SlideShare a Scribd company logo
6th Author Profiling task at PAN
Multimodal Gender
Identification in Twitter
PAN-AP-2018 CLEF 2018
Avignon, 10-14 September
Francisco Rangel
Autoritas Consulting &
PRHLT Research Center -
Universitat Politècnica de València
Paolo Rosso
PRHLT Research Center
Universitat Politècnica de Valencia
Martin Potthast & Benno Stein
Bauhaus-Universität Weimar
Manuel Montes y Gómez
INAOE - Mexico
Introduction
Author profiling aims at identifying
personal traits such as age, gender,
personality traits, native language,
language variety… from writings.
This is crucial for:
- Marketing.
- Security.
- Forensics.
2
PAN’18AuthorProfiling
Task goal
To investigate the identification of
author’s gender with multimodal
information: texts + images.
3
AuthorProfiling
Three languages:
English SpanishArabic
PAN’18
Corpus
4
AuthorProfiling
● PAN-AP'17 subset extended with images shared in author's timelines:
○ 100 tweets per author.
○ 10 images per author.
PAN’18
The accuracy is calculated per modality and language:
● Text-based.
● Image-based.
● Combined.
The final ranking is the average of the combined*
accuracies per language:
Evaluation measures
5
AuthorProfilingPAN’18
* If only the textual approach was submitted, its accuracy has been used
Baselines
6
AuthorProfiling
● BASELINE-stat: A statistical baseline that emulates random
choice. Both modalities.
● BASELINE-bow:
○ Documents represented as bag-of-words.
○ The 5,000 most common words in the training set.
○ Weighted by absolute frequency.
○ Preprocess: lowercase, removal of punctuation signs and
numbers, removal of stopwords.
○ Textual modality.
● BASELINE-rgb:
○ RGB color for each pixel in each author images.
○ The author is represented with the minimum, maximum,
mean, median, and standard deviation of the RGB values.
○ Images modality.
PAN’18
23 participants
22 working notes
17 countries 7
AuthorProfiling
Netherlands
Slovenia
PAN’18
Approaches
8
AuthorProfilingPAN’18
Approaches - Preprocessing
9
AuthorProfiling
Punctuation signs Ciccone et al., Stout et al., HaCohen-Kerner et al., Veenhoven et al.
Character flooding Ciccone et al., Raiyani et al.
Lowercase Von Däniken et al., Veenhoven et al., Nieuwenhuis et al., Bayot &
Gonçalves, Kosse et al., Stout et al., Schaetti, HaCohen-Kerner et al.
Stopwords Ciccone et al., Raiyani et al., HaCohen-Kerner et al., Veenhoven et al.
Twitter specific components:
hashtags, urls, mentions and
RTs
Ciccone et al., Takahashi et al., Stout et al., Raiyani et al., Schaetti,
HaCohen-Kerner et al., Von Däniken et al., Martinc et al., Veenhoven et
al., Nieuwenhuis et al., Kosse et al.
Contractions and abbreviations Stout et al., Raiyani et al.
Normalisation and diacritics
removal in Arabic
Ciccone et al.
Resizing, rescaling Takahashi et al., Martinc et al., Sierra-Loaiza & González
Normalisation (subtracting the
average RGB value per lang)
Takahashi et al.
PAN
TEXTSIMAGES
Approaches - Textual Features
10
AuthorProfiling
Stylistic features:
- Ratios of links
- Hashtag or user mentions
- Character flooding
- Emoticons / laugher expressions
- Domain names
Patra et al., Karlgren et al. ,HaCohen-Kerner et al., Von Däniken et
al.
N-gram models Stout et al., Sandroni-Dias & Paraboni, López-Santillán et al., Von
Däniken et al., Tellez et al., Nieuwenhuis et al., Kosse et al.,
Daneshvar, HaCohen-Kerner et al., Ciccone et al., Aragón & López
LSA Patra et al.
Second order representation Áragon & López
A variation of LDSE Gàribo-Orts
Word embeddings Martinc et al., Veenhoven et al., Bayot & Gonçalves,
López-Santillán et al., Takahashi et al., Patra et al.
Character embeddings Schaetti
PAN’18
Approaches - Image Features
11
AuthorProfiling
Face detection Stout et al., Ciccone et al., Veenhoven et al.
Objects detection Ciccone et al.
Local binary patterns Ciccone et al.
Color histogram Ciccone et al., HaCohen-Kerner et al.
Image resources and tools (e.g.
ImageNet, TorchVision...)
Patra et al., Nieuwenhuis et al., Aragón & López, Schaetti,
Takahashi et al.
Hand-crafted features HaCohen-Kerner et al.
Bag of Visual Words Tellez et al.
PAN’18
Approaches - Methods
12
AuthorProfiling
Logistic regression Sandroni-Dias & Paraboni, HaCohen-Kerner et al., Von Däniken et al.,
Nieuwenhuis et al.
SVM López-Santillán et al., Aragón & López, Ciccone et al., Patra et al., Tellez
et al., Veenhoven et al.
Multilayer Perceptron HaCohen-Kerner et al.
Basic feed-forward network Kosse et al.
Distance-based method Tellez et al., Karlgren et al.
IF condition Gáribo-Orts
RNN Takahashi et al., Bayot & Gonçalves, Stout et al.
CNN Schaetti
ResNet18 Schaetti
Bi-LSTM Veenhoven et al.
PAN’18
Textual modality
13
AuthorProfilingPAN’18
● AR: n-grams
● EN: n-grams
● ES: n-grams
Images modality
14
AuthorProfilingPAN’18
● Best: Pre-trained CNN w. ImageNet
● 2nd. AR: VGG16 + ResNet50 from ImageNet
● 2nd. EN: VGG16 + ResNet50 from ImageNet
● 2nd. ES: Color histogram + faces + objects +
local binary patterns
Improvement with images
15
AuthorProfilingPAN’18
● In average, there is almost no improvement.
● Some systems obtain high improvements (up to 7.73%)
○ Pre-trained CNN w. ImageNet.
Improvement (AR)
16
AuthorProfilingPAN’18
Improvement (EN)
17
AuthorProfilingPAN’18
Improvement (ES)
18
AuthorProfilingPAN’18
Final ranking
19
AuthorProfiling
*
PAN’18
20
AuthorProfiling
PAN-AP 2018 best results
PAN’18
Conclusions
● Several approaches to tackle the task:
○ Deep learning prevailing.
● Textual classification:
○ Best results regarding textual subtask: n-grams + traditional methods (SVM, logistic reg.).
○ The second best result for Spanish: bi-LSTM with word embeddings.
● Images classification approaches based on:
○ Face recognition. <- Failed!
○ Pre-trained models and image processing tools such as ImageNet. <- Best results obtained
with semantic features extracted from the images.
○ Hand-crafted features such as color histograms and bag-of-visual-words.
● Texts vs. Images:
○ Textual features discriminate better than images.
○ On average, there is no improvement when images are used.
○ Elaborated representations improves up to 7.73% (English).
● Best results:
○ Over 80% on average (EN 85.84%; ES 82%; AR: 81.80%).
○ English (85.84%): Takahashi et al. with deep learning techniques (RNN for text, ImageNet +
CNN for images).
○ Spanish (82%): Daneshvar with SVM and combinations of n-grams (only textual features).
○ Arabic (81.80%): Tellez et al. with SVM + n-grams, and Bag of Visual Words.
● Insight:
○ Traditional approaches still remain competitive, but deep learning is acquiring strength. 21
AuthorProfilingPAN’18
Task impact
22
AuthorProfiling
PARTICIPANTS COUNTRIES
PAN-AP 2013
21 16
PAN-AP 2014
10 8
PAN-AP 2015
22 13
PAN-AP 2016
22 15
PAN-AP 2017
22 19
PAN-AP 2018
23 17
PAN’18
Industry at PAN (Author Profiling)
23
AuthorProfiling
Organisation Sponsors
Participants
PAN’18
2019 -> Robot or human?
24
AuthorProfilingPAN’18
25
AuthorProfiling
On behalf of the author profiling task organisers:
Thank you very much for participating
and hope to see you next year!!
PAN’18

