SlideShare a Scribd company logo
Digital System Design
Number Systems-Number conversion -Arithmetic Operations
DIGITAL DESIGN
What is digital ?
• Digital camera, Digital TV, Digital Watch, Digital
• Radio, Digital City (e city), Digital Photo Frame …etc
‐
• Which gives the things in countable form
• Scene (analog) to Image (digital)
Why is digital ?
• Countable form, makes easy to manage.accuracy
• Easy management makes more useful and versatile
NUMBER SYSTEM TYPES
It is a system for representing numeric values or quantities using different symbols
Famous Number System: Decimal , Roman, Binary
Decimal System: 0 9
‐
May evolves: because human have 10 finger
Roman System
May evolves to make easy to look and feel
Pre/Post Concept: (IV, V & VI) is (5 1, 5 & 5+1)
‐
Binary System, Others (Oct, Hex)
One can cut an apple in to two
SIGNIFICANT DIGITS
Binary: 11101101
Most significant Bit (MSB) Least significant Bit(LSB)
Decimal: 1063079
Most significant digit Least significant digit
DECIMAL (BASE 10)
Uses positional representation
Each digit corresponds to a power of 10 based
on its position in the number
The powers of 10 increment from 0, 1, 2, etc.
as you move right to left
1,479 = 1 * 103
+ 4 * 102
+ 7 * 101
+ 9 * 100
BINARY (BASE 2)
Two digits: 0, 1
To make the binary numbers more readable, the digits are often put in
groups of 4
1010 = 1 * 23
+ 0 * 22
+ 1 * 21
+ 0 * 20
= 8 + 2
= 10
1100 1001 = 1 * 27
+ 1 * 26
+ 1 * 23
+ 1 * 20
= 128 + 64 + 8 + 1
= 201
OCTAL (BASE 8)
Shorter & easier to read than binary
8 digits: 0, 1, 2, 3, 4, 5, 6, 7,
 Octal numbers
1368 = 1 * 82
+ 3 * 81
+ 6 * 80
= 1 * 64 + 3 * 8 + 6 * 1
= 9410
HEXADECIMAL(BASE 16)
Shorter & easier to read than binary
16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
“0x” often precedes hexadecimal numbers
0x123 = 1 * 162
+ 2 * 161
+ 3 * 160
= 1 * 256 + 2 * 16 + 3 * 1
= 256 + 32 + 3
= 291
DECIMAL(BASE 10) BINARY (BASE 2) OCTAL ( BASE 8) HEXA(BASE 16)
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
Converting To and From Decimal
CONVERSION PROCESS DECIMAL ↔ BASE N
Successive Division
CONVERSION PROCESS DECIMAL ↔ BASE N
Weighted Multiplication
DECIMAL ↔ BINARY -EXAMPLE
12510 = ?2 2 125
62 1
2
31 0
2
15 1
2
7 1
2
3 1
2
1 1
2
0 1
12510 = 11111012
DECIMAL ↔ OCTAL
123410 = ?8
8 1234
154 2
8
19 2
8
2 3
8
0 2
123410 = 23228
DECIMAL ↔ HEXADECIMAL
123410 = ?16
123410 = 4D216
16 1234
77 2
16
4 13 = D
16
0 4
BINARY ↔ DECIMAL
1010112 => 1 x 20
= 1
1 x 21
= 2
0 x 22
= 0
1 x 23
= 8
0 x 24
= 0
1 x 25
= 32
4310
Bit “0”
OCTAL TO DECIMAL
7248 => 4 x 80
= 4
2 x 81
= 16
7 x 82
= 448
46810
HEXADECIMAL TO DECIMAL
ABC16 => C x 160
= 12 x 1 = 12
B x 161
= 11 x 16 = 176
A x 162
= 10 x 256 = 2560
274810
BINARY ↔ OCTAL
Technique
Group bits in threes, starting on right
Convert to octal digits
10110101112 = ?8
1 011 010 111
1 3 2 7
10110101112 = 13278
OCTAL ↔ BINARY
7058 = ?2
7 0 5
111 000 101
7058 = 1110001012
BINARY ↔ HEXADECIMAL
10101110112 = ?16
10 1011 1011
2 B B
10101110112 = 2BB16
HEXADECIMAL ↔ BINARY
Technique
Convert each hexadecimal digit to a 4-bit equivalent binary
representation
10AF16 = ?2
1 0 A F
0001 0000 1010 1111
10AF16 = 00010000101011112
Exercise – Convert ...
Decimal Binary Octal
Hexa-
decimal
33
1110101
703
1AF
Exercise – Convert ...
Decimal Binary Octal
Hexa-
decimal
33 100001 41 21
117 1110101 165 75
451 111000011 703 1C3
431 110101111 657 1AF
FRACTIONS
Decimal to decimal (just for fun)
3.14 => 4 x 10-2
= 0.04
1 x 10-1
= 0.1
3 x 100
= 3
3.14
FRACTIONS
Binary to decimal
pp. 46-50
10.1011 => 1 x 2-4
= 0.0625
1 x 2-3
= 0.125
0 x 2-2
= 0.0
1 x 2-1
= 0.5
0 x 20
= 0.0
1 x 21
= 2.0
2.6875
FRACTIONS
Decimal to binary
3.14579
.14579
x 2
0.29158
x 2
0.58316
x 2
1.16632
x 2
0.33264
x 2
0.66528
x 2
1.33056
etc.
11.001001...
Exercise – Convert ...
Don’t use a calculator!
Decimal Binary Octal
Hexa-
decimal
29.8
101.1101
3.07
C.82
Exercise – Convert …
Decimal Binary Octal
Hexa-
decimal
29.8 11101.110011… 35.63… 1D.CC…
5.8125 101.1101 5.64 5.D
3.109375 11.000111 3.07 3.1C
12.5078125 1100.10000010 14.404 C.82
Answer
Binary addition (1 of 2)
Two 1-bit values
A B A + B
0 0 0
0 1 1
1 0 1
1 1 10
“two”
Binary addition (2 of 2)
Two n-bit values
Add individual bits
Propagate carries
E.g.,
1 1
10101 21
+ 11001 + 25
101110 46
Multiplication (1 of 2)
Binary, two 1-bit values
A B A  B
0 0 0
0 1 0
1 0 0
1 1 1
Multiplication (2 of 2)
Binary, two n-bit values
1110
x 1011
1110
1110
0000
1110
10011010
Common Powers (1 of 2)
Base 10 Power Preface Symbol
10-12 pico p
10-9 nano n
10-6 micro 
10-3 milli m
103 kilo k
106 mega M
109
giga G
1012 tera T
Value
.000000000001
.000000001
.000001
.001
1000
1000000
1000000000
1000000000000
Common Powers (2 of 2)
Base 2
Power Preface Symbol
210 kilo k
220 mega M
230 Giga G
Value
1024
1048576
1073741824

