SlideShare a Scribd company logo
Optimizing The Data Centre Environment Michalis Grigoratos Senior Consultant [email_address]
Michael is a Senior Consultant specialising in multi-disciplinary design of educational, Health, mixed use and commercial buildings.  He has developed his experience working on a range of projects in UK, Middle East and Europe.  Since graduating Michael has amassed a broad range of experience both as a technical advisor, project manager and as a professional engineering consultant. As an experienced mechanical engineer, he has led the design on a number of new as well as retrofit data centres in U.K. As a project manager, he has delivered multi-disciplinary as well as Data Centre projects which have enabled him to develop a broad understanding of building design issues.  He received a bachelor’s degree in Mechanical Engineering from Kingston University London and a master’s in Mechanical Engineering from Kingston University London. Michael Grigoratos  Senior Consultant, Halcrow Group Ltd
The Energy Problem Fuels used to generate electricity Source:   Edison Electric Institute, September 2008 Natural gas prices increased 300% since 1999 Coal spot market prices increased 100% since 2003 Oil prices for electric generators increased 50% from 2003 to 2005 Nuclear uranium prices increased 40% since 2001 UK Gas and Electricity to increase up to 60% by 2016  Source:   Ofcom report Oct 2009
Data Center Cooling and Power Conversion Performance Typical Practice Best Practice Server Load /Computing Operations Cooling & Power Conversions Server  Load /Computing Operations Cooling  & Power Conversions
Typical Energy Flow/Use Fuel Burned at Power Plant Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution Delivered Power Electricity Generation & Transmission Losses
Typical Energy Flow/Use Will reduce cooling needs Fuel Burned at Power Plant Reducing server power requirements  Lowering power conversion losses Electricity Generation & Transmission Losses Delivered Electricity … ultimately reducing fuel burned at the power plant Reducing power demand and losses Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution
Energy Efficiency Opportunities Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution Alternative Power   Generation High voltage distribution Use of DC power Highly efficient UPS systems Efficient redundancy strategies Load management Server innovation Better air management Cold Thermal Store Optimized chilled-water plants Use of free cooling On-site generation CHP applications Waste heat for cooling Use of renewable energy Fuel cells
Opportunity Potential Comparison of Projected Electricity Use, All Scenarios, 2007 to 2011 Annual Energy Use (Billion kWh/year) 2007 2008 2009 2010 2011 2008 Baseline 58.7 0 140 120 100 80 60 40 20 Business as usual Current trends Improved operational management Best practice State of the art
Steps Companies can take to Reduce Energy Consumption It is important for large companies to start addressing their power and cooling problems early to avoid significant data centre infrastructure and facility costs.  There is no single solution to the energy problem; however, there are several steps that a company can take to lessen its usage and become more efficient.
The first step is to determine the current data centre energy baseline. Once the energy baseline is established, it is then possible to measure the result of any improvements while gaining the ability to pinpoint existing problem areas quickly. The Data Centre Manager will need to know the data centre’s building infrastructure and IT equipment power requirements (including forecasts) and actual energy usage that include average and peak loads. 1. Determine Energy Baseline
IT growth forecasts and aging data centre facilities may point towards data centre consolidations, outsourcing and or even a new data centre build.  The goal here is to avoid a surprise and negative impact to the corporation as a whole, with larger than expected increases to the IT Capital and Operations budget.  2. Forecast IT Growth The second step is to quickly determine forecasted IT equipment growth, new projects and any other significant changes that impact in data centre operations.  Clearly, good forecasts lead to better planning and more effective energy solutions. 2003  2005  2007  2009  2011
Data centre best practices can significantly reduce energy consumption from 10-50%.  Data Analysis After going through the first two steps,  it is now possible to examine infrastructure adjustments as well as data centre best practices to maximize cooling and energy efficiency.
To accomplish the above, we need to determine energy usage at the utility meter coming into the data centre as well as usage at the IT equipment.  Next, we have to apply some metrics such as the Uptime Institute’s “Four Metrics to Define Data Centre Greenness” The use of metrics, in turn, will provide opportunities to improve your data centre energy efficiency.  In addition, new IT equipment with enabled energy saving features should be part of your “refresh”, growth, or consolidation game plan to improve your data centre. Energy Management As stated before, benchmarks should be set for energy usage and costs with a flexible, modular plan developed for added data centre equipment growth.
According to the Green Grid, a non-profit trade organization of IT professionals, there are two related metrics that can improve the energy efficiency of existing data centres as well as determine the decision to build new data centres.  Ideally, these metrics and processes will help determine if the existing data centre can be optimized before a new data centre is needed.  These new metrics are Power Usage Effectiveness (PUE) and Data Centre Efficiency (DCE).  Green Metrics Total Facility Power is defined as the power measured at the utility meter, the power dedicated solely to the data centre, and IT Equipment Power is defined as the equipment that is used to manage, process, store, or route data within the data centre.  Implementing these metrics allows a firm to determine areas to improve operational efficiency, compare their data centre with other competitive data centres, ensure that the data centre operators are improving the designs and processes over time and discover opportunities to repurpose energy for additional IT equipment. While these metrics may be similar, they can be used to illustrate the energy allocation in the data centre differently
A good layout begins with the tried and true cold aisle/hot aisle cooling strategy within the data centre.  This begins with sealing any cable cut-outs to eliminate air bypass and making sure that equipment rows are perpendicular to cooling units.  Then minimize hot air/cold air recirculation with unobstructed clearance from the top of the rack to the top of the return air path.  Rack Layout Separate high-density racks When high-density racks are clustered together, most cooling systems become ineffective. Distributing these racks across the entire floor area alleviates this problem. Finally, construct all cabinets and racks of uniform height to help limit aisle to aisle hot air/cold air recirculation which must be kept to a minimum at equipment air intake levels.
Manage open rack space to ensure proper airflow in the equipment aisles  Close any unused space in the racks with blank panels  Missing blank panels allow hot air exiting the rack to mix with the cool air coming into the rack Thus raising the overall level of cooling required  Rack Management
Properly conditioned air intake methods with non restricted airflow can significantly improve airflow within a data centre.  Using blanking panels to limit hot air/cold air recirculation, having door ventilation on cabinets, unrestricted airflow in the back of the cabinets, and no shelves to block airflow are all best practices in airflow management.  Airflow assisting devices for direct cold air delivery, hot aisle containment systems, rack air containment systems and speciality hot exhaust air return ducts can be applied as alternative airflow solutions in support of high density enclosures and blade server  farms in the data centre. Airflow Management
The Cooling capacity of the data centre should match the IT equipment that’s located inside it with appropriate settings for CRAC unit temperatures and humidity.  Any hot spots should be eliminated, and proper air velocity provided, while ensuring that all air vents are properly located.  Cooling Management
Real Time Airflow and Temperature   Control Real Time Cooling Control can represent a step change in the reliability, functionality, and energy efficiency of existing data centers. Available systems can provide real-time airflow and temperature control, active user interface, and 24/7 thermal monitoring and alarming, with automated adjustment of airflow based on supply and demand.   In most cases this equates to the elimination of hot spots and typical reduction in the consumption of energy by 20% to 30%.
High Density Server Cooling Front-to-back cooling principle used in most high density server designs.  The Modular Cooling System (MDS)  evenly distributes cold supply air at the front of the rack of equipment. Each server receives adequate supply air, regardless of its position within the rack or the density of the rack.  The servers expel warm exhaust air out the rear of the rack. The fan modules re-direct the warm air from the rear of the rack into the heat exchanger modules.  The air is re-cooled and then re-circulated to the front of the rack. Any condensation that forms is collected in each heat exchanger module and flows through a discharge tube to a condensation tray integrated in the base assembly.
CO 2  RAC  Blade server cooling Performance CO 2  is able to absorb over seven times more heat as it evaporates than an equivalent quantity of water.  CO 2  vaporises during the heat absorption in. In contrast with conventional cooling systems, CO 2  cooling can save up to 30% energy. CO2 Cooling Carbon dioxide (CO 2 ) is an ideal refrigerant, particularly when considered against ecological and safety criteria.  It is natural, non-flammable, oil-free, chemically inactive and has zero potential for ozone depletion.  It is electrically benign and does not present a danger to PCs or power and data cabling.  CO 2  pipe diameters are much smaller than comparable chilled water pipes.
You need to consider: Increasing the utilization of existing and new IT resources,  Containing and improving equipment power and cooling usage and requirements,  Reducing the data centre's physical infrastructure footprint,  Reducing IT administrative and maintenance costs,  Optimizing staff productivity  The two drivers for efficient, green data centres are the: 1.Opportunity to realize significant, near and long-term financial benefits 2.Ability to minimize the environmental impact of inefficient data centres Building a green data centre?
The only way to drive out inefficiency is to understand the dynamics working against you!  Then engineer solutions to overcome the undesirable phenomenon.  It is possible to stumble upon a working solution, but the best method is to use tools that eliminate the guesswork and enable rapid analysis of scenarios. If done well, the rewards can be great  Driving out inefficiency

