SlideShare a Scribd company logo
On-device ML
with Lite
Margaret Maynard-Reid, 2/12/2020
@margaretmz
@margaretmz | #ML | #GDE
Topics
● Why on-device ML?
● On-device ML options
● E2E tf.Keras to TFLite to Android
○ train a model from scratch
○ convert to TFLite
○ deploy to mobile and IoT
● TFLite on microcontroller & Coral Edge TPU
2
@margaretmz | #ML | #GDE 3
Intro
Why On-device ML?
● Access to more data
● Faster user interaction
● Preserve privacy
Unique constraints:
● Less compute power
● Limited memory
● Battery consumption
@margaretmz | #ML | #GDE
TensorFlow for mobile & edge devices
4
2015
TF open
sourced
2016
TF
mobile
2017
TF Lite
developer
preview
2018
ML Kit
2019
- New ML Kit features
- TF Mobile deprecated
- New TFLite features!!!
@margaretmz | #ML | #GDE
TFLite on 3b+ devices!
Source: Tensorflow Lite team
5
@margaretmz | #ML | #GDE
Dance Like @I/O 2019
Segmentation, Pose, GPU on-device
6
@margaretmz | #ML | #GDE
TensorFlow Lite
● Converter - convert to TFLite file format
● Interpreter - execute inference & optimized
for small devices
● Ops/Kernel - limited ops
● Interface to hardware acceleration
○ NN API
○ Edge TPU
7
Optimization
1. Reduce model size
TFLite model optimization toolkit
● Quantization - convert 32 bit floating point
to fixed point (e.g. 8-bit int)
○ Post-training quantization
○ Quantization-aware training
● Pruning - eliminating unnecessary values
in the weight tensor
8
2. Speed up inference
On Android:
● GPU delegate
● Android NNAPI
On-device ML
What are your options?
Media Pipe
9
@margaretmz | #ML | #GDE
On-device ML Options
10
What / how Who Where
Native Android (iOS) apps
● Direct deploy to Android
● With ML Kit
● With MediaPipe
● Fritz.ai
Android (or iOS)
developers
React Native Web developers
TFLite / TF micro Embedded Microcontrollers
Edge TPUs
@margaretmz | #ML | #GDE
React Native Support
● Use TF.js ML directly inside React Native with WebGL
acceleration
● Load models from the web, or compile into your
application
Link to demo video | Link to github
11
@margaretmz | #ML | #GDE
Base APIs (Out of the box)
Custom models
● Dynamic model downloads
● A/B testing (via Firebase remote Configuration)
● Model conversion (from TensorFlow to TFLite)
Learn more about ML Kit 👉 g.co/mlkit
Image labelling OCR Face detection
Barcode scanning Landmark detection Smart reply
Object detection & Tracking Translation (56 languages) AutoML
Google ML Kit
12
@margaretmz | #ML | #GDE
Why use ML Kit?
13
Convert to
Bytebuffer/bit
map
Calibration
Java
Native Frame
Scheduler
(Image Timestamp)
Convert to byte
array
Output
Results
Pipeline config
Convert to Grayscale
Resize/Rotate
Tracker
Frame
Selection
Convert to
RGB/Resize/R
otate
Detector
(TF Lite
model)
Object
Manager
Image
Validation
Resize
Pipeline
Classifier
( TF Lite
model)
Source: ML Kit team
@margaretmz | #ML | #GDE
● Firebase console
● AutoML - train model
● Download TFLite
● Mobile & edge
https://firebase.google.com/docs/ml-kit/automl-image-labeling
Google ML Kit - AutoML
14
@margaretmz | #ML | #GDE
MediaPipe
A cross-platform AI pipeline
framework by Google Research:
● TensorFlow & TFLite
● Desktop, web, mobile, Coral
Edge TPUs
● Fast & realtime
● GPU
● WebGL
15
Source: MediaPipe Github
@margaretmz | #ML | #GDE
Two talks on Media Pipe
@AI Nextcon 2/13 1PM
@Google Seattle 2/13 5PM
● Google MediaPipe @Seattle by Ming Yong
16
@margaretmz | #ML | #GDE
Fritz.ai
Mobile ML made easy...