More Related Content

PDF
Overview of the 8th Author Profiling task at PAN: Profiling Fake News Spreade...
PDF
Overview of the 9th Author Profiling task at PAN: Profiling Hate Speech Sprea...
PDF
Overview of the 7th Author Profiling task at PAN: Bots and Gender Profiling ...
PDF
RusProfiling Gender Identification in Russian Texts PAN@FIRE
PDF
Gender and Language Variety Identification in Twitter. Overview of the 5th. A...
PDF
Overview of the 4th. Author Profiling task at PAN-CLEF 2016
PDF
Author Profiling task at PAN Lab at CLEF 2015
PDF
Profiling Irony and Stereotype Spreaders on Twitter (IROSTEREO)
Overview of the 8th Author Profiling task at PAN: Profiling Fake News Spreade...
Overview of the 9th Author Profiling task at PAN: Profiling Hate Speech Sprea...
Overview of the 7th Author Profiling task at PAN: Bots and Gender Profiling ...
RusProfiling Gender Identification in Russian Texts PAN@FIRE
Gender and Language Variety Identification in Twitter. Overview of the 5th. A...
Overview of the 4th. Author Profiling task at PAN-CLEF 2016
Author Profiling task at PAN Lab at CLEF 2015
Profiling Irony and Stereotype Spreaders on Twitter (IROSTEREO)