More Related Content

PDF
Commercial Overview DC Session 3 The Greening Of The Data Centre
DOC
Energy Audit Procedure
PDF
Airmasterpresentation
PPTX
Registered Energy Manager Slide: Energy Audit
DOCX
ESP167FinalPaper
PDF
IRJET- Analysis of Energy - Efficient Measures for Architectural Building
PDF
Energy saving in cooling towers by using variable frequency drives
PDF
Ijmet 06 09_006
Commercial Overview DC Session 3 The Greening Of The Data Centre
Energy Audit Procedure
Airmasterpresentation
Registered Energy Manager Slide: Energy Audit
ESP167FinalPaper
IRJET- Analysis of Energy - Efficient Measures for Architectural Building
Energy saving in cooling towers by using variable frequency drives
Ijmet 06 09_006

What's hot (13)

PDF
Energy efficiency where to invest
PPTX
How to develop an effective energy management plan according to business type
PDF
Express Computer
PDF
ACHIEVING ENERGY EFFICIENCIES IN COLD STORAGES
PPTX
Energy solutions for federal facilities : How to harness sustainable savings ...
PDF
How Green Is Your Data Center
PPTX
Green Data Centre for banks
DOCX
WEEC_White-Anderson_01OCT2014-FINAL
PDF
Green it at university of bahrain
PDF
2: Introduction to Energy Audit Methods in Water Supply
PPT
PPT
energy audit
PPTX
Case Study of Energy Audit
Energy efficiency where to invest
How to develop an effective energy management plan according to business type
Express Computer
ACHIEVING ENERGY EFFICIENCIES IN COLD STORAGES
Energy solutions for federal facilities : How to harness sustainable savings ...
How Green Is Your Data Center
Green Data Centre for banks
WEEC_White-Anderson_01OCT2014-FINAL
Green it at university of bahrain
2: Introduction to Energy Audit Methods in Water Supply
energy audit
Case Study of Energy Audit
Ad

Viewers also liked (13)

PPTX
Data Center
ODP
Datacenter101
PPTX
Urban Big Data Centre
PDF
Introduction to Data Centre 3.0
PPT
Data Centre Efficiency
PPT
Managed Data Centre
PDF
Data Centre Cost Benchmarking - An Insight & Common Pitfalls
PDF
Case Study - HPs Own Data Centre Transformation
PDF
CERN Data Centre Evolution
PDF
Presentation data center design overview
PPTX
Datacenter overview
PPTX
POWER POINT PRESENTATION ON DATA CENTER
ZIP
DataCenter:: Infrastructure Presentation
Data Center
Datacenter101
Urban Big Data Centre
Introduction to Data Centre 3.0
Data Centre Efficiency
Managed Data Centre
Data Centre Cost Benchmarking - An Insight & Common Pitfalls
Case Study - HPs Own Data Centre Transformation
CERN Data Centre Evolution
Presentation data center design overview
Datacenter overview
POWER POINT PRESENTATION ON DATA CENTER
DataCenter:: Infrastructure Presentation
Ad

Similar to Optimizing The Data Centre Environment (20)

