SlideShare a Scribd company logo
1




  Optimizing Multicast
    p       g
Throughput in IP Networks
            M. Reza Rahimi,
            M. Reza Rahimi

      Software Systems Engineering,

          University of Regina,

                Canada,

            September 2009.
            September 2009.
2




               Outline
               O tli

      • Introduction 
      • Thesis Goal
      • Problems Formulation
      • Proposed Tree Packing Algorithms
      • Implementation On Standard Protocols
      • Some Simulation Results
      • Conclusion and Future Directions



Optimizing Multicast Throughput in IP Networks
3




                Introduction
                I t d ti

• Data transfer over network could be categorized into 
                                          g
  three main groups:
   • Unicast:
             • Transfer of data from one source to one destination (Path
               Packing).




                                                  Source: Wikipedia

      • Broadcast:
             • Transfer of data from one source to all of the entire nodes in 
               the network (Spanning Tree Packing ).




 Optimizing Multicast Throughput in IP Networks    Source: Wikipedia
4




       • Multicast:
              • Transfer of data from one source to group of destinations 
                but not all and not one of the nodes (Steiner Trees).




                                                 Source: Wikipedia




• Different Optimization Metrics 
            Optimization Metrics can be considered 
  depending on the application:
       •    Maximum amount of information into terminals (Internet).
            M i                  f i f     i  i         i l  (I   )
       •    Energy (Wireless Sensor Networks).
       •    Delay (Internet Telephone). 
       •    Fault Tolerance (specially in wireless networks).
                            ( p        y                   )

Optimizing Multicast Throughput in IP Networks
5




• In this thesis we are concerned with the Throughput
                                           Throughput
  (optimum data transfer ) 
  (optimum data transfer ) and Quality in Multimedia
                                Quality Multimedia
  Applications.
• Let’s consider the main three mentioned problems in 
  much more details.
• This will lead us to the following questions:
   • Question: 
             • What is the Maximum Amount of Information that can 
               What is the Maximum Amount of Information that can 
               be transferred in each scenario? Is the solution 
               traceable  in reasonable time ?


 Optimizing Multicast Throughput in IP Networks
6




• Unicast: The answer  is yes according to the Maximum‐
                                               Maximum‐
                                               Maximum
  Flow Min‐Cut Theorem:
  Flow Min‐Cut Theorem
                We can find the maximum possible information 
                transfer rate with routing (only forwarding 
                information packets) in polynomial time in 
                Unicast Scenario.
• Broadcast:  According to the Edmond’s Theorem we can 
                                Edmond’s Theorem 
  find the optimum solution  in polynomial time.
• S    h  
  So in this scenario, with routing and duplication  h  
                        h routing and duplication the 
                                     d d l          
  optimum value can be reached in polynomial time.
• Multicast: Unfortunately   the following result is valid :
  Multicast: Unfortunately , the following result is valid :
 Optimizing Multicast Throughput in IP Networks
7




• Generally there is no Polynomial Time
  Generally there is no
  Algorithms to find the optimal Duplicate and 
              to find the optimal Duplicate
  Forward strategy in Multicasting (P≠NP).
           strategy in Multicasting (P≠NP).




Optimizing Multicast Throughput in IP Networks
8




               Network Coding vs Routing
               N t   k C di    R ti




Optimizing Multicast Throughput in IP Networks
9




• This technique is called network coding 
                           network coding in literature.
• Network coding contains routing as a special case
    The optimal network coding throughput is at least as 
     large as the optimal routing throughput
 • Question: How can we find the best coding scheme and 
        what is the maximum possible throughput?
                              p             g p
• The first question is hard to answer in many different 
  cases. But there is a useful technique called CFLow which 
                                                CFLow
  results the throughput of network coding.
      lt  th  th     h t  f  t       k  di
• This technique is used to find the upper bound on 
        g      g p
  routing throughput
 Optimizing Multicast Throughput in IP Networks
10




