussain
ID: 1092-2017
SUBJECT: Plain & Reinforcement Concrete
TEACHER: Miss Ureesha Mansori
CLASS: BS(CV) 5th SEMESTER
SUBMISSION DATE: 26 feb 2019
2
NON-DESTRUCTIVE TESTINGOF CONCRETE:
Non-destructive testing of concrete is a method to obtain the compressive strength and
other properties of concrete from the existing structures. This test provides immediate
results and actual strength and properties of concrete structure.
The standard method of evaluating the quality of concrete in buildings or structures is to
test specimens cast simultaneously for compressive, flexural and tensile strengths.
The main disadvantages are that results are not obtained immediately; that concrete in
specimens may differ from that in the actual structure as a result of different curing and
compaction conditions; and that strength properties of a concrete specimen depend on its
size and shape.
Although there can be no direct measurement of the strength properties of structural
concrete for the simple reason that strength determination involves destructive stresses,
several non- destructive methods of assessment have been developed.
These depend on the fact that certain physical properties of concrete can be related to
strength and can be measured by non-destructive methods. Such properties include
hardness, resistance to penetration by projectiles, rebound capacity and ability to transmit
ultrasonic pulses and X- and Y-rays.
These non-destructive methods may be categorized as penetration tests, rebound tests,
pull-out techniques, dynamic tests, radioactive tests, maturity concept. It is the purpose of
this Digest to describe these methods briefly, outlining their advantages and
disadvantages.
3
Methods of Non-Destructive Testing of Concrete
Following are different methods of NDT on concrete:
1. Penetration method
2. Rebound hammer method
3. Pull out test method
4. Ultrasonic pulse velocity method
5. Radioactive methods
Penetration Tests on Concrete
The Windsor probe is generally considered to be the best means of testing penetration.
Equipment consists of a powder-actuated gun or driver, hardened alloy probes, loaded
cartridges, a depth gauge for measuring penetration of probes and other related
equipment.
A probe, diameter 0.25 in. (6.5 mm) and length 3.125 in. (8.0 cm), is driven into the
concrete by means of a precision powder charge. Depth of penetration provides an
indication of the compressive strength of the concrete.
4
Although calibration charts are provided by the manufacturer, the instrument should be
calibrated for type of concrete and type and size of aggregate used.
Limitations and Advantages
The probe test produces quite variable results and should not be expected to give accurate
values of concrete strength. It has, however, the potential for providing a quick means of
checking quality and maturity of in situ concrete.
It also provides a means of assessing strength development with curing. The test is
essentially non-destructive, since concrete and structural members can be tested in situ,
with only minor patching of holes on exposed faces.
Rebound Hammer Method
The rebound hammer is a surface hardness tester for which an empirical correlationhas
been established between strength and rebound number.
The only known instrument to make use of the rebound principle for concrete testing is
the Schmidt hammer, which weighs about 4 lb (1.8 kg) and is suitable for both laboratory
and field work. It consists of a spring-controlled hammer mass that slides on a plunger
within a tubular housing.
The hammer is forced against the surface of the concrete by the spring and the distance of
rebound is measured on a scale. The test surface can be horizontal, vertical or at any
angle but the instrument must be calibrated in this position.
Calibration can be done with cylinders (6 by 12 in., 15 by 30 cm) of the same cement and
aggregate as will be used on the job. The cylinders are capped and firmly held in a
compression machine.
Several readings are taken, well distributed and reproducible, the average representing
the rebound number for the cylinder. This procedure is repeated with several cylinders,
after which compressive strengths are obtained.
5
Limitations and Advantages
The Schmidt hammer provides an inexpensive, simple and quick method of obtaining an
indication of concrete strength, but accuracy of ±15 to ±20 per cent is possible only for
specimens cast cured and tested under conditions for which calibration curves have been
established.
The results are affected by factors such as smoothness of surface, size and shape of
specimen, moisture condition of the concrete, type of cement and coarse aggregate, and
extent of carbonation of surface.
Pull-Out Tests on Concrete
A pull-out test measures, with a special ram, the force required to pull from the concrete a
specially shaped steel rod whose enlarged end has been cast into the concrete to a depth
of 3 in. (7.6 cm).
The concrete is simultaneously in tension and in shear, but the force required to pull the
concrete out can be related to its compressive strength.
The pull-out technique can thus measure quantitatively the in-situ strength of concrete
when proper correlations have been made. It has been found, over a wide range of
strengths, that pull-out strengths have a coefficient of variation comparable to that of
compressive strength.
Limitations and Advantages
Although pullout tests do not measure the interior strength of mass concrete, they do give
information on the maturity and development of strength of a representative part of it.
Such tests have the advantage of measuring quantitatively the strength of concrete in
place.
Their main disadvantage is that they have to be planned in advance and pull-out
assemblies set into the formwork before the concrete is placed. The pull-out, of course,
creates some minor damage.
6
The test can be non-destructive, however, if a minimum pullout force is applied that stops
short of failure but makes certain that a minimum strength has been reached. This is
information of distinct value in determining when forms can be removed safely.
Dynamic Non Destructive Tests on Concrete
At present the ultrasonic pulse velocity method is the only one of this type that shows
potential for testing concrete strength in situ. It measures the time of travel of an
ultrasonic pulse passing through the concrete.