● Supports Android & iOS
● Features: Image labelling &
segmentation, object detection,
style transfer, pose estimation…
● Analytics, custom model hosting,
perf monitoring…
● Free up to certain usage
17
Source: Embrace your new look with Fritz Hair Segmentation
Datasets
Train model
(Convert to TFLite)
Deploy for inference
End to End
Model training to inference
With TensorFlow 2.0
18
@margaretmz | #ML | #GDE
End to end: model training to inference in TF 2.0
19
Model
● tf.Keras (TensorFlow)
● Python libraries:
Numpy, Matplotlib etc
SavedModel or
Keras model
Serving
● Cloud
● Web
● Mobile
● IoT
● Micro controllers
● Edge TPU
Training Inference
Data
@margaretmz | #ML | #GDE
Data
● Existing datasets
○ Part of the deep learning framework:
■ MNIST, CIFAR10, FASHION_MNIST, IMDB movie reviews etc
○ Open datasets:
■ MNIST, MS-COCO, IMAGENet, CelebA etc
○ Kaggle datasets: https://www.kaggle.com/datasets
○ Google Dataset search tool: https://toolbox.google.com/datasetsearch
○ TF 2.0: TFDS
● Collect your own data
20
@margaretmz | #ML | #GDE
Models
Options of getting a model:
● Download a pre-trained model (here): Inception-v3, mobilenet etc.
● Transfer learning with a pre-trained model
○ Feature extraction or fine tuning on pre-trained model
○ TensorFlow hub (https://www.tensorflow.org/hub/)
● Train your own model from scratch (example in this talk)
21
@margaretmz | #ML | #GDE
Model saving, conversion, deployment
● Model saving - SavedModel or Keras model
● Model conversion
○ Convert the model to tflite format
○ Validate the converted model before deploy
● Deploy TFLite for inference
22
@margaretmz | #ML | #GDE
End to End: tf.Keras to TFLite to Android
23
@margaretmz | #ML | #GDE
MNIST dataset
● 60,000 train set and 10,000 test set
● 28x28x1 grayscale images
● 10 classes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
● Popular for computer vision
○ “hello world” tutorial or
○ benchmarking ML algorithms
24
@margaretmz | #ML | #GDE
Training the model in Colab
Launch sample code on Colab → mnist_tfkeras_to_tflite.ipynb
1. Import data
2. Define model architecture
3. Train the model
4. Model saving & conversion
○ Save a Keras model
○ convert to tflite format
25
@margaretmz | #ML | #GDE
A typical CNN model architecture
MNIST example:
● Convolutional layer (definition)
● Pooling layer (definition)
● Dense (fully-connected layer) definition
26
input conv pool conv pool conv pool Dense
0
1
2
3
4
5
6
7
8
9
@margaretmz | #ML | #GDE
Inspect the model - in python code
In python code, after defining the
model architecture, use
model.summary() to show the
model architecture
27
@margaretmz | #ML | #GDE
Virtualize model
Use a visualization tool:
● TensorBoard
● Netron
(https://github.com/lutzroeder/Netron)
Drop the .tflite model into Netron and see
the model visually
Note: model metadata a new TFLite tool (to be
launched) will allow you to inspect the model &
modify the metadata
28
@margaretmz | #ML | #GDE
Model saving
When to save as SavedModel or a Keras model?
Note: In TensorFlow 2.0 , tf.keras.Model.save() and tf.keras.models.save_model() default to the SavedModel format
(not HDF5). (link to doc)
29
SavedModel Keras Model
Share pre-trained models and model pieces on
TensorFlow Hub
Train with tf.Keras and you know your deploy your
target
When you don’t know the deploy target
@margaretmz | #ML | #GDE
Model conversion (with TFLite converter)
30
Command line Python code (recommended)
SavedModel
tflite_convert 
--saved_model_dir=/tmp/my_saved_model 
--output_file=/tmp/my_model.tflite
Keras Model
--keras_model_file=/tmp/my_keras_model.h5 
--output_file=/tmp/my_model.tflite
# Create a converter
converter =
tf.contrib.lite.TFLiteConverter.from_keras_model_file(keras_model)
from_keras_model(model)
# Set quantize to true (optional)
converter.post_training_quantize=True
# Convert the model
tflite_model = converter.convert()
# Create the tflite model file
tflite_model_name = "my_model.tflite"
open(tflite_model_name, "wb").write(tflite_model)
@margaretmz | #ML | #GDE
Validate TFLite model after conversion
31
Protip: validate the tflite model in python after conversion -
31
TensorFlow result TFLite result Compare results
# Test the TensorFlow model on random
Input data.