PPT
Green & Beyond: Data Center Actions to Increase Business Responsiveness and R...
PPTX
Green computing
PDF
Innovations in Energy Efficiency for Cloud Data Centers.pdf
PDF
project report on DATACENTER
PPT
Emerson Energy Logic
PDF
Build Energy Saving into Your Datacenter
PPT
Cooling a Data Center - DP Air
PPTX
Optimize power and cooling final
PPTX
Optimize power and cooling final 1
PDF
Slides: The Top 3 North America Data Center Trends for Cooling
PPTX
Data Centers
PPT
Data centre strategies in consideration of climate change
PPTX
Green cloud computing
PPTX
Infrastructure Building Block - Data Center.pptx
PPT
Datacenter Design - DP Air
PPT
Green data center_rahul ppt
DOCX
COMMON PROBLEMS AND CHALLENGES IN DATA CENTRES
PDF
Actual Time Online Thermal Mapping Of significant Components In Data Hub
PPTX
Data center m&e
PPTX
Google ppt. mis
Green & Beyond: Data Center Actions to Increase Business Responsiveness and R...
Green computing
Innovations in Energy Efficiency for Cloud Data Centers.pdf
project report on DATACENTER
Emerson Energy Logic
Build Energy Saving into Your Datacenter
Cooling a Data Center - DP Air
Optimize power and cooling final
Optimize power and cooling final 1
Slides: The Top 3 North America Data Center Trends for Cooling
Data Centers
Data centre strategies in consideration of climate change
Green cloud computing
Infrastructure Building Block - Data Center.pptx
Datacenter Design - DP Air
Green data center_rahul ppt
COMMON PROBLEMS AND CHALLENGES IN DATA CENTRES
Actual Time Online Thermal Mapping Of significant Components In Data Hub
Data center m&e
Google ppt. mis