More Related Content

PPT
Number systems r002
PPTX
number system
PPTX
number system 1.pptx
PPTX
chapter 3 number systems register transfer
PPT
Number System.ppt
PPTX
Digital Logic Design.pptx
PPTX
Anup Barman number system electronicdevice ECE.pptx
PPTX
Number System BASICS OF NUMBER SYSTEM ABOUT BINARY AND.pptx
Number systems r002
number system
number system 1.pptx
chapter 3 number systems register transfer
Number System.ppt
Digital Logic Design.pptx
Anup Barman number system electronicdevice ECE.pptx
Number System BASICS OF NUMBER SYSTEM ABOUT BINARY AND.pptx

Similar to Number Systems-Number conversion -Arithmetic Operations (20)

PDF
Number system utm notes
PPTX
ees pptfdgddrgncbfxdbfngdfxvcbnbcvdzfxv cgn
PPTX
Computing 6
PDF
INTRODUCTION TO NUMBER SYSTEMS 2024-25.pdf
PPTX
LEC 1.pptx
PPT
Number Systems
PPT
Number Systems
PDF
Digital Logic
PPTX
CSC304 - Digital Logic & Computer Organization and.pptx
PPT
digital logic circuits, digital component floting and fixed point
PPT
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
PPTX
DATA REPRESENTATION.pptx
PPT
5871320.ppt
PPTX
ITC lecture 3.pptx
PPT
Bca 2nd sem u-1.1 digital logic circuits, digital component floting and fixed...
PPT
Introduction to Information Technology Lecture 2
PPTX
Number system de (2131004) - 160920107003
PPT
B.sc cs-ii -u-1.1 digital logic circuits, digital component floting and fixed...
PPTX
Psychology presentation for students basic and easy
PPTX
ADE UNIT-III (Digital Fundamentals).pptx
Number system utm notes
ees pptfdgddrgncbfxdbfngdfxvcbnbcvdzfxv cgn
Computing 6
INTRODUCTION TO NUMBER SYSTEMS 2024-25.pdf
LEC 1.pptx
Number Systems
Number Systems
Digital Logic
CSC304 - Digital Logic & Computer Organization and.pptx
digital logic circuits, digital component floting and fixed point
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
DATA REPRESENTATION.pptx
5871320.ppt
ITC lecture 3.pptx
Bca 2nd sem u-1.1 digital logic circuits, digital component floting and fixed...
Introduction to Information Technology Lecture 2
Number system de (2131004) - 160920107003
B.sc cs-ii -u-1.1 digital logic circuits, digital component floting and fixed...
Psychology presentation for students basic and easy
ADE UNIT-III (Digital Fundamentals).pptx
Ad