tf_result = model(tf.constant(input_data))
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape),
dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_result = interpreter.get_tensor(output_details[0]['index'])
# Compare the result.
for tf_result, tflite_result in zip(tf_result, tflite_result):
np.testing.assert_almost_equal(tf_result,
tflite_result,
decimal=5)
@margaretmz | #ML | #GDE
Tflite on Android
Android sample code DigitRecognizer, step by step:
● Place tf.lite model under assets folder
● Update build.gradle dependencies
● Input image - custom view, gallery or camera
● Data preprocessing
● Classify with the model
● Post processing
● Display result in UI
32
@margaretmz | #ML | #GDE
Dependencies
Update build.gradle to include tensorflow lite
android {
// Make sure model doesn't get compressed when app is compiled
aaptOptions {
noCompress "tflite"
}
}
dependencies {
….
// Add dependency for TensorFlow Lite
compile 'org.tensorflow:tensorflow-lite:[version-number]’
}
Place the mnist.tflite model file under /assets folder
33
@margaretmz | #ML | #GDE
Input - image data
Input to the classifier is an image, your options:
● Draw on canvas from custom View
● Get image from Gallery or a 3rd party camera
● Live frames from Camera2 API
Make sure the image dimensions (shape) matches what your classifier expects
● 28x28x1- MNIST or FASHION_MNIST gray scale image
● 299x299x3 - Inception V3
● 256x256x3 - MobileNet
34
@margaretmz | #ML | #GDE
Image preprocessing
● Convert Bitmap to ByteBuffer
● Normalize pixel values to be a certain range
● Convert from color to grayscale, if needed
35
@margaretmz | #ML | #GDE
Run inference
Load the model file located under the assets folder
Use the TensorFlow Lite interpreter to run inference on the input image
36
@margaretmz | #ML | #GDE
Post processing
The output is an array of probabilities, each
correspond to a category
Find the category with the highest probability
and output result to UI
37
@margaretmz | #ML | #GDE
Summary
● Training with tf.Keras is easy
● Model conversion to TFLite is easier
● Android implementation is getting better:
○ Validate tflite model before deploy to Android
○ Image pre-processing
○ Input tensor shape?
○ Color or grayscale?
○ Post processing
My blog post: E2E tf.Keras to TFLite to Android
38
@margaretmz | #ML | #GDE
New TFLite features
Announced at TensorFlow World:
1. New TFLite support library (link)
2. Model metadata (not yet launched)
3. Model repository pre-converted to tflite format (link to models w/ examples | link
to hosted models)
4. Transfer learning made easy - model customization API (link)
5. Ready to use end-to-end tutorials and full example apps (link)
6. TFLite course on Udacity (link)
39
@margaretmz | #ML | #GDE
TFLite classification demo app
Check out the classification Demo
app in TensorFlow repo
40
@margaretmz | #ML | #GDE
Inference with GPU
● Face contour detection
● Link to blog post: TensorFlow Lite Now
Faster with Mobile GPUs
41
@margaretmz | #ML | #GDE
Posenet example
● PoseNet model on Android
● Camera live frames
● Display key body parts in real time
● Link to blog post: Track human poses in
real-time on Android with TensorFlow Lite
42
@margaretmz | #ML | #GDE
More TFLite examples
43
@margaretmz | #ML | #GDE
On device ML training is finally here!
● Train with ~20 images
● Use transfer learning
● Quantized MobileNetV2
● Android device (5.0+)
Link to blog | Android sample
44
@margaretmz | #ML | #GDE
TFLite on microcontroller
● Tiny models on tiny computers
● Consumes much less power than CPUs - days on a coin battery
● Tiny RAM and Flash available
● Opens up voice interface to devs
More info here -
● Doc - https://www.tensorflow.org/lite/guide/microcontroller
● Code lab - https://g.co/codelabs/sparkfunTF
● Purchase - https://www.sparkfun.com/products/15170
45
@margaretmz | #ML | #GDE
Coral edge TPU (beta) - hardware for on-device ML acceleration
Link to codelab: https://codelabs.developers.google.com/codelabs/edgetpu-classifier/index.html#0
● Dev board (+ camera module)
● USB Accelerator (+ camera
module + Raspberry Pi)
Coral Edge TPU
46
@margaretmz | #ML | #GDE
Coral Edge TPU
MobileNet SSD
model running on
TPU
Inference time:
< ~20 ms
> ~60 fps
47
@margaretmz | #ML | #GDE
Coral Edge TPU demo
MobileNet SSD
model running on
CPU
Inference time
> ~390ms
~ 3fps
48
@margaretmz | #ML | #GDE
On-device ML trends
● Why the future of machine learning is tiny? - Pete Warden
● Deploying to mobile and IoT will get much easier
● TFLite will have many more features
● Federated learning
● On device training
49
@margaretmz | #ML | #GDE
Awesome TFLite 😎
bit.ly/awesome-tflite - please star ⭐ the repo if you find it useful!