The fundamental design features of all commercially available units are very similar,
consisting of a pulse generator and a pulse receiver.
Pulses are generated by shock-exciting piezo-electric crystals, with similar crystals used
in the receiver. The time taken for the pulse to pass through the concrete is measured by
electronic measuring circuits.
Pulse velocity tests can be carried out on both laboratory-sized specimens and completed
concrete structures, but some factors affect measurement:
1. There must be smooth contact with the surface under test; a coupling medium such as a thin film
of oil is mandatory.
2. It is desirable for path-lengths to be at least 12 in. (30 cm) in order to avoid any errors introduced
by heterogeneity.
3. It must be recognized that there is an increase in pulse velocity at below-freezing temperature
owing to freezing of water; from 5 to 30°C (41 – 86°F) pulse velocities are not temperature
dependent.
4. The presence of reinforcing steel in concrete has an appreciable effect on pulse velocity. It is
therefore desirable and often mandatory to choose pulse paths that avoid the influence of
reinforcing steel or to make corrections if steel is in the pulse path.
Applications and Limitations
The pulse velocity method is an ideal tool for establishing whether concrete is uniform.
It can be used on both existing structures and those under construction.
7
Usually, if large differences in pulse velocity are found within a structure for no apparent
reason, there is strong reason to presume that defective or deteriorated concrete is
present.
High pulse velocity readings are generally indicative of good quality concrete. A general
relation between concrete quality and pulse velocity is given in Table.
Table: Quality of Concrete and Pulse Velocity
General Conditions Pulse Velocity ft/sec
Excellent Above 15,000
Good 12,000-15,000
Questionable 10,000-12,000
Poor 7,000-10,000
Very Poor below 7,000
Fairly good correlationcan be obtained between cube compressive strength and pulse
velocity. These relations enable the strength of structural concrete to be predicted within
±20 per cent, provided the types of aggregate and mix proportions are constant.
The pulse velocity method has been used to study the effects on concrete of freeze-thaw
action, sulphate attack, and acidic waters. Generally, the degree of damage is related to a
reduction in pulse velocity. Cracks can also be detected.
Great care should be exercised, however, in using pulse velocity measurements for these
purposes since it is often difficult to interpret results. Sometimes the pulse does not travel
through the damaged portion of the concrete.
The pulse velocity method can also be used to estimate the rate of hardening and strength
development of concrete in the early stages to determine when to remove formwork.
8
Holes have to be cut in the formwork so that transducers can be in direct contact with the
concrete surface.
As concrete ages, the rate of increase of pulse velocity slows down much more rapidly
than the rate of development of strength, so that beyond a strength of 2,000 to 3,000 psi
(13.6 to 20.4 MPa) accuracy in determining strength is less than ±20%.
Accuracy depends on careful calibration and use of the same concrete mix proportions
and aggregate in the test samples used for calibration as in the structure.
In summary, ultrasonic pulse velocity tests have a great potential for concrete control,
particularly for establishing uniformity and detecting cracks or defects. Its use for
predicting strength is much more limited, owing to the large number of variables
affecting the relation between strength and pulse velocity.
Radioactive Methods of NDT on Concrete
Radioactive methods of testing concrete can be used to detect the location of
reinforcement, measure density and perhaps establish whether honeycombing has
occurred in structural concrete units. Gamma radiography is increasingly accepted in
England and Europe.
The equipment is quite simple and running costs are small, although the initial price can
be high. Concrete up to 18 in. (45 cm) thick can be examined without difficulty.
9
Purpose of Non-Destructive Tests on Concrete
A variety of Non Destructive Testing (NDT)
methods have been developed or are under development for
investigating and evaluating concrete structures.
These methods are aimed at estimation of strength and
other properties; monitoring and assessing corrosion; measuring crack size and cov
er; assessing grout quality; detecting defects and identifying relatively more vulnerable
areas in concrete structures.
Many of NDT methods used for concrete testing have their origin to the testing
of more homogeneous,
metallic system. These methods have a sound scientific basis, but heterogeneity of
concrete makes interpretation of results somewhat difficult.
There could be many parameters such as materials, mix,
workmanship and environment, which influence the results of measurements.
Moreover, these test s
measure some other property of concrete (e.g. hardness) and the results are interpr
eted to assess a
different property of concrete e.g. strength, which is of primary interest.
Thus, interpretation of results is very important and difficult job where
generalization is not possible. As such, operators can carry out tests
but interpretation of results must be left to experts having
experience and knowledge of application of such non-destructive tests.
Purposes of Non-destructive Tests are:
1. Estimating the in-situ compressive strength
2. Estimating the uniformity and homogeneity
10
3. Estimating the quality in relation to standard requirement
4. Identifying areas of lower integrity in comparison to other parts
5. Detection of presence of cracks, voids and other imperfections
6. Monitoring changes in the structure of the concrete which may occur with time
7. Identification of reinforcement profile and measurement of cover, bar diameter, etc.
8. Condition of prestressing/reinforcement steel with respect to corrosion
9. Chloride, sulphate, alkali contents or degree of carbonation
10. Measurement of Elastic Modulus
11. Condition of grouting in prestressing cable ducts
Types of Non Destructive Equipments
According to their use, non-destructive equipment can be grouped as under:
1. Strength estimation of concrete
2. Corrosion assessment and monitoring
3. Detecting defects in concrete structure
4. Laboratory tests