Optimizing The Data Centre Environment

  • 1. Optimizing The Data Centre Environment Michalis Grigoratos Senior Consultant [email_address]
  • 2. Michael is a Senior Consultant specialising in multi-disciplinary design of educational, Health, mixed use and commercial buildings. He has developed his experience working on a range of projects in UK, Middle East and Europe. Since graduating Michael has amassed a broad range of experience both as a technical advisor, project manager and as a professional engineering consultant. As an experienced mechanical engineer, he has led the design on a number of new as well as retrofit data centres in U.K. As a project manager, he has delivered multi-disciplinary as well as Data Centre projects which have enabled him to develop a broad understanding of building design issues. He received a bachelor’s degree in Mechanical Engineering from Kingston University London and a master’s in Mechanical Engineering from Kingston University London. Michael Grigoratos Senior Consultant, Halcrow Group Ltd
  • 3. The Energy Problem Fuels used to generate electricity Source: Edison Electric Institute, September 2008 Natural gas prices increased 300% since 1999 Coal spot market prices increased 100% since 2003 Oil prices for electric generators increased 50% from 2003 to 2005 Nuclear uranium prices increased 40% since 2001 UK Gas and Electricity to increase up to 60% by 2016 Source: Ofcom report Oct 2009
  • 4. Data Center Cooling and Power Conversion Performance Typical Practice Best Practice Server Load /Computing Operations Cooling & Power Conversions Server Load /Computing Operations Cooling & Power Conversions
  • 5. Typical Energy Flow/Use Fuel Burned at Power Plant Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution Delivered Power Electricity Generation & Transmission Losses
  • 6. Typical Energy Flow/Use Will reduce cooling needs Fuel Burned at Power Plant Reducing server power requirements Lowering power conversion losses Electricity Generation & Transmission Losses Delivered Electricity … ultimately reducing fuel burned at the power plant Reducing power demand and losses Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution
  • 7. Energy Efficiency Opportunities Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution Alternative Power Generation High voltage distribution Use of DC power Highly efficient UPS systems Efficient redundancy strategies Load management Server innovation Better air management Cold Thermal Store Optimized chilled-water plants Use of free cooling On-site generation CHP applications Waste heat for cooling Use of renewable energy Fuel cells
  • 8. Opportunity Potential Comparison of Projected Electricity Use, All Scenarios, 2007 to 2011 Annual Energy Use (Billion kWh/year) 2007 2008 2009 2010 2011 2008 Baseline 58.7 0 140 120 100 80 60 40 20 Business as usual Current trends Improved operational management Best practice State of the art
  • 9. Steps Companies can take to Reduce Energy Consumption It is important for large companies to start addressing their power and cooling problems early to avoid significant data centre infrastructure and facility costs. There is no single solution to the energy problem; however, there are several steps that a company can take to lessen its usage and become more efficient.
  • 10. The first step is to determine the current data centre energy baseline. Once the energy baseline is established, it is then possible to measure the result of any improvements while gaining the ability to pinpoint existing problem areas quickly. The Data Centre Manager will need to know the data centre’s building infrastructure and IT equipment power requirements (including forecasts) and actual energy usage that include average and peak loads. 1. Determine Energy Baseline
  • 11. IT growth forecasts and aging data centre facilities may point towards data centre consolidations, outsourcing and or even a new data centre build. The goal here is to avoid a surprise and negative impact to the corporation as a whole, with larger than expected increases to the IT Capital and Operations budget. 2. Forecast IT Growth The second step is to quickly determine forecasted IT equipment growth, new projects and any other significant changes that impact in data centre operations. Clearly, good forecasts lead to better planning and more effective energy solutions. 2003 2005 2007 2009 2011
  • 12. Data centre best practices can significantly reduce energy consumption from 10-50%. Data Analysis After going through the first two steps, it is now possible to examine infrastructure adjustments as well as data centre best practices to maximize cooling and energy efficiency.
  • 13. To accomplish the above, we need to determine energy usage at the utility meter coming into the data centre as well as usage at the IT equipment. Next, we have to apply some metrics such as the Uptime Institute’s “Four Metrics to Define Data Centre Greenness” The use of metrics, in turn, will provide opportunities to improve your data centre energy efficiency. In addition, new IT equipment with enabled energy saving features should be part of your “refresh”, growth, or consolidation game plan to improve your data centre. Energy Management As stated before, benchmarks should be set for energy usage and costs with a flexible, modular plan developed for added data centre equipment growth.