Recently uploaded (20)

PPTX
Sustainable Sites - Green Building Construction
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
composite construction of structures.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPT
Project quality management in manufacturing
PPT
Mechanical Engineering MATERIALS Selection
DOCX
573137875-Attendance-Management-System-original
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
PPT on Performance Review to get promotions
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Sustainable Sites - Green Building Construction
Automation-in-Manufacturing-Chapter-Introduction.pdf
R24 SURVEYING LAB MANUAL for civil enggi
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
composite construction of structures.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Project quality management in manufacturing
Mechanical Engineering MATERIALS Selection
573137875-Attendance-Management-System-original
Embodied AI: Ushering in the Next Era of Intelligent Systems
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPT on Performance Review to get promotions
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Ad

Number Systems-Number conversion -Arithmetic Operations

  • 3. DIGITAL DESIGN What is digital ? • Digital camera, Digital TV, Digital Watch, Digital • Radio, Digital City (e city), Digital Photo Frame …etc ‐ • Which gives the things in countable form • Scene (analog) to Image (digital) Why is digital ? • Countable form, makes easy to manage.accuracy • Easy management makes more useful and versatile
  • 4. NUMBER SYSTEM TYPES It is a system for representing numeric values or quantities using different symbols Famous Number System: Decimal , Roman, Binary Decimal System: 0 9 ‐ May evolves: because human have 10 finger Roman System May evolves to make easy to look and feel Pre/Post Concept: (IV, V & VI) is (5 1, 5 & 5+1) ‐ Binary System, Others (Oct, Hex) One can cut an apple in to two
  • 5. SIGNIFICANT DIGITS Binary: 11101101 Most significant Bit (MSB) Least significant Bit(LSB) Decimal: 1063079 Most significant digit Least significant digit
  • 6. DECIMAL (BASE 10) Uses positional representation Each digit corresponds to a power of 10 based on its position in the number The powers of 10 increment from 0, 1, 2, etc. as you move right to left 1,479 = 1 * 103 + 4 * 102 + 7 * 101 + 9 * 100
  • 7. BINARY (BASE 2) Two digits: 0, 1 To make the binary numbers more readable, the digits are often put in groups of 4 1010 = 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 = 8 + 2 = 10 1100 1001 = 1 * 27 + 1 * 26 + 1 * 23 + 1 * 20 = 128 + 64 + 8 + 1 = 201
  • 8. OCTAL (BASE 8) Shorter & easier to read than binary 8 digits: 0, 1, 2, 3, 4, 5, 6, 7,  Octal numbers 1368 = 1 * 82 + 3 * 81 + 6 * 80 = 1 * 64 + 3 * 8 + 6 * 1 = 9410
  • 9. HEXADECIMAL(BASE 16) Shorter & easier to read than binary 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F “0x” often precedes hexadecimal numbers 0x123 = 1 * 162 + 2 * 161 + 3 * 160 = 1 * 256 + 2 * 16 + 3 * 1 = 256 + 32 + 3 = 291