More Related Content

PPTX
Non destructive test on concrete (ndt)
PPT
Non Destructive Test
PPTX
PPT On Bridge Construction
PPTX
Rebound hammer test
PPTX
Non destructive testing in civil engineering
PPTX
Non destructive test in CIVIL ENGINEERING Construction
PPTX
Waste material concrete ppt
Non destructive test on concrete (ndt)
Non Destructive Test
PPT On Bridge Construction
Rebound hammer test
Non destructive testing in civil engineering
Non destructive test in CIVIL ENGINEERING Construction
Waste material concrete ppt

What's hot (20)

PPT
Durability of concrete
PPTX
TEST ON HARDENED CONCRETE
PPTX
Non destructive testing in concrete
PPTX
Quality control of concrete
PPTX
Ultrasonic pulse velocity test for concrete
PPT
Bridge engineering
PPTX
Earthquake damages
PPTX
Durability of concrete
PPTX
Rebound hammer test
PPTX
Ultra sonic pulse velocity tests (Concrete technology)
PPTX
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....
PPTX
Fibre reinforced concrete
PPTX
Bridge Construction & Its Types
PPT
Construction of diaphragm wall
PPTX
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
PPTX
Cable stayed bridge
PPTX
Tests of aggregates
PPTX
Non destructive test
PPTX
Types of Bridge and Bridge Failure
PPTX
Ultrasonic pulse velocity test
Durability of concrete
TEST ON HARDENED CONCRETE
Non destructive testing in concrete
Quality control of concrete
Ultrasonic pulse velocity test for concrete
Bridge engineering
Earthquake damages
Durability of concrete
Rebound hammer test
Ultra sonic pulse velocity tests (Concrete technology)
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....
Fibre reinforced concrete
Bridge Construction & Its Types
Construction of diaphragm wall
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
Cable stayed bridge
Tests of aggregates
Non destructive test
Types of Bridge and Bridge Failure
Ultrasonic pulse velocity test
Ad

Similar to NON DESTRUCTIVE TESTING (20)

PDF
nondestructivetestonconcrete-190605050413 (1).pdf
PPTX
Non destructive test on concrete
PPTX
Cement and concrete destructive tests,
PDF
Testing of hardened concrete
 
