International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org ||Volume 5 Issue 9|| September 2016 || PP. 25-28
www.ijesi.org 25 | Page
On The Structure Equation
2
0p
F F 
1
Lakhan Singh, 2
Sunder Pal Singh
1
Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.)
2
Department of Physics, D.J. College, Baraut, Baghpat (U.P.)
Abstract: In this paper, we have studied various properties of the F- sturcture manifold satisfying
2
0p
F F  where p is odd prime. Metric F-structure, kernel, tangent and normal vectors have also been
discussed.
Keywords: Differnetiable manifold, complementary projection operators, metric, kernel, tangent and normal
vectors.
I. Introduction
Let Mn
be a differentiable manifold of class C
and F be a (1,1) tensor of class C
, satisfying
(1.1)
2
0p
F F 
we define the operators l and m on Mn
by
(1.2)
2 2
1
1,p p
l F m I F 
    
where I is the identity operator.
From (1.1) and (1.2), we have
(1.3)
2 2
, , , 0l m I l l m m lm ml     
, 0,Fl lF F Fm mF   
Theorem (1.1): Let us define the (1,1) tensors p and q by
(1.4)
   2 2
1 /2 1 /2
, ,
p p
p m F q m F
 
   
Then p and q are invertible operators satisfying
(1.5)
3 3 2 2 2
, , , , 0pq I p q q p p q p p q I       
Proof: Using (1.2), (1.3) and (1.4)
(1.6)
2 2
,pq I p q m l    etc, the other results follow similarly
Theorem (1.2): Let us define the (1,1) tensors  and  by
(1.7)
2 2
1 1
, ,p p
m F m F  
    then
(1.8)
2
I  
Proof: Using (1.2), (1.3) and (1.7), we get the results
Theorem (1.3): Let us define the (1,1) tensors  and  by
(1.9)
2 2
1 1
, ,p p
l F l F  
    then
(1.10) 2 , 0n n
l  
Proof: Using (1.2), (1.3) and (1.9), 0, 
2 2
2 , 4 2 .... 2n n
l l l l     
II. Metric F-Structure
For F satisfying (1.1) and Riemannian metric g, let
(2.1)    , ,`F X Y g FX Y is skew symmetric then
On The Structure Equation
2
0p
F F 
www.ijesi.org 26 | Page
(2.2)    , ,g FX Y g X FY 
and  ,F g is called metric F-structure
Theorem (2.1): For F satisfying (1.1)
(2.3)
   
   
2 2
1 / 2 1 / 2
, , ,`
p p
g F X F Y g X Y m X Y
      
 
where
(2.4)      , , ,`m X Y g mX Y g X mY 
Proof: Using (1.2), (2.2), (2.4) and  2
1 / 2p  being a multiple of 4, we have
(2.5)
   
  
 
2 2 2 21 / 2 1 / 2 1 / 2 1
, 1 ,
p p p p
g F X F Y g X F Y
       
 
 ,g X lY 
 ,g X lY 
  ,g X I m Y  
   , ,`g X Y m X Y  
III. Kernel, Tangent And Normal Vectors
We define
(3.1)  : 0Ker F X FX 
(3.2)  :Tan F X FX X 
(3.3)   : , 0,Nor F X g X FY Y  
Theorem (3.1): For F satisfying (1.1) we have
(3.4)
2
2
... p
Ker F Ker F Ker F  
(3.5)
2
2
... p
Tan F Tan F Tan F  
(3.6)
2
2
... p
Nor F Nor F Nor F  
Proof: to (3.4) Using (1.1), let X Ker F
0FX 
2
0F X 
2
X Ker F 
Thus
(3.7)
2
Ker F Ker F
Now let
2 2
0X Ker F F X  
3
0F X 
………………………………………………
………………………………………………
2
0p
F X 
0FX 
On The Structure Equation
2
0p
F F 
www.ijesi.org 27 | Page
X Ker F 
Thus
(3.8)
2
Ker F Ker F
From (3.7) and (3.8) we get
(3.9)
2
Ker F Ker F
proceeding similarly we get (3.4)
Proof to (3.5): Let
X Tan F FX X  
 2 2
F X F X X   
2
X Tan F 
Thus
(3.10)
2
Tan F Tan F
Now let
2 2 2
X Tan F F X X  
3 3
F X X 
………………………………………………
………………………………………………
2
p p
F X X 
p
FX X  
p
FX X  
X Tan F 
Thus
(3.11)
2
Tan F Tan F
From (3.10) and (3.11)
(3.12)
2
Tan F Tan F proceeding similarly we get (3.5)
Proof to (3.6): Let
 , 0X Nor F g X FY  
 2
, 0g X F Y 
2
X Nor F 
Thus
(3.13)
2
Nor F Nor F
Now let
 2 2
, 0X Nor F g X F Y  
………………………………………………
………………………………………………
 2
, 0p
g X F Y 
 , 0g X FY 
X Nor F 
Thus
On The Structure Equation
2
0p
F F 
www.ijesi.org 28 | Page
(3.14)
2
Nor F Nor F
From (3.13) and (3.14), we get
(3.15)
2
,Nor F Nor F
Proceeding similarly we get (3.6)
References
[1]. A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat.
(Supplement) 1981, 17-21.
[2]. B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21
(1988), 21-26.
[3]. F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
[4]. Endo Hiroshi : On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
[5]. H.B. Pandey & A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
[6]. K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying f3
+f=0. Tensor N.S., 14 (1963), 99-109.
[7]. R. Nivas & S. Yadav: On CR-structures and  2 3,2F   - HSU - structure satisfying
2 3 2
0r
F F