Similar to Overview of the 6th Author Profiling task at PAN: Multimodal Gender Identification in Twitter (13)

PDF
Babelfish_Report
PPTX
2010 PACLIC - pay attention to categories
PDF
AL4Trust - Artificial Intelligence for Building Trust
PDF
IRJET- Foster Hashtag from Image and Text
ODP
Topic Modeling
PDF
GENDER AND AUTHORSHIP CATEGORISATION OF ARABIC TEXT FROM TWITTER USING PPM
PDF
Gender and Authorship Categorisation of Arabic Text from Twitter Using PPM
PDF
Gender and Authorship Categorisation of Arabic Text from Twitter Using PPM
PDF
TweetMogaz - The Arabic Tweets Platform: Presented by Ahmed Adel, BADR
PDF
A Low Dimensionality Representation for Language Variety Identification (CICL...
PDF
Overview of the 2nd. Author Profiling task at PAN-CLEF 2014
PDF
Overview of PAN'16 - New challenges for Authorship Analysis: Cross-genre prof...
PDF
Big Data Analytics course: Named Entities and Deep Learning for NLP
Babelfish_Report
2010 PACLIC - pay attention to categories
AL4Trust - Artificial Intelligence for Building Trust
IRJET- Foster Hashtag from Image and Text
Topic Modeling
GENDER AND AUTHORSHIP CATEGORISATION OF ARABIC TEXT FROM TWITTER USING PPM
Gender and Authorship Categorisation of Arabic Text from Twitter Using PPM
Gender and Authorship Categorisation of Arabic Text from Twitter Using PPM
TweetMogaz - The Arabic Tweets Platform: Presented by Ahmed Adel, BADR
A Low Dimensionality Representation for Language Variety Identification (CICL...
Overview of the 2nd. Author Profiling task at PAN-CLEF 2014
Overview of PAN'16 - New challenges for Authorship Analysis: Cross-genre prof...
Big Data Analytics course: Named Entities and Deep Learning for NLP
Ad

More from Francisco Manuel Rangel Pardo (18)

PPTX
Profiling Cryptocurrency Influencers with Few-shot Learning 2023
PDF
AL4Trust - Artificial Intelligence for Building Trust 2019
PDF
Author Profiling en Social Media. En la Academia... y en la Industria.
PDF
Multimodal Stance Detection in Tweets on Catalan #1Oct Referendum @Ibereval 2...
PDF
Stance and Gender Detection in Tweets on Catalan Independence. Ibereval@SEPLN...
PDF
Redes sociales y preadolescentes
PDF
PR-SOCO Personality Recognition in SOurce COde (PAN@FIRE 2016)
PDF
El Futuro de las Comunicaciones Personales a Través de los Dispositivos Móvil...
PDF
Smart Listening - MUIinf
PDF
IA + Big Data = problema + oportunidad
PDF
Language Variety Identification using Distributed Representations of Words an...
PDF
EmoGraph for Age and Gender Identification
PDF
My Phd Student T-Shirt
PDF
Kico's Stairway to Phd
PDF
Native Language Identification - Brief review to the state of the art
PDF
Social Business Intelligence - Inteligencia Social de Negocio
PDF
Dualidad onda-partícula del científico de datos en la empresa
PDF
On the Identification of Emotions and Authors’ Gender in Facebook Comments on...
Profiling Cryptocurrency Influencers with Few-shot Learning 2023
AL4Trust - Artificial Intelligence for Building Trust 2019
Author Profiling en Social Media. En la Academia... y en la Industria.
Multimodal Stance Detection in Tweets on Catalan #1Oct Referendum @Ibereval 2...
Stance and Gender Detection in Tweets on Catalan Independence. Ibereval@SEPLN...
Redes sociales y preadolescentes
PR-SOCO Personality Recognition in SOurce COde (PAN@FIRE 2016)
El Futuro de las Comunicaciones Personales a Través de los Dispositivos Móvil...
Smart Listening - MUIinf
IA + Big Data = problema + oportunidad
Language Variety Identification using Distributed Representations of Words an...
EmoGraph for Age and Gender Identification
My Phd Student T-Shirt
Kico's Stairway to Phd
Native Language Identification - Brief review to the state of the art
Social Business Intelligence - Inteligencia Social de Negocio
Dualidad onda-partícula del científico de datos en la empresa
On the Identification of Emotions and Authors’ Gender in Facebook Comments on...
Ad