PDF
NON-DESTRUCTIVE TESTING OF CONCRETE SLIDES
PPTX
Condition survey and nde
PPTX
Concrete Technology
PPS
Non destructive testing
PPTX
Non-destructive testing
PDF
Constructing a mathematical models to predict compressive strength of conc
PDF
Predicting a mathematical models of some mechanical properties of concrete ...
PDF
Predicting a mathematical models of some mechanical properties of concrete ...
PPTX
Non destructive tests on Concrete.pptx
PPT
Non destructive test in concrete in building construction architecture
PPTX
Non destructive testing on concrete ( ndt )
PDF
IRJET- Comparision between Destructive and Non-Destructive Test on Concrete
PPTX
Non destruction test
PPTX
Non Destructive Testing -NDT
PPTX
Impact strength in concrete test
nondestructivetestonconcrete-190605050413 (1).pdf
Non destructive test on concrete
Cement and concrete destructive tests,
Testing of hardened concrete
 
NON-DESTRUCTIVE TESTING OF CONCRETE SLIDES
Condition survey and nde
Concrete Technology
Non destructive testing
Non-destructive testing
Constructing a mathematical models to predict compressive strength of conc
Predicting a mathematical models of some mechanical properties of concrete ...
Predicting a mathematical models of some mechanical properties of concrete ...
Non destructive tests on Concrete.pptx
Non destructive test in concrete in building construction architecture
Non destructive testing on concrete ( ndt )
IRJET- Comparision between Destructive and Non-Destructive Test on Concrete
Non destruction test
Non Destructive Testing -NDT
Impact strength in concrete test
Ad

Recently uploaded (20)

PDF
86236642-Electric-Loco-Shed.pdf jfkduklg
PDF
Abrasive, erosive and cavitation wear.pdf
PPT
introduction to datamining and warehousing
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Current and future trends in Computer Vision.pptx
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
PPT on Performance Review to get promotions
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT
Occupational Health and Safety Management System
PDF
Soil Improvement Techniques Note - Rabbi
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPT
Total quality management ppt for engineering students
86236642-Electric-Loco-Shed.pdf jfkduklg
Abrasive, erosive and cavitation wear.pdf
introduction to datamining and warehousing
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Current and future trends in Computer Vision.pptx
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Safety Seminar civil to be ensured for safe working.
PPT on Performance Review to get promotions
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Exploratory_Data_Analysis_Fundamentals.pdf
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Occupational Health and Safety Management System
Soil Improvement Techniques Note - Rabbi
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Total quality management ppt for engineering students