  ,
Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).
[8]. Abhisek Singh,: On horizontal and complete lifts Ramesh Kumar Pandey of (1,1) tensor fields F satisfying & Sachin Khare the
structure equation F  2 ,k S S =0. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152,
ISSN 2249-3328

More Related Content

PDF
On Integrablity Of F-Structure Satisfying F 2K+1 +F=0
PDF
3 handouts section3-6
PPTX
Degree of freedom of a Kinematic Mechanism
DOCX
Smu mca sem 1 winter 2014 assignments
PPTX
LOCUS AND BISECTOR OF THE ANGLE BETWEEN 2 LINES
PDF
Orthogonal_Polynomials
PDF
Em34852854
PDF
Orthogonal Polynomial
On Integrablity Of F-Structure Satisfying F 2K+1 +F=0
3 handouts section3-6
Degree of freedom of a Kinematic Mechanism
Smu mca sem 1 winter 2014 assignments
LOCUS AND BISECTOR OF THE ANGLE BETWEEN 2 LINES
Orthogonal_Polynomials
Em34852854
Orthogonal Polynomial

What's hot (19)

DOCX
Rob l5
PDF
3 handouts section3-5
DOCX
SMU MCA Sem 1 Winter 2014 Assignments
PDF
F0421035039
PDF
3 handouts section3-9
DOCX
SMU MCA SEM 1 FALL 2014 ASSIGNMENTS
PDF
Lesson 48
PDF
V2 i2 2013_paper10
PPT
TechMathI - Point slope form
DOCX
SMU ,CA FALL 2014 ASSIGNMENTS
PPTX
Ch 5 integration
PPTX
Continuous functions
PDF
SMU MCA SUMMER 2014 ASSIGNMENTS
PPTX
Simplification of switching functions
PPTX
Indefinite Integral 3
PPT
Inverses day 2 worked
PDF
L8 fuzzy relations contd.
PPT
Algebra 1 Item No 22
Rob l5
3 handouts section3-5
SMU MCA Sem 1 Winter 2014 Assignments
F0421035039
3 handouts section3-9
SMU MCA SEM 1 FALL 2014 ASSIGNMENTS
Lesson 48
V2 i2 2013_paper10
TechMathI - Point slope form
SMU ,CA FALL 2014 ASSIGNMENTS
Ch 5 integration
Continuous functions
SMU MCA SUMMER 2014 ASSIGNMENTS
Simplification of switching functions
Indefinite Integral 3
Inverses day 2 worked
L8 fuzzy relations contd.
Algebra 1 Item No 22
Ad

Viewers also liked (14)

