Optimizing search via diversity
 enhancement in evolutionary
         MasterMind

J. J. Merelo, A. Mora, C. Cotta, T. Runársson
   U. Granada & Málaga (Spain) & Iceland
       Http://geneura.wordpress.com
          http://twitter.com/geneura
Game of MasterMind




    Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   2
Let's play,
   then




          Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   3
Consistent combinations




      Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   4
Naïve Algorithm

   Repeat
       Find a
        consistent
        combination
        and play it.




                       Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   5
Looking for consistent solutions

   Optimization algorithm based on distance to
    consistency (for all combinations played)




                                                                                     D=2



                 Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson         6
Not all consistent combinations
        are born the same
                                                     There's at least one
                                                      better than the others
                                                      (the solution).
                                                     Some will reduce the
                                                      remaining search
                                                      space more.
                                                     But scoring them is
                                                      an open issue.


          Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson    7
What we did before




Increase diversity in search via new operators and
              selection mechanisms




                Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   8
What we do now




Fine-tune evolutionary parameters to minimize
   evaluations and number of games played




              Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   9
   Increase diversity.
   Increase speed to
    afford tackling
    bigger sizes.
   Obtain better
    solutions
       Less turns




                     Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   10
Consistent set size




   Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   11
Tournament size




  Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   12
Fine tuned!



                     #Evaluations decreased up
                              to 30%!
                     (Game performance still the
                               same)




Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   13
Open source your science!




       Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   14
Thank you
very much

Questions?




        Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson   15

More Related Content

PDF
Evopar12 Validating a P2P EA
PDF
Code Reimagined SEED2013
PPTX
21 enero2013 a trust evaluation framework in distributed networks
ODP
The L-Co-R co-evolutionary algorithm: a comparative analysis in medium-term t...
PPTX
Pherogenic Drawings
ODP
Estudio de un Operador de Mutación para Algoritmos Genéticos Basado en la Teo...
PDF
Poster js eo-300dpi
ODP
Experimentación con algoritmos distribuidos usando herramientas libres y grat...
Evopar12 Validating a P2P EA
Code Reimagined SEED2013
21 enero2013 a trust evaluation framework in distributed networks
The L-Co-R co-evolutionary algorithm: a comparative analysis in medium-term t...
Pherogenic Drawings
Estudio de un Operador de Mutación para Algoritmos Genéticos Basado en la Teo...
Poster js eo-300dpi
Experimentación con algoritmos distribuidos usando herramientas libres y grat...

More from Juan J. Merelo (20)

PDF
Acta de defunción de juan monserrat vergés
ODP
Ciencia y videojuegos v4
ODP
Como triunfar con tu proyecto en un hackatón
ODP
Benchmarking languages for evolutionary computation
PDF
Benchmarking languages for evolutionary algorithms
ODP
8º hackatón de proyectos libres de la UGR: Ayuda para los participantes
ODP
Creación de panorámicas con Hugin
ODP
Introducción a HDR y Tonemapping con Luminance
ODP
Introducción al 7º hackathon UGR
ODP
Nuevas tecnologías, Modas y docencia en el siglo XXI
ODP
Open Access and Copyleft
ODP
Luminance 2014 presentaciión sobre luminance
ODP
Enforcing Corporate Security Policies via Computational Intelligence Techniques
ODP
Evostar 2014 Introduction to the conference
ODP
Presentación Open Data Day en Granada, 2014
ODP
Introducción al uso de git, el sistema de control de fuentes más molón.
ODP
Redes sociales-en-un-rato-piiisa
ODP
¿Necesitas a la oficina de software libre de la Universidad de Granada?
ODP
Presentación 8º CUSL/6º CUSL granadino
ODP
El software libre contado a los universitarios
Acta de defunción de juan monserrat vergés
Ciencia y videojuegos v4
Como triunfar con tu proyecto en un hackatón
Benchmarking languages for evolutionary computation
Benchmarking languages for evolutionary algorithms
8º hackatón de proyectos libres de la UGR: Ayuda para los participantes
Creación de panorámicas con Hugin
Introducción a HDR y Tonemapping con Luminance
Introducción al 7º hackathon UGR
Nuevas tecnologías, Modas y docencia en el siglo XXI
Open Access and Copyleft
Luminance 2014 presentaciión sobre luminance
Enforcing Corporate Security Policies via Computational Intelligence Techniques
Evostar 2014 Introduction to the conference
Presentación Open Data Day en Granada, 2014
Introducción al uso de git, el sistema de control de fuentes más molón.
Redes sociales-en-un-rato-piiisa
¿Necesitas a la oficina de software libre de la Universidad de Granada?
Presentación 8º CUSL/6º CUSL granadino
El software libre contado a los universitarios
Ad