50
@margaretmz | #ML | #GDE
Thank you!
51
Follow me on Twitter, Medium or GitHub to learn more about
deep learning, TensorFlow and on-device ML
@margaretmz
@margaretmz
margaretmz

More Related Content

PPTX
AI Hardware Landscape 2021
PDF
TensorFlow Lite for mobile & IoT
PDF
Introduction to TensorFlow Lite
PDF
Embedded Android : System Development - Part II (HAL)
PDF
TFLite NNAPI and GPU Delegates
PDF
Embedded Android : System Development - Part IV
PDF
“TensorFlow Lite for Microcontrollers (TFLM): Recent Developments,” a Present...
PDF
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...
AI Hardware Landscape 2021
TensorFlow Lite for mobile & IoT
Introduction to TensorFlow Lite
Embedded Android : System Development - Part II (HAL)
TFLite NNAPI and GPU Delegates
Embedded Android : System Development - Part IV
“TensorFlow Lite for Microcontrollers (TFLM): Recent Developments,” a Present...
"Quantizing Deep Networks for Efficient Inference at the Edge," a Presentatio...

What's hot (20)

PPTX
Develop and optimize CV/DL applications with Intel OpenVINO toolkit
PDF
Exploring the power of OpenTelemetry on Kubernetes
PDF
Introduction to Flutter - truly crossplatform, amazingly fast
PDF
Android Treble: Blessing or Trouble?
PPTX
Machine Learning on Your Hand - Introduction to Tensorflow Lite Preview
PDF
Data Versioning and Reproducible ML with DVC and MLflow
PDF
Embedded Android : System Development - Part II (Linux device drivers)
PPT
Learning AOSP - Android Booting Process
PPTX
Intro to Helm for Kubernetes
PPTX
Hands on OpenCL
PPTX
PDF
Python for Image Understanding: Deep Learning with Convolutional Neural Nets
PPTX
Digital twins
PDF
Deep Dive into the AOSP
PPT
Learning AOSP - Android Linux Device Driver
PDF
"Using TensorFlow Lite to Deploy Deep Learning on Cortex-M Microcontrollers,"...
PDF
Accessing Hardware on Android
PPTX
Multi Stage Docker Build
PDF
Build your own embedded linux distributions by yocto project
PDF
Building aosp
Develop and optimize CV/DL applications with Intel OpenVINO toolkit
Exploring the power of OpenTelemetry on Kubernetes
Introduction to Flutter - truly crossplatform, amazingly fast
Android Treble: Blessing or Trouble?
Machine Learning on Your Hand - Introduction to Tensorflow Lite Preview
Data Versioning and Reproducible ML with DVC and MLflow
Embedded Android : System Development - Part II (Linux device drivers)
Learning AOSP - Android Booting Process
Intro to Helm for Kubernetes
Hands on OpenCL
Python for Image Understanding: Deep Learning with Convolutional Neural Nets
Digital twins
Deep Dive into the AOSP
Learning AOSP - Android Linux Device Driver
"Using TensorFlow Lite to Deploy Deep Learning on Cortex-M Microcontrollers,"...
Accessing Hardware on Android
Multi Stage Docker Build
Build your own embedded linux distributions by yocto project
Building aosp
Ad

Similar to On-device ML with TFLite (20)

PDF
Running TFLite on Your Mobile Devices, 2020
PPTX
Edge and ai
PDF
Ai for Art and Design with TensorFlow Lite - TFUG India Summit
PPTX
Fusing AI With AR for Android - 9/28/2019
PDF
open source nn frameworks on cellphones
PPTX
DevFest Kuwait 2020 - GDG Kuwait
PDF
Creating a custom ML model for your application - DevFest Lima 2019
PDF
Siddha Ganju, NVIDIA. Deep Learning for Mobile
PDF
Siddha Ganju. Deep learning on mobile
PDF
Inference accelerators
PDF
NUS-ISS Learning Day 2019-Deploying AI apps using tensor flow lite in mobile ...