Recently uploaded (20)

PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
How to run a consulting project- client discovery
PPTX
Leprosy and NLEP programme community medicine
PDF
Introduction to Data Science and Data Analysis
PPTX
Database Infoormation System (DBIS).pptx
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
CYBER SECURITY the Next Warefare Tactics
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPT
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PDF
Business Analytics and business intelligence.pdf
PDF
annual-report-2024-2025 original latest.
PPTX
New ISO 27001_2022 standard and the changes
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Introduction to the R Programming Language
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
How to run a consulting project- client discovery
Leprosy and NLEP programme community medicine
Introduction to Data Science and Data Analysis
Database Infoormation System (DBIS).pptx
retention in jsjsksksksnbsndjddjdnFPD.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
CYBER SECURITY the Next Warefare Tactics
STERILIZATION AND DISINFECTION-1.ppthhhbx
lectureusjsjdhdsjjshdshshddhdhddhhd1.ppt
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
IBA_Chapter_11_Slides_Final_Accessible.pptx
Business Analytics and business intelligence.pdf
annual-report-2024-2025 original latest.
New ISO 27001_2022 standard and the changes
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Introduction to the R Programming Language

Overview of the 6th Author Profiling task at PAN: Multimodal Gender Identification in Twitter

  • 1. 6th Author Profiling task at PAN Multimodal Gender Identification in Twitter PAN-AP-2018 CLEF 2018 Avignon, 10-14 September Francisco Rangel Autoritas Consulting & PRHLT Research Center - Universitat Politècnica de València Paolo Rosso PRHLT Research Center Universitat Politècnica de Valencia Martin Potthast & Benno Stein Bauhaus-Universität Weimar Manuel Montes y Gómez INAOE - Mexico
  • 2. Introduction Author profiling aims at identifying personal traits such as age, gender, personality traits, native language, language variety… from writings. This is crucial for: - Marketing. - Security. - Forensics. 2 PAN’18AuthorProfiling
  • 3. Task goal To investigate the identification of author’s gender with multimodal information: texts + images. 3 AuthorProfiling Three languages: English SpanishArabic PAN’18
  • 4. Corpus 4 AuthorProfiling ● PAN-AP'17 subset extended with images shared in author's timelines: ○ 100 tweets per author. ○ 10 images per author. PAN’18
  • 5. The accuracy is calculated per modality and language: ● Text-based. ● Image-based. ● Combined. The final ranking is the average of the combined* accuracies per language: Evaluation measures 5 AuthorProfilingPAN’18 * If only the textual approach was submitted, its accuracy has been used
  • 6. Baselines 6 AuthorProfiling ● BASELINE-stat: A statistical baseline that emulates random choice. Both modalities. ● BASELINE-bow: ○ Documents represented as bag-of-words. ○ The 5,000 most common words in the training set. ○ Weighted by absolute frequency. ○ Preprocess: lowercase, removal of punctuation signs and numbers, removal of stopwords. ○ Textual modality. ● BASELINE-rgb: ○ RGB color for each pixel in each author images. ○ The author is represented with the minimum, maximum, mean, median, and standard deviation of the RGB values. ○ Images modality. PAN’18
  • 7. 23 participants 22 working notes 17 countries 7 AuthorProfiling Netherlands Slovenia PAN’18
  • 9. Approaches - Preprocessing 9 AuthorProfiling Punctuation signs Ciccone et al., Stout et al., HaCohen-Kerner et al., Veenhoven et al. Character flooding Ciccone et al., Raiyani et al. Lowercase Von Däniken et al., Veenhoven et al., Nieuwenhuis et al., Bayot & Gonçalves, Kosse et al., Stout et al., Schaetti, HaCohen-Kerner et al. Stopwords Ciccone et al., Raiyani et al., HaCohen-Kerner et al., Veenhoven et al. Twitter specific components: hashtags, urls, mentions and RTs Ciccone et al., Takahashi et al., Stout et al., Raiyani et al., Schaetti, HaCohen-Kerner et al., Von Däniken et al., Martinc et al., Veenhoven et al., Nieuwenhuis et al., Kosse et al. Contractions and abbreviations Stout et al., Raiyani et al. Normalisation and diacritics removal in Arabic Ciccone et al. Resizing, rescaling Takahashi et al., Martinc et al., Sierra-Loaiza & González Normalisation (subtracting the average RGB value per lang) Takahashi et al. PAN TEXTSIMAGES