                Thesis Goal
                Th i  G l

• We consider the generalized version of multicast when 
  there are Several Sources 
            Several Sources in the network.
• We consider many different fairness criteria, for 
                   y                          ,
  example optimizing the minimum throughput among 
  sources and sources with unequal demands
                                   demands.
• B th d t  t
  Both data transfer application and multimedia 
                  f     li ti   d  lti di  
  application are considered.
• Although network coding could increase the 
  throughput of some network dramatically, it has been 
  shown that for Undirected Networks (network with full 
                 Undirected Networks (network with full 
  duplex communication links ) 
  duplex communication links ) this gap is small.
  duplex communication links ) this gap is small
 Optimizing Multicast Throughput in IP Networks
11




• We proposed tree multicast routing optimization 
  algorithms based on standard IP routing protocols, that 
  can achieve throughputs very close to the network 
  coding upper bound (92% in average).
  coding upper bound (92% in a erage)
• For multimedia applications rate‐distortion
             ,                      y
  framework, a metric that is usually used for measuring  g
  multimedia  application performance, is used.
   • Through simulation we show that our algorithms 
     achieve average multimedia multicast qualities that 
     are only on average, 0.44 db worse than that 
     achievable with network coding


 Optimizing Multicast Throughput in IP Networks
12




                   Problems Formulation
                   P bl     F    l ti

• Let                            be a weighted undirected graph .
                                      weighted undirected graph
• Now define to be a set of source nodes                            , 
  where  |  | is the set cardinality operator. 
         | |                       y p
• Let                                         be the set of sink nodes of 
  source Si. 
•                               as  the set of all Steiner trees 
      rooted at  Si  that have       as the terminal points .


• A demand vector                               is said to be achievable
  if there exists a rate assignment function such that:
    Optimizing Multicast Throughput in IP Networks
13




• The first constraint is the link capacity constraint 
                              link capacity constraint that 
  the total flow on each link must not exceed the link 
  th  t t l fl     h li k           t  t      d th  li k 
  capacity, 
• The second one is the source throughput or demand
                               throughput demand.
• These constraints are the only constraints when tree 
  packing is allowed.

Optimizing Multicast Throughput in IP Networks
14




• MaxMin Multicast 
  MaxMin Multicast optimization problem:
• When the goal is to maximize the minimum demand of  
  the source nodes:




• If network coding is allowed, using Cflow technique, the 
  following program finds the upper bound on MaxMin
  optimization problem: 
 Optimizing Multicast Throughput in IP Networks
15




Optimizing Multicast Throughput in IP Networks
16




• Linear Multicast Optimization Problem:
   • Different rate priorities to different sources.




• And its network coding version: 

 Optimizing Multicast Throughput in IP Networks
17




Optimizing Multicast Throughput in IP Networks
18




• Rate Distortion Optimization Problem:
• This frame‐work is suitable for multimedia 
  applications.
   pp




• D is the rate‐distortion function. In this thesis, a power‐
    is the rate distortion function. In this thesis, a power
  law function will be used.
• The resulting optimization problem when network 
  coding is allowed:
 Optimizing Multicast Throughput in IP Networks
19




Optimizing Multicast Throughput in IP Networks
20




                Proposed Tree Packing Algorithms
                P      d T    P ki  Al     ith

• Three‐Classes of Cooperative Tree‐Packing Algorithms:
  Three‐Classes of Cooperative Tree‐
                      p                   g g
      • Non‐Cooperative Tree Packing Class: In this class each 
        Non‐Cooperative Tree Packing Class
           source packs its own tree independently (Greedy), according to some 
           strategy (e.g., minimum hop tree, minimum weight tree, maximum 
           weight Steiner tree).
              i h  S i         )




 Optimizing Multicast Throughput in IP Networks
21




Optimizing Multicast Throughput in IP Networks
22




     • Medium‐Cooperative Tree Packing Class: 
       Medium‐
            • Round‐robin family of tree packing algorithms.
            • In each round of the algorithm, each source 
              selects one tree according to its own strategy. 
                                        g                  gy
            • The rate assignment is postponed to the end of 
              each round, i.e., when each source has nominated 
              one tree in that round.
              one tree in that round
            • At the end of the each round, we know how 
              many times each edge has been selected. Thus, 
              the maximum rate that could be assigned to each 
              th       i       t  th t    ld b   i      d t   h 
              edge is equal to the capacity of that edge, divided 
              by the number of times it has been selected