Recently uploaded (20)

PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
STKI Israel Market Study 2025 version august
PDF
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Geologic Time for studying geology for geologist
PDF
A comparative study of natural language inference in Swahili using monolingua...
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Five Habits of High-Impact Board Members
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
CloudStack 4.21: First Look Webinar slides
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PDF
Abstractive summarization using multilingual text-to-text transfer transforme...
Credit Without Borders: AI and Financial Inclusion in Bangladesh
STKI Israel Market Study 2025 version august
Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on dee...
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Geologic Time for studying geology for geologist
A comparative study of natural language inference in Swahili using monolingua...
Chapter 5: Probability Theory and Statistics
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Developing a website for English-speaking practice to English as a foreign la...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
1 - Historical Antecedents, Social Consideration.pdf
Five Habits of High-Impact Board Members
2018-HIPAA-Renewal-Training for executives
sustainability-14-14877-v2.pddhzftheheeeee
Hindi spoken digit analysis for native and non-native speakers
CloudStack 4.21: First Look Webinar slides
UiPath Agentic Automation session 1: RPA to Agents
NewMind AI Weekly Chronicles – August ’25 Week III
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
Abstractive summarization using multilingual text-to-text transfer transforme...
Ad

Optimizing search via diversity enhancement in evolutionary MasterMind

  • 1. Optimizing search via diversity enhancement in evolutionary MasterMind J. J. Merelo, A. Mora, C. Cotta, T. Runársson U. Granada & Málaga (Spain) & Iceland Http://geneura.wordpress.com http://twitter.com/geneura
  • 2. Game of MasterMind Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 2
  • 3. Let's play, then Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 3
  • 4. Consistent combinations Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 4
  • 5. Naïve Algorithm  Repeat  Find a consistent combination and play it. Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 5
  • 6. Looking for consistent solutions  Optimization algorithm based on distance to consistency (for all combinations played) D=2 Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 6
  • 7. Not all consistent combinations are born the same  There's at least one better than the others (the solution).  Some will reduce the remaining search space more.  But scoring them is an open issue. Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 7
  • 8. What we did before Increase diversity in search via new operators and selection mechanisms Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 8
  • 9. What we do now Fine-tune evolutionary parameters to minimize evaluations and number of games played Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 9
  • 10. Increase diversity.  Increase speed to afford tackling bigger sizes.  Obtain better solutions  Less turns Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 10
  • 11. Consistent set size Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 11
  • 12. Tournament size Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 12
  • 13. Fine tuned! #Evaluations decreased up to 30%! (Game performance still the same) Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 13
  • 14. Open source your science! Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 14
  • 15. Thank you very much Questions? Fine tuning Evolutionary Mastermind - Merelo/Mora/Cotta/Runársson 15

Editor's Notes

  • #4: How would you play mastermind? It's not easy to do, since possible branches are many more than for Sudoku or even chess. In fact, this is the kind of game that can be played more easily by a machine than by a person. CC picture from http://www.flickr.com/photos/unloveable/2399932549/
  • #5: One of the possible ways to find solutions. Could be others, of course, but this is a good one.
  • #8: Like the birds. They look the same, but one of them has a bad hair day. Or rather a bad feather day. Let's just say that what we do is, once a solution is consistent, we find a scoring based on how the set of consistent solutions is partitioned by comparing consistent solutions with each other. In other papers we tested different ways of doing it, and we're fixing it here. Ideally, anyways, the solution should have always the maximum fitness, but I'm not sure it does (it will have to be checked)
  • #9: Creative commons image from Okinawa Soba at http://www.flickr.com/photos/24443965@N08/3606831198/ This was published in NICSO, Evostar, CIG, GECCO (as a póster) and eventually PPSN
  • #10: CC Picture from San Diego Shooter http://www.flickr.com/photos/nathaninsandiego/3758988303/ New is always better. And better is also always better. Mostly.
  • #11: Picture from Philip James Claxton at http://www.flickr.com/photos/philipclaxton/4076919342/in/photostream/
  • #14: Image from John Traynor at http://www.flickr.com/photos/trainor/3028243647/in/photostream/
  • #15: All source, data sets, experiment results for this paper are available from Sourceforge (in fact, they were while we were doing it). Source is also available from the CPAN Perl module server worldwide, in two separate modules: the algorithm itself as the module Algorithm::Mastermind (along with other algorithms; for instance, Knuth's algorithm), and the EA in the shape of the Evolutionary Algorithm library.