PDF
ML in Android
PDF
Neural Networks from Scratch - TensorFlow 101
PDF
Building a custom machine learning model on android
PDF
Creating a Custom ML Model for your Application - Kotlin/Everywhere
PDF
Creating a custom Machine Learning Model for your applications - Java Dev Day...
PPTX
Deep Learning with TensorFlow
PDF
Inteligencia artificial para android como empezar
PDF
Tensorflow 2.0 and Coral Edge TPU
Running TFLite on Your Mobile Devices, 2020
Edge and ai
Ai for Art and Design with TensorFlow Lite - TFUG India Summit
Fusing AI With AR for Android - 9/28/2019
open source nn frameworks on cellphones
DevFest Kuwait 2020 - GDG Kuwait
Creating a custom ML model for your application - DevFest Lima 2019
Siddha Ganju, NVIDIA. Deep Learning for Mobile
Siddha Ganju. Deep learning on mobile
Inference accelerators
NUS-ISS Learning Day 2019-Deploying AI apps using tensor flow lite in mobile ...
ML in Android
Neural Networks from Scratch - TensorFlow 101
Building a custom machine learning model on android
Creating a Custom ML Model for your Application - Kotlin/Everywhere
Creating a custom Machine Learning Model for your applications - Java Dev Day...
Deep Learning with TensorFlow
Inteligencia artificial para android como empezar
Tensorflow 2.0 and Coral Edge TPU
Ad

More from Margaret Maynard-Reid (7)

PDF
Build with AI on Google Cloud Session #5
PDF
Build with AI on Google Cloud Session #4
PDF
Build with AI on Google Cloud Session #3
PDF
Build with AI on Google Cloud Session #2
PDF
Build with AI on Google Cloud Session #1
PDF
Awesome TensorFlow Lite
PDF
Deep Learning Design Patterns Study Jams - Overview
Build with AI on Google Cloud Session #5
Build with AI on Google Cloud Session #4
Build with AI on Google Cloud Session #3
Build with AI on Google Cloud Session #2
Build with AI on Google Cloud Session #1
Awesome TensorFlow Lite
Deep Learning Design Patterns Study Jams - Overview

Recently uploaded (20)

PDF
Odoo Companies in India – Driving Business Transformation.pdf
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PDF
wealthsignaloriginal-com-DS-text-... (1).pdf
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 41
PDF
top salesforce developer skills in 2025.pdf
PDF
2025 Textile ERP Trends: SAP, Odoo & Oracle
PPTX
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
PDF
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
PPTX
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
PDF
How to Migrate SBCGlobal Email to Yahoo Easily
PDF
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
PDF
System and Network Administraation Chapter 3
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PDF
Design an Analysis of Algorithms II-SECS-1021-03
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
Softaken Excel to vCard Converter Software.pdf
PPTX
Odoo POS Development Services by CandidRoot Solutions
PDF
medical staffing services at VALiNTRY
PDF
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
Odoo Companies in India – Driving Business Transformation.pdf
Design an Analysis of Algorithms I-SECS-1021-03
wealthsignaloriginal-com-DS-text-... (1).pdf
Internet Downloader Manager (IDM) Crack 6.42 Build 41
top salesforce developer skills in 2025.pdf
2025 Textile ERP Trends: SAP, Odoo & Oracle
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
How to Migrate SBCGlobal Email to Yahoo Easily
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
System and Network Administraation Chapter 3
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
Design an Analysis of Algorithms II-SECS-1021-03
How to Choose the Right IT Partner for Your Business in Malaysia
Softaken Excel to vCard Converter Software.pdf
Odoo POS Development Services by CandidRoot Solutions
medical staffing services at VALiNTRY
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free

On-device ML with TFLite

  • 1. On-device ML with Lite Margaret Maynard-Reid, 2/12/2020 @margaretmz
  • 2. @margaretmz | #ML | #GDE Topics ● Why on-device ML? ● On-device ML options ● E2E tf.Keras to TFLite to Android ○ train a model from scratch ○ convert to TFLite ○ deploy to mobile and IoT ● TFLite on microcontroller & Coral Edge TPU 2
  • 3. @margaretmz | #ML | #GDE 3 Intro Why On-device ML? ● Access to more data ● Faster user interaction ● Preserve privacy Unique constraints: ● Less compute power ● Limited memory ● Battery consumption
  • 4. @margaretmz | #ML | #GDE TensorFlow for mobile & edge devices 4 2015 TF open sourced 2016 TF mobile 2017 TF Lite developer preview 2018 ML Kit 2019 - New ML Kit features - TF Mobile deprecated - New TFLite features!!!