Optimizing Multicast Throughput in IP Networks
23




Optimizing Multicast Throughput in IP Networks
24




• Highly‐Cooperative Tree Packing Class:
  Highly‐
     • the Rate assignment is postponed until the very last 
       round.
     • Sources pack one tree at each round, according to 
       their own strategy. At the end of all the rounds, 
       rates are assigned to the trees.
                     g
     • This class of algorithms is our main proposed 
       solution to the distributed tree packing problem.
     • W  
       We propose the Cooperative Shortest Path Tree 
                     th  C
                         Cooperative Shortest Path Tree 
                         C       ti  Sh t t P th T  
       Packing Algorithm (CSPT
                             CSPT) for this purpose.


Optimizing Multicast Throughput in IP Networks
25




Optimizing Multicast Throughput in IP Networks
26




Optimizing Multicast Throughput in IP Networks
27




               Why CSPT works well?
               Wh  CSPT    k   ll?




Optimizing Multicast Throughput in IP Networks
28




Optimizing Multicast Throughput in IP Networks
29




Optimizing Multicast Throughput in IP Networks
30




Optimizing Multicast Throughput in IP Networks
31



              Implementation On the Standard 
              Protocols
• Using OSPF as the basic protocol
             as the basic protocol.
• OSPF routing protocol is a Link State protocol.
• It is based on cost rather than hops (hops could be 
  considered as the special case of cost). 
• All the OSPF routers has the Link State Database 
  (LSDB) and executes Dijkstra's algorithm on their 
  database to calculate a shortest path route to a given 
  destination node from the current router.
• The routers database information are periodically sent 
  to the entire routers in the network. 

Optimizing Multicast Throughput in IP Networks
32




• In OSPF, two important multicast addresses are used. 
• When an OSPF area is started, one router is elected the 
  Designated Router (DR), and another as the Backup
  Designated Router (BDR)
• The Designated Router tells all the other routers about 
  changes in the network by sending out Link State
  Advertisements (LSA) on multicast address 224.0.0.5. 
• Every change in the network topology will be send by 
  the OSPF routers on multicast address 224.0.0.6, 
  the OSPF routers on multicast address 224 0 0 6  
  reserved for the DR and BDR. 


 Optimizing Multicast Throughput in IP Networks
33




• Using OSPF , 3 classes of tree packing could be 
  implemented as follows:
  i l       d   f ll




 Optimizing Multicast Throughput in IP Networks
34




                Some Simulation Results
                S    Si  l ti  R    lt

• Random graph with 50 nodes  uniform link capacity 
                           nodes, uniform link capacity 
  ranged [1,10] G is considered and network degree from 2
  to 10. 
• Up to 5 source nodes and total number of 30 terminals 
  are considered.




 Optimizing Multicast Throughput in IP Networks
35




• Simulation Results of the MaxMin Multicast 
  Optimization Problem :
  O i i i  P bl  
• The throughput is defined as:
• The following averaged results obtained:
 CSPT                 Cooperative Shortest
                      Path Tree

 NCSTEIN              NON-COOPEARIVE
                      STEINER

 MCSTEIN              MEDIUM –
                      COOPERTIVE
                      STEINER

 MCDIJK               MEDIUM-
                      COOPERTIVE
                      DIJKSTRA

 MCBFS                MEDIUM-
                      COOPERTIVE BFS

 NCBFS                NON-COOPEARIVE
                      STEINER


 NCDIJK               NON-COOPERATIVE
                      DIJKSTRA



 Optimizing Multicast Throughput in IP Networks
36




• Convergence Speed: 
   • The relation of the average number of trees and the 
     average percentage of the CSPT, NCSTEINE and 
     MCSTEINE throughput to the network coding 
                       g p                        g
     throughput:




 Optimizing Multicast Throughput in IP Networks
37




Optimizing Multicast Throughput in IP Networks
38




• Linear Multicast Optimization Problem:
• It reaches on average to the 90% of network coding.
• The following shows the examples with some priority 
  vector.