  • 10. Approaches - Textual Features 10 AuthorProfiling Stylistic features: - Ratios of links - Hashtag or user mentions - Character flooding - Emoticons / laugher expressions - Domain names Patra et al., Karlgren et al. ,HaCohen-Kerner et al., Von Däniken et al. N-gram models Stout et al., Sandroni-Dias & Paraboni, López-Santillán et al., Von Däniken et al., Tellez et al., Nieuwenhuis et al., Kosse et al., Daneshvar, HaCohen-Kerner et al., Ciccone et al., Aragón & López LSA Patra et al. Second order representation Áragon & López A variation of LDSE Gàribo-Orts Word embeddings Martinc et al., Veenhoven et al., Bayot & Gonçalves, López-Santillán et al., Takahashi et al., Patra et al. Character embeddings Schaetti PAN’18
  • 11. Approaches - Image Features 11 AuthorProfiling Face detection Stout et al., Ciccone et al., Veenhoven et al. Objects detection Ciccone et al. Local binary patterns Ciccone et al. Color histogram Ciccone et al., HaCohen-Kerner et al. Image resources and tools (e.g. ImageNet, TorchVision...) Patra et al., Nieuwenhuis et al., Aragón & López, Schaetti, Takahashi et al. Hand-crafted features HaCohen-Kerner et al. Bag of Visual Words Tellez et al. PAN’18
  • 12. Approaches - Methods 12 AuthorProfiling Logistic regression Sandroni-Dias & Paraboni, HaCohen-Kerner et al., Von Däniken et al., Nieuwenhuis et al. SVM López-Santillán et al., Aragón & López, Ciccone et al., Patra et al., Tellez et al., Veenhoven et al. Multilayer Perceptron HaCohen-Kerner et al. Basic feed-forward network Kosse et al. Distance-based method Tellez et al., Karlgren et al. IF condition Gáribo-Orts RNN Takahashi et al., Bayot & Gonçalves, Stout et al. CNN Schaetti ResNet18 Schaetti Bi-LSTM Veenhoven et al. PAN’18
  • 13. Textual modality 13 AuthorProfilingPAN’18 ● AR: n-grams ● EN: n-grams ● ES: n-grams
  • 14. Images modality 14 AuthorProfilingPAN’18 ● Best: Pre-trained CNN w. ImageNet ● 2nd. AR: VGG16 + ResNet50 from ImageNet ● 2nd. EN: VGG16 + ResNet50 from ImageNet ● 2nd. ES: Color histogram + faces + objects + local binary patterns
  • 15. Improvement with images 15 AuthorProfilingPAN’18 ● In average, there is almost no improvement. ● Some systems obtain high improvements (up to 7.73%) ○ Pre-trained CNN w. ImageNet.
  • 21. Conclusions ● Several approaches to tackle the task: ○ Deep learning prevailing. ● Textual classification: ○ Best results regarding textual subtask: n-grams + traditional methods (SVM, logistic reg.). ○ The second best result for Spanish: bi-LSTM with word embeddings. ● Images classification approaches based on: ○ Face recognition. <- Failed! ○ Pre-trained models and image processing tools such as ImageNet. <- Best results obtained with semantic features extracted from the images. ○ Hand-crafted features such as color histograms and bag-of-visual-words. ● Texts vs. Images: ○ Textual features discriminate better than images. ○ On average, there is no improvement when images are used. ○ Elaborated representations improves up to 7.73% (English). ● Best results: ○ Over 80% on average (EN 85.84%; ES 82%; AR: 81.80%). ○ English (85.84%): Takahashi et al. with deep learning techniques (RNN for text, ImageNet + CNN for images). ○ Spanish (82%): Daneshvar with SVM and combinations of n-grams (only textual features). ○ Arabic (81.80%): Tellez et al. with SVM + n-grams, and Bag of Visual Words. ● Insight: ○ Traditional approaches still remain competitive, but deep learning is acquiring strength. 21 AuthorProfilingPAN’18
  • 22. Task impact 22 AuthorProfiling PARTICIPANTS COUNTRIES PAN-AP 2013 21 16 PAN-AP 2014 10 8 PAN-AP 2015 22 13 PAN-AP 2016 22 15 PAN-AP 2017 22 19 PAN-AP 2018 23 17 PAN’18
  • 23. Industry at PAN (Author Profiling) 23 AuthorProfiling Organisation Sponsors Participants PAN’18
  • 24. 2019 -> Robot or human? 24 AuthorProfilingPAN’18
  • 25. 25 AuthorProfiling On behalf of the author profiling task organisers: Thank you very much for participating and hope to see you next year!! PAN’18