NON DESTRUCTIVE TESTING

  • 1. 1 NAME: Shrafat Hussain ID: 1092-2017 SUBJECT: Plain & Reinforcement Concrete TEACHER: Miss Ureesha Mansori CLASS: BS(CV) 5th SEMESTER SUBMISSION DATE: 26 feb 2019
  • 2. 2 NON-DESTRUCTIVE TESTINGOF CONCRETE: Non-destructive testing of concrete is a method to obtain the compressive strength and other properties of concrete from the existing structures. This test provides immediate results and actual strength and properties of concrete structure. The standard method of evaluating the quality of concrete in buildings or structures is to test specimens cast simultaneously for compressive, flexural and tensile strengths. The main disadvantages are that results are not obtained immediately; that concrete in specimens may differ from that in the actual structure as a result of different curing and compaction conditions; and that strength properties of a concrete specimen depend on its size and shape. Although there can be no direct measurement of the strength properties of structural concrete for the simple reason that strength determination involves destructive stresses, several non- destructive methods of assessment have been developed. These depend on the fact that certain physical properties of concrete can be related to strength and can be measured by non-destructive methods. Such properties include hardness, resistance to penetration by projectiles, rebound capacity and ability to transmit ultrasonic pulses and X- and Y-rays. These non-destructive methods may be categorized as penetration tests, rebound tests, pull-out techniques, dynamic tests, radioactive tests, maturity concept. It is the purpose of this Digest to describe these methods briefly, outlining their advantages and disadvantages.
  • 3. 3 Methods of Non-Destructive Testing of Concrete Following are different methods of NDT on concrete: 1. Penetration method 2. Rebound hammer method 3. Pull out test method 4. Ultrasonic pulse velocity method 5. Radioactive methods Penetration Tests on Concrete The Windsor probe is generally considered to be the best means of testing penetration. Equipment consists of a powder-actuated gun or driver, hardened alloy probes, loaded cartridges, a depth gauge for measuring penetration of probes and other related equipment. A probe, diameter 0.25 in. (6.5 mm) and length 3.125 in. (8.0 cm), is driven into the concrete by means of a precision powder charge. Depth of penetration provides an indication of the compressive strength of the concrete.
  • 4. 4 Although calibration charts are provided by the manufacturer, the instrument should be calibrated for type of concrete and type and size of aggregate used. Limitations and Advantages The probe test produces quite variable results and should not be expected to give accurate values of concrete strength. It has, however, the potential for providing a quick means of checking quality and maturity of in situ concrete. It also provides a means of assessing strength development with curing. The test is essentially non-destructive, since concrete and structural members can be tested in situ, with only minor patching of holes on exposed faces. Rebound Hammer Method The rebound hammer is a surface hardness tester for which an empirical correlationhas been established between strength and rebound number. The only known instrument to make use of the rebound principle for concrete testing is the Schmidt hammer, which weighs about 4 lb (1.8 kg) and is suitable for both laboratory and field work. It consists of a spring-controlled hammer mass that slides on a plunger within a tubular housing. The hammer is forced against the surface of the concrete by the spring and the distance of rebound is measured on a scale. The test surface can be horizontal, vertical or at any angle but the instrument must be calibrated in this position. Calibration can be done with cylinders (6 by 12 in., 15 by 30 cm) of the same cement and aggregate as will be used on the job. The cylinders are capped and firmly held in a compression machine. Several readings are taken, well distributed and reproducible, the average representing the rebound number for the cylinder. This procedure is repeated with several cylinders, after which compressive strengths are obtained.
  • 5. 5 Limitations and Advantages The Schmidt hammer provides an inexpensive, simple and quick method of obtaining an indication of concrete strength, but accuracy of ±15 to ±20 per cent is possible only for specimens cast cured and tested under conditions for which calibration curves have been established. The results are affected by factors such as smoothness of surface, size and shape of specimen, moisture condition of the concrete, type of cement and coarse aggregate, and extent of carbonation of surface. Pull-Out Tests on Concrete A pull-out test measures, with a special ram, the force required to pull from the concrete a specially shaped steel rod whose enlarged end has been cast into the concrete to a depth of 3 in. (7.6 cm). The concrete is simultaneously in tension and in shear, but the force required to pull the concrete out can be related to its compressive strength. The pull-out technique can thus measure quantitatively the in-situ strength of concrete when proper correlations have been made. It has been found, over a wide range of strengths, that pull-out strengths have a coefficient of variation comparable to that of compressive strength. Limitations and Advantages Although pullout tests do not measure the interior strength of mass concrete, they do give information on the maturity and development of strength of a representative part of it. Such tests have the advantage of measuring quantitatively the strength of concrete in place. Their main disadvantage is that they have to be planned in advance and pull-out assemblies set into the formwork before the concrete is placed. The pull-out, of course, creates some minor damage.