Optimizing Multicast Throughput in IP Networks
39




• Simulation Results of the Rate Distortion Optimization 
  Problem :




 Optimizing Multicast Throughput in IP Networks
40




Optimizing Multicast Throughput in IP Networks
41




                Conclusion and Future Directions
                C   l i   d F t       Di ti

• In this thesis the problem of IP multicast in multi
  In this thesis the problem of IP multicast in multi‐
  source environments is discussed and formulated.
• We have proposed a novel tree packing algorithm called 
           p p                  p      g g
  CSPT which has the throughput close to the network 
  coding or in average about 92% of the network coding. 
• F   lti di applications, CSPT has 0.44db diff
  For multimedia    li ti     CSPT h    db difference 
                                                      
  with network coding performance
• With packing 8 trees per source using CSPT, one could 
  reach the throughput of 50% of network coding for data 
  transfer applications and 3.27db different with network 
  coding for multimedia applications.
  coding for multimedia applications
 Optimizing Multicast Throughput in IP Networks
42




• There are some issued that should be considered:
   • Directect network should be studied.
   • Noisy network should be considered.
   • For multimedia application, correlated source should 
     be considered.




 Optimizing Multicast Throughput in IP Networks

More Related Content

PDF
MULTIPLEXING VOIP PACKETS OVER INTERNET TELEPHONY TRANSPORT PROTOCOL (ITTP)
PDF
Multicasting Of Adaptively-Encoded MPEG4 Over Qos-Cognizant IP Networks
PDF
Comparisons of QoS in VoIP over WIMAX by Varying the Voice codes and Buffer size
PDF
Enhanced Protocol for Wireless Content-Centric Network
PPT
Multiplexing
PDF
RESOURCE ALLOCATION ALGORITHMS FOR QOS OPTIMIZATION IN MOBILE WIMAX NETWORKS
PDF
Ballpark Figure Algorithms for Data Broadcast in Wireless Networks
PPTX
MULTIPLEXING VOIP PACKETS OVER INTERNET TELEPHONY TRANSPORT PROTOCOL (ITTP)
Multicasting Of Adaptively-Encoded MPEG4 Over Qos-Cognizant IP Networks
Comparisons of QoS in VoIP over WIMAX by Varying the Voice codes and Buffer size
Enhanced Protocol for Wireless Content-Centric Network
Multiplexing
RESOURCE ALLOCATION ALGORITHMS FOR QOS OPTIMIZATION IN MOBILE WIMAX NETWORKS
Ballpark Figure Algorithms for Data Broadcast in Wireless Networks

What's hot (18)

PDF
A Two-Tiered On-Line Server-Side Bandwidth Reservation Framework for the Real...
PDF
Energy Saving DSR and Probabilistic Rebroadcast Mechanism are used to Increas...
PPT
Npma Final
PDF
Identification of frequency domain using quantum based optimization neural ne...
PDF
Towards efficient content dissemination over DTN
PDF
A Neighbor Coverage-Based Probabilistic Rebroadcast for Reducing Routing Ove...
PDF
ETFRC: Enhanced TFRC for Media Traffic over Internet
PDF
Improving QoS of VANET using Network Coding
PDF
AN EFFICIENT MATHEMATICAL MODELING FOR THE COMPREHENSIVE DESIGN OF AON INCLUD...
PDF
Performance comparison of transmitting jumbo frame on Windows and Linux System
PDF
Delay Efficient Method for Delivering IPTV Services
PDF
Dcn invited ecoc2018_short
PPT
Iccsit2010 paper2
PDF
29fe586301a42c2d2e7279d658da178ae1e6
PDF
Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple ...
PDF
Performance Evaluation of Push-To-Talk Group Communication
PDF
Shortcut Path Tress for Zigbee based Wireless Network
A Two-Tiered On-Line Server-Side Bandwidth Reservation Framework for the Real...
Energy Saving DSR and Probabilistic Rebroadcast Mechanism are used to Increas...
Npma Final
Identification of frequency domain using quantum based optimization neural ne...
Towards efficient content dissemination over DTN
A Neighbor Coverage-Based Probabilistic Rebroadcast for Reducing Routing Ove...
ETFRC: Enhanced TFRC for Media Traffic over Internet
Improving QoS of VANET using Network Coding
AN EFFICIENT MATHEMATICAL MODELING FOR THE COMPREHENSIVE DESIGN OF AON INCLUD...
Performance comparison of transmitting jumbo frame on Windows and Linux System
Delay Efficient Method for Delivering IPTV Services
Dcn invited ecoc2018_short
Iccsit2010 paper2
29fe586301a42c2d2e7279d658da178ae1e6
Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple ...
Performance Evaluation of Push-To-Talk Group Communication
Shortcut Path Tress for Zigbee based Wireless Network
Ad