  • 14. According to the Green Grid, a non-profit trade organization of IT professionals, there are two related metrics that can improve the energy efficiency of existing data centres as well as determine the decision to build new data centres. Ideally, these metrics and processes will help determine if the existing data centre can be optimized before a new data centre is needed. These new metrics are Power Usage Effectiveness (PUE) and Data Centre Efficiency (DCE). Green Metrics Total Facility Power is defined as the power measured at the utility meter, the power dedicated solely to the data centre, and IT Equipment Power is defined as the equipment that is used to manage, process, store, or route data within the data centre. Implementing these metrics allows a firm to determine areas to improve operational efficiency, compare their data centre with other competitive data centres, ensure that the data centre operators are improving the designs and processes over time and discover opportunities to repurpose energy for additional IT equipment. While these metrics may be similar, they can be used to illustrate the energy allocation in the data centre differently
  • 15. A good layout begins with the tried and true cold aisle/hot aisle cooling strategy within the data centre. This begins with sealing any cable cut-outs to eliminate air bypass and making sure that equipment rows are perpendicular to cooling units. Then minimize hot air/cold air recirculation with unobstructed clearance from the top of the rack to the top of the return air path. Rack Layout Separate high-density racks When high-density racks are clustered together, most cooling systems become ineffective. Distributing these racks across the entire floor area alleviates this problem. Finally, construct all cabinets and racks of uniform height to help limit aisle to aisle hot air/cold air recirculation which must be kept to a minimum at equipment air intake levels.
  • 16. Manage open rack space to ensure proper airflow in the equipment aisles Close any unused space in the racks with blank panels Missing blank panels allow hot air exiting the rack to mix with the cool air coming into the rack Thus raising the overall level of cooling required Rack Management
  • 17. Properly conditioned air intake methods with non restricted airflow can significantly improve airflow within a data centre. Using blanking panels to limit hot air/cold air recirculation, having door ventilation on cabinets, unrestricted airflow in the back of the cabinets, and no shelves to block airflow are all best practices in airflow management. Airflow assisting devices for direct cold air delivery, hot aisle containment systems, rack air containment systems and speciality hot exhaust air return ducts can be applied as alternative airflow solutions in support of high density enclosures and blade server farms in the data centre. Airflow Management
  • 18. The Cooling capacity of the data centre should match the IT equipment that’s located inside it with appropriate settings for CRAC unit temperatures and humidity. Any hot spots should be eliminated, and proper air velocity provided, while ensuring that all air vents are properly located. Cooling Management
  • 19. Real Time Airflow and Temperature Control Real Time Cooling Control can represent a step change in the reliability, functionality, and energy efficiency of existing data centers. Available systems can provide real-time airflow and temperature control, active user interface, and 24/7 thermal monitoring and alarming, with automated adjustment of airflow based on supply and demand.   In most cases this equates to the elimination of hot spots and typical reduction in the consumption of energy by 20% to 30%.
  • 20. High Density Server Cooling Front-to-back cooling principle used in most high density server designs. The Modular Cooling System (MDS) evenly distributes cold supply air at the front of the rack of equipment. Each server receives adequate supply air, regardless of its position within the rack or the density of the rack. The servers expel warm exhaust air out the rear of the rack. The fan modules re-direct the warm air from the rear of the rack into the heat exchanger modules. The air is re-cooled and then re-circulated to the front of the rack. Any condensation that forms is collected in each heat exchanger module and flows through a discharge tube to a condensation tray integrated in the base assembly.
  • 21. CO 2 RAC Blade server cooling Performance CO 2 is able to absorb over seven times more heat as it evaporates than an equivalent quantity of water. CO 2 vaporises during the heat absorption in. In contrast with conventional cooling systems, CO 2 cooling can save up to 30% energy. CO2 Cooling Carbon dioxide (CO 2 ) is an ideal refrigerant, particularly when considered against ecological and safety criteria. It is natural, non-flammable, oil-free, chemically inactive and has zero potential for ozone depletion. It is electrically benign and does not present a danger to PCs or power and data cabling. CO 2 pipe diameters are much smaller than comparable chilled water pipes.
  • 22. You need to consider: Increasing the utilization of existing and new IT resources, Containing and improving equipment power and cooling usage and requirements, Reducing the data centre's physical infrastructure footprint, Reducing IT administrative and maintenance costs, Optimizing staff productivity The two drivers for efficient, green data centres are the: 1.Opportunity to realize significant, near and long-term financial benefits 2.Ability to minimize the environmental impact of inefficient data centres Building a green data centre?
  • 23. The only way to drive out inefficiency is to understand the dynamics working against you! Then engineer solutions to overcome the undesirable phenomenon. It is possible to stumble upon a working solution, but the best method is to use tools that eliminate the guesswork and enable rapid analysis of scenarios. If done well, the rewards can be great Driving out inefficiency