PDF
Cytoprotective and DNA Protective Activity of Carica Papaya Leaf Extracts
PPTX
El final de hotmail
PPTX
Presentacion aerosmith
PDF
Frases emprendedoras
PDF
Shaoxia Yu_selected_publications_2016
PDF
The Impact of Physical Activity on Socializing Mentally Handicapped Children
PDF
Cytogenetic, Hematological and Enzymes Levels Parameters in the Biomonitoring...
PDF
Golf Comfortline tsi
PPTX
Problemas de pobreza
PPTX
La naturaleza
PDF
Geo-Environmental Study of Kaliasaur Landslide in District Rudraprayag of Gar...
PDF
Towards Indian Agricultural Information: A Need Based Information Flow Model
PDF
Ficheiro robótica
Cytoprotective and DNA Protective Activity of Carica Papaya Leaf Extracts
El final de hotmail
Presentacion aerosmith
Frases emprendedoras
Shaoxia Yu_selected_publications_2016
The Impact of Physical Activity on Socializing Mentally Handicapped Children
Cytogenetic, Hematological and Enzymes Levels Parameters in the Biomonitoring...
Golf Comfortline tsi
Problemas de pobreza
La naturaleza
Geo-Environmental Study of Kaliasaur Landslide in District Rudraprayag of Gar...
Towards Indian Agricultural Information: A Need Based Information Flow Model
Ficheiro robótica
Ad

Similar to On The Structure Equation 2 0 p F F  (20)

PDF
Gp2613231328
PDF
On recurrent Light like Hypersurfaces of Indefinite Sasakian Manifold
PDF
Reflect tsukuba524
PDF
4. Zeki Kasap.pdf
PDF
4. Zeki Kasap.pdf
PDF
PDF
On Certain Special Vector Fields in a Finsler Space III
PDF
05_AJMS_212_19_RA.pdf
PDF
05_AJMS_212_19_RA.pdf
PDF
Geometer Toolkit For String Theory
PDF
C1061417
PDF
International Journal of Engineering Research and Development
PDF
Pushforward of Differential Forms
PDF
pitt.edu+Tillman_P_4-26-2007_1
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
Tensor analysis EFE
PDF
Fixed Point Theorem in Fuzzy Metric Space
PDF
Common fixed theorems for weakly compatible mappings via an
PDF
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
Gp2613231328
On recurrent Light like Hypersurfaces of Indefinite Sasakian Manifold
Reflect tsukuba524
4. Zeki Kasap.pdf
4. Zeki Kasap.pdf
On Certain Special Vector Fields in a Finsler Space III
05_AJMS_212_19_RA.pdf
05_AJMS_212_19_RA.pdf
Geometer Toolkit For String Theory
C1061417
International Journal of Engineering Research and Development
Pushforward of Differential Forms
pitt.edu+Tillman_P_4-26-2007_1
Fixed point theorems for random variables in complete metric spaces
Tensor analysis EFE
Fixed Point Theorem in Fuzzy Metric Space
Common fixed theorems for weakly compatible mappings via an
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold

Recently uploaded (20)

PDF
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Software Engineering and software moduleing
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Unit1 - AIML Chapter 1 concept and ethics
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
Measurement Uncertainty and Measurement System analysis
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Petroleum Refining & Petrochemicals.pptx
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
ai_satellite_crop_management_20250815030350.pptx
PDF
Introduction to Power System StabilityPS
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Prof. Dr. KAYIHURA A. SILAS MUNYANEZA, PhD..pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Software Engineering and software moduleing
MLpara ingenieira CIVIL, meca Y AMBIENTAL
distributed database system" (DDBS) is often used to refer to both the distri...
Unit1 - AIML Chapter 1 concept and ethics
Management Information system : MIS-e-Business Systems.pptx
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Measurement Uncertainty and Measurement System analysis
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Petroleum Refining & Petrochemicals.pptx
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
ai_satellite_crop_management_20250815030350.pptx
Introduction to Power System StabilityPS
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf

On The Structure Equation 2 0 p F F 

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 5 Issue 9|| September 2016 || PP. 25-28 www.ijesi.org 25 | Page On The Structure Equation 2 0p F F  1 Lakhan Singh, 2 Sunder Pal Singh 1 Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.) 2 Department of Physics, D.J. College, Baraut, Baghpat (U.P.) Abstract: In this paper, we have studied various properties of the F- sturcture manifold satisfying 2 0p F F  where p is odd prime. Metric F-structure, kernel, tangent and normal vectors have also been discussed. Keywords: Differnetiable manifold, complementary projection operators, metric, kernel, tangent and normal vectors. I. Introduction Let Mn be a differentiable manifold of class C and F be a (1,1) tensor of class C , satisfying (1.1) 2 0p F F  we define the operators l and m on Mn by (1.2) 2 2 1 1,p p l F m I F       where I is the identity operator. From (1.1) and (1.2), we have (1.3) 2 2 , , , 0l m I l l m m lm ml      , 0,Fl lF F Fm mF    Theorem (1.1): Let us define the (1,1) tensors p and q by (1.4)    2 2 1 /2 1 /2 , , p p p m F q m F       Then p and q are invertible operators satisfying (1.5) 3 3 2 2 2 , , , , 0pq I p q q p p q p p q I        Proof: Using (1.2), (1.3) and (1.4) (1.6) 2 2 ,pq I p q m l    etc, the other results follow similarly Theorem (1.2): Let us define the (1,1) tensors  and  by (1.7) 2 2 1 1 , ,p p m F m F       then (1.8) 2 I   Proof: Using (1.2), (1.3) and (1.7), we get the results Theorem (1.3): Let us define the (1,1) tensors  and  by (1.9) 2 2 1 1 , ,p p l F l F       then (1.10) 2 , 0n n l   Proof: Using (1.2), (1.3) and (1.9), 0,  2 2 2 , 4 2 .... 2n n l l l l      II. Metric F-Structure For F satisfying (1.1) and Riemannian metric g, let (2.1)    , ,`F X Y g FX Y is skew symmetric then
  • 2. On The Structure Equation 2 0p F F  www.ijesi.org 26 | Page (2.2)    , ,g FX Y g X FY  and  ,F g is called metric F-structure Theorem (2.1): For F satisfying (1.1) (2.3)         2 2 1 / 2 1 / 2 , , ,` p p g F X F Y g X Y m X Y          where (2.4)      , , ,`m X Y g mX Y g X mY  Proof: Using (1.2), (2.2), (2.4) and  2 1 / 2p  being a multiple of 4, we have (2.5)          2 2 2 21 / 2 1 / 2 1 / 2 1 , 1 , p p p p g F X F Y g X F Y            ,g X lY   ,g X lY    ,g X I m Y      , ,`g X Y m X Y   III. Kernel, Tangent And Normal Vectors We define (3.1)  : 0Ker F X FX  (3.2)  :Tan F X FX X  (3.3)   : , 0,Nor F X g X FY Y   Theorem (3.1): For F satisfying (1.1) we have (3.4) 2 2 ... p Ker F Ker F Ker F   (3.5) 2 2 ... p Tan F Tan F Tan F   (3.6) 2 2 ... p Nor F Nor F Nor F   Proof: to (3.4) Using (1.1), let X Ker F 0FX  2 0F X  2 X Ker F  Thus (3.7) 2 Ker F Ker F Now let 2 2 0X Ker F F X   3 0F X  ……………………………………………… ……………………………………………… 2 0p F X  0FX 
  • 3. On The Structure Equation 2 0p F F  www.ijesi.org 27 | Page X Ker F  Thus (3.8) 2 Ker F Ker F From (3.7) and (3.8) we get (3.9) 2 Ker F Ker F proceeding similarly we get (3.4) Proof to (3.5): Let X Tan F FX X    2 2 F X F X X    2 X Tan F  Thus (3.10) 2 Tan F Tan F Now let 2 2 2 X Tan F F X X   3 3 F X X  ……………………………………………… ……………………………………………… 2 p p F X X  p FX X   p FX X   X Tan F  Thus (3.11) 2 Tan F Tan F From (3.10) and (3.11) (3.12) 2 Tan F Tan F proceeding similarly we get (3.5) Proof to (3.6): Let  , 0X Nor F g X FY    2 , 0g X F Y  2 X Nor F  Thus (3.13) 2 Nor F Nor F Now let  2 2 , 0X Nor F g X F Y   ……………………………………………… ………………………………………………  2 , 0p g X F Y   , 0g X FY  X Nor F  Thus
  • 4. On The Structure Equation 2 0p F F  www.ijesi.org 28 | Page (3.14) 2 Nor F Nor F From (3.13) and (3.14), we get (3.15) 2 ,Nor F Nor F Proceeding similarly we get (3.6) References [1]. A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21. [2]. B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26. [3]. F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106. [4]. Endo Hiroshi : On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453. [5]. H.B. Pandey & A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987. [6]. K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying f3 +f=0. Tensor N.S., 14 (1963), 99-109. [7]. R. Nivas & S. Yadav: On CR-structures and  2 3,2F   - HSU - structure satisfying 2 3 2 0r F F    , Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012). [8]. Abhisek Singh,: On horizontal and complete lifts Ramesh Kumar Pandey of (1,1) tensor fields F satisfying & Sachin Khare the structure equation F  2 ,k S S =0. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328