Similar to Optimizing Multicast Throughput in IP Network (20)

PDF
NWCRG-IAB-Review-IETF91.pdf
PDF
2018 FRSecure CISSP Mentor Program- Session 7
PDF
network basics
PPTX
RINA Tutorial @ IEEE Globecom 2014
PDF
Implementation of a Non-Intrusive Speech Quality Assessment Tool on a Mid-Net...
PDF
Implementation of a Non-Intrusive Speech Quality Assessment Tool on a Mid-Net...
PDF
Why I should Model my Network
PDF
Inop presentation dec sgb 2017
PDF
I nop brochure_2017
PDF
06 selecting an-ixp
PDF
ETE405-lec4.pdf
PDF
Early application identification. CONEXT 2006
PDF
The Computing Continuum.pdf
PDF
Big Data Transport
PPTX
module 3.pptx
PDF
Intternetworking With TCP/IP
PPT
Ip over wdm
PDF
2018 CISSP Mentor Program- Session 6
PPTX
Network cost services
PDF
High Speed Fiber Services and Challenges to the Core Network by Seiichi Kawamura
NWCRG-IAB-Review-IETF91.pdf
2018 FRSecure CISSP Mentor Program- Session 7
network basics
RINA Tutorial @ IEEE Globecom 2014
Implementation of a Non-Intrusive Speech Quality Assessment Tool on a Mid-Net...
Implementation of a Non-Intrusive Speech Quality Assessment Tool on a Mid-Net...
Why I should Model my Network
Inop presentation dec sgb 2017
I nop brochure_2017
06 selecting an-ixp
ETE405-lec4.pdf
Early application identification. CONEXT 2006
The Computing Continuum.pdf
Big Data Transport
module 3.pptx
Intternetworking With TCP/IP
Ip over wdm
2018 CISSP Mentor Program- Session 6
Network cost services
High Speed Fiber Services and Challenges to the Core Network by Seiichi Kawamura
Ad

More from Reza Rahimi (20)

PDF
Boosting Personalization In SaaS Using Machine Learning.pdf
PDF
Self-Tuning and Managing Services
PPTX
Low Complexity Secure Code Design for Big Data in Cloud Storage Systems
PPTX
Smart Connectivity
PDF
Self-Tuning Data Centers
PPTX
The Next Big Thing in IT
PPTX
QoS-Aware Middleware for Optimal Service Allocation in Mobile Cloud Computing
PPTX
On Optimal and Fair Service Allocation in Mobile Cloud Computing
PPT
SMS Spam Filter Design Using R: A Machine Learning Approach
PPTX
Mobile Applications on an Elastic and Scalable 2-Tier Cloud Architecture
PDF
Exploiting an Elastic 2-Tiered Cloud Architecture for Rich Mobile Applications
PPT
Fingerprint High Level Classification
PPT
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
PPTX
The Case for a Signal Oriented Data Stream Management System
PPTX
Mobile Cloud Computing: Big Picture
PPT
Network Information Processing
PPTX
Pervasive Image Computation: A Mobile Phone Application for getting Informat...
PPT
Gaussian Integration
PPT
Interactive Proof Systems and An Introduction to PCP
PPT
Quantum Computation and Algorithms
Boosting Personalization In SaaS Using Machine Learning.pdf
Self-Tuning and Managing Services
Low Complexity Secure Code Design for Big Data in Cloud Storage Systems
Smart Connectivity
Self-Tuning Data Centers
The Next Big Thing in IT
QoS-Aware Middleware for Optimal Service Allocation in Mobile Cloud Computing
On Optimal and Fair Service Allocation in Mobile Cloud Computing
SMS Spam Filter Design Using R: A Machine Learning Approach
Mobile Applications on an Elastic and Scalable 2-Tier Cloud Architecture
Exploiting an Elastic 2-Tiered Cloud Architecture for Rich Mobile Applications
Fingerprint High Level Classification
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
The Case for a Signal Oriented Data Stream Management System
Mobile Cloud Computing: Big Picture
Network Information Processing
Pervasive Image Computation: A Mobile Phone Application for getting Informat...
Gaussian Integration
Interactive Proof Systems and An Introduction to PCP
Quantum Computation and Algorithms