  • 5. @margaretmz | #ML | #GDE TFLite on 3b+ devices! Source: Tensorflow Lite team 5
  • 6. @margaretmz | #ML | #GDE Dance Like @I/O 2019 Segmentation, Pose, GPU on-device 6
  • 7. @margaretmz | #ML | #GDE TensorFlow Lite ● Converter - convert to TFLite file format ● Interpreter - execute inference & optimized for small devices ● Ops/Kernel - limited ops ● Interface to hardware acceleration ○ NN API ○ Edge TPU 7
  • 8. Optimization 1. Reduce model size TFLite model optimization toolkit ● Quantization - convert 32 bit floating point to fixed point (e.g. 8-bit int) ○ Post-training quantization ○ Quantization-aware training ● Pruning - eliminating unnecessary values in the weight tensor 8 2. Speed up inference On Android: ● GPU delegate ● Android NNAPI
  • 9. On-device ML What are your options? Media Pipe 9
  • 10. @margaretmz | #ML | #GDE On-device ML Options 10 What / how Who Where Native Android (iOS) apps ● Direct deploy to Android ● With ML Kit ● With MediaPipe ● Fritz.ai Android (or iOS) developers React Native Web developers TFLite / TF micro Embedded Microcontrollers Edge TPUs
  • 11. @margaretmz | #ML | #GDE React Native Support ● Use TF.js ML directly inside React Native with WebGL acceleration ● Load models from the web, or compile into your application Link to demo video | Link to github 11
  • 12. @margaretmz | #ML | #GDE Base APIs (Out of the box) Custom models ● Dynamic model downloads ● A/B testing (via Firebase remote Configuration) ● Model conversion (from TensorFlow to TFLite) Learn more about ML Kit 👉 g.co/mlkit Image labelling OCR Face detection Barcode scanning Landmark detection Smart reply Object detection & Tracking Translation (56 languages) AutoML Google ML Kit 12
  • 13. @margaretmz | #ML | #GDE Why use ML Kit? 13 Convert to Bytebuffer/bit map Calibration Java Native Frame Scheduler (Image Timestamp) Convert to byte array Output Results Pipeline config Convert to Grayscale Resize/Rotate Tracker Frame Selection Convert to RGB/Resize/R otate Detector (TF Lite model) Object Manager Image Validation Resize Pipeline Classifier ( TF Lite model) Source: ML Kit team
  • 14. @margaretmz | #ML | #GDE ● Firebase console ● AutoML - train model ● Download TFLite ● Mobile & edge https://firebase.google.com/docs/ml-kit/automl-image-labeling Google ML Kit - AutoML 14
  • 15. @margaretmz | #ML | #GDE MediaPipe A cross-platform AI pipeline framework by Google Research: ● TensorFlow & TFLite ● Desktop, web, mobile, Coral Edge TPUs ● Fast & realtime ● GPU ● WebGL 15 Source: MediaPipe Github
  • 16. @margaretmz | #ML | #GDE Two talks on Media Pipe @AI Nextcon 2/13 1PM @Google Seattle 2/13 5PM ● Google MediaPipe @Seattle by Ming Yong 16
  • 17. @margaretmz | #ML | #GDE Fritz.ai Mobile ML made easy... ● Supports Android & iOS ● Features: Image labelling & segmentation, object detection, style transfer, pose estimation… ● Analytics, custom model hosting, perf monitoring… ● Free up to certain usage 17 Source: Embrace your new look with Fritz Hair Segmentation
  • 18. Datasets Train model (Convert to TFLite) Deploy for inference End to End Model training to inference With TensorFlow 2.0 18
  • 19. @margaretmz | #ML | #GDE End to end: model training to inference in TF 2.0 19 Model ● tf.Keras (TensorFlow) ● Python libraries: Numpy, Matplotlib etc SavedModel or Keras model Serving ● Cloud ● Web ● Mobile ● IoT ● Micro controllers ● Edge TPU Training Inference Data
  • 20. @margaretmz | #ML | #GDE Data ● Existing datasets ○ Part of the deep learning framework: ■ MNIST, CIFAR10, FASHION_MNIST, IMDB movie reviews etc ○ Open datasets: ■ MNIST, MS-COCO, IMAGENet, CelebA etc ○ Kaggle datasets: https://www.kaggle.com/datasets ○ Google Dataset search tool: https://toolbox.google.com/datasetsearch ○ TF 2.0: TFDS ● Collect your own data 20
  • 21. @margaretmz | #ML | #GDE Models Options of getting a model: ● Download a pre-trained model (here): Inception-v3, mobilenet etc. ● Transfer learning with a pre-trained model ○ Feature extraction or fine tuning on pre-trained model ○ TensorFlow hub (https://www.tensorflow.org/hub/) ● Train your own model from scratch (example in this talk) 21