  • 6. 6 The test can be non-destructive, however, if a minimum pullout force is applied that stops short of failure but makes certain that a minimum strength has been reached. This is information of distinct value in determining when forms can be removed safely. Dynamic Non Destructive Tests on Concrete At present the ultrasonic pulse velocity method is the only one of this type that shows potential for testing concrete strength in situ. It measures the time of travel of an ultrasonic pulse passing through the concrete. The fundamental design features of all commercially available units are very similar, consisting of a pulse generator and a pulse receiver. Pulses are generated by shock-exciting piezo-electric crystals, with similar crystals used in the receiver. The time taken for the pulse to pass through the concrete is measured by electronic measuring circuits. Pulse velocity tests can be carried out on both laboratory-sized specimens and completed concrete structures, but some factors affect measurement: 1. There must be smooth contact with the surface under test; a coupling medium such as a thin film of oil is mandatory. 2. It is desirable for path-lengths to be at least 12 in. (30 cm) in order to avoid any errors introduced by heterogeneity. 3. It must be recognized that there is an increase in pulse velocity at below-freezing temperature owing to freezing of water; from 5 to 30°C (41 – 86°F) pulse velocities are not temperature dependent. 4. The presence of reinforcing steel in concrete has an appreciable effect on pulse velocity. It is therefore desirable and often mandatory to choose pulse paths that avoid the influence of reinforcing steel or to make corrections if steel is in the pulse path. Applications and Limitations The pulse velocity method is an ideal tool for establishing whether concrete is uniform. It can be used on both existing structures and those under construction.
  • 7. 7 Usually, if large differences in pulse velocity are found within a structure for no apparent reason, there is strong reason to presume that defective or deteriorated concrete is present. High pulse velocity readings are generally indicative of good quality concrete. A general relation between concrete quality and pulse velocity is given in Table. Table: Quality of Concrete and Pulse Velocity General Conditions Pulse Velocity ft/sec Excellent Above 15,000 Good 12,000-15,000 Questionable 10,000-12,000 Poor 7,000-10,000 Very Poor below 7,000 Fairly good correlationcan be obtained between cube compressive strength and pulse velocity. These relations enable the strength of structural concrete to be predicted within ±20 per cent, provided the types of aggregate and mix proportions are constant. The pulse velocity method has been used to study the effects on concrete of freeze-thaw action, sulphate attack, and acidic waters. Generally, the degree of damage is related to a reduction in pulse velocity. Cracks can also be detected. Great care should be exercised, however, in using pulse velocity measurements for these purposes since it is often difficult to interpret results. Sometimes the pulse does not travel through the damaged portion of the concrete. The pulse velocity method can also be used to estimate the rate of hardening and strength development of concrete in the early stages to determine when to remove formwork.
  • 8. 8 Holes have to be cut in the formwork so that transducers can be in direct contact with the concrete surface. As concrete ages, the rate of increase of pulse velocity slows down much more rapidly than the rate of development of strength, so that beyond a strength of 2,000 to 3,000 psi (13.6 to 20.4 MPa) accuracy in determining strength is less than ±20%. Accuracy depends on careful calibration and use of the same concrete mix proportions and aggregate in the test samples used for calibration as in the structure. In summary, ultrasonic pulse velocity tests have a great potential for concrete control, particularly for establishing uniformity and detecting cracks or defects. Its use for predicting strength is much more limited, owing to the large number of variables affecting the relation between strength and pulse velocity. Radioactive Methods of NDT on Concrete Radioactive methods of testing concrete can be used to detect the location of reinforcement, measure density and perhaps establish whether honeycombing has occurred in structural concrete units. Gamma radiography is increasingly accepted in England and Europe. The equipment is quite simple and running costs are small, although the initial price can be high. Concrete up to 18 in. (45 cm) thick can be examined without difficulty.
  • 9. 9 Purpose of Non-Destructive Tests on Concrete A variety of Non Destructive Testing (NDT) methods have been developed or are under development for investigating and evaluating concrete structures. These methods are aimed at estimation of strength and other properties; monitoring and assessing corrosion; measuring crack size and cov er; assessing grout quality; detecting defects and identifying relatively more vulnerable areas in concrete structures. Many of NDT methods used for concrete testing have their origin to the testing of more homogeneous, metallic system. These methods have a sound scientific basis, but heterogeneity of concrete makes interpretation of results somewhat difficult. There could be many parameters such as materials, mix, workmanship and environment, which influence the results of measurements. Moreover, these test s measure some other property of concrete (e.g. hardness) and the results are interpr eted to assess a different property of concrete e.g. strength, which is of primary interest. Thus, interpretation of results is very important and difficult job where generalization is not possible. As such, operators can carry out tests but interpretation of results must be left to experts having experience and knowledge of application of such non-destructive tests. Purposes of Non-destructive Tests are: 1. Estimating the in-situ compressive strength 2. Estimating the uniformity and homogeneity
  • 10. 10 3. Estimating the quality in relation to standard requirement 4. Identifying areas of lower integrity in comparison to other parts 5. Detection of presence of cracks, voids and other imperfections 6. Monitoring changes in the structure of the concrete which may occur with time 7. Identification of reinforcement profile and measurement of cover, bar diameter, etc. 8. Condition of prestressing/reinforcement steel with respect to corrosion 9. Chloride, sulphate, alkali contents or degree of carbonation 10. Measurement of Elastic Modulus 11. Condition of grouting in prestressing cable ducts Types of Non Destructive Equipments According to their use, non-destructive equipment can be grouped as under: 1. Strength estimation of concrete 2. Corrosion assessment and monitoring 3. Detecting defects in concrete structure 4. Laboratory tests