Recently uploaded (20)

PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
Digital-Transformation-Roadmap-for-Companies.pptx
Spectroscopy.pptx food analysis technology
Machine learning based COVID-19 study performance prediction
Understanding_Digital_Forensics_Presentation.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Unlocking AI with Model Context Protocol (MCP)
Chapter 3 Spatial Domain Image Processing.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
Review of recent advances in non-invasive hemoglobin estimation
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Spectral efficient network and resource selection model in 5G networks

Optimizing Multicast Throughput in IP Network

  • 1. 1 Optimizing Multicast p g Throughput in IP Networks M. Reza Rahimi, M. Reza Rahimi Software Systems Engineering, University of Regina, Canada, September 2009. September 2009.
  • 2. 2 Outline O tli • Introduction  • Thesis Goal • Problems Formulation • Proposed Tree Packing Algorithms • Implementation On Standard Protocols • Some Simulation Results • Conclusion and Future Directions Optimizing Multicast Throughput in IP Networks
  • 3. 3 Introduction I t d ti • Data transfer over network could be categorized into  g three main groups: • Unicast: • Transfer of data from one source to one destination (Path Packing). Source: Wikipedia • Broadcast: • Transfer of data from one source to all of the entire nodes in  the network (Spanning Tree Packing ). Optimizing Multicast Throughput in IP Networks Source: Wikipedia
  • 4. 4 • Multicast: • Transfer of data from one source to group of destinations  but not all and not one of the nodes (Steiner Trees). Source: Wikipedia • Different Optimization Metrics  Optimization Metrics can be considered  depending on the application: • Maximum amount of information into terminals (Internet). M i     f i f i  i   i l  (I ) • Energy (Wireless Sensor Networks). • Delay (Internet Telephone).  • Fault Tolerance (specially in wireless networks). ( p y ) Optimizing Multicast Throughput in IP Networks
  • 5. 5 • In this thesis we are concerned with the Throughput Throughput (optimum data transfer )  (optimum data transfer ) and Quality in Multimedia Quality Multimedia Applications. • Let’s consider the main three mentioned problems in  much more details. • This will lead us to the following questions: • Question:  • What is the Maximum Amount of Information that can  What is the Maximum Amount of Information that can  be transferred in each scenario? Is the solution  traceable  in reasonable time ? Optimizing Multicast Throughput in IP Networks
  • 6. 6 • Unicast: The answer  is yes according to the Maximum‐ Maximum‐ Maximum Flow Min‐Cut Theorem: Flow Min‐Cut Theorem We can find the maximum possible information  transfer rate with routing (only forwarding  information packets) in polynomial time in  Unicast Scenario. • Broadcast:  According to the Edmond’s Theorem we can  Edmond’s Theorem  find the optimum solution  in polynomial time. • S    h   So in this scenario, with routing and duplication  h     h routing and duplication the    d d l   optimum value can be reached in polynomial time. • Multicast: Unfortunately   the following result is valid : Multicast: Unfortunately , the following result is valid : Optimizing Multicast Throughput in IP Networks
  • 7. 7 • Generally there is no Polynomial Time Generally there is no Algorithms to find the optimal Duplicate and  to find the optimal Duplicate Forward strategy in Multicasting (P≠NP). strategy in Multicasting (P≠NP). Optimizing Multicast Throughput in IP Networks
  • 8. 8 Network Coding vs Routing N t k C di    R ti Optimizing Multicast Throughput in IP Networks
  • 9. 9 • This technique is called network coding  network coding in literature. • Network coding contains routing as a special case  The optimal network coding throughput is at least as  large as the optimal routing throughput • Question: How can we find the best coding scheme and  what is the maximum possible throughput? p g p • The first question is hard to answer in many different  cases. But there is a useful technique called CFLow which  CFLow results the throughput of network coding. lt  th  th h t  f  t k  di • This technique is used to find the upper bound on  g g p routing throughput Optimizing Multicast Throughput in IP Networks