  • 10. DECIMAL(BASE 10) BINARY (BASE 2) OCTAL ( BASE 8) HEXA(BASE 16) 0 0000 0 0 1 0001 1 1 2 0010 2 2 3 0011 3 3 4 0100 4 4 5 0101 5 5 6 0110 6 6 7 0111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 11. Converting To and From Decimal
  • 12. CONVERSION PROCESS DECIMAL ↔ BASE N Successive Division
  • 13. CONVERSION PROCESS DECIMAL ↔ BASE N Weighted Multiplication
  • 14. DECIMAL ↔ BINARY -EXAMPLE 12510 = ?2 2 125 62 1 2 31 0 2 15 1 2 7 1 2 3 1 2 1 1 2 0 1 12510 = 11111012
  • 15. DECIMAL ↔ OCTAL 123410 = ?8 8 1234 154 2 8 19 2 8 2 3 8 0 2 123410 = 23228
  • 16. DECIMAL ↔ HEXADECIMAL 123410 = ?16 123410 = 4D216 16 1234 77 2 16 4 13 = D 16 0 4
  • 17. BINARY ↔ DECIMAL 1010112 => 1 x 20 = 1 1 x 21 = 2 0 x 22 = 0 1 x 23 = 8 0 x 24 = 0 1 x 25 = 32 4310 Bit “0”
  • 18. OCTAL TO DECIMAL 7248 => 4 x 80 = 4 2 x 81 = 16 7 x 82 = 448 46810 HEXADECIMAL TO DECIMAL ABC16 => C x 160 = 12 x 1 = 12 B x 161 = 11 x 16 = 176 A x 162 = 10 x 256 = 2560 274810
  • 19. BINARY ↔ OCTAL Technique Group bits in threes, starting on right Convert to octal digits 10110101112 = ?8 1 011 010 111 1 3 2 7 10110101112 = 13278
  • 20. OCTAL ↔ BINARY 7058 = ?2 7 0 5 111 000 101 7058 = 1110001012
  • 21. BINARY ↔ HEXADECIMAL 10101110112 = ?16 10 1011 1011 2 B B 10101110112 = 2BB16
  • 22. HEXADECIMAL ↔ BINARY Technique Convert each hexadecimal digit to a 4-bit equivalent binary representation 10AF16 = ?2 1 0 A F 0001 0000 1010 1111 10AF16 = 00010000101011112
  • 23. Exercise – Convert ... Decimal Binary Octal Hexa- decimal 33 1110101 703 1AF
  • 24. Exercise – Convert ... Decimal Binary Octal Hexa- decimal 33 100001 41 21 117 1110101 165 75 451 111000011 703 1C3 431 110101111 657 1AF
  • 25. FRACTIONS Decimal to decimal (just for fun) 3.14 => 4 x 10-2 = 0.04 1 x 10-1 = 0.1 3 x 100 = 3 3.14
  • 26. FRACTIONS Binary to decimal pp. 46-50 10.1011 => 1 x 2-4 = 0.0625 1 x 2-3 = 0.125 0 x 2-2 = 0.0 1 x 2-1 = 0.5 0 x 20 = 0.0 1 x 21 = 2.0 2.6875
  • 27. FRACTIONS Decimal to binary 3.14579 .14579 x 2 0.29158 x 2 0.58316 x 2 1.16632 x 2 0.33264 x 2 0.66528 x 2 1.33056 etc. 11.001001...
  • 28. Exercise – Convert ... Don’t use a calculator! Decimal Binary Octal Hexa- decimal 29.8 101.1101 3.07 C.82
  • 29. Exercise – Convert … Decimal Binary Octal Hexa- decimal 29.8 11101.110011… 35.63… 1D.CC… 5.8125 101.1101 5.64 5.D 3.109375 11.000111 3.07 3.1C 12.5078125 1100.10000010 14.404 C.82 Answer
  • 30. Binary addition (1 of 2) Two 1-bit values A B A + B 0 0 0 0 1 1 1 0 1 1 1 10 “two”
  • 31. Binary addition (2 of 2) Two n-bit values Add individual bits Propagate carries E.g., 1 1 10101 21 + 11001 + 25 101110 46
  • 32. Multiplication (1 of 2) Binary, two 1-bit values A B A  B 0 0 0 0 1 0 1 0 0 1 1 1
  • 33. Multiplication (2 of 2) Binary, two n-bit values 1110 x 1011 1110 1110 0000 1110 10011010
  • 34. Common Powers (1 of 2) Base 10 Power Preface Symbol 10-12 pico p 10-9 nano n 10-6 micro  10-3 milli m 103 kilo k 106 mega M 109 giga G 1012 tera T Value .000000000001 .000000001 .000001 .001 1000 1000000 1000000000 1000000000000
  • 35. Common Powers (2 of 2) Base 2 Power Preface Symbol 210 kilo k 220 mega M 230 Giga G Value 1024 1048576 1073741824