  • 22. @margaretmz | #ML | #GDE Model saving, conversion, deployment ● Model saving - SavedModel or Keras model ● Model conversion ○ Convert the model to tflite format ○ Validate the converted model before deploy ● Deploy TFLite for inference 22
  • 23. @margaretmz | #ML | #GDE End to End: tf.Keras to TFLite to Android 23
  • 24. @margaretmz | #ML | #GDE MNIST dataset ● 60,000 train set and 10,000 test set ● 28x28x1 grayscale images ● 10 classes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ● Popular for computer vision ○ “hello world” tutorial or ○ benchmarking ML algorithms 24
  • 25. @margaretmz | #ML | #GDE Training the model in Colab Launch sample code on Colab → mnist_tfkeras_to_tflite.ipynb 1. Import data 2. Define model architecture 3. Train the model 4. Model saving & conversion ○ Save a Keras model ○ convert to tflite format 25
  • 26. @margaretmz | #ML | #GDE A typical CNN model architecture MNIST example: ● Convolutional layer (definition) ● Pooling layer (definition) ● Dense (fully-connected layer) definition 26 input conv pool conv pool conv pool Dense 0 1 2 3 4 5 6 7 8 9
  • 27. @margaretmz | #ML | #GDE Inspect the model - in python code In python code, after defining the model architecture, use model.summary() to show the model architecture 27
  • 28. @margaretmz | #ML | #GDE Virtualize model Use a visualization tool: ● TensorBoard ● Netron (https://github.com/lutzroeder/Netron) Drop the .tflite model into Netron and see the model visually Note: model metadata a new TFLite tool (to be launched) will allow you to inspect the model & modify the metadata 28
  • 29. @margaretmz | #ML | #GDE Model saving When to save as SavedModel or a Keras model? Note: In TensorFlow 2.0 , tf.keras.Model.save() and tf.keras.models.save_model() default to the SavedModel format (not HDF5). (link to doc) 29 SavedModel Keras Model Share pre-trained models and model pieces on TensorFlow Hub Train with tf.Keras and you know your deploy your target When you don’t know the deploy target
  • 30. @margaretmz | #ML | #GDE Model conversion (with TFLite converter) 30 Command line Python code (recommended) SavedModel tflite_convert --saved_model_dir=/tmp/my_saved_model --output_file=/tmp/my_model.tflite Keras Model --keras_model_file=/tmp/my_keras_model.h5 --output_file=/tmp/my_model.tflite # Create a converter converter = tf.contrib.lite.TFLiteConverter.from_keras_model_file(keras_model) from_keras_model(model) # Set quantize to true (optional) converter.post_training_quantize=True # Convert the model tflite_model = converter.convert() # Create the tflite model file tflite_model_name = "my_model.tflite" open(tflite_model_name, "wb").write(tflite_model)
  • 31. @margaretmz | #ML | #GDE Validate TFLite model after conversion 31 Protip: validate the tflite model in python after conversion - 31 TensorFlow result TFLite result Compare results # Test the TensorFlow model on random Input data. tf_result = model(tf.constant(input_data)) # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="converted_model.tflite") interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test model on random input data. input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() tflite_result = interpreter.get_tensor(output_details[0]['index']) # Compare the result. for tf_result, tflite_result in zip(tf_result, tflite_result): np.testing.assert_almost_equal(tf_result, tflite_result, decimal=5)
  • 32. @margaretmz | #ML | #GDE Tflite on Android Android sample code DigitRecognizer, step by step: ● Place tf.lite model under assets folder ● Update build.gradle dependencies ● Input image - custom view, gallery or camera ● Data preprocessing ● Classify with the model ● Post processing ● Display result in UI 32
  • 33. @margaretmz | #ML | #GDE Dependencies Update build.gradle to include tensorflow lite android { // Make sure model doesn't get compressed when app is compiled aaptOptions { noCompress "tflite" } } dependencies { …. // Add dependency for TensorFlow Lite compile 'org.tensorflow:tensorflow-lite:[version-number]’ } Place the mnist.tflite model file under /assets folder 33