  • 10. 10 Thesis Goal Th i  G l • We consider the generalized version of multicast when  there are Several Sources  Several Sources in the network. • We consider many different fairness criteria, for  y , example optimizing the minimum throughput among  sources and sources with unequal demands demands. • B th d t  t Both data transfer application and multimedia  f   li ti   d  lti di   application are considered. • Although network coding could increase the  throughput of some network dramatically, it has been  shown that for Undirected Networks (network with full  Undirected Networks (network with full  duplex communication links )  duplex communication links ) this gap is small. duplex communication links ) this gap is small Optimizing Multicast Throughput in IP Networks
  • 11. 11 • We proposed tree multicast routing optimization  algorithms based on standard IP routing protocols, that  can achieve throughputs very close to the network  coding upper bound (92% in average). coding upper bound (92% in a erage) • For multimedia applications rate‐distortion , y framework, a metric that is usually used for measuring  g multimedia  application performance, is used. • Through simulation we show that our algorithms  achieve average multimedia multicast qualities that  are only on average, 0.44 db worse than that  achievable with network coding Optimizing Multicast Throughput in IP Networks
  • 12. 12 Problems Formulation P bl  F l ti • Let                            be a weighted undirected graph . weighted undirected graph • Now define to be a set of source nodes                            ,  where  |  | is the set cardinality operator.  | | y p • Let                                         be the set of sink nodes of  source Si.  • as  the set of all Steiner trees  rooted at  Si  that have       as the terminal points . • A demand vector                               is said to be achievable if there exists a rate assignment function such that: Optimizing Multicast Throughput in IP Networks
  • 13. 13 • The first constraint is the link capacity constraint  link capacity constraint that  the total flow on each link must not exceed the link  th  t t l fl     h li k  t  t  d th  li k  capacity,  • The second one is the source throughput or demand throughput demand. • These constraints are the only constraints when tree  packing is allowed. Optimizing Multicast Throughput in IP Networks
  • 14. 14 • MaxMin Multicast  MaxMin Multicast optimization problem: • When the goal is to maximize the minimum demand of   the source nodes: • If network coding is allowed, using Cflow technique, the  following program finds the upper bound on MaxMin optimization problem:  Optimizing Multicast Throughput in IP Networks
  • 16. 16 • Linear Multicast Optimization Problem: • Different rate priorities to different sources. • And its network coding version:  Optimizing Multicast Throughput in IP Networks
  • 18. 18 • Rate Distortion Optimization Problem: • This frame‐work is suitable for multimedia  applications. pp • D is the rate‐distortion function. In this thesis, a power‐ is the rate distortion function. In this thesis, a power law function will be used. • The resulting optimization problem when network  coding is allowed: Optimizing Multicast Throughput in IP Networks
  • 20. 20 Proposed Tree Packing Algorithms P d T  P ki  Al ith • Three‐Classes of Cooperative Tree‐Packing Algorithms: Three‐Classes of Cooperative Tree‐ p g g • Non‐Cooperative Tree Packing Class: In this class each  Non‐Cooperative Tree Packing Class source packs its own tree independently (Greedy), according to some  strategy (e.g., minimum hop tree, minimum weight tree, maximum  weight Steiner tree). i h  S i   ) Optimizing Multicast Throughput in IP Networks
  • 22. 22 • Medium‐Cooperative Tree Packing Class:  Medium‐ • Round‐robin family of tree packing algorithms. • In each round of the algorithm, each source  selects one tree according to its own strategy.  g gy • The rate assignment is postponed to the end of  each round, i.e., when each source has nominated  one tree in that round. one tree in that round • At the end of the each round, we know how  many times each edge has been selected. Thus,  the maximum rate that could be assigned to each  th   i   t  th t  ld b   i d t   h  edge is equal to the capacity of that edge, divided  by the number of times it has been selected Optimizing Multicast Throughput in IP Networks