Editor's Notes

  • #4: Why are energy costs going up so dramatically? Through basic supply and demand economics, we understand that as demand increases and supply decreases, prices tend to rise. And this is exactly what is happening. At the same time Data Centers demand more electricity, the supply of electricity is constrained. In the Americas for example, demand for electricity has doubled from 2000 to 2005, to the point where Data Centers now consume 1.5% of all electricity in the country. Compounding the demand for energy is the cost for producing energy has gone up. Four of the main natural resources for producing electricity have seen sharp cost increases. Even countries like France, which get more than have of their electricity from Nuclear have seen price increases. Coal prices have doubled, Natural Gas prices have quadrupled and even oil & uranium have gone up substantially. And, the situation doesn’t appear to be getting any better. With no end in sight to increasing energy costs, we have no choice left but to conserve and reduce our insatiable demand.
  • #8: Power Conversion: Potential for 10 to 30% improvement Server Load/Computing: Potential for 30 to 50% improvement (check EPA report) Load management Virtualization Sleep modes Load shifting Server innovation Chip design Efficient power supplies Semiconductor materials Cooling: Potential for 30 to 50% improvement (check EPA report) Alternative Power Generation: On-site generation (eliminates transmission losses) CHP applications Use of waste heat for cooling Use of renewable energy (could couple with DC power distribution systems) PV Fuel cells Dale’s revision: Improve “in-the-box” power supply efficiency Improve efficiency of software applications Improve resource utilization (e.g. virtualization) Reduce idle power (power management) Hardware innovation (e.g. more efficient computations per watt)