  • 34. @margaretmz | #ML | #GDE Input - image data Input to the classifier is an image, your options: ● Draw on canvas from custom View ● Get image from Gallery or a 3rd party camera ● Live frames from Camera2 API Make sure the image dimensions (shape) matches what your classifier expects ● 28x28x1- MNIST or FASHION_MNIST gray scale image ● 299x299x3 - Inception V3 ● 256x256x3 - MobileNet 34
  • 35. @margaretmz | #ML | #GDE Image preprocessing ● Convert Bitmap to ByteBuffer ● Normalize pixel values to be a certain range ● Convert from color to grayscale, if needed 35
  • 36. @margaretmz | #ML | #GDE Run inference Load the model file located under the assets folder Use the TensorFlow Lite interpreter to run inference on the input image 36
  • 37. @margaretmz | #ML | #GDE Post processing The output is an array of probabilities, each correspond to a category Find the category with the highest probability and output result to UI 37
  • 38. @margaretmz | #ML | #GDE Summary ● Training with tf.Keras is easy ● Model conversion to TFLite is easier ● Android implementation is getting better: ○ Validate tflite model before deploy to Android ○ Image pre-processing ○ Input tensor shape? ○ Color or grayscale? ○ Post processing My blog post: E2E tf.Keras to TFLite to Android 38
  • 39. @margaretmz | #ML | #GDE New TFLite features Announced at TensorFlow World: 1. New TFLite support library (link) 2. Model metadata (not yet launched) 3. Model repository pre-converted to tflite format (link to models w/ examples | link to hosted models) 4. Transfer learning made easy - model customization API (link) 5. Ready to use end-to-end tutorials and full example apps (link) 6. TFLite course on Udacity (link) 39
  • 40. @margaretmz | #ML | #GDE TFLite classification demo app Check out the classification Demo app in TensorFlow repo 40
  • 41. @margaretmz | #ML | #GDE Inference with GPU ● Face contour detection ● Link to blog post: TensorFlow Lite Now Faster with Mobile GPUs 41
  • 42. @margaretmz | #ML | #GDE Posenet example ● PoseNet model on Android ● Camera live frames ● Display key body parts in real time ● Link to blog post: Track human poses in real-time on Android with TensorFlow Lite 42
  • 43. @margaretmz | #ML | #GDE More TFLite examples 43
  • 44. @margaretmz | #ML | #GDE On device ML training is finally here! ● Train with ~20 images ● Use transfer learning ● Quantized MobileNetV2 ● Android device (5.0+) Link to blog | Android sample 44
  • 45. @margaretmz | #ML | #GDE TFLite on microcontroller ● Tiny models on tiny computers ● Consumes much less power than CPUs - days on a coin battery ● Tiny RAM and Flash available ● Opens up voice interface to devs More info here - ● Doc - https://www.tensorflow.org/lite/guide/microcontroller ● Code lab - https://g.co/codelabs/sparkfunTF ● Purchase - https://www.sparkfun.com/products/15170 45
  • 46. @margaretmz | #ML | #GDE Coral edge TPU (beta) - hardware for on-device ML acceleration Link to codelab: https://codelabs.developers.google.com/codelabs/edgetpu-classifier/index.html#0 ● Dev board (+ camera module) ● USB Accelerator (+ camera module + Raspberry Pi) Coral Edge TPU 46
  • 47. @margaretmz | #ML | #GDE Coral Edge TPU MobileNet SSD model running on TPU Inference time: < ~20 ms > ~60 fps 47
  • 48. @margaretmz | #ML | #GDE Coral Edge TPU demo MobileNet SSD model running on CPU Inference time > ~390ms ~ 3fps 48
  • 49. @margaretmz | #ML | #GDE On-device ML trends ● Why the future of machine learning is tiny? - Pete Warden ● Deploying to mobile and IoT will get much easier ● TFLite will have many more features ● Federated learning ● On device training 49
  • 50. @margaretmz | #ML | #GDE Awesome TFLite 😎 bit.ly/awesome-tflite - please star ⭐ the repo if you find it useful! 50
  • 51. @margaretmz | #ML | #GDE Thank you! 51 Follow me on Twitter, Medium or GitHub to learn more about deep learning, TensorFlow and on-device ML @margaretmz @margaretmz margaretmz