  • 24. 24 • Highly‐Cooperative Tree Packing Class: Highly‐ • the Rate assignment is postponed until the very last  round. • Sources pack one tree at each round, according to  their own strategy. At the end of all the rounds,  rates are assigned to the trees. g • This class of algorithms is our main proposed  solution to the distributed tree packing problem. • W   We propose the Cooperative Shortest Path Tree   th  C Cooperative Shortest Path Tree  C ti  Sh t t P th T   Packing Algorithm (CSPT CSPT) for this purpose. Optimizing Multicast Throughput in IP Networks
  • 27. 27 Why CSPT works well? Wh  CSPT  k   ll? Optimizing Multicast Throughput in IP Networks
  • 31. 31 Implementation On the Standard  Protocols • Using OSPF as the basic protocol as the basic protocol. • OSPF routing protocol is a Link State protocol. • It is based on cost rather than hops (hops could be  considered as the special case of cost).  • All the OSPF routers has the Link State Database  (LSDB) and executes Dijkstra's algorithm on their  database to calculate a shortest path route to a given  destination node from the current router. • The routers database information are periodically sent  to the entire routers in the network.  Optimizing Multicast Throughput in IP Networks
  • 32. 32 • In OSPF, two important multicast addresses are used.  • When an OSPF area is started, one router is elected the  Designated Router (DR), and another as the Backup Designated Router (BDR) • The Designated Router tells all the other routers about  changes in the network by sending out Link State Advertisements (LSA) on multicast address 224.0.0.5.  • Every change in the network topology will be send by  the OSPF routers on multicast address 224.0.0.6,  the OSPF routers on multicast address 224 0 0 6   reserved for the DR and BDR.  Optimizing Multicast Throughput in IP Networks
  • 33. 33 • Using OSPF , 3 classes of tree packing could be  implemented as follows: i l d   f ll Optimizing Multicast Throughput in IP Networks
  • 34. 34 Some Simulation Results S  Si l ti  R lt • Random graph with 50 nodes  uniform link capacity  nodes, uniform link capacity  ranged [1,10] G is considered and network degree from 2 to 10.  • Up to 5 source nodes and total number of 30 terminals  are considered. Optimizing Multicast Throughput in IP Networks
  • 35. 35 • Simulation Results of the MaxMin Multicast  Optimization Problem : O i i i  P bl   • The throughput is defined as: • The following averaged results obtained: CSPT Cooperative Shortest Path Tree NCSTEIN NON-COOPEARIVE STEINER MCSTEIN MEDIUM – COOPERTIVE STEINER MCDIJK MEDIUM- COOPERTIVE DIJKSTRA MCBFS MEDIUM- COOPERTIVE BFS NCBFS NON-COOPEARIVE STEINER NCDIJK NON-COOPERATIVE DIJKSTRA Optimizing Multicast Throughput in IP Networks
  • 36. 36 • Convergence Speed:  • The relation of the average number of trees and the  average percentage of the CSPT, NCSTEINE and  MCSTEINE throughput to the network coding  g p g throughput: Optimizing Multicast Throughput in IP Networks
  • 38. 38 • Linear Multicast Optimization Problem: • It reaches on average to the 90% of network coding. • The following shows the examples with some priority  vector. Optimizing Multicast Throughput in IP Networks
  • 39. 39 • Simulation Results of the Rate Distortion Optimization  Problem : Optimizing Multicast Throughput in IP Networks
  • 41. 41 Conclusion and Future Directions C l i   d F t  Di ti • In this thesis the problem of IP multicast in multi In this thesis the problem of IP multicast in multi‐ source environments is discussed and formulated. • We have proposed a novel tree packing algorithm called  p p p g g CSPT which has the throughput close to the network  coding or in average about 92% of the network coding.  • F   lti di applications, CSPT has 0.44db diff For multimedia li ti  CSPT h   db difference    with network coding performance • With packing 8 trees per source using CSPT, one could  reach the throughput of 50% of network coding for data  transfer applications and 3.27db different with network  coding for multimedia applications. coding for multimedia applications Optimizing Multicast Throughput in IP Networks
  • 42. 42 • There are some issued that should be considered: • Directect network should be studied. • Noisy network should be considered. • For multimedia application, correlated source should  be considered. Optimizing Multicast Throughput in IP Networks